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A soft-constrained multi-objective facility location approach for designing 
a network of household waste recycling centres in South Yorkshire

Antonino Sgalambroa, Serena Fugarob and Filippo Santarellib 

aAnalytics, Technology and Operations Department, Leeds University Business School, University of Leeds, Leeds, UK; bInstitute 
for Applications of Calculus, National Research Council of Italy, Rome, Italy 

ABSTRACT 
In the UK Government’s 25 Year Environment Plan, the location of municipal waste collec
tion and recycling facilities plays a crucial role in achieving the Government’s recycling tar
gets. Economic pressures are forcing UK local authorities to reorganise the network of 
household waste recycling centres (HWRCs) with the dual aim of reducing high operating 
costs and achieving high user satisfaction, whilst meeting specific legislative requirements. It 
becomes then paramount to support the optimal design of these networks considering the 
needs of all the stakeholders involved. We fill this gap by proposing a novel multi-objective 
facility location problem in waste management (WM) which formalises the underlying real- 
world scenario for the city of Sheffield in South Yorkshire, and by developing a soft- 
constrained version of the resulting problem to more accurately capture the actual dynamics 
driving the network design process. The resulting Pareto Sets are efficiently explored by the 
robust variant of the AUGMEnted e-CONstraint method, and a computational characterisa
tion of the proposed model is provided with benchmark instances from a real-world case 
study. Finally, in-depth scenario and sensitivity analyses provide quantitative and qualitative 
insights to support strategic planning and decision-making.

ARTICLE HISTORY 
Received 8 February 2024 
Accepted 17 July 2025 

KEYWORDS 
Location; waste 
management; multi- 
objective optimisation; soft 
constraints; augmented 
e-constraint; case study   

1. Introduction

Waste minimisation appears among the objectives of 
the 25 Year Environment Plan drawn up in 2018 by 
the UK government, with the aim of “leaving the envi
ronment in better condition than it was” (His Majesty 
Government, 2018). At this purpose, the Resource and 
Waste Strategy, aimed at facilitating the transition to 
circular economy, sets an important target: achieving 
a municipal waste recycling rate of 65% by 2035 
(Local Government Association, 2018). However, in 
2020, the UK produced over 27,000 tonnes of waste of 
which only the 44.4% was recycled, according to the 
report of the Department of Environment, Food and 
Rural Affairs (DEFRA), which is in charge of waste 
management (WM) (DEFRA, 2020).

At the local level, WM is delegated to British local 
authorities (LA), which are responsible for collecting, 
recycling, or incinerating waste. The household waste 
recycling centres (HWRCs) play a key role in this. 
These centres receive massive quantities of selected 
materials and provide residents with a service for re- 
use or recycling, as well as for the collection of any 
waste that cannot be collected – or is not economic
ally viable – by the door-to-door system (WRAP, 

2018a, 2018b). In particular, at HWRCs, waste is sep
arated and then transported by lorry for further proc
essing or disposal to end points such as recycling 
facilities, incinerators, landfills, Energy Recovery 
Facilities, and Waste Transfer Stations. Specifically, 
the performance of these centres is measured by two 
components: the recycling rates and the site-users sat
isfaction, both influenced by the location, layout and 
service provided by site staff (Zaharudin et al., 2021). 
Indeed, staff are responsible for the efficient operation 
of the centres as well as for a good user experience: 
well-trained and helpful staff have a positive impact 
on the recycling rate (WRAP, 2018b). Moreover, the 
network of HWRCs is generally developed with a 
strong focus on accessibility. Indeed, the National 
Assessment of Civic Amenity Sites (NACAS) has set 
out the fundamental criteria to be considered when 
deciding where to locate these facilities. These criteria 
include recommending maximum catchment radii 
and the driving times to a site for both urban and 
rural areas, as well as the minimum number of sites 
per residents (WRAP, 2018a).

However, DEFRA recently reported that the British 
LA had failed to reach the minimum threshold of 50% 
recycled/reused waste set up by government (DEFRA, 
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2019). Such an outcome relies on several critical 
aspects, as underlined in the recent survey by 
Oluwadipe et al. (2022). Namely, beyond the physical 
barriers and the lack of public engagement in recy
cling operations, another factor that challenges the 
efficient functioning of the HWRCs network is the 
economic one. In fact, the UK public sector is affected 
by continuous funding cuts; additionally, considerable 
resources are necessary to attain increasing recycling 
rates. Thus, LA face significant challenges in providing 
a high level and cost-effective service (Smith & Bolton, 
2018; Zaharudin et al., 2022). As a result, some of 
them are opting to close facilities, although this is not 
advisable as it would inevitably lead to greater afflu
ence of the remaining facilities, with consequent user 
dissatisfaction, potentially increasing fly-tipping (i.e., 
illegal dumping of waste) and reducing the recycling 
rates (Smith, 2023).

In this context and facing similar issues, the City 
Council of Sheffield, in South Yorkshire, would like to 
explore different configurations of its actual HWRCs 
network. In fact, Sheffield is one of the cities in 
England where the financial pressure suffered by LA 
has severely affected WM services, causing consider
able discomfort to citizens (BBC, 2016). Moreover, 
Sheffield’s HWRCs only accept bulky waste, so they 
are accessible only by car, and have limited collection 
capacity, which can increase lead times and cause fre
quent traffic congestion on the surrounding roads 
(Engkvist et al., 2016; Zaharudin et al., 2022).

With these critical issues in mind, Sheffield City 
Council aims at enhancing its current HWRCs net
work by exploring novel configurations which meet 
NACAS requirements, while enabling the pursuit of 
strategic objectives such as reducing overall running 
costs and improving service quality. Actually, the 
decision-making process underlying such network 
design operations should be implemented with a 
holistic approach accounting for the needs of 
diverse stakeholders involved: installers and users. 
Indeed, including the needs of householders, who 
are the beneficiaries of the service, in the design 
evaluation process could be beneficial in achieving 
higher recycling rates (De Feo & De Gisi, 2010).

Mathematically, the adoption of this multi- 
stakeholder perspective leads to the use of multi- 
objective tools. Indeed, this approach has been used 
to investigate several WM location problems in the 
related literature (Adeleke & Olukanni, 2020; Fugaro 
& Sgalambro, 2025). Among others, Alumur and 
Kara (2007) proposed a Bi-Objective Location- 
Routing problem for hazardous waste. The objective 
is to determine the optimal locations for treatment 
and disposal facilities, as well as the quantities of haz
ardous waste to be transported, with the dual aim of 
minimising both the overall costs, obtained by 

summing the costs of transport, treatment and dis
posal operations, and the transportation risk, meas
ured with population exposure. Similarly, both 
Samanlioglu (2013) and Zhao et al. (2016) tackled the 
problems of locating hazardous waste recycling, treat
ment and disposal centres, and of routing different 
typologies of waste between specific centres, aiming 
to minimise overall costs and risks, both related to 
transport and location processes. Recently, Wang 
et al. (2021) addressed a similar Location-Routing 
problem, and included maximising household con
venience as an objective, to achieve greater participa
tion in the collection phase. Specifically, the 
convenience score is measured by a non-decreasing 
function of user-site distance. Focusing on increasing 
the e-waste market capture through advertising, Shi 
et al. (2020) developed a Bi-Objective model to locate 
Waste Electrical and Electronic Equipment (WEEE) 
centres in Changsha (China). Specifically, the two 
conflicting objectives considered are maximising the 
amount of e-waste collected from customers and 
minimising the total cost of installation and advertise
ment. Instead, Ahluwalia & Nema (2011) proposed a 
multi-objective and multi-period approach to a loca
tion and capacity planning for WEEE centres, where 
the decisions also concern the allocation of waste to 
different types of facilities (e.g., storage, disposal, and 
recycling) while minimising four objectives: transpor
tation and operating costs, environmental risk, 
socially perceived risk and health risk. Erkut et al. 
(2008) addressed a Location–Allocation problem for 
municipal Solid WM in North Greece. The objectives 
encompass: the minimisation of greenhouse effect, 
the minimisation of final disposal to landfill, the 
minimisation of overall costs (installation, treatment, 
and transport), and the maximisation of both energy 
recovery from sanitary landfills and incinerators, and 
material recovery. Instead, Darmian et al. (2020) 
modelled the location of Municipal Solid Waste col
lection centres in Iran integrating districting deci
sions. They formulated three objectives reflecting 
economic, environmental, and social criteria: mini
misation of establishment and waste collection costs; 
minimisation of destructive environmental impacts, 
quantified through emissions from construction and 
pollution caused by transport; minimisation of social 
dissatisfaction. Similarly, Shokouhyar and Aalirezaei 
(2017) described a Tri-Objective Location-Allocation 
model for the design of a WEEE reverse logistics net
work in Iran. The objectives are: to maximise profit, 
expressed as the difference between the revenue gen
erated from selling recovered materials and the costs 
of setting up and operating the WEEE network; to 
maximise the social impact of the network in terms of 
employment and regional development; to minimise 
negative environmental impacts, measured as 
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pollution from transport. Kailomsom and 
Khompatraporn (2023) addressed a problem of 
Infectious Waste Transshipment and Disposal in 
Thailand using a multi-objective approach. This 
involved defining three objective functions to repre
sent the economic, environmental and social impacts 
of such a system: minimising installation and trans
port costs; minimising the amount of neighbouring 
population within a certain distance from the disposal 
facilities; minimising CO2 emissions from the trans
shipment and disposal facilities. Similarly, to address 
an Infectious waste disposal centres location problem, 
Wichapa and Khokhajaikiat (2017, 2018) defined a 
bi-objective location-routing problem, including dif
ferent social and environmental criteria to select the 
location of candidate centres while minimising the 
costs of installation, operation and transport. Also, 
Zhao et al. (2021) applied a bi-objective approach to a 
Location-Routing problem in the field of Infectious 
WM. Specifically, the authors accounted for the sto
chastic nature of waste generation during a pandemic 
and proposed a scenario-based robust optimisation 
model. The objectives considered address both eco
nomic costs and the risks associated with the hand
ling and transportation of infectious waste. Tralh~ao 
et al. (2010) addressed the problem of identifying the 
location and capacity of multi-compartment contain
ers for urban-sorted waste in Coimbra. They consid
ered four objectives: minimising the costs of the 
facilities, minimising the average user-site distance, 
minimising the number of users too close to a con
tainer or too far away from the respective multi- 
compartment container. Tari & Alumur (2014) 
addressed a similar problem for WEEE collection 
centres in Turkey in the context of reverse logistics. 
The authors proposed a Tri-Objective Location- 
Allocation problem where the objectives are: mini
mising the overall costs (installation and transport), 
minimising the maximum difference in surplus mate
rials sent to different companies (to ensure equity), 
minimising the maximum deviation from the mean 
demand (to ensure prompt supply of products to 
each company). Finally, to meet the needs of both the 
government and the sanitation companies, Ma et al. 
(2021) proposed a bi-level bi-objective location- 
routing model for Municipal WM. In particular, the 
leader, i.e., the government, pursues several conflict
ing objectives concurrently: minimising the obnox
ious effects, along with opening and handling costs 
for facilities and vehicle costs.

As can be inferred from the above contributions, 
multi-objective WM location problems generally fea
ture an economic objective, e.g., minimising the costs 
of installing and/or operating the facilities. As for the 
others, they depend on the managerial context under
lying the decision-making process. However, 

although the need for this multi-stakeholder 
approach has been recognised (DEFRA, 2019), up to 
our knowledge, no paper has yet adopted a Multi- 
Objective perspective to formulate the aforemen
tioned UK-specific network design problem. 
Therefore, in this article, we introduce and model an 
original multi-objective facility location problem for 
the design of the HWRCs network in Sheffield.

