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ABSTRACT

Regulatory guidance notes the need for caution in the interpretation of confidence intervals (CIs) constructed during and after

an adaptive clinical trial. Conventional CIs of the treatment effects are prone to undercoverage (as well as other undesirable

properties) in many adaptive designs (ADs) because they do not take into account the potential and realized trial adaptations.

This paper is the first in a two-part series that explores CIs for adaptive trials. It provides a comprehensive review of the methods

to construct CIs for ADs, while the second paper illustrates how to implement these in practice and proposes a set of guidelines

for trial statisticians. We describe several classes of techniques for constructing CIs for adaptive clinical trials before providing a

systematic literature review of available methods, classified by the type of AD. As part of this, we assess, through a proposed traffic

light system, which of several desirable features of CIs (such as achieving nominal coverage and consistency with the hypothesis

test decision) each of these methods holds.

1 | Introduction

An adaptive design (AD) is a clinical trial design that allows for
prospectively planned modifications to one or more aspects of
the trial based on accumulating data from participants in the
trial [1–3]. These planned modifications vary widely in their
intent and scope, but carry a high-level commonality of increas-
ing flexibility and improving efficiency, while maintaining trial
integrity and validity. The most common types of AD include
those that can select a patient (sub)population (adaptive enrich-
ment designs), modify the randomization ratio to, for example,
favor better performing arms (response-adaptive randomization

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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designs), revise the recruitment target based on anupdated power
calculation (sample size reestimation designs), select promis-
ing treatment(s) out of several experimental options (multi-arm
multi-stage (MAMS) designs) and terminate the trial early for
efficacy or futility (group sequential designs). For amore detailed
overview, see, for example, Bretz et al. [4], Pallmann et al. [1],
Burnett et al. [5], and the PANDA online resource [6].

Whilst there is now a very large body of literature relating to
ADs, the majority has focused on the key question of hypothesis
testing, that is, how to enable the inclusion of various types of
trial adaptationswhilemaintaining control of decision error rates
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(e.g., type I and type II errors). Monitoring the accumulating data
within a trial requires adjustment to control the overall type I
error rate, for example to account formultiplicity from repeatedly
applying statistical testing over time during an AD. A key fea-
ture underpinning the methodology for type I error rate control
(e.g., in group sequential designs) is the ‘independent increment
structure’, whichmeans that the test statistic calculated using the
data gathered in a new stage of a trial (i.e., between two consecu-
tive interim analyses) is statistically independent of the informa-
tion gathered in all previous stages. This allows amathematically
tractable expression for the joint distribution of the test statistics
over time [7] and hence the calculation of stopping boundaries.

The related but distinct issue of the computation of inferential
quantities, such as treatment effect estimates and confidence
intervals (CIs), has received comparatively less explicit attention.
Consequently, to stimulate the field and simultaneously offer
practical assistance to researchers, a recent two-part series of arti-
cles [8, 9] sought to: (a) review available methods to remove or
reduce bias in point estimates following an adaptive trial, (b)
explore how to choose and implement an estimator, and (c) guide
on how to report estimated effects. Both of these articles on point
estimation acknowledged the importance of methods for obtain-
ing CIs following a trial utilizing an AD, but left an in-depth
discussion of this topic as out-of-scope. Indeed, whilst point esti-
mates (summary measures of treatment effects) are often the pri-
mary focus of a study’s final analysis as a core attribute of an
estimand [10], capturing uncertainty around such estimates cor-
rectly is also essential to aid interpretation. It is CIs that capture
this uncertainty by offering an interval that is expected to typi-
cally contain the unknown parameter of interest. When choos-
ing the CI to calculate, an important consideration in practice
is the desirable properties of a CI procedure. Principally, this
relates to the CI having the desired coverage probability (i.e.,
the long-run probability that the CI contains the true unknown
treatment effect of interest). However, it may also include numer-
ous other considerations, including that the CI will indeed be an
interval (i.e., it is not disjoint), that narrower CIs are preferred as
they are more informative (reflecting less uncertainty), that the
CI will always contain an associated point estimate, that it will
always be consistent with the decision rule (i.e., with an asso-
ciated hypothesis test), and that it is computationally feasible to
implement.

Put simply, the problem therein for ADs is then that use of stan-
dard CI methodology (i.e., CIs constructed using methods that
do not account for the fact an AD has been used) for parameters
of interest may not result in these desirable properties. Indeed,
recent regulatory guidance highlights the important role CIs
play, along with the pitfalls of utilizing CI methods developed for
conventional fixed sample designs for ADs. Specifically, the U.S.
Food and Drug Administration (FDA) notes that “confidence
intervals for the primary and secondary endpoints may not have
correct coverage probabilities for the true treatment effects” and
thus “confidence intervals should be presented with appropriate
cautions regarding their interpretation” [11]. It also notes the
need to pre-specify methods used to compute CIs at the end of an
adaptive trial as also reflected in the Adaptive designs CONSORT
Extension (ACE) guidance [3, 12]. The European Medicines
Agency (EMA) guidance takes an arguably stronger viewpoint,
by stating “methods to . . . provide confidence intervals with

pre-specified coverage probability are required” if an AD is going
to be deployed in a regulated setting [13].

Thus the availability of methodology for CI construction, specific
to ADs, is of critical importance. In this paper, we refer to such
CIs as ‘adjusted’ CIs; that is, accounting for the adaptive nature of
the design when computing CIs. For certain ADs, comparisons of
available adjusted CIs have been made—see, for example, com-
parisons for Simon two-stage trials [14], phase II/III trials [15],
and (adaptive) group sequential trials [16, 17]. However, a wider
andmore up-to-date overviewof availablemethodology is needed
to facilitate the use of these methods and to identify key open
questions for future research. It is this overview we seek to pro-
vide here.

This article proceeds as follows. First, in Section 2 we elaborate
on the issue of using ‘standard’ CI methodology for trials using
an AD, discussing the potential problems this can cause, before
describing several broad classes of available techniques for com-
puting adjusted CIs suited to ADs in Section 3. Following this, in
Section 4 we provide a literature review of available methods for
constructing CIs for ADs, including a traffic light system that cat-
egorizes which of several desirable features each method holds.
We then conclude in Section 5 with a discussion of the current
landscape of methods for computing CIs after an adaptive trial.

2 | Potential ProblemsWith Using Standard
CIs for ADs

In a traditional (fixed) design for a clinical trial with a sin-
gle primary outcome, the sample space of that outcome is
one-dimensional and so the construction of CIs (just like
p-values) at the end of the trial is relatively straightforward (at
least for commonly encountered continuous outcomes; for dis-
crete outcomes there is additional complexity). This is often
achieved by ‘inverting’ the hypothesis test to obtain desired
CI bounds around the maximum likelihood estimate (MLE),
as demonstrated more explicitly in Section 3. These ‘standard’
CIs often produce desired coverage under correct distributional
assumptions of the parameter of interest and are consistent with
the test decision.

On the contrary, in ADs, several factors may render the use of
standardCIs inappropriate and complicate themethods for deriv-
ing appropriate CIs for ADs at the end of the trial. First, the
possible outcomes at the end of the trial depend on the tim-
ing of interim analyses, observed results, and adaptation rule
considered. As such, the outcome sample space is no longer
one-dimensional but multi-dimensional, as it now includes the
stopping stage of the trial (for example).