Specifically, the contribution of our research is at 
the strategic level: its aim is to help the decision- 
maker to locate a maximum number of facilities with 
a given capacity and to allocate citizens (i.e., users) 
accordingly, taking into account their preference to 
be served by the nearest centre. Indeed, the decision 
process is guided by the pursuit of two objectives: 
minimising overall costs and maximising service 
quality. As a novelty with respect to the general 
approach in the literature for this type of network 
design problems (Habibi et al., 2017; Wichapa & 
Khokhajaikiat, 2017), where the facility location and 
demand allocation costs are usually minimised 
together, we formulate them as different objectives to 
be optimised. This reflects the respective perspectives 
of facility installers and users. Another innovative 
aspect of the proposed model is that it decomposes 
the maximisation of service quality into two distinct 
and potentially conflicting objectives. Not only do we 
present it from the users’ perspective, focusing on the 
distance to the nearest active centre, but we also 
model a coverage function to measure how the 
HWRCs network complies with the legislative 
requirements regarding the distance between users 
and sites (WRAP, 2018a). In addition, capacity flexi
bility of the facilities was identified as one of the key 
elements to enable the handling of visitor peaks and 
to avoid the creation of bottlenecks (Engkvist et al., 
2016). However, to the best of our knowledge, this 
aspect has not been explored in the literature on WM 
Facility Location problems, which has mainly focused 
on capacity planning at the strategic level (Ahluwalia 
& Nema, 2011; Tari & Alumur, 2014). Therefore, we 
also propose a soft-constrained approach to the design 
of the HWRCs network in Sheffield, by allowing the 
capacity constraints to be violated when allocating 
demand. Both the managerial and computational 
implications of such relaxed constraints have been 
extensively studied. Specific contributions of this 
research are summarised below:

� the definition of a novel multi-objective location 
problem in WM, characterised by the innovative 
combination of different managerial perspectives 
arising from a real-world case study in the city 
of Sheffield;

� the complexity characterisation along with a 
mathematical formulation for the emerging 
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problem, obtained through Integer Linear 
Programming tools and featuring original refor
mulation of classic constraints;

� the development of a soft-constrained version of 
the problem by allowing the realistic violation of 
a particular class of constraints;

� the exact yet efficient exploration of the arising 
Pareto Sets through the robust version of the 
Augmented e-constraint framework, i.e., 
AUGMECON-R (Nikas et al., 2022);

� a thorough computational experimentation – 
conducted on benchmark instances, obtained 
from real data – aimed at providing quantitative 
and qualitative insights into the resulting differ
ent configurations for the HWRCs network 
design;

� the construction and analysis of a real-world case 
study, aimed at providing a feasibility study of 
the network reconfiguration process using the 
proposed models.

To favour an effortless understanding of the 
new problem framework and its modelling features, 
Section 2 first introduces the Multi-Objective 
Household Waste Recycling Centres HWRCs Location 
Problem. Section 3 then presents and thoroughly anal
yses the computational experiments conducted on the 
benchmark instances obtained from real-world data 
for the city of Sheffield. Section 4 introduces the soft- 
constrained approach to the problem, providing the 
mathematical formulation devised and reporting the 
related computational experiments. Section 5 provides 
the in-depth scenario and sensitivity analyses of a real 
case study for the city of Sheffield, offering concrete 
managerial insights to support strategic planning and 
decision-making. Section 6 concludes with recommen
dations for future research.

2. The multi-objective household waste 
recycling centres location problem

This section introduces a multi-objective facility 
location problem for the design of a HWRCs net
work, hereafter referred to as HWRC-Loc. 
Specifically, Section 2.1 provides a description of the 
problem, along with a study of its computational 
complexity, while Section 2.2 details an ad-hoc 
multi-objective integer programming formulation 
devised for it.

2.1. Problem description

We suppose that it is deemed necessary to design 
the network of HWRCs for a region, either geo
graphical or political. Specifically, a set of HWRC 
facilities must be located in order to meet certain 
legislative, economic, and service requirements for 
that region. Additionally, we assume that citizens 
have been grouped into disjoint subsets, called cells, 
according to their position (Ghiani et al., 2012). 
Indeed, depending on the population density, a cell 
may consist of a single dwelling or of several dis
tricts. We also make the realistic assumption that 
only a limited amount of waste can be collected at a 
HWRC.

To formally state the problem let G ¼ ðN, EÞ be an 
undirected graph, with N ¼ I [ J; and I \ J ¼ ;;
where I represents the set of demand nodes, and J the 
set of facility sites for the location of HWRCs. In par
ticular, the demand nodes correspond to the cells, 
considered as point sources, i.e., each cell is identified 
by its centroid; hence, in the following, the terms cell 
and demand node are interchangeable. Then, hi is the 
demand of node i, e.g., it is the number of citizens 
grouped in cell i 2 I; rj is the non-negative running 
cost of j 2 J; and cj is the non-negative capacity of j 2
J; i.e., the number of citizens that can be served by 
facility located at j 2 J:

Besides, at most P facilities can be located, and 
E ¼ I � J contains all the edges defining the poten
tial assignment of demand nodes to facility sites, i.e., 
all citizens belonging to the cell are assigned to the 
same HWRC. Then, dij is the distance between the 
demand node i 2 I and the facility site j 2 J: To 
model the legislative requirements, we assume that 
the authority designing the network has set a 
threshold for the maximum distance between a cell 
and the centre to which it is assigned.

Definition 2.1. A demand node is “covered” if it is 
assigned to a facility located within a threshold dis
tance D.

In particular, Ni ¼ fj 2 Jjdij � Dg denotes the set 
of facility sites which can cover demand node i. By 
assumption, the single allocation hypothesis holds 
(Daskin, 2011), so a demand node can be assigned 
to exactly one located facility, namely the closest 
one. Table 1 summarises the notations introduced 
so far.

The HWRC-Loc is based on the following two 
decisions:

Table 1. Notations for the formal description of the HWRC-Loc.
Sets Function values Parameters

I demand nodes (cells) cj capacity for j 2 J P max number of facilities to be located
J facility sites (HWRCs) rj running cost for j 2 J D threshold value for coverage distance
E edges connecting nodes of I and J hi value of demand at i 2 I
Ni sites not further than D from i dij distance between i 2 I and j 2 J
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� selection of at most P facilities (HWRCs) to be 
located in the region;

� allocation of demand nodes (cells) to the closest 
located facilities while jointly satisfying capacity 
limitations.

The fulfilment of the following multiple objec
tives guides the decision-making process:

1. minimisation of the total running costs;
2. minimisation of the total distance between facil

ity sites and their assigned demand nodes;
3. maximisation of the total covered demand.

From a managerial perspective, (1) deals with the 
cost of the service network, while (2) and (3) relate 
to service quality. It is worth highlighting the fol
lowing innovative aspects which distinguish the 
multi-objective approach we propose to this prob
lem from the existing literature on facility location 
problems in WM. On the one hand, we decouple 
the costs associated with the location of facilities 
and the allocation of demand, since these types of 
costs need to be optimised separately in order to 
properly represent the interests of two different 
stakeholders involved in this network design prob
lem, i.e., service providers and service users. On the 
other hand, we assess the service quality of the 
HWRCs network not only in terms of user satisfac
tion but also in terms of its compliance with legisla
tive requirements; again this is a means to taking 
into account the different and potentially conflicting 
interests that guide the installation of the HWRC 
facilities.

Lemma 2.2. The HWRC-Loc is an NP-hard problem.

Proof. Suppose that the running cost function is 
null so that exactly P facilities can be located at no 
cost. Therefore, the HWRC-Loc becomes a 
Capacitated p -median-cover Problem (S�aez-Aguado 
& Trandafir, 2018) with closest assignment con
straints (CACs). Assuming that the distance func
tion is identically equal to 1 and that the threshold 
value D is at least equal to 2, then each demand 
node can be covered by any located facility, and the 
CAC are satisfied by any choice of facility sites.

Since the (Capacitated) p-median-cover Problem 
can be reduced to a classic (Capacitated) p-median 
Problem (Daskin, 2011) which has been proven NP- 
hard (Garey & Johnson, 1979), the same computa
tional result holds for the HWRC-Loc.               �

2.2. An integer linear programming model

The proposed model relies on the use of the follow
ing sets of variables:

1. binary facility location variables xj; defined 8j 2
J; such that xj ¼ 1 if a facility is located in j, 
and 0 otherwise;

2. binary assignment variables yij; defined 8i 2
I, 8j 2 J; such that yij ¼ 1 if demand node i is 
assigned to facility in j, and 0 otherwise;

3. binary coverage variables zi; defined 8i 2 I; such 
that zi ¼ 1 if demand node i is covered, and 0 
otherwise.

The three objectives pursued in the decision- 
making process, as described in Section 2.1, are for
malised through the following functions:

1. RC ¼
P

j2J rjxj denoting the overall running 
costs;

2. UC ¼
P

i2I
P

j2J hidijyij representing the user 
costs, i.e., the sum of the demand-weighted dis
tances between the located facilities and the 
demand nodes assigned to them;

3. CO ¼
P

i2I hizi denoting the covered demand.

It is worthwhile emphasising that the HWRC-Loc 
is intrinsically multi-objective given the inherently 
conflicting nature of the goals to be pursued. In 
fact, the trend of RC is opposite to that of the 
remaining objectives, in that it is negatively affected 
by an increased number of located facilities whilst 
this could be beneficial for both UC and CO values. 
However, since the aggregation criterion for citizens 
results in possibly non-uniform distributed demand 
values, minimising UC may also be in conflict with 
maximising CO: See Appendix A for a more rigor
ous explanation drawing on some evidence support
ing this thesis.

The resulting multi-objective integer linear pro
gram is given by (1) in which (1a) minimises the 
total running costs, (1b) minimises the user costs, 
and (1c) maximises the covered demand.

ðHWRC-LocÞ min RC (1a) 
min UC (1b) 
max CO (1c) 

subject toX

i2I
hiyij � cjxj 8j 2 J (1d) 

X

j2J
xj � P (1e) 

X

j2J
yij ¼ 1 8i 2 I (1f) 

X

fa:dia�dijg

yia � xj 8i 2 I, 8j 2 J (1g) 

zi �
X

j2Ni

xj 8i 2 I (1h) 

xj, yij, zi 2 0, 1f g 8i 2 I, 8j 2 J (1i) 
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Constraints (1d) couple the capacity requirements 
with the activation constraints, stating that demand 
covered by any located HWRC facility cannot 
exceed its capacity. Constraint (1e) states that at 
most P facilities can be located, whilst those (1f)
represent the single allocation conditions, stating 
that each cell has to be assigned to exactly one facil
ity, which has to be the closest located facility 
according to the CAC (1 g). Then, Constraints (1h)
are the coverage constraints stating that a demand 
node is covered whenever a facility is located within 
distance D from it. Finally, Constraints (1i) are bin
ary constraints for variables. The resulting model 
encompasses: jIj þ jJj þ jIjjJj binary variables, and 
2jJjðjIj þ 1Þ þ 3jIj þ 1 linear constraints.

Remark 1. It should be emphasised that, while the 
minimisation of the UC function is instrumental at 
assessing the service quality from the users perspec
tive, the CAC are essential to represent their behav
iour (Ghiani et al., 2012). In fact, in the specific 
operational setting considered in this paper, there is 
no possibility of inducing users to choose a particu
lar centre (Zaharudin et al., 2021). Therefore, the 
CAC are hard constraints aimed at expressing the 
users’ preference to go to the active centre closest to 
the cell to which they belong.

In particular, the OðjNj2Þ equations in (1 g) were 
introduced by Church and Cohon (1976), whilst 
Espejo et al. (2012) proved that they are valid in 
case of ties for distances between demand nodes 
and facilities, independently from Constraints (1e). 
However, in Theorem 2.3 we proved that the CAC 
can be equivalently stated with the original jJj con
straints in (2):

X

i2I

X

fa:dia�dijg

yia � jIjxj 8j 2 J: (2) 

Theorem 2.3. If (1f) and (1i) hold, then Constraints 
(1g) and (2) are equivalent.