Second, standard CIs are often constructed based on distribu-
tional assumptions that are no longermet in an AD. For example,
a selection, enrichment, or stopping rule in an AD may mean
that the distribution of standard estimators of the parameter of
interest is no longer normal, but the standard CI assumes an
underlying normal distribution. This can then lead to a discon-
nect between the test decision (which does account for the adap-
tive features of the design such as truncation of the test statistic
distribution due to selection) and the standard CI. As a result, a
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test decision and the decision derived from the standard CI (i.e.,
whether it includes the null effect) may differ, which leads to
substantial problems in interpretation and communication of the
trial results; see the real data example for an adaptive enrichment
design in Wassmer and Dragalin [18].

Third, as reflected by Robertson et al. [8, 9], the MLE after an AD
is potentially biased in the sense that it will tend to systematically
deviate from the true value; and standard CIs tend to be centered
around this biased estimate. Finally, the use of standard CIs that
do not account for the adaptive nature of the design tends to pro-
duce incorrect coverage, often lower than the desired nominal
coverage, although higher coverage may also occur. Just like the
statistical bias of standard point estimates, the level of incorrect
coverage of standard intervals can be impacted by many factors
including the magnitude of the underlying treatment effect, trial
adaptation considered, decision rules (e.g., stopping boundaries),
or the probability of triggering adaptations (e.g., stopping or selec-
tion). This incorrect coverage of standard CIs may lead to chal-
lenges around the overall interpretation of the study results, as
well as their use in secondary research such as evidence synthe-
sis (e.g., systematic reviews and meta-analyses) and even health
economic evaluations.

3 | Methodology for Constructing CIs

In this Section, we describe generalmethodology for constructing
CIs and illustrate how these methods can be applied to ADs.

3.1 | Fundamental Concepts and Definitions

We first introduce some fundamental concepts and definitions
for CIs in general. Suppose we have a random sample 𝑿 from
a probability distribution with parameter 𝜃, which is the single
parameter of interest in the trial (we defer the case for multiple
parameters of interest until Section 4.1). A CI for 𝜃 with confi-
dence level (or confidence coefficient) 1 − 𝛼 is a random interval
(𝐿(𝑋), 𝑈 (𝑋)) that has the following claimed property: 𝑃 (𝐿(𝑋) <

𝜃 < 𝑈 (𝑋)) = 1 − 𝛼 for all 𝜃. Note that sometimes this is replaced
by 𝑃 (𝐿(𝑋) < 𝜃 < 𝑈 (𝑋)) ≥ 1 − 𝛼 in the literature, particularly for
discrete outcomes where it may not be possible to achieve equal-
ity for all values of 𝜃.

The coverage probability (often shortened to just ‘coverage’) of
a CI is given by 𝑃 (𝐿(𝑋) < 𝜃 < 𝑈 (𝑋)). The confidence level in
the definition above is the ‘nominal’ coverage probability. If all
assumptions used in deriving a CI are met, this nominal cover-
age probability will equal the (actual/true) coverage probability
(known as ‘exact’ coverage). However, if these assumptions are
not met, such as in the context of many ADs, then the actual
coverage may be greater than the nominal coverage probabil-
ity (known as overcoverage, and the CI is termed a conserva-
tive CI) or less than the nominal coverage probability (known
as undercoverage, and the CI is termed an anti-conservative CI).
While exact coverage is ideal and is targeted, overcoverage is gen-
erally more acceptable than undercoverage. Arguably, when a
CI has undercoverage it may be more accurately described sim-
ply as an ‘interval’ since it does not have the desired confidence
level.

Another important concept for CIs is the distinction between
one-sided versus two-sided CIs, which correspond (at least in
theory) with one-sided versus two-sided hypothesis testing. To fix
ideas, consider the case where 𝜃 takes values on the real line, that
is, 𝜃 ∈ (−∞,+∞). A two-sided CI corresponds with a two-sided
hypothesis test of𝐻0 ∶ 𝜃 = 𝜃0 that is the alternative𝐻1 ∶ 𝜃 ≠ 𝜃0,
and would be of the form (𝑙, 𝑢) where 𝑙 and 𝑢 both take finite
values. In contrast, a one-sided CI corresponds to a one-sided
hypothesis test of𝐻0 ∶ 𝜃 = 𝜃0 versus the alternative𝐻1 ∶ 𝜃 > 𝜃0
(or𝐻1 ∶ 𝜃 < 𝜃0), and would be of the form (𝑙,∞) (or (−∞, 𝑢)). In
practice, for one-sided hypothesis tests it is common to replace
a 1 − 𝛼 level one-sided CI (𝑙,∞) with a 1 − 2𝛼 level two-sided CI
(𝑙′, 𝑢)with 𝑙′ = 𝑙 and 𝑢 <∞, or a 1 − 𝛼 level one-sided CI (−∞, 𝑢)
with a 1 − 2𝛼 level two-sided CI (𝑙, 𝑢′) with 𝑢′ = 𝑢 and 𝑙 > −∞.

3.2 | Inverting a Hypothesis Test Statistic

Awidely used technique for constructing CIs is by exploiting the
duality between hypothesis tests and CIs. Suppose we are test-
ing a null hypothesis H0 for a parameter of interest 𝜃 with a
corresponding level-𝛼 hypothesis test procedure. If H0 is true, a
100(1 − 𝛼)% CI corresponds to the values of 𝜃 for which H0 is not
rejected at level 𝛼. This implies [19] that rejecting H0 whenever
such a 100(1 − 𝛼)% CI does not include the null effect is equiv-
alent to rejecting H0 whenever the level-𝛼 test procedure yields
a p-value of less than 𝛼. This guarantees that the CI is consistent
with the hypothesis testing decision (see Section 3.4).

Of note, whilst the 100(1 − 𝛼)% CI is the set of values of 𝜃 for
whichH0would not be rejected, the acceptance region of a level-𝛼
test is the set of values of the test statistic for which H0 would
not be rejected. An inversion of the test procedure is achieved by
‘mapping’ these two sets of values onto each other, thereby using
the acceptance region of an existing hypothesis test to identify a
set of values for the parameter of interest (i.e., a confidence set)
which is consistent with not rejecting H0. In practice, one would
typically ‘invert’ the equation for the test statistic corresponding
to the boundary values, thereby identifying the CI bounds.Where
this cannot be done analytically, numerical approaches can be
employed to find the CI bounds.

A key example in the context of ADs are repeated CIs (RCIs) used
for group sequential designs (as well asMAMS designs).We defer
themotivation and general definition of RCIs to Section 4.2.1, and
only describe their construction for group sequential designs in
terms of inverting a hypothesis test statistic as described in Jen-
nison and Turnbull [20]. Consider a two-sided group sequential
test of the hypothesis𝐻0 ∶ 𝜃 = 𝜃0 with type I error probability 𝛼.
This has the form:

Reject𝐻0 at stage 𝑘 if ∣ 𝑍𝑘

(
𝜃0
)
∣≥ 𝑐𝑘(𝛼), 𝑘 = 1, . . . , 𝐾

where 𝑍1, . . . , 𝑍𝐾 are the cumulative standardized test statis-
tics and 𝑐1(𝛼), . . . , 𝑐𝐾 (𝛼) are the group sequential critical values.
The RCI at stage k, denoted 𝐼𝑘, is defined by inverting this group
sequential test, that is, by defining 𝐼𝑘 =

{
𝜃0 ∶ |𝑍𝑘

(
𝜃0
)
| < 𝑐𝑘(𝛼)

}
.

Another class of CIs for group sequential designs that are also
based on inverting a hypothesis test statistic are ‘final’ CIs, which
can be calculated at the stage the trial stops according to the
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pre-specified stopping rules (see also Section 4.2.1). However,
rather than working with the group sequential test as described
above, such CIs rely on a chosen ordering of the sample space to
determinewhich values of the pair (kT , ZT) aremore extreme evi-
dence against the null hypothesis, where kT denotes the stage the
trial stops at and ZT denotes the observed cumulative standard-
ized test statistic. Given the chosen ordering, one can derive an
acceptance region and corresponding hypothesis test of𝐻0 ∶ 𝜃 =

𝜃0 with type I error probability 𝛼. These hypothesis tests can then
be inverted to give a CI for 𝜃.

A number of different types of ordering have been proposed in
the literature, including the following [20]:

• Stagewise (or analysis time) ordering: outcomes are ordered
by when the trial stops for efficacy, with earlier stopping for
efficacy considered more extreme evidence than later stop-
ping for efficacy, even if the final effect size is smaller.

• MLE (or samplemean) ordering: outcomes are ordered by the
value of the MLE, which is equivalent to ordering outcomes
by the sample mean (or sample mean difference) for many
outcome types.

• Likelihood ratio ordering: outcomes are ordered by the value
of the (standardized) test statistics, which is the ordering
induced by the likelihood ratio test statistic [21].

• Score test ordering: outcomes are ordered by the value of the
score test statistic.

More details of these orderings and an illustrative example are
given in Appendix A.1 for the interested reader. Depending on
the ordering chosen, the resulting CI can have marked differ-
ences in terms of the desirable properties described in Section 4.3.
For example, some orderings will give a CI that may not neces-
sarily agree with the original group sequential test. For further
discussion on these issues, see Jennison and Turnbull [20, 22].
There, they recommend the use of CIs based on stagewise
ordering, because this always produces true intervals (instead of
possibly the union of disjoint intervals), is consistent with the
decision of the group sequential tests, and is the only method
available when the information levels at the interim analyses are
unpredictable.

3.3 | Constructing a Pivotal Quantity

Alternatively to inverting the distribution one may instead con-
struct CIs through using a pivotal quantity [19]. Suppose one has
some data 𝑿 =

(
𝑋1, . . . , 𝑋𝑛

)
and an (unknown) parameter of

interest, say 𝜃 (note thismay be a vector of parameters but for con-
veniencewewill consider only a single parameter). Then a pivotal
quantity is defined as a function of the data𝑋 and the parameter
𝜃, denote this by 𝑔(𝑋, 𝜃), where the distribution of 𝑔(𝑋, 𝜃) does
not depend on 𝜃.

Assuming the distribution of 𝑔(𝑋, 𝜃) is known one may find 𝐿
and 𝑈 such that

𝑃 (𝐿 < 𝑔(𝑋, 𝜃) < 𝑈 ) = 1 − 𝛼.

Thus with some manipulation one may find corresponding 𝜃𝐿
and 𝜃𝑈 such that

𝑃
(
𝜃𝐿 < 𝜃 < 𝜃𝑈

)
= 1 − 𝛼,

and thus a 100(1 − 𝛼)% CI for 𝜃 is given by

[
𝜃𝐿, 𝜃𝑈

]
.

To solidify this concept let us consider an example using the nor-
mal distribution. Suppose we have independent normally dis-
tributed data 𝑿 =

(
𝑋1, . . . , 𝑋𝑛

)
with an unknown mean 𝜃 and

known variance 𝜎2, that is

𝑋𝑖 ∼ 𝑁
(
𝜃, 𝜎2

)
for all 𝑖 = 1, . . . , 𝑛

To construct a 100(1 − 𝛼)%CI for 𝜃we shall use a pivotal quantity.
Let𝑋 =

1

𝑛

∑𝑛

𝑖=1𝑋𝑖 then the pivotal quantity is given by

𝑔(𝑋, 𝜃) =
𝑋 − 𝜃

𝜎∕
√
𝑛

where conveniently we thus know that 𝑔(𝑋, 𝜃) ∼ 𝑁(0, 1). Defin-
ing 𝛷−1( . . . ) to be the inverse cumulative distribution function
(CDF) of the standard normal distribution we may then find a
CI for the pivotal quantity by choosing 𝐿 = −𝛷−1(1 − 𝛼∕2) and
𝑈 = 𝛷−1(1 − 𝛼∕2) satisfying the condition that

𝑃 (𝐿 < 𝑔(𝑋, 𝜃) < 𝑈 ) = 1 − 𝛼.

With a little work we can thus find the CI,

1 − 𝛼 = 𝑃 (𝐿 < 𝑔(𝑋, 𝜃) < 𝑈 )

= 𝑃
(
𝑋 −𝛷−1(1 − 𝛼∕2) 𝜎∕

√
𝑛 < 𝜃 < 𝑋 +𝛷−1(1 − 𝛼∕2)𝜎∕

√
𝑛
)

Thus a 100(1 − 𝛼)% CI for 𝜃 is given by

[
𝑋 −𝛷−1(1 − 𝛼∕2) 𝜎∕

√
𝑛,𝑋 +𝛷−1(1 − 𝛼∕2)𝜎∕

√
𝑛
]
.

It is useful to note the consequence of these well-known results
in the context of the normal distribution. It is regularly the case
that for the ADs that we consider for this work we wish to pro-
vide inference for the sample mean of our data in which case
for sufficiently large 𝑛, via the central limit theorem, a normal
approximation will often suffice. The extension of these methods
toADs depends on the situation inwhich they are applied but this
core concept of finding a pivot corresponding to each estimate for
which we require a CI may be applied. This has been applied in
several works, see Section 4.4.

As an example of the application of finding an (approximate)
pivot for ADs, Woodroofe [23] proposed the following in the con-
text of group sequential designs with parameter of interest 𝜃.
Let 𝑍𝑇 and 𝐼𝑇 denote the cumulative standardized test statistic
and (Fisher) information level, respectively, at the stage the trial
stops (denoted T). If the sample sizes were fixed then the statistic
𝑍′
𝑇
(𝜃) =

𝑍𝑇−𝜃𝐼𝑇√
𝐼𝑇

would (asymptotically) follow a standard normal

distribution. However, due to the potential for early stopping, this
is not the case. Instead, the following modification of the statis-
tic𝑍′

𝑇
(𝜃) gives a new statistic thatmore closely follows a standard

normal distribution:𝑍∗
𝑇
(𝜃) =

𝑍′
𝑇
(𝜃)−𝜇(𝜃)

𝜎(𝜃)
where 𝜇(𝜃) is themean of

𝑍′
𝑇
(𝜃) and 𝜎(𝜃) is the standard deviation of 𝑍′

𝑇
(𝜃).
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3.4 | Bootstrap/Resampling Approaches

The approaches discussed so far in this Section require knowl-
edge of a suitable distribution for the estimate, either directly or
asymptotically. Bootstrap and other resampling based methods
bypass the need for this by constructing approximate CIs through
resampling from the data. To construct a CI for some estimate the
bootstrap method will sample from the data (with replacement)
repeatedly each giving an estimate of the parameter of interest.
These estimates are used to approximate the distribution of the
parameter from which we estimate the CI.