Proof. (1g) ) (2) follows by summing (1 g) over I:
Conversely, define the variables Aij ¼P
fa:dia�dijg

yia, and observe that 0 � Aij � 1; 8i 2 I 
and 8j 2 J: Indeed, the former inequality follows 
from the integrality conditions for variables y, while 
the latter relies on Constraints (1f). Then (2) )
(1g) if for any fixed j 2 J it holds that:

Aij � xj 8i 2 I (3) 

Suppose that there exists a ĵ 2 J such that (3) do 
not hold: then, there must exist at least one î 2 I 
such that Aî̂j < x̂j : Indeed, the integrality conditions 
(1i) of the x variables and the non-negativity of the 
A variables, imply that x̂j ¼ 1 and Aî̂j ¼ 0: Since 

Aîj � 1 8i 2 I; the sum of the Aîj variables verifies 
the following inequality:

X

i2I
Aîj ¼

X

i2In îf g

Aîj � jIj − 1 (4) 

Moreover, by hypothesis, the Constraints (2)
hold, thus for ĵ we have that:

X

i2I
Aîj ¼

X

i2In îf g

Aîj � jIjx̂j ¼ jIj (5) 

Combining Equations (4) and (5), we obtain 
jIj � jIj − 1 which is impossible.                      �

Therefore, we replaced Constraints (1 g) with 
those (2), in our integer linear program, since they 
are equivalent but fewer. In particular, the resulting 
model encompasses 3ðjJj þ jIjÞ þ jIjjJj þ 1 linear 
constraints.

3. Computational experiments

This section presents the numerical experiments 
conducted with a twofold objective: to test the valid
ity of the proposed model and to address the spe
cific needs arising in a real case study. As the 
HWRC-Loc in inherently multi-objective, we 
adopted AUGMECON-R, the robust version of the 
AUGMEnted e-CONstraint method (Nikas et al., 
2022), to explore accurately the Pareto Sets, i.e., the 
set of efficient solutions. As detailed in Appendix B, 
this method iteratively solves a Single-Objective 
Problem (SOP) obtained from the original Multi- 
Objective one, but skips redundant resolutions by 
exploiting information from the current SOP.

AUGMECON-R was implemented with Python 
3.8.10 as programming language, while the SOPs 
were solved with ILOG CPLEXVR version 20.1 solver. 
The experiments were run on a server equipped 
with two Intel Xeon Gold 6246 R 3.4ghz CPUs, 
512GB Ram and Ubuntu Server 20.04. LTS.

Section 3.1 describes the dataset used in the 
experiments and Section 3.2 details the definition of 
the SOP and the tuning of AUGMECON-R parame
ters. The numerical results are analysed in 
Section 3.3.

3.1. Benchmark instances SH81

The experiments were conducted on a set of 81 
benchmark instances, namely SH81, which are 
based on real data provided by the WM Team at 
Sheffield City Council in South Yorkshire (UK). 
Indeed, from the analysis of historical data relating 
to the running costs, management and use of 
Sheffield’s operating HWRCs, we have derived the 
parameters values as detailed below.
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The SH81 instances were obtained from the 
Geographical Information System data of the 
Sheffield area. Population data refer to the Census 
(Office for National Statistics, 2011), according to 
which there were 229922 households in Sheffield, 
aggregated in 1744 cells (Barisone et al., 2019), as 
shown in Figure 1. The geographical coordinates of 
the centroids of each cell were provided by the WM 
team.

With regard to the candidate HWRCs, the WM 
Team has provided a confidential list of 9 alterna
tive sites for the centres, the purpose of which is to 
enable us to define a realistic benchmark and 
explore the potential of the model being developed. 
In other words, these sites do not represent the 
actual locations that would be considered for a pos
sible reconfiguration of the HWRCs network. In 
fact, these experiments are exploratory in nature. 
They provide a compelling demonstration of the 
tool’s potential to offer tangible support for 
decision-making processes.

We obtained three classes of instances, small, 
medium, and large, either by considering all 1744 
cells (in “large”) or by randomly selecting 25% (i.e., 
436 for the “small”) and 50% (i.e., 872 for the 
“medium”) of the available cells. Then, for each 
number of cells, we considered a total of 5, 7 or 9 
sites chosen from the list provided. Functions and 
parameters (see Table 1) were set up as follows, 
assuming that the HWRCs operated seven days a 
week, with eight-hour shifts per day.

Capacity. This function is estimated from the data 
on affluence to Sheffield’s active centres, consider
ing the maximum number of users visiting the site 
per time slots of 15 min, and assuming that the 
centres were always working at full speed. The 
analysis of these data highlighted that the hourly 
user rate (hur) of each site linearly depends on the 
corresponding number of parking slots, which in 
turn linearly depends on the dimension of the site.

Running cost. This function is given by the sum of 
three different cost functions, estimated from his
torical data, related to the centre’s labour and 
maintenance operations, namely: Labour costs (L), 
Asset costs (A), and Overhead costs (O). Values are 
expressed in tens of thousands of pounds, 
namely: r ¼ ðL þAþOÞ=10000:

Demand. For each cell i 2 I the corresponding 
demand value was assumed to be equal to the 
number of users aggregated in the cell.

Distance. Euclidean distance was used as the dis
tance function and distance values are expressed in 
hundreds of metres.

P. The maximum number of allowed facilities was 
left vary in the set f2, 3, 4g:

D. Given the maximum distance between a cell and 
a facility site, i.e., DMAX; the threshold distance 
was left to vary in the set of rounded values 
fDMAX=8, DMAX=4, DMAX=2g for each instance.

Table 2 shows the number of cells and sites and 
the corresponding sets of values for the D and P 
parameters for this benchmark. Overall, the thresh
old distance ranges between 21 and 131 (i.e., 2100 
and 13,100 m). Indeed, the set of D values provides 
a sufficiently diverse representative sample to allow 
extrapolation of generalizable results, given that the 
diameter of the smallest circle enclosing Sheffield is 
17,899 m.

3.2. Calibration of parameters

When defining the SOP to be solved at each iter
ation of the AUGMECON framework, the prioritisa
tion rule chosen for the objective functions does not 
affect the Pareto Set obtained. However, it could 
lead to the exploration of a less wide grid for the e 
parameters, thus speeding up the computation 
(Mavrotas, 2009). For this purpose, we considered 
the average ranges for RC; UC and CO on the whole 
dataset, computing these ranges from the payoff 
tables obtained with the lexicographic built-in func
tion of the library IBMVR Decision Optimization 
CPLEXVR Modeling for Python. We then assigned 
the highest priority to UC; that has the maximum 

Figure 1. Map showing the distribution of cells for the city 
of Sheffield, in South Yorkshire (UK).

Table 2. Parameter values for the additional set of bench
mark instances.
Inst. type Cells Sites D P

small 436 5 f21, 42, 84g f2, 3, 4g
7 f23, 46, 91g
9 f23, 47, 94g

medium 872 5 f21, 42, 84g f2, 3, 4g
7 f23, 46, 91g
9 f27, 54, 108g

large 1744 5 f25, 51, 102g f2, 3, 4g
7 f28, 55, 110g
9 f33, 66, 131g
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average range, and the lowest priority to CO that 
has the minimum average range.

In addition, we calibrated the parameter d featured 
in the objective function of the SOP by testing 
AUGMECON-R on a sample set consisting of 20 
SH81 instances (� 25% of the dataset), chosen ran
domly but with one representative for almost every 
possible configuration of jIj þ jJj and P. The grid of e 
values was obtained with unitary discretisation step, 
while d varied in the set f10−6, 10−5, 10−4, 10−3g; as 
suggested in Mavrotas and Florios (2013). We chose 
d ¼ 10−5 as it minimises the average CPU time gap, 
i.e., the average of the difference, for each instance, 
between the CPU time used by the algorithm and the 
minimum CPU time needed to solve this instance.

3.3. Numerical results

The results of the experiments conducted on the 
SH81 instances are presented in Table 3 which 
reports the number of Cells and the value of P. For 
each number of sites, the table also provides the 
value of D, the CPU time required by the 
AUGMECON-R method in seconds (column 
“CPU”), the number of efficient solutions (column 
“Sol.”), of single objective problems solved by the 
method (column “#SOPs”), and the CPU time taken 
by CPLEX to solve an SOP.

These data show that for the small and medium 
instances across all maximum numbers of sites 
available (i.e., 5, 7, or 9) and threshold values D, as 
the value of P increases, the average CPU time of 
AUGMECON-R also increases. In fact, such a result 

is related to the higher average number of SOPs 
solved. Furthermore, it is worth noting that the 
trends in the average CPU times of CPLEX for solv
ing an SOP depend on the fact that the number of 
binary variables and linear constraints of HWRC- 
Loc grows linearly with jIj and jJj; as observed in 
Section 2.2. In fact, for any fixed number of sites 
jJj; D value in fDMAX=2, DMAX=4, DMAX=8g and P 
value, the CPU times increase as the number of cells 
increases. Similarly, for any fixed number of cells, D 
and P, the corresponding CPU times increase as the 
number of available sites increases, with the sole 
exception of the large instances with jJj ¼ 9: The 
analysis of the CPU time of AUGMECON-R high
lights also that for the small instances, for any fixed 
jJj and P, as the threshold distance decreases the 
problem becomes harder to solve. There is no simi
lar trend for medium and large instances, whose 
complexity varies according to the combination of 
jJj; P and D parameters.

Figure 2 depicts the trends for the average num
ber of Pareto optimal solutions with respect to the 
threshold distance: for each Instance Type, we 
observe how by fixing one parameter in turn 
between jJj and P and letting the other vary, more 
efficient solutions are obtained on average; in par
ticular this appears by looking at the yellow col
umns in the figure as jJj increases.

In fact, as there is a greater number of facilities 
to locate, there are potentially more feasible network 
configurations. Furthermore, for any fixed value of 
P, the largest average number of efficient solutions 
is obtained on the small instances for any possible 

Table 3. Numerical results on the SH81 instances. CPU times in seconds and threshold distances in hundreds of metres.

Cells P jJj ¼ 5 jJj ¼ 7 jJj ¼ 9

D CPU Sol. #SOPs CPU/ #SOPs D CPU Sol. #SOPs CPU/ #SOPs D CPU Sol. #SOPs CPU/#SOPs

436 2 84 12.28 3 67 0.18 91 34.80 5 249 0.14 94 742.91 8 2058 0.36
436 2 42 30.21 3 338 0.09 46 104.60 5 760 0.14 47 765.89 9 2499 0.31
436 2 21 42.94 3 995 0.04 23 1141.44 6 3619 0.32 23 6541.05 10 11097 0.59
436 3 84 71.96 6 662 0.11 91 47.30 7 313 0.15 94 879.60 12 3066 0.29
436 3 42 163.63 6 1392 0.12 46 147.40 7 1002 0.15 47 1011.83 13 3379 0.30
436 3 21 455.39 6 4279 0.11 23 1287.01 7 5029 0.26 23 6227.95 11 10040 0.62
436 4 84 76.52 8 729 0.10 91 226.82 11 908 0.25 94 6738.69 16 16204 0.42
436 4 42 203.57 8 1765 0.12 46 445.14 11 2021 0.22 47 1511.99 17 4456 0.34
436 4 21 567.09 8 5829 0.10 23 3378.35 11 11754 0.29 23 8452.03 15 15528 0.54
872 2 84 0.22 1 1 0.22 91 185.68 3 768 0.24 108 1472.47 4 2003 0.74
872 2 42 0.34 1 1 0.34 46 1362.07 4 1567 0.87 54 2929.75 5 2552 1.15
872 2 21 0.27 1 1 0.27 23 239.02 2 673 0.36 27 340.27 3 726 0.47
872 3 84 70.42 4 596 0.12 91 203.66 5 849 0.24 108 1938.94 7 2272 0.85
872 3 42 262.03 4 1391 0.19 46 2233.86 9 3528 0.63 54 6333.02 12 5095 1.24
872 3 21 280.60 4 1636 0.17 23 836.21 4 1692 0.49 27 5189.86 7 3441 1.51
872 4 84 71.53 6 663 0.11 91 612.08 9 1504 0.41 108 3245.43 11 2916 1.11
872 4 42 313.44 6 1636 0.19 46 2826.30 14 4155 0.68 54 6207.55 16 5457 1.14
872 4 21 319.36 6 2164 0.15 23 4196.12 8 6749 0.62 27 13313.79 13 10781 1.23
1744 2 102 1445.88 2 596 2.43 110 89602.07 6 19676 4.55 131 14322.80 6 3155 4.54
1744 2 51 3843.38 2 1290 2.98 55 2659198.37 5 669884 3.97 66 132888.28 6 22955 5.79
1744 2 25 3451.06 2 1328 2.60 28 176106.26 5 49523 3.56 33 95553.31 5 19391 4.93
1744 3 102 1011.54 2 596 1.70 110 23465.80 6 5638 4.16 131 18809.40 10 5051 3.72
1744 3 51 2025.37 2 1290 1.57 55 1190394.46 6 348249 3.42 66 390623.79 8 33671 11.60
1744 3 25 1962.18 2 1328 1.48 28 54589.56 5 12712 4.29 33 208715.91 7 23733 8.79
1744 4 102 984.41 2 596 1.65 110 24198.59 7 6567 3.68 131 15726.43 9 5334 2.95
1744 4 51 1823.05 2 1290 1.41 55 1190438.06 9 354704 3.36 66 195147.88 9 40291 4.84
1744 4 25 1698.10 2 1328 1.28 28 40078.85 6 16857 2.38 33 171638.74 9 32193 5.33
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value of jJj. This is because, when the number of 
cells is limited, there are potentially several feasible 
configurations for the allocation of demand nodes 
that satisfy, in particular, the capacity con
straints (1d).