To give a little more insight let us consider our previous example
from Section 3.3. We have data 𝑿 =

(
𝑋1, . . . , 𝑋𝑛

)
and wish to

make inference on the mean 𝜃. We may estimate this by

𝜃 =
1

𝑛

𝑛∑

𝑖=1

𝑋𝑖

supposing this has a known distribution (or through use of the
othermethods in this Section) wemight then construct an appro-
priate 100(1 − 𝛼)% CI.

Alternatively without making any distributional assumptions we
may construct this CI using bootstrap resampling [19]. We draw
𝑀 bootstrap samples of size 𝑛 from these data by sampling the
data uniformly at randomwith replacement, denoting these sam-

ples by 𝑿(𝒊) =
(
𝑋

(𝑖)
1 , . . . , 𝑋

(𝑖)
𝑛

)
for 𝑖 = 1, . . . ,𝑀 . From each sam-

ple we construct the corresponding estimate

�̂�
(𝑖)

=
1

𝑛

𝑛∑

𝑗=1

𝑋
(𝑖)
𝑗
.

For large 𝑛 the distribution of these 𝜃(𝑖) converges to the unknown

distribution of 𝜃. Without loss of generality we re-index these
bootstrap estimates such that they are in order with

𝜃(1) ≤ 𝜃(2) ≤ . . . ≤ 𝜃(𝑀).

We then have that

𝑃
(
𝜃(𝑀(𝛼∕2)) < 𝜃 < 𝜃(𝑀(1−𝛼∕2))

)
≈ 1 − 𝛼

and thus an approximate 100(1 − 𝛼)% CI for 𝜃 is given by

[
𝜃(𝑀(𝛼∕2)), 𝜃(𝑀(1−𝛼∕2))

]
.

This is the so-called ‘percentile interval’ which is the simplest, but
other (potentially better) choices of bootstrap CI exist [24].

This concept can be directly extended to the setting of ADs by
using a bootstrap procedure as above while accounting for the
adaptive nature of the design. For any given estimator, one may
resample from the corresponding data used in constructing the
estimate and use this in the construction of an appropriate CI.
Such methods can be found in the methodological summary in
Section 4.4.

As an example of the use of bootstrap for ADs, consider the
context of response-adaptive randomization for a multi-armed

trial with K arms and binary endpoints, where the allocation
probabilities are adapted based on the accumulated patient
response data. Rosenberger and Hu [25] describe how to use a
bootstrap procedure in this context:

1. Obtain the observed data from the trial; that is, the vector of
observed success proportions 𝑃 =

(
𝑝1, . . . , 𝑝𝐾

)
and sample

sizes on each arm =
(
𝑛1, . . . , 𝑛𝐾

)
.

2. Simulate the response-adaptive allocation rule M times,
using 𝑃 as the assumed true response probabilities.

3. Compute bootstrap estimates of the vector of response prob-
abilities 𝑃

∗

1, . . . , 𝑃
∗

𝑀
and sample sizes𝑁∗

1 , . . . , 𝑁
∗
𝑀
from the

simulations.

4. For each i= 1, . . . , K order 𝑝∗1
𝑖
, . . . , 𝑝∗𝑀

𝑖
to form the ordered

sequence 𝑝∗(1)
𝑖
, . . . , 𝑝

∗(𝑀)

𝑖

5. The simplest 100(1 − 𝛼)% CI for 𝑝𝑖 is then(
𝑝
∗(M𝛼∕2)
𝑖

, 𝑝
∗(𝑀(1−𝛼)∕2)
𝑖

)
.

3.5 | Hybrid Approaches

Finally, it is also possible to combine the approaches described

above to construct CIs for ADs. For example, Chuang and Lai
[26, 27] proposed a hybrid technique consisting of elements of
both CIs based on ordering the sample space (see the end of
Section 3.2) and bootstrap methods following (group) sequen-
tial trials. Specifically, they suggested replacing normal quan-

tiles (used in the calculations of the upper and lower confidence
bounds) with quantiles from a bootstrap distribution. A different
kind of hybrid strategy was discussed by Kimani et al. [15] who
compared different CI methods for seamless phase II/III trials in
simulations and noted that the properties of CIs could be opti-
mized by combining lower and upper bounds based on different

methods, for example, a lower bound based on a method known
to have high power (to maximize the chance of rejecting the null
hypothesis) with an upper bound based on a method which has
exact or close-to-nominal coverage to provide an accurate upper
limit for the size of the treatment effect. Such a compound CI

would inevitably be asymmetric in most cases.

4 | Methodological Review of Adjusted CIs for
ADs

4.1 | Search Strategy and Paper Selection

We conducted a database search of Scopus on 7 April 2025 of
all published papers (not including preprints) up to that date.
We used a “title, abstract, keywords” search, with the follow-
ing predefined search term: ((“confidence interval” OR “con-
fidence region” OR “confidence limit” OR “confidence band”)
AND (“adaptive design”OR“adaptive trial”OR“adaptive clinical
trial” OR “group sequential” OR “sequential trial” OR “sequen-
tial clinical trial” OR “drop the loser” OR “response adaptive” OR
“sample size re-estimation” OR “seamless phase” OR “multi arm
multi stage”OR “adaptive enrichment”OR “master protocol”OR
“platform trial”)).
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Our search strategy retrieved a total of 366 papers, of which 218
were excluded as they were not relevant based on the title and
abstract. We then looked for additional relevant papers citing or
cited by the remaining 147,which added 29 papers.We conducted
a full text review of these 176 papers. Information about the trial
contexts, methodology used, advantages, limitations, code avail-
ability and case studies were extracted for qualitative synthesis. A
PRISMA flow chart of this process can be found in Appendix A.2
(Figure A1). Full results giving a summary of each paper can be
found in the Data S1.

Before presenting a summary of the results of the literature
review in Section 4.4, in Section 4.2 we first briefly describe some
key methodological concepts found in the literature review, fol-
lowed by a discussion of desirable criteria for CIs in Section 4.3.

4.2 | KeyMethodological Concepts Found in
the Literature Review

4.2.1 | Repeated versus Final CIs

In an AD, CIs are used for end-of-study interpretation of results,
that is, at the final analysis of the trial data (hence the term ‘final’
CI). However, CIs can also be used for monitoring the trial while
it is ongoing and providing quantification of uncertainty around
treatment effect estimates at interim analyses/looks at the accu-
mulating data. One key example of this is when presenting data
to an independent data monitoring committee such as the Data
and SafetyMonitoring Board (DSMB) for decidingwhether or not
to stop a trial early for efficacy or lack-of-benefit/futility.

This second motivation leads to the concept of repeated CIs
(RCIs), as already briefly introduced in Section 3.2, which are a
sequence of interval estimates for 𝜃 that can be calculated at any
interim look at the trial data. More formally, given a trial with
a maximum of K stages (or equivalently 𝐾 − 1 interim analyses)
the RCIs for a parameter 𝜃 are defined [20] as a sequence of inter-
vals 𝐼𝑘, k= 1, . . . ,K, for which simultaneous coverage probability
is maintained at level 1 − 𝛼, so that the following equation holds:

𝑃𝑟𝜃
(
𝜃 ∈ 𝐼𝑘 for all 𝑘 = 1, . . . , 𝐾

)
= 1 − 𝛼 for all 𝜃.