Finally, we analyse the extent to which the values 
of the objective functions are affected by the num
ber of cells, sites, threshold distance and allowed 
facilities. Table 4 reports the average values for UC;
RC and CO: for each instance, we calculated the 
average of the values that each function takes in the 
efficient solutions found.

First, we observe that for fixed numbers of cells and 
sites and fixed threshold distance D, the average values 
of UC decrease as P increases. This result is based on 
the fact that by increasing the maximum number of 

facilities to locate, potentially more demand nodes can 
be assigned to closer active facilities, leading to 
improved user satisfaction with the service provided. 
Naturally, the large instances are those characterised by 
the highest average values of UC; as they contain more 
demand nodes. Conversely, the average values of RC
naturally increase with P, as more facilities can be 
located. In addition, for the same jJj and P, the highest 
values of RC are related to large instances, meaning 
that potentially more expensive facilities are needed to 
ensure a certain level of user satisfaction. Similarly, for 
any fixed number of cells and sites and fixed D, the 
average values of CO increase as P increases. This is 
due to the fact that an increased number of active 
centres leads to improved coverage for the service 
demand. For example, Figure 3 plots the average 

Figure 2. Trends in average number of efficient solutions for each Instance Type and with respect to the threshold distance. 
Values grouped by the maximum number of sites available (i.e., jJj); columns in a group report data for each number of sites 
available.

Table 4. Average values for each objective function. RC values expressed in tens of thousands of pounds; CO and UC val
ues scaled by dividing by 50.

Cells P jJj ¼ 5 jJj ¼ 7 jJj ¼ 9

D Sol. avg(UC) avg(RC) avg(CO) D Sol. avg(UC) avg(RC) avg(CO) D Sol. avg(UC) avg(RC) avg(CO)

436 2 84 3 98345.00 86.67 2322.00 91 5 90256.20 176.40 2322.00 94 8 81642.00 355.38 2424.38
436 2 42 3 99334.00 87.00 2162.33 46 5 90256.20 176.40 2267.40 47 9 80424.56 381.89 2385.78
436 2 21 3 98345.00 86.67 800.33 23 6 88016.00 249.00 1307.50 23 10 80063.60 404.90 1231.50
436 3 84 6 91103.17 279.67 2322.00 91 7 86671.71 207.86 2322.00 94 12 74962.67 414.83 2435.75
436 3 42 6 91597.67 279.83 2204.67 46 7 86671.71 207.86 2278.57 47 13 74633.62 428.62 2412.38
436 3 21 6 91103.17 279.67 1037.17 23 7 86671.71 207.86 1356.14 23 11 75359.36 398.73 1439.00
436 4 84 8 89015.88 379.12 2322.00 91 11 79606.00 384.09 2322.00 94 16 70683.06 479.00 2441.44
436 4 42 8 89386.75 379.25 2215.25 46 11 79606.00 384.09 2294.36 47 17 70683.18 485.76 2422.94
436 4 21 8 89015.88 379.12 1107.25 23 11 79606.00 384.09 1630.55 23 15 70525.27 481.27 1669.87
872 2 84 1 177382.00 130.00 4788.00 91 2 181801.00 228.67 4813.00 108 4 211192.00 363.00 4894.25
872 2 42 1 177382.00 130.00 4007.00 46 4 167451.50 341.25 4422.75 54 5 166759.60 441.20 4679.60
872 2 21 1 177382.00 130.00 1493.00 23 2 170477.50 220.00 1962.00 27 3 168447.33 251.00 2517.00
872 3 84 4 174078.25 387.00 4788.00 91 5 173980.00 251.80 4812.00 108 7 163814.86 393.57 4902.86
872 3 42 4 174078.25 387.00 4057.00 46 9 159987.67 426.00 4487.78 54 12 151165.17 591.58 4800.08
872 3 21 4 174078.25 387.00 1604.25 23 4 166363.00 253.25 2105.75 27 7 158091.86 403.14 2649.86
872 4 84 6 173127.50 483.83 4788.00 91 9 160740.00 447.67 4814.67 108 11 154439.82 494.64 4924.55
872 4 42 6 173127.50 483.83 4070.00 46 14 155086.86 515.64 4530.79 54 16 146534.75 578.69 4808.25
872 4 21 6 173127.50 483.83 1633.00 23 8 155276.50 472.88 2439.25 27 13 148962.85 545.46 2881.31
1744 2 102 2 569199.50 663.50 9827.00 110 6 559283.33 464.50 9861.50 131 6 547626.00 532.50 10187.67
1744 2 51 2 569199.50 663.50 5214.50 55 5 556497.00 484.20 6051.00 66 6 559283.33 464.50 7110.00
1744 2 25 2 569199.50 663.50 1040.50 28 5 556497.00 484.20 2052.60 33 5 556497.00 484.20 2907.60
1744 2 102 3 569199.50 663.50 9827.00 110 6 541792.67 468.00 9861.50 131 10 498202.30 769.70 10229.00
1744 2 51 3 569199.50 663.50 5214.50 55 6 521804.17 498.83 6551.17 66 8 514183.88 664.62 7649.38
1744 2 25 3 569199.50 663.50 1040.50 28 5 535508.20 488.40 2457.80 33 7 505750.86 707.29 3556.57
1744 2 102 4 569199.50 663.50 9827.00 110 7 520503.43 483.29 9889.57 131 9 485495.11 706.89 10222.11
1744 2 51 4 569199.50 663.50 5214.50 55 9 486782.89 605.67 6977.56 66 9 493266.67 661.56 7874.89
1744 2 25 4 569199.50 663.50 1040.50 28 6 511718.17 502.83 2793.00 33 9 475976.44 728.78 4012.67
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percentage of covered demand corresponding to the 
lowest threshold, namely D ¼ DMAX=8; aggregating 
data with respect to jJj.

The information derived from this representation is 
twofold: on the one hand, it highlights that the reduc
tion of the coverage radius has a stronger effect on 
those instances characterised by a larger number of 
demand nodes, as the large instances have the lowest 
average percentage of demand covered. On the other 
hand, it highlights that the instances characterised by 
larger values of P have, on average, better values of CO
(cf. the yellow columns). However, the coverage is 
affected by the threshold distance, as can be seen from 
the trends of the objective function values. In fact, for 
any fixed number of cells and sites, and any fixed 
P, the values of CO decrease with D. In particular, 
Figure 4 shows the trends for the average CO value, 
aggregated by P.

For each Instance Type, as expected the (average) 
coverage values increase with increasing D, meaning 
that less tight threshold distances lead to improved 
demand coverage. Moreover, for any fixed D, the 
highest (average) CO values are associated with 
instances with jJj ¼ 9; as shown by the data for 
medium and large instances. In conclusion, as 
expected, the values of the coverage function CO

depend on the coverage radius, being better for 
higher radii. Moreover, this analysis allowed to 
observe that the different values of the parameter D 
also have an impact on the computational level, 
eventually leading to more complex problems.

4. A soft-constrained version of the 
household waste recycling centres location 
problem

It is fairly frequent in the scientific literature to find 
versions of classical problems in which the violation 
of one or more classes of constraints is allowed. In 
general, this approach has a dual purpose: to allow a 
more realistic representation of specific scenarios in 
which the problem arises, and to explore the com
putational impact that these constraints have on the 
method used to solve the problem.

Specifically, in the related literature on Capacitated 
Facility Location problems, the capacity constraints 
are often treated as soft constraints (Estrada-Moreno 
et al., 2020; Han et al., 2020). In fact, it may be pos
sible to violate them while taking into account ad hoc 
defined penalty costs in the objective function(s) 
since, depending on the specific problem setting, it 
may be preferable to have a small number of con
gested facilities when capacity is exceeded to a limited 
extent. It should be emphasised that, although the 
soft constraints allow exploration of an extended feas
ible region, the primary purpose of the penalty costs 
is to discourage excessive deviation from that region.

Following this strategy, we defined a soft- 
constrained version of the HWRC-Loc in which the 
capacity constraints (1d) can be violated when allo
cating demands, but an excessive deviation is dis
couraged by the penalty costs added to RC and UC:
In particular, although these costs are a mathemat
ical tool to ensure that the search for efficient solu
tions takes place in a neighbourhood of the initial 
set of alternatives, we can associate a managerial 
counterpart to them. In fact, if the capacity of at 
least one facility is exceeded, additional labour will 
be required to run that facility efficiently, thus 
affecting RC: Similarly, relaxing the capacity 

Figure 3. Trends in average percentage of demand covered 
for each Instance Type. Data refer to instances with D ¼
DMAX=8 and are aggregated by the value of jJj, i.e., the 
number of facilities available for installation.

Figure 4. Trends in average CO function for each Instance Type. Data aggregated (in each plot) by the value of the param
eter P.
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constraints would strongly influence the assignment 
of users to active facilities, thus improving the per
ceived quality of service. However, this would inev
itably lead to the exploration of unrealistic 
configurations if users were not penalised for being 
assigned to congested facilities in the UC function.

Section 4.1 details a Mixed Integer Linear 
Programming formulation for our soft-constrained 
approach to the HWRC-Loc.

4.1. A mixed integer linear programming model

The violation of soft constraints is usually formulated 
using piecewise linear functions (Archetti et al., 2021; 
Estrada-Moreno et al., 2020); to this end, for each 
facility site j 2 J we introduced the variable sj defined 
as the percentage of its capacity that is exceeded by 
the total demand allocated to that site (cf. (6)).

sj ¼ max
P

i2I hiyij − cj

cj
, 0

( )

: (6) 

The penalty costs added to RC represent the per
centage of additional running costs associated with 
overloaded facilities and are defined by (7). The term 
ð1 − kRCÞ represents a tolerance factor to calibrate 
and related to the violation of capacity constraints.

PCRC ¼ ð1 − kRCÞ
X

j2J
rjsj (7) 

Given the user costs associated with a facility j 2
J; i.e., UCj ¼

P
i2I hidijyij; that denotes the cost of 

the demand assigned to j, we extend it by including 
a penalty related to the congestion of that facility:

UC�j :¼
UCj if sj ¼ 0,
P

i2I hidij 1þ ð1 − kUCÞcjsj
� �

yij otherwise:

(

Thus, the penalty term of UC is given by (8)
where the term ð1 − kUCÞ represents the tolerance 
factor, as in (7):

PCUC ¼ ð1 − kUCÞ
X

i2I

X

j2J
hidijcjsjyij: (8) 

Indeed, PCUC is a quadratic function since the 
terms sjyij are the product between a continuous 
variable (sj) and a binary variable (yij). However it 
can be linearised with a well-established procedure 
from the literature which consists in introducing the 
continuous variables kij defined to represent each 
product, and the constraints (9) 8i 2 I, 8j 2 J; in 
which the parameter Mj :¼ ð

P
i2I hi − cjÞ=cj is an 

upper bound for sj 8j 2 J (Asghari et al., 2022).

kij � 0 and kij � Mj and kij � sj and

sj − kij � Mjð1 − yijÞ
(9) 

Therefore, the penalty costs can be reformulated 
with the k variables as:

PC0UC ¼ ð1 − kUCÞ
X

i2I

X

j2J
hidijcjkij:

The resulting Multi-Objective Mixed Integer 
Linear Program is given by (10) where (10a) mini
mises the sum of the running costs and the corre
sponding penalty costs; (10b) minimises the user 
costs and the corresponding penalty costs.