Note that in fact if 𝜏 is any random stopping time for the trial
(i.e., the stage the trial stops at, taking values in {1, . . . , 𝐾}) then
the above equation implies that 𝑃𝑟𝜃

(
𝜃 ∈ 𝐼𝜏

)
= 1 − 𝛼 for all 𝜃.

Hence, RCIs can be used while still maintaining the 1 − 𝛼 con-
fidence limit regardless of how the decision to stop the study was

reached.

Consequently, final CIs (as described at the end of Section 3.2) can
only be calculated in a valid way at the stage a trial stops accord-
ing to a pre-specified stopping rule, whereas RCIs are not tied to a
stopping rule and can be calculated at any interim analysis. How-
ever, this means that RCIs will typically be wider than final CIs,
particularly for earlier interim analyses [28].

Note that in the group sequential literature, sometimes the term
‘exact’ CI has been used for final CIs as a reference to their exact
coverage probability (as opposed to potentially conservative cov-
erage for RCIs). However, ‘exact’ CIs more generally can refer to

being based on the exact distribution of the trial outcomes, for
example, for binary data being based on a binomial distribution
rather than a normal approximation to the binomial distribution.
In our literature review, when we refer to ‘exact’ CIs we are refer-
ring to this latter, more general definition.

4.2.2 | Individual CIs versus Simultaneous
Confidence Sets

Thus far, we have focused on the case where there is a sin-
gle hypothesis and corresponding parameter 𝜃 of interest.
However, many types of ADs consider multiple hypothe-
ses and corresponding parameters simultaneously. MAMS
designs are a key example, with multiple treatment arms
being compared against a common control arm. To fix ideas,
suppose we have null hypotheses 𝐻01, . . . . ,𝐻0𝐽 with corre-
sponding parameters of interest 𝜃1, . . . , 𝜃𝐽 . Given a random
data sample X , suppose we calculate individual two-sided CIs(
𝐿𝑖(𝑋), 𝑈𝑖(𝑋)

)
for each parameter independently. These will

achieve the correct individual (also known as marginal or uni-
variate) coverage, that is, 𝑃

(
𝐿𝑖(𝑋) < 𝜃𝑖 < 𝑈𝑖(𝑋)

)
= 1 − 𝛼 for

𝑖 = 1, . . . , 𝐽 . However, the overall or simultaneous coverage
probability of the J CIs is not necessarily controlled, that is,
𝑃
(
𝐿1(𝑋) < 𝜃1 < 𝑈1(𝑋), . . . , 𝐿𝐽 (𝑋) < 𝜃𝐽 < 𝑈𝐽 (𝑋)

)
≠ 1 − 𝛼.

To achieve control of the simultaneous coverage probability
requires specification of a multivariate confidence set or confi-
dence region C(X), with the property that 𝑃 (𝜽 ∈ 𝐶(𝑋)) = 1 − 𝛼,
where 𝜃 =

(
𝜃1, . . . , 𝜃𝐽

)
. In general, such confidence sets are not

necessarily a cross product of CIs. In order to recover CIs for each
parameter, one can enlarge the confidence region to fit within a
multidimensional rectangle. This comes with the disadvantage
that the resulting CIs may be inconsistent with the test decision
(see Section 4.3), as noted by Posch et al. [29].

In a trial that tests multiple hypotheses, when considering con-
structing CIs for each parameter of interest it is therefore impor-
tant to decide whether correct individual coverage or simulta-
neous coverage is desired. This is closely linked to the concept
of adjusting for multiplicity, that is, whether one wants to con-
trol the marginal type I error rate (known as the pairwise type
I error rate in the context of comparing with a common con-
trol arm) for each hypothesis at level 𝛼 or controlling the overall
familywise error rate (FWER), which is the probability of mak-
ing at least one type I error. If there is interest in controlling the
FWER, then the CIs should reflect this and hence simultaneous
confidence sets/intervals should be considered. Conversely, if no
adjustment formultiplicity is required (e.g., when the hypotheses
tested are independent) then the usual individual CIs would be
sufficient.

4.2.3 | Conditional versus Unconditional CIs

A final key distinction of CIs for ADs is whether they have the
correct coverage conditionally or unconditionally. Intuitively,
unconditional coverage refers to the coverage averaged across all
possible realizations of an adaptive trial. In contrast, conditional
coverage refers to the coverage averaged over a particular subset
of trial realizations. For example, we might be interested in the
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coverage of the CI conditional on a trial continuing to the final
stage, or a particular treatment arm being selected at the final
analysis. More precisely, and returning to the setting with a
single parameter of interest 𝜃, the conditional coverage of a CI
(𝐿(𝑋), 𝑈 (𝑋)) is defined as 𝑃 (𝐿(𝑋) < 𝜃 < 𝑈 (𝑋) | 𝑆), where S is a
particular (random) event of interest, such as the stopping stage
of a group sequential trial.

A detailed discussion of themerits of conditional versus uncondi-
tional inference, including CIs, is beyond the scope of this paper.
We refer the interested reader to Strickland and Casella [30], Fan
andDeMets [31],Marschner and Schou [32], andMarschner et al.
[33] for useful discussion about conditional CIs in the context of
group sequential trials. More general discussion and a proposed
framework to view about conditional versus unconditional infer-
ence for ADs can be found in Marschner [34].

4.3 | Desirable Criteria for CIs

In addition to coverage (see Section 3.1), there have been other
proposed desirable criteria for CIs in the literature. The main cri-
teria include:

• Correct coverage (arguably essential),

• Width (all other things being equal, a smaller width is desir-
able),

• Consistency/compatibility with the hypothesis test (see
below),

• Contains the point estimate of interest,

• (Approximate) symmetry around the point estimate of inter-
est,

• Is informative (see below),

• Is in fact an interval (i.e., not a union of disjoint intervals, or
the empty set),

• Is computationally feasible/simple to implement.

A CI is consistent/compatible with the hypothesis testing deci-
sion if it excludes the parameter value(s) that are rejected by the
hypothesis test, and conversely includes the parameter value(s)
that are not rejected by the hypothesis test. If a CI is not con-
sistent/compatible with the hypothesis testing decision then this
can lead to problems with study interpretation and the commu-
nication of results. In theory at least, it is possible to ‘invert’ the
hypothesis test used (see Section 3.2) to obtain a CI that is always
consistent with the hypothesis test decision, but not all CIs are
constructed in this way as seen in Section 3.

A CI is informative if it restricts the possible parameter space. For
example, if θ corresponds to the success probability of a binomial
distribution then a two-sided CI needs to be strictly contained
in [0,1]. More formally, consider a parameter θ that takes val-
ues in the set (a,b), where a and b may be infinite. Clearly, it is
desirable that for a two-sided CI (𝐿(𝑋), 𝑈 (𝑋)), we have𝐿(𝑋) > 𝑎

and𝑈 (𝑋) < 𝑏. Similarly, for an upper one-sided CI, it is desirable
that 𝑈 (𝑋) < 𝑏, while for a lower one-sided CI, it is desirable that
𝐿(𝑋) > 𝑎.