ðHWRC-LocsoftÞmin ðRC þ PCRCÞ (10a) 
min ðUC þ PC0UCÞ (10b) 
max CO (10c) 

subject to
Constraints ð1eÞ-ð1fÞ; ð1hÞ-ð1iÞ; ð2Þ (10d) 

kij � Mj 8i 2 I, 8j 2 J (10e) 
kij � sj 8i 2 I, 8j 2 J (10f) 
sj − kij � Mjð1 − yijÞ 8i 2 I, 8j 2 J (10g) 

sj �

P
i2I hiyij − cj

cj
8j 2 J (10h) 

sj � 0 8j 2 J (10i) 
kij � 0 8i 2 I, 8j 2 J (10j) 

The resulting model encompasses: jIj þ jJj þ jIjjJj
binary variables, jJj þ jIjjJj continuous variables, 
and 5jIjjJj þ 3jIj þ 4jJj þ 1 linear constraints.

It is worth mentioning that since we have relaxed 
the constraints (1d), there may be efficient solutions 
that violate the activation constraints. Therefore, 
when computing the “soft” Pareto Sets, we restore 
the feasibility for this kind of solutions.

4.2. Computational experiments

For the purposes of comparing the initial and soft 
approaches to HWRC-Loc, we modified the bench
mark of instances described in Section 3.1 to make 
the capacity constraints tighter by multiplying the 
capacities by 0.6. This change was made in order to 
better assess the effects of relaxing these constraints.

The experiments were conducted by running 
AUGMECON-R with the same setting detailed in 
Section 3.2. Additionally, to allow a computational 
comparison between the approaches as fair as pos
sible, we have used the number of grid-points 
explored by AUGMECON-R in the “non soft” case 
as a proxy to obtain the grid for the e values when 
the ranges of the RC and CO functions are wider.

Finally, we let the k values vary in the set 
f−1, 0, 0:5g to explore different scenarios, as these 
parameters define the extent to which the violation 
of capacity constraints is acceptable. Specifically, 
k ¼ −1 means a “low” tolerance to violation, so the 
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penalty costs are weighted twice in the correspond
ing objective function; with k ¼ 0 the tolerance is 
“medium”, while with k ¼ 0:5 it is “high”, since 
only half of the penalty costs are added to the 
objective function. The experiments featured five 
pairs of ðkRC, kUCÞ values: ð−1, − 1Þ; ð−1, 0Þ;
ð0, − 1Þ; ð0, 0Þ; and ð0:5, 0:5Þ:

4.2.1. Computational analysis of numerical results
The analysis in this section focuses on CPU times, 
number of SOPs solved and of efficient solutions. 
Specifically, the comparison in terms of CPU times 
and number of SOPs solved, reported in Table 5, is 
based on experimental data aggregated with respect 
to the parameter P as similar trends were observed 
for values ranging from 2 to 4. Accordingly, the 
groups of instances are denoted as “Cells_Sites_D”. 
For each group, the table reports the average CPU 
times and the average number of SOPs solved dur
ing AUGMECON-R iterations (avg(#SOPs)) both 
for the original problem (“non soft”) and for each 
configuration of the tolerance values. The last col
umn reports the maximum average CPU time.

These data show that, with the sole exception of 
the small instances with 5 candidates and D ¼
DMAX=4; the maximum average CPU times are 
obtained by solving the original HWRC-Loc (cf. val
ues in bold). In particular, this result is not only 
influenced by the fact the soft-constrained approach 
solves on average the 12% of the number of SOPs 

solved with the hard-constrained approach. In fact, 
a deeper analysis of the average CPU time needed 
to solve an SOP shows that the resolution of SOPs 
is faster in the “soft” configurations, with the sole 
exception of the small instances with jJj ¼ 5:
Specifically, on average the CPU time required to 
solve an SOP in the soft cases is 50% of the CPU 
time required in the non-soft case, with a minimum 
of 21.84% and a maximum of 93.97%, respectively 
for the large instances with jJj ¼ 5 and kRC ¼ kUC ¼

0 and the medium ones with jJj ¼ 5 and kRC ¼

kUC ¼ 0:5: This proves that the introduction of soft 
constraints is beneficial from a computational stand
point, since it leads to a significant reduction in the 
average CPU time needed to solve a problem 
instance. Furthermore, we observed that soft config
urations characterised by the same number of solved 
SOPs exhibit similar average CPU times. This sug
gests that tolerance value parameters have no impact 
on problem complexity.

As was previously noted for the original HWRC- 
Loc, the trend in the average CPU times for CPLEX to 
solve an SOP for the soft-constrained problem is also 
consistent with the linear dependence of the number 
of variables and constraints on the number of cells 
and sites. Moreover, even with the soft-constrained 
approach, it emerges that as the coverage radius D 
decreases, the problem becomes more complex. 
Finally, comparing the CPU time required to solve a 
hard-constrained SOP for the benchmark instances 

Table 5. Aggregated numerical results with respect to the parameter P. Maximum average CPU for each group of instances 
in the last column and evidenced in bold in the corresponding rows.

Average
Maximum  
avg. CPU

non-soft
kRC ¼ 0 
kUC ¼ 0

kRC ¼ 0 
kUC ¼ −1

kRC ¼ −1 
kUC ¼ 0

kRC ¼ −1 
kUC ¼ −1

kRC ¼ 0:5 
kUC ¼ 0:5

Cells_Sites_D CPU #SOPs CPU #SOPs CPU #SOPs CPU #SOPs CPU #SOPs CPU #SOPs

436_5_DMAX=8 66.95 1270.33 23.31 141.67 23.24 140.67 23.62 135.33 23.65 135.33 25.21 151.00 66.95
436_5_DMAX=4 6.58 420.00 9.81 57.00 9.72 57.00 8.76 57.67 8.67 58.00 12.63 71.67 12.63
436_5_DMAX=2 47.96 420.00 5.87 49.00 5.87 49.00 5.87 49.00 5.83 49.00 6.29 49.00 47.96
872_5_DMAX=8 511.55 1439.67 48.98 147.67 49.28 147.67 46.08 138.33 46.52 138.33 69.94 189.67 511.55
872_5_DMAX=4 535.59 1281.00 56.58 163.00 56.46 163.00 51.17 141.00 50.61 141.00 73.66 189.67 535.59
872_5_DMAX=2 150.50 573.67 15.97 69.00 16.05 69.00 16.42 69.00 17.13 69.00 17.42 69.00 150.50
1744_5_DMAX=8 2373.20 994.00 71.92 129.00 72.55 119.33 82.63 158.33 77.56 149.00 77.41 121.67 2373.20
1744_5_DMAX=4 4686.17 1752.00 91.29 147.67 101.47 171.00 83.59 134.00 87.92 142.33 102.43 150.00 4686.17
1744_5_DMAX=2 2423.49 857.00 53.57 89.33 55.02 92.67 52.08 86.00 52.16 84.67 57.97 91.00 2423.49
436_7_DMAX=8 833.24 3276.00 47.91 318.00 60.02 430.33 52.43 338.33 49.31 323.00 46.05 322.67 833.24
436_7_DMAX=4 127.97 699.00 15.85 104.00 14.73 98.33 19.54 135.67 19.02 135.67 15.50 105.67 127.97
436_7_DMAX=2 108.95 424.00 6.32 57.00 6.14 57.00 6.04 57.00 6.25 57.00 6.32 57.00 108.95
872_7_DMAX=8 18546.20 17834.33 167.39 484.33 174.91 483.33 168.83 485.67 157.85 467.33 185.54 543.00 18546.20
872_7_DMAX=4 36857.91 34186.67 130.00 394.00 128.80 385.67 192.17 574.33 187.05 565.33 142.11 408.33 36857.91
872_7_DMAX=2 4889.16 5168.00 53.46 192.33 55.78 202.67 49.50 235.67 49.27 231.33 51.07 170.00 4889.16
1744_7_DMAX=8 30202.35 7991.33 1638.74 464.33 1588.94 442.67 1203.09 408.67 1253.14 412.00 1592.88 476.00 30202.35
1744_7_DMAX=4 38584.36 9581.67 2438.95 594.67 2711.42 655.33 1104.57 384.00 1095.68 381.33 2679.66 715.33 38584.36
1744_7_DMAX=2 3153.29 970.33 212.27 89.00 216.56 89.00 148.11 89.00 149.04 89.00 227.38 89.00 3153.29
436_9_DMAX=8 2476.86 4789.00 83.66 500.67 65.03 394.00 75.97 474.67 76.64 452.67 66.59 454.33 2476.86
436_9_DMAX=4 827.18 2794.33 30.90 182.33 29.79 182.33 28.57 181.67 30.40 181.67 27.26 182.67 827.18
436_9_DMAX=2 2907.13 6977.33 50.08 383.67 40.68 330.67 38.21 330.67 41.60 336.33 35.62 330.67 2907.13
872_9_DMAX=8 6247.25 5173.33 120.13 310.00 125.75 349.67 106.37 338.00 113.08 336.33 175.41 514.00 6247.25
872_9_DMAX=4 34737.59 32213.33 245.59 809.00 231.74 785.33 235.50 829.33 285.81 928.00 175.11 558.00 34737.59
872_9_DMAX=2 4379.51 3911.00 60.47 207.33 59.51 207.33 52.48 207.33 55.65 207.33 49.53 186.00 4379.51
1744_9_DMAX=8 358551.06 35344.67 4851.98 1356.00 4469.28 1305.00 2665.79 892.33 2700.19 889.67 3726.09 1092.33 358551.06
1744_9_DMAX=4 320862.75 50191.67 8393.03 1767.00 10867.27 2260.33 6099.31 1186.33 6085.94 1188.00 9561.24 1980.00 320862.75
1744_9_DMAX=2 201591.28 34986.00 1406.99 443.00 1421.57 447.67 1317.31 538.33 1437.83 538.33 1330.78 446.00 201591.28
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(cf. Table 3) and an SOP for these instances character
ised by reduced capacities, highlights that tightening 
the capacity constraints poses significant challenges to 
solving the HWRC-Loc. On average 30% more CPU 
time is required to solve an SOP with reduced capaci
ties, with some instances requiring up to 94.84% more 
CPU time. These results demonstrate the particular 
benefit of the soft-constrained approach to the 
HWRC-Loc in real-world scenarios involving strin
gent coverage radius requirements and sites with 
reduced service capacities.

To compare the number of efficient solutions 
obtained with the non-soft approach and with each 
pair of tolerance values, we aggregated the experimen
tal data with respect to the parameter D in Table 6.

As expected, the configurations with soft con
straints are characterised by a higher average num
ber of efficient solutions with the exception of the 
large instances with P ¼ 2: In fact, these constraints 
allow to explore a larger region in the search for 
efficient solutions. Nevertheless, the hard- 
constrained approach produces more efficient alter
natives for the large instances when the minimum 
number of facilities has to be located, suggesting 
that the complexity of the HWRC-Loc also depends 
on other classes of constraints, with the CACs likely 
to be hard to satisfy even if the capacity require
ments are relaxed. However, the soft-constrained 
approach produces on average 1.5 times as many 
efficient solutions as the non-soft configuration of 

the HWRC-Loc, with this number doubling for the 
medium instances.

Focusing on the soft configurations, we observed 
that for any Instance Type and P value, the average 
number of efficient solutions increases with jJj. This 
indicates that the inclusion of soft capacity con
straints provides the decision-maker with a broader 
set of alternatives. Furthermore, for all the k pairs, 
the small and medium instances exhibit the highest 
average number of efficient solutions. In particular, 
the Pareto Sets obtained with kRC ¼ −1 and kUC ¼
0 and those with kRC ¼ kUC ¼ 0:5 are the most 
extensive. This suggests that when the tolerance for 
violating soft constraints is low for RC and medium 
for UC; or high for both functions, a greater number 
of efficient alternatives can be provided for the 
design of the HWRCs network.

In conclusion, this analysis highlighted the valu
able contribution of soft constraints in reducing the 
CPU time required to solve relaxed larger instances 
of HWRC-Loc, while also offering a broader range 
of alternatives to decision-makers through more 
extensive Pareto Sets.

4.2.2. Analysis of trends in objective functions 
values
This analysis is carried out by aggregating the aver
ages of the objective functions values with respect to 
the parameter D. We observed that the soft- 
constrained approach with all the k s pairs, except 

Table 6. Aggregated average and max average number of efficient solutions for each group of instances. Data aggregated 
with respect to the parameter D. Maximum average number of solutions for each group of instances shown in the last col
umn and evidenced in bold in the corresponding rows.

avg(Sol.)
Maximum  
avg(Sol.)

Cells_Sites_P non-soft
kRC ¼ 0 
kUC ¼ 0

kRC ¼ 0 
kUC ¼ −1

kRC ¼ −1 
kUC ¼ 0

kRC ¼ −1 
kUC ¼ −1

kRC ¼ 0:5 
kUC ¼ 0:5

436_5_2 1.00 3.33 3.33 3.33 3.33 3.33 3.33
436_5_3 4.00 6.00 6.33 6.33 6.33 6.33 6.33
436_5_4 6.00 8.33 8.00 8.33 8.33 8.33 8.33
872_5_2 2.00 3.33 3.33 3.33 3.33 3.33 3.33
872_5_3 3.00 6.33 6.33 6.33 6.33 6.00 6.33
872_5_4 5.00 8.33 8.33 8.33 8.33 8.33 8.33
1744_5_2 2.00 0.00 0.00 0.00 0.00 0.00 2.00
1744_5_3 2.00 3.00 3.00 3.00 3.00 2.33 3.00
1744_5_4 2.00 5.00 4.67 5.00 5.00 5.00 5.00
436_7_2 3.00 5.00 5.33 5.33 4.67 5.00 5.33
436_7_3 4.67 7.67 6.67 7.33 7.00 7.33 7.67
436_7_4 8.67 10.00 10.67 10.33 10.00 10.67 10.67
872_7_2 3.67 5.00 5.00 5.33 5.00 5.00 5.33
872_7_3 5.00 8.00 8.00 8.00 8.33 8.33 8.33
872_7_4 9.33 12.33 12.67 12.33 12.33 13.00 13.00
1744_7_2 3.00 1.33 1.33 1.00 1.00 1.00 3.00
1744_7_3 5.00 4.33 3.33 5.00 4.00 4.33 5.00
1744_7_4 6.67 7.00 6.00 6.00 6.33 6.33 7.00
436_9_2 5.67 6.33 6.00 6.00 5.33 7.00 7.00
436_9_3 9.33 10.33 10.00 10.67 10.67 11.33 11.33
436_9_4 13.67 13.67 13.33 15.33 12.67 14.00 15.33
872_9_2 4.67 5.33 5.67 5.00 6.00 6.00 6.00
872_9_3 7.67 11.00 11.67 11.33 13.00 11.67 13.00
872_9_4 12.00 16.00 16.67 15.00 15.00 15.67 16.67
1744_9_2 4.33 1.67 1.33 1.00 1.67 1.67 4.33
1744_9_3 7.67 4.67 5.00 6.00 4.67 6.33 7.67
1744_9_4 10.00 9.00 9.33 10.00 9.00 9.67 10.00
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ð0, 0Þ; leads to improved CO values on the large 
instances, compared to the non-soft approach. In 
particular, the average improvement of the coverage 
values is 14% but it reaches the 30% on the instan
ces with 9 candidates. Thus, when dealing with sce
narios characterised by more demand nodes, 
exploring a neighbourhood of the initial feasible 
region could lead to configurations that better meet 
the coverage requirements. Additionally, compared 
to the average values of the non-soft case, those of 
UC are lower on the large instances with jJj ¼ 7, 9;
with avgðUCÞ being � 82% of the corresponding 
non-soft averages, and the configurations with 
kRC ¼ kUC ¼ 0:5 and kRC ¼ −1 and kUC ¼ 0 lead to 
greater reductions of the objective function values.

To further investigate the effect on the UC func
tion of relaxing the capacity constraints, we analyse 
the trade-off between the average user-site distance 
and the average violations. Specifically, for each 
instance, we averaged the user-site distances corre
sponding to the assignments in each solution, then 
aggregated these averages by D and did the same for 
the s values. Table 7 reports these data for each pair 
of k s; the avgðsÞ are given in percentages, as sj 
denotes, for each site j 2 J; the percentage of its 
capacity that is exceeded by the total demand allo
cated to that site.

The soft-constrained approach leads to the min
imum average distance for medium instances with 

P ¼ 2 and large instances. In particular, for any fixed 
value of jJj these instances are characterised by the 
higher average violation of capacity constraints. This 
result further confirms that relaxing the capacity con
straints is beneficial from the user’s point of view for 
all scenarios characterised by more demand nodes, 
i.e., users, and/or fewer facilities available for installa
tion. In addition, the analysis shows that the reduc
tion in the distance between users and active facilities 
is more noticeable when comparing the hard and soft 
constrained approaches. On average, the hard config
uration improves this distance by 11% over the soft 
configuration, while the soft configuration leads to an 
average improvement of 17.92%, with peaks of 38% 
for large instances. In conclusion, the exploration of 
the objective function values and the user-site distan
ces trade-offs shows that, as the number of cells 
increases, user satisfaction can be improved by allow
ing the capacity constraints to be violated with more/ 
less stringent tolerance thresholds.

Furthermore, by relaxing the capacity constraints, 
those network configurations that were unfeasible 
for the original HWRC-Loc, including the less oper
ationally costly, become allowed, as evidenced by 
the reduction in running costs. In fact, the soft- 
constrained approach always leads to better RC
values, with avgðRCÞ being � 62% of the corre
sponding non-soft averages. In addition, on the 
large instances the improvements in the running 

Table 7. Aggregated numerical results with respect to the parameter D. Minimum average of average distance for each 
group of instances in the last column and evidenced in bold in the corresponding rows.

Average
Min average  

avg(dist.)

non-soft
kRC ¼ 0 
kUC ¼ 0

kRC ¼ 0 
kUC ¼ −1

kRC ¼ −1 
kUC ¼ 0

kRC ¼ −1 
kUC ¼ −1

kRC ¼ 0:5 
kUC ¼ 0:5

Cells_Sites_P avg(dist.) avg(dist.) avg(s) avg(dist.) avg(s) avg(dist.) avg(s) avg(dist.) avg(s) avg(dist.) avg(s)

436_5_2 33.50 38.23 1.23% 38.23 1.23% 38.23 1.23% 38.23 1.23% 38.23 1.23% 33.50
436_5_3 32.78 35.73 0.69% 35.53 0.65% 35.53 0.65% 35.53 0.65% 35.53 0.65% 32.78
436_5_4 32.55 34.71 0.49% 34.80 0.51% 34.71 0.49% 34.71 0.49% 34.71 0.49% 32.55
872_5_2 43.13 39.59 16.72% 39.59 16.72% 39.59 16.72% 39.59 16.72% 39.59 16.72% 39.59
872_5_3 33.92 36.90 8.78% 36.90 8.78% 36.90 8.78% 36.90 8.78% 37.07 9.35% 33.92
872_5_4 33.79 36.11 6.68% 36.11 6.68% 36.11 6.68% 36.11 6.68% 36.11 6.68% 33.79
1744_5_2 57.04 – – – – – – – – – – 57.04
1744_5_3 57.04 44.68 34.38% 44.68 34.38% 44.68 34.38% 44.68 34.38% 44.75 34.49% 44.68
1744_5_4 57.04 44.58 33.83% 44.61 33.93% 44.58 33.83% 44.58 33.83% 44.58 33.83% 44.58
436_7_2 31.02 34.92 0.50% 34.58 0.50% 34.54 0.50% 35.32 0.59% 34.71 0.55% 31.02
436_7_3 30.69 33.32 0.40% 33.77 0.40% 33.19 0.36% 33.61 0.38% 33.19 0.37% 30.69
436_7_4 28.47 31.11 0.25% 30.93 0.25% 31.01 0.26% 31.07 0.27% 30.92 0.25% 28.47
872_7_2 43.02 37.57 8.03% 37.56 8.03% 36.93 7.63% 37.04 8.21% 37.56 8.03% 36.93
872_7_3 31.81 35.13 5.23% 34.96 5.23% 35.16 5.20% 34.74 5.10% 34.92 5.10% 31.81
872_7_4 30.21 32.48 3.29% 32.77 3.29% 32.91 3.55% 33.02 3.47% 32.87 3.20% 30.21
1744_7_2 50.18 45.32 15.01% 45.32 15.01% 43.99 16.21% 43.99 16.21% 43.99 16.21% 43.99
1744_7_3 47.66 43.57 17.94% 43.52 17.94% 43.47 14.52% 43.39 15.74% 43.94 17.17% 43.39
1744_7_4 46.54 42.61 13.39% 42.42 13.39% 42.69 13.34% 42.67 14.03% 42.41 12.88% 42.41
436_9_2 28.50 33.29 0.33% 33.29 0.37% 33.21 0.36% 33.85 0.44% 32.74 0.31% 28.50
436_9_3 26.43 30.16 0.21% 30.45 0.21% 29.78 0.20% 29.72 0.20% 29.22 0.18% 26.43
436_9_4 25.18 27.65 0.16% 27.38 0.16% 26.82 0.14% 28.20 0.16% 28.07 0.15% 25.18
872_9_2 43.38 36.95 6.96% 37.42 7.35% 37.73 6.38% 36.98 6.40% 36.79 5.18% 36.79
872_9_3 30.49 33.70 3.22% 33.21 3.35% 33.67 3.24% 32.78 3.00% 32.73 3.18% 30.49
872_9_4 29.04 31.11 2.27% 31.16 2.66% 31.46 2.60% 31.07 2.50% 30.96 2.41% 29.04
1744_9_2 70.93 47.06 10.57% 46.15 11.49% 43.99 12.61% 46.78 11.24% 46.99 9.80% 43.99
1744_9_3 58.76 44.35 13.71% 44.12 13.38% 43.79 14.95% 44.00 13.01% 43.85 12.69% 43.79
1744_9_4 54.10 41.99 12.85% 42.34 10.97% 42.21 10.52% 42.26 11.53% 42.93 11.56% 41.99
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costs function are more noticeable with low to 
medium tolerance to the violation in RC and low in 
UC: This means that even by allowing a medium 
tolerance for capacity constraints to be violated, 
both total operating costs and user costs are reduced 
on average.

4.2.3. Analysis of trends in violations of capacity 
constraints
To determine the extent to which the capacity con
straints were violated in the soft configurations ana
lysed, we study the trend of the average violations. 
Specifically, for each instance, we averaged the val
ues of the s variables over the Pareto Set and then 
aggregated these averages by the D parameter, as we 
observed similar trends when it varied. Table 8
reports this information as “average of avg(s)” for 
each pair of k s.

These data show that as expected, the average 
violations decrease as P increases, although for the 
large instances there is an increase when P goes 
from 2 to 3 which may be related to their specific 
topologies, making it difficult to satisfy the remain
ing constraints (as observed in Section 4.2.1). 

Another predictable result is the fact that, for each 
pair of k values, the largest average violations occur 
on the large instances, which are characterised by 
numerous cells. However, as the number of available 
sites increases, the average violations decrease. This 
result is consistent with the fact that, as jJj increases, 
the number of efficient solutions for the soft version 
of HWRC-Loc increases (cf. Section 4.2.1). Finally, 
the configurations with kRC ¼ kUC ¼ −1 and kRC ¼
0 and kUC ¼ −1 lead to the highest average viola
tions in percentage, regardless of the number of 
sites available. In particular comparing this trend, 
corresponding to a low to medium tolerance in RC
and a low tolerance in UC; with that of the other 
configurations, it can be concluded that tightening 
the tolerance thresholds allows the exploration of a 
closer neighbourhood of the initial feasible set thus 
leading to more drastic violations of the original 
constraints on the capacity of the systems.