Note there is a stricter definition of a CI being informative for
CIs that are compatible with a corresponding hypothesis test.
Aside from the criteria above, a CI in this case is informative if it
additionally provides more information than the hypothesis test-
ing decision. For example, consider testing the null hypothesis
𝐻0 ∶ 𝜃 = 𝜃0 versus the alternative 𝐻1 ∶ 𝜃 > 𝜃0. If 𝐻0 is rejected,
then a CI is only informative if 𝐿(𝑋) > 𝜃0.

4.4 | Summary of Literature Review

As part of our summary of the literature review, we use a ‘traffic
light’ system for the different classes of methods for constructing
CIs, following the suggested desirable criteria for CIs given above
(apart from symmetry since this is closely related to containing
the point estimate of interest). For simplicity, in the definitions
that follow we consider the setting with a single parameter of
interest 𝜃 and correspondingmethod for constructing a two-sided
CI denoted (𝐿(𝑋), 𝑈 (𝑋)) given a random data sample𝑋 with tar-
get coverage (i.e., claimed confidence level) of 1 − 𝛼.

4.4.1 | Coverage

Green: CI has (actual) coverage equal to 1 − 𝛼 for all values of
𝜃, that is, 𝑃 (𝐿(𝑋) ≤ 𝜃 ≤ 𝑈 (𝑋)) = 1 − 𝛼 for all 𝜃. We add labels
‘A’ for Analytical and ‘S’ for Simulation if this property has been
shown analytically or only by simulation, respectively.

Amber: CI has (actual) coverage greater than or equal to 1 − 𝛼 for
all values of 𝜃, that is, 𝑃 (𝐿(𝑋) ≤ 𝜃 ≤ 𝑈 (𝑋)) ≥ 1 − 𝛼 for all 𝜃. We
add labels ‘A’ for Analytical and ‘S’ for Simulation as above.

Red: CI has (actual) coverage less than 1 − 𝛼 for at least one value
of 𝜃, that is, 𝑃 (𝐿(𝑋) ≤ 𝜃 ≤ 𝑈 (𝑋)) < 1 − 𝛼 for some 𝜃.

4.4.2 | Interval

Green: For all realizations of X, the method will result in a single
CI (𝐿(𝑋), 𝑈 (𝑋)) for all 𝛼 ∈ (0,1).

Red: For some realizations of X, the method does not result in a
single CI (𝐿(𝑋), 𝑈 (𝑋)) for some 𝛼 ∈ (0,1).

4.4.3 | Consistent

Green: The CI is always consistent as it is constructed by inverting
the hypothesis test used by the AD.

Red: The CI can be inconsistent, that is, there are explicit
examples of where the CI and hypothesis test decision for the AD
are conflicting.

4.4.4 | Informative

Green: For all realizations of X, the procedure will result in an
informative CI for all 𝛼 ∈ (0,1).
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Red: For some realizations of X, the procedure does not result in
an informative CI for some 𝛼 ∈ (0,1).

4.4.5 | Contains MLE

In Section 4.3, one of the desirable criteria for CIs is that it “con-
tains the point estimate of interest”. A detailed discussion of what
the point estimate of interest could be for an AD is out of scope
of this paper, and we refer the reader to Robertson et al. [8, 9].
For the purposes of the literature review, we simply use the usual
end-of-trial MLE as our point estimator of interest, both because
this is the most commonly reported estimator and because this
has been proposed as a criterion for assessing CIs [20]. Note that
in theory, a CI could contain an unbiased or bias-reduced point
estimate but not the MLE.

Green: For all realizations of X, the procedure will result in a CI
that contains the MLE for all 𝛼 ∈ (0,1).

Red: For some realizations of X, the procedure does not result in
a CI that contains the MLE for some 𝛼 ∈ (0,1).

4.4.6 | Computation

We note that for calculating a single CI (i.e., for a single trial
realization), there are no computational concerns for almost all
methods given modern computational power. However, when it
comes to assessing the performance of CIs through simulation
studies (e.g., at the planning stage of the trial), computation can
still be a (major) limitation.

Green: CI can be calculated using analytical formulae that can
easily be evaluated using standard statistical software or code
(such as R).

Amber: Calculation of the CI involves the use of numerical opti-
mization and/or computer simulation.

Armed with this traffic light system, we summarize the results
of our literature review in Table 1 by classifying the CI methods
used for each broad class of AD. For each combination of design
class and CI method, we provide a summary of any key features
of the CI method reported in the literature, list (key) references
in the literature (categorized by outcome type, for example) and
also show how the CI method performs as assessed by the traffic
light system.Note that sometimes it is unclearwhether a property
holds for a given CI method, because it has not been adequately
explored in the literature so far,whichwedenote as a ‘?’ in Table 1.

Looking at the summary of the literature review as a whole, the
number of papers proposing methods for constructing adjusted
CIs for ADs has grown quite rapidly in the past 15 or so years.
In terms of the properties described by the traffic light system,
in terms of coverage it is generally clear (at least by simulation)
which methods result in CIs that have correct coverage as well
as over- or undercoverage. We caution however that even meth-
ods that are ‘green’ above rely on the assumptions used to derive
the CIs holding exactly, and that methods that are ‘red’ will have
differing levels of undercoverage.

All of the main CI methods above were ‘green’ in terms of being

an interval and being informative, but specific subcases (not

covered by the traffic light system) can be ‘red’, as an example

of methods possibly returning the empty set (and hence also

being uninformative) see Fan and DeMets [31] and Hartung and

Knapp [107] in the context of conditional CIs for group sequen-

tial designs. In the context of RCIs for group sequential designs,

Brookmeyer&Crowley [133] showhow in rare cases theRCImay

not be an interval if the information levels depend on the parame-

ter of interest 𝜃, with further discussion on this point in Jennison

and Turnbull [20].

In contrast, consistency is harder to assess, with this criterion

being unclear for all classes of ADs apart from group sequen-

tial designs. This also applies to the criterion of the MLE being

included in the CI, reflecting the gap sometimes seen in the lit-

erature on point estimation and the literature on CIs for ADs.

Finally, all methods (except for the adjusted asymptotic CI for

response-adaptive randomization) were ‘yellow’ in terms of com-

putation, although this encompasses a wider range of computa-

tional complexity.

By far the majority of the proposed methodology for CIs has

focused on group sequential designs, which is understandable

given their long history and widespread use. Other classes of

ADs have received comparatively little attentionwhen it comes to

adjusted CIs, which is reflected in the unclear properties for some

of the CI methods. Finally, most of the methodology has focused

on (at least asymptotically) normally-distributed outcomes or

binary outcomes, with comparatively few proposals tailored for

trials with time-to-event outcomes.

5 | Discussion

In our literature review of the methods for constructing CIs for

ADs, we found that there is a growing body of work proposing

and evaluating a range of CIs for a variety of ADs. Our hope is

that this paper, combined with the annotated bibliography given

in the Data S1, provides an easily-accessible and comprehensive

resource for trialists and methodologists working on ADs. How-

ever, statistical software and code to calculate adjusted CIs unfor-

tunately remains relatively rare (see the annotated bibliography),

which is an obstacle to the uptake of methods in practice (see

Grayling and Wheeler [134]). In addition, for more complex or

novel ADs, adjusted CIs may not currently exist in the literature.