To highlight the features of the different alterna
tives in the Pareto Sets of the soft version of the 
problem, we measure the maximum violation 
obtained for each instance and configuration of 
tolerance values. The relative data have been 

Table 8. Average violations of capacity constraints (in percent) aggregated over D.
Average of avg(s)

Cells_Sites_P
kRC ¼ 0 
kUC ¼ 0

kRC ¼ 0 
kUC ¼ −1

kRC ¼ −1 
kUC ¼ 0

kRC ¼ −1 
kUC ¼ −1

kRC ¼ 0:5 
kUC ¼ 0:5

436_5_2 1.23% 1.23% 1.23% 1.23% 1.23%
436_5_3 0.69% 0.65% 0.65% 0.65% 0.65%
436_5_4 0.49% 0.51% 0.49% 0.49% 0.49%
872_5_2 16.72% 16.72% 16.72% 16.72% 16.72%
872_5_3 8.78% 8.78% 8.78% 8.78% 9.35%
872_5_4 6.68% 6.68% 6.68% 6.68% 6.68%
1744_5_2 – – – – –
1744_5_3 34.38% 34.38% 34.38% 34.38% 34.49%
1744_5_4 33.83% 33.93% 33.83% 33.83% 33.83%
436_7_2 0.55% 0.50% 0.50% 0.59% 0.55%
436_7_3 0.36% 0.40% 0.36% 0.38% 0.37%
436_7_4 0.27% 0.25% 0.26% 0.27% 0.25%
872_7_2 8.03% 8.03% 7.63% 8.21% 8.03%
872_7_3 5.20% 5.23% 5.20% 5.10% 5.10%
872_7_4 3.42% 3.29% 3.55% 3.47% 3.20%
1744_7_2 15.01% 15.01% 16.21% 16.21% 16.21%
1744_7_3 14.79% 17.94% 14.52% 15.74% 17.17%
1744_7_4 12.90% 13.39% 13.34% 14.03% 12.88%
436_9_2 0.33% 0.37% 0.36% 0.44% 0.31%
436_9_3 0.21% 0.21% 0.20% 0.20% 0.18%
436_9_4 0.16% 0.16% 0.14% 0.16% 0.15%
872_9_2 6.96% 7.35% 6.38% 6.40% 5.18%
872_9_3 3.22% 3.35% 3.24% 3.00% 3.18%
872_9_4 2.27% 2.66% 2.60% 2.50% 2.41%
1744_9_2 10.57% 11.49% 12.61% 11.24% 9.80%
1744_9_3 13.71% 13.38% 14.95% 13.01% 12.69%
1744_9_4 12.85% 10.97% 10.52% 11.53% 11.56%

Table 9. Maximum violation of capacity constraints (in percent) aggregated in terms of parameters D and P.
Average maximum violation

Cells_Sites
kRC ¼ 0 
kUC ¼ 0

kRC ¼ 0 
kUC ¼ −1

kRC ¼ −1 
kUC ¼ 0

kRC ¼ −1 
kUC ¼ −1

kRC ¼ 0:5 
kUC ¼ 0:5

1744_5 132.18% 132.18% 132.18% 132.18% 131.44%
1744_7 123.00% 120.72% 122.97% 125.25% 125.25%
1744_9 134.23% 135.74% 143.87% 125.53% 129.85%
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aggregated by D and P. For each configuration of 
k s and value of jJj, the (average) maximum cap
acity violation is 10.47% on the small instances 
and 116.73% on the medium ones. Additionally, as 
observed for avgðsÞ; the largest (average) maximum 
violations relate to large instances, as reported in 
Table 9. In particular, although these violations are 
always above 100%, when jJj ¼ 7 the corresponding 
values are lower, whilst the worst values are associ
ated with kRC ¼ kUC ¼ −1 and kRC ¼ −1 
and kUC ¼ 0:

We also analyse the component-wise percentage 
violation by counting the efficient solutions that 
have a violation of at most 10% (resp. 20%) on each 
component, i.e., such that k sk1 ¼ maxj2J jsjj � 10%

(resp. k sk1 � 20%). For any pair of k s, as P 
increases, there are on average more solutions such 
that k sk1 � 0:1; although on the large instances 
with 9 candidates this trend is reversed when kRC ¼
kUC ¼ 0: Furthermore, for any fixed value of P and 
jJj, as jIj increases, the percentage of solutions that 
satisfy the conditions on k sk1 decreases, since the 
presence of more cells inevitably leads to potentially 
more active congested facilities. On the contrary, for 
any fixed value of P and jIj; this percentage 
increases as jJj also increases. In fact, these results 
are consistent with the observations made for the 

average violation. The analysis also shows that no 
large solution with jJj ¼ 7, 9 verifies k sk1 � 0:2;
and this information is complementary to that 
extracted from Table 8, which highlights that all 
these instances have an average capacity violation 
below 20%.

In conclusion, this analysis confirmed that the 
average and maximum violations of the capacity 
constraints are sensitive to the instance size, the 
number of available candidates, and the tolerance 
thresholds.

5. Case study: household waste recycling 
centres in Sheffield

This section describes the real case study based on 
the actual configuration of the HWRCs network in 
the city of Sheffield, South Yorkshire. Specifically, 
there are five operating HWRCs located in strategic 
positions (cf. Figure 5): Shirecliffe and Blackstock 
Road are the most central ones, while the remaining 
are located near the borders, thus being accessible 
to neighbouring areas (White, 2020; Zaharudin 
et al., 2021).

Analysis of the historical data reveals that the 
centres operate for 5–7 d a week, with 8-h shifts in 
summer and six-hour shifts in winter. This schedule 
ensures that at least two centres are operating 
each day.

To construct a real case study, we consider the 
geographical coordinates of the 1744 cells into 
which the city’s households are aggregated. The val
ues for capacity and operating costs were estimated 
by analysing confidential data provided by the WM 
team of the Sheffield City Council. Moreover, the 
threshold distance D is set to 80 by default (i.e., 
8000 m), which corresponds to the maximum catch
ment radius for urban areas recommended by 
NACAS (WRAP, 2018a). By varying the set of can
didate locations for the HWRCs and the value of P, 
we defined multiple configurations for conducting a 
scenario-based analysis and derive valuable manager
ial insights (Hu et al., 2017; Spinelli et al., 2025). 
Possible alternative candidates were selected from 
the Brownfield land register in consultation with the 
Sheffield City Council WM team.

The features of the scenarios are summarised in 
Table 10 and detailed below. In particular, they are 
obtained by simulating changes to the HWRCs 

Figure 5. Locations of the operating HWRCs in the city of 
Sheffield.

Table 10. Characteristics of the scenarios generated to conduct the managerial analysis.
ID Name jJj P Details on candidates in J

SR Spending review 5 f2, 3, 4g Actual centres of Sheffield
P-Re Possible relocation 14 f2, 3, 4, 5g Actual centres of Sheffield and the nine centres of the SH81 benchmark
LH Larger HWRCs network 14 f6, 7g
LS Larger Sites 20 f1, 2, 3g With dimensions between 8 and 50 times those of Sheffield’s HWRCs
Ro-C Road Congestion 20 f2, 3, 4, 5, 6, 7g Belonging to a circular ring surrounding the city centre
RR Restricted to Residents 15 f2, 3, 4, 5g Lying in a circle surrounding the city centre
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network in terms of the number of facility sites (SR, 
LH), the size of the sites (LS, P-Re) and the network 
topology (Ro-C, RR).

Spending Review (SR): the candidates are the actual 
HWRCs of Sheffield but P varies in f2, 3, 4g in 
order to simulate the closure of some operating 
centres.

Possible Relocation (P-Re): the set of 14 candidates 
comprises the five existing HWRCs in Sheffield 
and nine alternative candidates provided by the 
City Council to define the SH81 benchmark (cf. 
Section 3.1); P varies within the set f2, 3, 4, 5g:
These scenarios simulate the possible relocation of 
one or more active HWRCs.

Larger HWRCs Network (LH): the set of candi
dates is the same as P-Re but P ¼ 6, 7 to simulate 
the opening of a greater number of centres.

Larger Sites (LS): there are 20 candidates each with 
a dimension between 8 and 50 times that of the 
actual HWRCs of Sheffield. The value of P varies 
within the set f1, 2, 3g to simulate a network with 
fewer, larger centres.

Road Congestion (Ro-C): there are 20 candidates 
located in a circular ring around the city centre, 
while P 2 f2, 3, 4, 5, 6, 7g: These scenarios simulate 
a network design aimed at reducing road conges
tion in the city centre, caused by traffic near the 
HWRCs (Zaharudin et al., 2022).

Restricted to Residents (RR): there are 15 candi
dates in a circle around the city centre, and P ¼
2, 3, 4, 5: These scenarios simulate a network design 
intended to prevent citizens from neighbouring 
areas from visiting the centres.

The experiments were conducted with the same 
settings described in Section 3.2, solving the soft 
version of the problem with kRC ¼ kUC ¼ 0:5: This 
choice is motivated by the need for a more realistic 
representation of these decision-making contexts, in 
order to provide the relevant stakeholders with con
crete guidelines. To this end, we filtered the set of 
solutions to consider only those network configura
tions in which the capacity of each centre is 
exceeded by no more than 20%. In particular, the 
soft configuration with kRC ¼ kUC ¼ 0:5 potentially 
produces a significant number of efficient alterna
tives (cf. Section 4.2.1). Therefore, to support 
decision-makers in identifying the most suitable net
work configurations, we present the results of an 
analysis conducted on a reduced set of alternatives. 
They were selected using a method for ranking and 
pruning Pareto Sets, recently proposed by Dosantos 
et al. (2024). The method, known as Order of Pareto 
Sets based on Borda Count (OPSBC) is a versatile 
and impartial technique that exploits the properties 

of the Borda Count aggregation rule. The core idea 
is to construct solution rankings by treating each 
objective function as a voter, ordering the solutions 
from best to worst according to each objective func
tion. These individual rankings are then aggregated 
by counting the number of times a solution is pre
ferred over another across all rankings.

The analysis reported in Section 5.1 aims at dem
onstrating how the results of this research can pro
vide stakeholders without technical expertise with 
the insights they need to make more informed 
decisions.

5.1. Managerial insights

The following observations relate to the analysis of 
the top three solutions obtained for each scenario, 
as ranked using the OPSBC method. The objective 
function values were chosen as key performance 
indicators (KPIs) to evaluate the performance of the 
corresponding network configurations.

5.1.1. HWRCs network configurations with fewer 
sites
Table 11 summarises the results for the SR scenarios 
with respect to the selected KPIs. A comparison of 
the objective function values shows that Sheffield’s 
actual HWRCs network outperforms all possible 
alternative configurations in terms of user satisfac
tion with the service delivery system. Specifically, it 
achieves the highest coverage levels and the lowest 
user costs. Notably, the reduced number of active 
centres in the SR scenarios leads to an increase in 
the average distance between users and their nearest 
active site, by up to 42%. Conversely, alternative 
HWRCs network configurations with up to four 
centres naturally have reduced running costs. 
However, the aggregated results for SR3 show that 
limiting the number of active centres to three 
reduces running costs by 39%, while user costs and 
coverage worsen by 31% and 0.8%, respectively.

The tool offers managerial insights by showing 
that, under this parameter setting, on one hand, 
shutting existing centres could secure financial sav
ings; on the other hand, it is also likely to negatively 
impact user satisfaction and the service network’s 
compliance with legal requirements. A practical 
example of valuable solution for this class of 

Table 11. Average values for the objective functions related 
to the SR scenarios. The number after the name of sce
narios indicates the value of P. Objective function values for 
the Sheffield HWRCs network in the last column.

SR2 SR3 SR4 Sheffield

avg ðUCÞ 519188.33 396928.67 433504.00 302572.00
avg ðRCÞ 57.67 99.67 98.33 164.00
avg ðCOÞ 9121.33 10186.33 10008.67 10266.00
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scenarios is depicted in Figure 6, while the complete 
set of configurations for the different SR scenarios is 
given in Figure C1.