From a methodological perspective, while CIs for group sequen-

tial designs are very well-developed, this is much less the case

for other classes of ADs. In particular, for response-adaptive ran-

domization and adaptive enrichment designs, only a handful

of papers proposing adjusted CIs exist. Another feature is that

methods specific for ADs with longitudinal endpoints (includ-

ing time-to-event endpoints) have received comparatively little

attention. The use of such endpoints is challenging even from

a hypothesis testing viewpoint, as the independent increments

assumption may no longer hold [135]. From an estimation view-

point, as pointed out by an anonymous reviewer, another com-

plication is that if there is an interaction between follow-up time

and treatment effects, the estimand can then be a function of the
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TABLE 1 | Summary of properties of different methods of constructing CIs, categorised by the broad class of adaptive design.

Design Method(s)

Group
sequential

Final confidence intervals

Tsiatis et al. (1984) [35], Jennison and Turnbull (1999) [20]

Coverage Interval Consistency Informative Contains MLE Computation

A

• Colours above assume the use of stage-wise ordering of the sample space and that the canonical joint distribution of the group sequential test statistics holds

exactly (e.g., for normally distributed data with a known variance – see Jennison and Turnbull, 1999 [20])

• For an example of where the CI does not contain the MLE, see Tsiatis et al. (1984) [35]

• Can fail to be an interval if other orderings of the sample space are used, see e.g., Rosner and Tsiatis (1988) [16], Emerson and Fleming (1990) [36]

• Coverage can be conservative when a normal approximation used for binary outcomes, and there can be inconsistency with the test decision; see Lloyd (2021)

[37] for a discussion of these features

• For non-normal outcomes, a ‘hybrid’ strategy can be used which combines the CI approach with bootstrap resampling, see Chuang and Lai (1998, 2000) [27,

28], Lai and Li (2006) [38]

• Conditional perspective considered in Strickland and Casella (2003) [31], Ohman (1996) [39], Fan and DeMets (2006) [32], Koopmeiners et al. (2012) [40],

Marschner and Schou (2019) [33], Marschner et al. (2022) [34]

See also: Siegmund (1978) [41], Kim and DeMets (1987) [42], Rosner and Tsiatis (1988) [16], Chang (1989) [21], Facey and Whitehead (1990) [43], Emerson and

Fleming (1990) [36],Wittes (2012) [44], Hampson et al. (2017) [45], Hanscom et al. (2022) [46]

Binary outcomes: Jennison and Turnbull (1983) [47], Chang and O’Brien (1986) [48], Duffy and Santner (1987) [49], Emerson (1995) [50], Chang (2004)
[51], Jung and Kim (2004) [52], Dallas (2008) [53], Porcher and Desseaux (2012) [14], Kirk and Fay (2014) [54], Yu et al. (2016) [55], Shan (2018) [56],

Lloyd (2021, 2022) [37, 57], Cao and Jung (2024) [58]

Delayed responses/Overrunning: Hall and Liu (2002) [59], Hampson and Jennison (2013) [60], Zeng et al.
(2015) [61], Shan (2018) [62], Zhao et al. (2015) [63]

Repeated measures: Lee et al. (2002) [64]

Repeated confidence intervals

Jennison and Turnbull (1984 [65], 1989 [66], 1999 [20])

Coverage Interval Consistency Informative Contains MLE Computation

A

• Colours above assume that the information levels do not depend on the unknown parameter of interest and that the canonical joint distribution of the group

sequential test statistics holds exactly (e.g., for normally distributed data with a known variance – see Jennison and Turnbull, 1999 [20])

• If information levels do depend on the unknown parameter of interest, it may not be an interval – see e.g., Jennison and Turnbull (1999) [20]

• RCIs are not tied to any specific stopping rule, so consistency depends on what group sequential test is used to derive the RCI, see e.g., Jennison and Turnbull

(1989 [66], with discussion). If the test matches the design, then consistency is guaranteed.

• Contains the MLE by construction
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TABLE 1 | (Continued)

Design Method(s)

See also

Jennison and Turnbull (1990 [29], 1991 [67]), Davis and Hardy (1992) [68], Fleming and DeMets (1993) [69], Cook (1994) [70], Lee (1995) [71], Hu and Lagakos

(1999a, b) [72, 73], Posch et al. (2008) [74], Zhao et al. (2009) [75], Zhang et al. (2016) [76], Nowak et al. (2022) [77], Nelson et al. (2022) [17]

Time-to-event/Survival outcomes: Jennison and Turnbull (1985) [78],Williams (1996) [79], Bernado and Ibrahim (2000) [80]

Binary outcomes: Lin et al. (1991) [81], Coe and Tamhane (1993) [82]

Repeated measures:Wei et al. (1990) [83], Jiang (1999) [84]

Equivalence tests: Jennison and Turnbull (1993) [85]

Adjusted asymptotic confidence intervals

Woodroofe (1992) [23], Todd et al. (1996) [86]

Coverage Interval Consistency Informative Contains MLE Computation

S ? ?

• Colours above are for normally distributed outcomes (with known variance)

• Slight undercoverage can occur for certain parameter values, but conservative coverage is also observed in simulations

• CI is centred around the median unbiased estimator (and not the MLE)

See also:

Binary outcomes: Todd and Whitehead (1997) [87], Coad and Govindarajulu (2000) [88]

Time-to-event/Survival outcomes: Coad and Woodroofe (1996 [89], 1997 [90])

Secondary parameters:Whitehead et al. (2000) [91]

Bootstrap/resampling procedures

Snapinn (1994) [92], Chuang and Lai (1998 [27], 2000 [28])

Coverage Interval Consistency Informative Contains MLE Computation

S ? ?

• Can be applied to group sequential trials regardless of stopping boundaries or patient outcome distribution

• Undercoverage can occur and can be substantial

• Computation involves repeated trial simulations, but for calculating a single confidence interval is not time-consuming

• Conditional perspective considered in Pepe et al. (2009) [93], Shimura et al. (2017) [94]

(Continues)
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TABLE 1 | (Continued)

Design Method(s)

Adaptive group sequential/group sequential with sample size re-estimation

Repeated confidence intervals: Lehmacher and Wassmer (1999) [95],Wassmer et al. (2001) [96],Wassmer (2003) [97], Hartung and Knapp (2006) [98],Mehta et al.
(2007) [99]

Final confidence intervals:Wassmer (2006) [100], Brannath et al. (2009) [101],Wang et al. (2010) [102], Gao et al. (2013) [103], Gao and Mehta (2013) [104],Mehta
et al. (2019) [105], Gao and Li (2024) [106]

See also:
Hartung and Knapp (2010 [107], 2011 [108]), and the review article by Nelson et al. (2022) [17]

• The above references are for adaptive group sequential designs (i.e., group sequential designs additionally encompassing sample size re-estimation), but given

the variety of different designs this (sub)class includes, we do not give a traffic light categorisation

Multi-arm
multi-stage
designs
(with
treatment
selection)

Repeated confidence intervals

Zhao et al. (2009) [75], Jaki and Magirr (2013) [109]

Coverage Interval Consistency Informative Contains MLE Computation

A

• Colours above assume that the canonical joint distribution of the group sequential test statistics holds (at least approximately)

• Assumes all promising treatments (for a range of definitions of ‘promising’) are taken forward after each interim analysis

See also:
Single stage multi-arm designs: Liu (1995) [110]

Drop-the-loser designs

Sampson and Sill (2005) [111], Stallard and Todd (2005) [112], Sill and Sampson (2009) [113],Wu et al. (2010) [114], Neal et al. (2011) [115],Magirr et al. (2013) [116],

Bowden and Glimm (2014) [117], Kimani et al. (2014) [15], Carreras et al. (2015) [118], Brückner et al. (2017) [119],Whitehead et al. (2020) [120], Gao and Li (2024)

[106]

• The above references are specifically for drop-the-loser designs, but encompass a variety of different methods for constructing CIs, hence we do not give a

traffic light categorisation

• Some methods e.g., the asymptotic approach of Bowden and Glimm (2014) [117] can have undercoverage

See also:
Methods using a normal approximation: Shun et al. (2007) [121], Bowden and Glimm (2008) [122]

Review article for seamless phase II/III trials: Kimani et al. (2014) [15]

(Continues)
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TABLE 1 | (Continued)

Design Method(s)

Response-adaptive
randomisation
(RAR)

Bootstrap/resampling procedures

Rosenberger and Hu (1999) [25], Bandyopadhyay and Biswas (2003) [123], Baldi Antognini et al. (2022) [124], Lane (2022) [125]

Coverage Interval Consistency Informative Contains MLE Computation

S ? ?

• Can be applied to multi-arm trials as well as different outcome types

• Slight undercoverage can occur for some parameter values, but conservative coverage is commonly observed in simulation studies

• Computation involves repeated trial simulations, but for calculating a single confidence interval it is not time-consuming

• Both conditional and unconditional bootstrap procedures have been proposed, see Lane (2022) [125]

Final confidence intervals

Wei et al. (1990) [126]

Coverage Interval Consistency Informative Contains MLE Computation

S ? ?

• Colours above are for a two-arm trial with binary outcomes

• The specific RAR procedure considered in the simulations is the randomised play-the-winner (RPW) rule

• Undercoverage can occur for large treatment differences, otherwise conservative coverage is observed

• Computational burden depends on the RAR procedure used

Adjusted asymptotic confidence intervals

Tolusso and Wang (2011) [127]

Coverage Interval Consistency Informative Contains MLE Computation

S ? ?

• Colours above are for a two-arm trial with binary outcomes

• The specific RAR procedure considered in the simulations is the randomised RPW rule

• Undercoverage can occur for large treatment differences, otherwise conservative coverage is observed

• Simple closed form expression given for the RPW rule, but in general computational burden depends on the RAR procedure used

Adaptive
enrichment
designs

Brannath et al. (2009) [128], Rosenblum (2013) [129],Wu et al. (2014) [130],Wassmer and Dragalin (2015) [18], Kimani et al. (2020) [131], Ishii et al.

(2025) [132]

• The above references encompass a variety of different methods for constructing CIs, hence we do not give a traffic light categorisation

• These methods in general can be very computationally intensive
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timing of the interim analyses. This can be avoided by defining
the primary estimand in such a way to account for the possi-
ble interaction, for example, by using the restricted mean sur-
vival time (RMST) which does not make a proportional hazards
assumption [136].

More generally, while coverage is always reported in simulation
studies for CIs, the other desirable properties and related per-
formance measures described in Section 4.3 are much less often
reported (as also reflected in the traffic light system results in
Table 1). Hence, we encourage methodologists working on new
CI methods to consider reporting a wider variety of performance
measures. In the future, it would also be helpful to have method-
ological proposals aroundhow to appropriately combine different
metrics/performance measures of interest. Related to this, some
proposed desirable properties of CIs are more contentious than
others. For example, the property of containing theMLE (and the
related symmetry property) may not necessarily be a good one to
assess, as conceivably an adjusted CI might contain an appropri-
ately bias-adjusted estimate but not the MLE.

We note that our focus in this paper has exclusively been on fre-
quentist CIs. We have not discussed the construction of other
types of intervals, for example, prediction intervals and toler-
ance intervals (see e.g., Vardeman [137] and Krishnamoorthy &
Mathew [138]). Nor have we addressed fixed-width CI construc-
tion (i.e., where the design of the trial itself is chosen to achieve a
CI with a desired coverage and of a certain width, through amin-
imal sample size), all of which have had very limited discussion
in the context of ADs.

With the growing popularity of Bayesian methods for ADs (and
clinical trials more generally) there is growing interest in using
the Bayesian paradigm for inference about the treatment effect.
However, CIs are inherently a frequentist concept involving
the repeated resampling or realizations of the adaptive trial in
question. In contrast, fromaBayesian perspective the uncertainty
around the parameter of interest, 𝜃, is quantified in terms of a
credible interval, based on the posterior probability density of 𝜃
itself. Nonetheless, the frequentist properties of credible intervals
[137] (such as coverage) could in theory be investigated, although
this was out of scope of our literature review and our paper more
generally. A complicating factor is that the properties of credi-
ble intervals would additionally depend on the choice of prior
distribution. An interesting approach that combines aspects of
both Bayesian and frequentistmethods is the confidence distribu-
tion approach as described byMarschner [139]. These confidence
distributions provide a posterior-like probability distribution that
does not require the specification of priors, and is compatible for
frequentist inference.

In part II of this paper series [140], we explore the practical con-
siderations surrounding the use of CIs for ADs. There, we illus-
trate their application to a two-stage group sequential trial design.
We also provide a set of guidelines for best practice, considering
the use of CIs in ADs from the design stage through to the final
reporting of results.
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Appendix A

Orderings of the Sample Space for Group Sequential Designs

As described in Jennison and Turnbull [20], let the pair (k, z) denote a
(standardized) test statistic z observed at the stage k that a group sequen-
tial trial stops. Also let denote the (Fisher) information at stage k, while ak
and bk denote the stopping boundary for futility and efficacy, respectively,
at stage k. We write (k′, z′)> (k, z) to denote that (k′, z′) is more extreme
evidence against the null hypothesis than (k, z) in a given ordering of the
sample space.

• Stage-wise ordering: (k′, z′)> (k, z) if any one of the three conditions
holds:
i. k′ = k and z′ > z
ii. k′ < k and z′ ≥ bk

′

iii. k′ > k and z′ ≤ ak
′

• MLE ordering: (k′, z′)> (k, z) if 𝑧′∕
√
𝐼𝑘′ > 𝑧∕

√
𝐼𝑘;

• Likelihood ratio ordering: (k′, z′)> (k, z) if z′ > z;

• Score test ordering: (k′, z′)> (k, z) if 𝑧′
√
𝐼𝑘′ > 𝑧

√
𝐼𝑘.

As a simple example, consider a two-stage group sequential design with
early stopping only for efficacy and b1 = 2.8, b2 = 2.0. Consider the follow-
ing observed trial results (k, z):
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A. (1, 3.0)

B. (2, 3.5)

C. (2, 2.5)

Suppose also the information levels be 𝐼1 = 50 and 𝐼2 = 100. We would then have the following rankings of these trial results (from most to least
extreme):

Stage-wise ordering: A>B>C.

MLE ordering: A>B>C.

Likelihood ratio ordering: B>A>C.

Score test ordering: B>C>A.

PRISMA Flowchart for the Systematic Review

Records identified through 

database search and 

screened (n = 366)

Additional relevant papers 

citing or cited by these 

articles (n = 29)

Records excluded (n = 218)

Full text articles assessed 

for eligibility (n = 1487

Articles included in qualitative 

synthesis (n = 176)

FIGURE A1 | PRISMA flowchart for the systematic review.
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