5.1.2. HWRCs network configurations with actual 
and alternative sites
The configurations selected for each P-Re scenario 
are depicted in Figure C2, while Table 12 shows the 
aggregated values for the KPIs.

The analysis shows that relocating some of the 
current centres would not improve the network’s 
performance in terms of service quality. In fact, 
reducing the number of centres solely leads to lower 
(average) running costs (cf. P-Re2 to P-Re4), as 
already observed for the SR scenarios. Additionally, 
in all these configurations, the average values of the 
user costs are increased, by at most 92% (P-Re2).

However, the only configurations characterised 
by both alternative candidates and candidates from 

Sheffield’s actual network are those obtained for sce
nario P-Re5. Indeed, solutions with five active 
centres always feature one alternative site whose 
activation improves UC: In fact, the central gauges 
of the last row of solution plots in Figure C2 are the 
greenest. The managerial insights gained under this 
parameter setting suggest that relocating active 
centres can help mitigate the impact of potential 
HWRC closures on user satisfaction with service 
provision. In some cases, this approach can lead to 
milder trade-offs between service quality and finan
cial savings compared to SR scenarios. This 
approach would be even more beneficial in terms of 
user costs and coverage when combined with the 
opening of two additional centres, as evidenced by 
the data in Table 13. However, managers should be 
aware that improving UC by up 10% may lead to an 
increase in HWRCs network running costs of 
between 78% and 360%, as can be seen from the 
colours of the gauges in Figure C3. Finally, Figure 7
shows a practical example of valuable solutions for 
the P-Re and LH scenarios.

5.1.3. HWRCs network configurations with larger 
sites
Figure C4 presents the selected configurations for 
the LS scenarios. Notably, LS1 is characterised by a 
single efficient solution. As expected, network per
formance in terms of quality of service improves as 
P increases, although running costs are higher (cf. 
Section 3). Specifically, installing larger sites could 
increase running costs by an average of 750% com
pared to the current configuration of Sheffield’s 
HWRCs network. Moreover, because such sites 
would need to be installed in large, potentially more 
dispersed areas, the average distance between users 
and their closest active centre would rise by 64% on 
average. The resulting network configurations 
achieve, on average, 91% coverage of total demand. 
Interestingly, among all the scenarios analysed, the 
LS configurations were the only ones in which no 
violations of capacity constraints were observed 
across all solutions. Under this parameter setting, 
the managerial insights suggest that reconfiguring 

Figure 6. The solution to the SR scenario with P ¼ 4 that 
ranked first in the OPSBC ranking. Covered cells are shown 
in purple and active HWRCs are depicted with a blue circle. 
The coverage area of each centre is represented by a dashed 
circle.

Table 12. Average values for the objective functions related 
to the P-Re scenarios. The number after the name of sce
narios indicates the value of P. Objective function values for 
the Sheffield HWRCs network in the last column.

P-Re2 P-Re3 P-Re4 P-Re5 Sheffield

avg(UC) 582617.33 437389.33 449206.33 349126.67 302572.00
avg(RC) 45.00 96.67 87.00 222.67 164.00
avg(CO) 8567.33 10096.00 10008.67 10189.00 10266.00

Figure 7. Solutions that ranked first in the OPSBC ranking for scenarios P-Re5 (a) and LH7 (b).
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the HWRCs network to include a limited number of 
larger sites may negatively impact performance 
across all KPIs.

5.1.4. HWRCs network configurations with alterna
tive topologies
Table 14 reports the average of the KPIs for the Ro- 
C scenarios, which are characterised by candidates 
being located within a circular ring around the city 
centre. Notably, none of the configurations obtained 
for the Ro-C2 scenario adhered to the threshold 
imposed on the maximum capacity constraint viola
tion for each site.

The analysis of the KPIs shows that the efficient 
HWRCs network configurations associated with 
these scenarios always cover at least the 99% of the 
total demand, equal to 10291. This is evident from 
the gauges associated with CO in Figure C5 which 
are always green.

Notably, the greater number of available sites has 
a significant impact on user costs and running costs 

as P increases. In fact, the capacity and running 
costs of centres depend on their size. When P is 
high enough, the model allows a greater number of 
centres to be activated, and among them there are 
centres with reduced capacities and running costs. 
For example, when P increases from three to seven, 
the corresponding average user costs (UC) decrease 
by 28.5%, and RC by 27%.

Compared with the configurations obtained for 
scenarios with the same number of candidates 
(namely P-Re and LH), these are characterised by an 
average reduction in the distance between the user 
and the closest active centre of 13%. Although operat
ing such networks may be more costly, the overall 
user experience could be enhanced, as evidenced by 
improved coverage and service quality under this par
ameter setting. Figure 8 presents a valuable network 
configuration obtained for the Ro-C7 scenario.

Conversely, topologies characterised by candidate 
sites located within a circular area surrounding the 
city centre inevitably lead to poorer performance of 
the HWRCs network across all KPIs. For example, 
the gauges associated with the values of UC in 
Figure C6 are always red, emphasising the signifi
cant deterioration in user experience in this type of 
HWRCs network topology. Switching from Ro-C to 
RR topologies increases the average distance 
between users and active centres, thereby raising 
user costs. However, the configurations generated by 
the model for the RR scenarios are associated with 
CO values averaging 93% of total demand. From a 
managerial perspective, these additional observations 
suggest that any network reconfiguration must care
fully consider site locations. Specifically, to avoid 
negatively affecting network performance across cer
tain KPIs, candidate sites should be selected so as to 

Table 13. KPIs related to the LH scenarios. The number after the name of scenarios indicates the 
value of P. Table reports the number of current and alternative centres activated in each solution.

LH6 LH7 Sheffield

# Sheffield HWRCs # Altern. HWRCs # Sheffield HWRCs # Altern. HWRCs

4 2 5 2
UC 314781 277003 302572
RC 1276 756 164
CO 10277 10269 10266

3 0 3 0
UC 456548 456548 302572
RC 97 97 164
CO 10047 10047 10266

3 0 5 2
UC 490518 272260 302572
RC 92 294 164
CO 9995 10266 10266

Table 14. Average values for the objective functions related to the Ro-C scenarios. The number 
after the name of scenarios indicates the value of P.

Ro-C3 Ro-C4 Ro-C5 Ro-C6 Ro-C7

avg(UC) 393087.67 387178.50 351923.67 307724.33 281137.67
avg(RC) 1504.00 348.50 427.33 669.67 1094.00
avg(CO) 10197.67 10245.50 10254.33 10283.33 10275.33

Figure 8. Solution that ranked first in the OPSBC ranking for 
scenarios Ro-C with P ¼ 7:
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avoid disadvantaging areas located further from the 
city centre.

5.1.5. Sensitivity analysis
To assess the robustness of the previous observations, 
and in line with the literature on case studies in WM 
field (Hu et al., 2017; Spinelli et al., 2025; Zhu et al., 
2025), we conduct a sensitivity analysis of the results 
obtained. This process enables managers to make 
more informed decisions based on reliable insights.

To this end, we adapt the approach recently pro
posed by Forouli et al. (2022), which involves 
repeatedly solving the optimisation problem using 
AUGMECON-R, while applying percentage changes 
to the input parameters. Specifically, we perform 10 
Monte Carlo simulations for each scenario, assum
ing that capacities, demands, running costs, and 
threshold distance follow a normal distribution with 
a standard deviation of 65% (van de Ven et al., 
2022). We analyse both the frequency of occurrence 
of solutions and the frequency of activation of the 
facility location variables, i.e., the x variables (cf. 
Section 2.2).

We define the robustness of a solution as the per
centage of times it appears across the 10 Monte 
Carlo simulations. Table 15 shows the robustness of 
the solutions selected for each scenario according to 
the OPSBC method.

Analysis of these data highlights that the solu
tions from the SR and P-Re scenarios are the most 

robust, with average robustness percentages of 79% 
and 65%, respectively. Notably, among the three 
selected solutions, the most robust configurations 
for the P-Re4 and P-Re5 scenarios rank third and 
second, respectively. Conversely, the solutions 
obtained for the Ro-C and RR scenarios show the 
lowest robustness percentages, at 8% and 21% on 
average, respectively. This analysis suggests that, 
under this parameter setting, in the event of slight 
perturbations to the input data, the most reliable 
solutions arise from reconfigurations of the HWRCs 
network that retain the current sites. Furthermore, 
the simulations from the PR scenario indicate that 
these centres are more likely to remain active, even 
when relocation is considered.

We also examine the most robust solutions across 
the different configurations, considering those with 
a percentage occurrence of at least 50% to be robust. 
These data are summarised in Table 16. In particu
lar, the most robust solutions for the P-Re, SR and 
LS scenarios are positioned in the second part of 
the ranking obtained using the OPSBC method. 
This implies that these solutions are not necessarily 
preferred to others with respect to all KPIs. For 
instance, SR configurations tend to have lower RC
values on average, whereas P-Re configurations 
improve UC and CO:

This analysis provides managers with comple
mentary insights by identifying the configurations 
that are more stable in the face of input data 

Table 15. Active centres, objective function values, and robustness for the solutions of the different scenarios. The order of 
listing reflects the OPSBC ranking of the solutions for each scenario.
Scenario Active x UC RC CO %robust. Scenario Active x UC RC CO %robust.

SR2 x1, x3 506277 63 9969 100% RR3 x3, x4 434717 215 9596 80%
x2, x4 457325 72 9369 40% x9, x10 444350 184 9453 0%
x4 593963 38 8026 80% x3, x4, x10 406749 304 9740 0%

SR3 x0, x3, x4 369136 101 10266 90% RR4 x2, x3, x7, x10 393546 531 9760 0%
x1, x3, x4 369136 101 10266 100% x0, x10, x12, x14 379606 1058 9746 0%
x1, x2, x3 456548 97 10047 70% x0, x9, x10, x11 389094 943 9733 0%

SR4 x1, x2, x3 456548 97 10047 80% RR5 x3, x7, x8, x10 390308 680 9760 0%
x0, x1, x3 490518 92 9995 90% x1, x7, x9, x12 388545 668 9680 0%
x2, x3, x4 353446 106 9984 60% x0, x2, x3, x13 403811 521 9611 0%

P-Re2 x1, x3 506277 63 9969 100% LS2 x7, x9 493711 690 9549 0%
x4 593963 38 8026 50% x0, x3 454565 2843 9131 80%
x3 647612 34 7707 90% x0, x4 461624 3073 9173 40%

P-Re3 x1, x3, x4 365102 101 10246 90% LS3 x1, x7, x9 425527 1809 9905 0%
x1, x2, x3 456548 97 10047 50% x11, x12, x16 395259 1799 9646 0%
x0, x1, x3 490518 92 9995 50% x9, x13, x14 476800 1230 9680 0%

P-Re4 x1, x2, x3 456548 97 10047 50% LS1 x3 573215 366 8590 50%
x0, x1, x3 490518 92 9995 60% Ro-C4 x0, x1, x8, x17 346183 478 10281 0%
x3, x4 400553 72 9984 90% x1, x2, x3, x6 428174 219 10210 0%

P-Re5 x0, x1, x2, x3, x9 297827 372 10274 0% Ro-C3 x7, x8, x13 350468 1529 10057 0%
x1, x2, x3, x4, x5 293005 199 10246 90% x5, x10, x17 389313 1518 10268 0%
x1, x2, x3 456548 97 10047 60% x4, x6, x10 439482 1465 10268 0%

LH6 x3, x4, x5, x9, x10, x11 314781 1276 10277 0% Ro-C5 x1, x3, x6, x8, x9 342254 398 10217 0%
x1, x2, x3 456548 97 10047 40% x0, x3, x4, x5, x8 330288 620 10272 0%
x0, x1, x3 490518 92 9995 0% x0, x1, x2, x3, x6 383229 264 10274 70%

LH7 x0, x1, x2, x3, x4, x5, x11 277003 756 10269 0% Ro-C6 x0, x2, x5, x8, x14, x16 301858 457 10288 0%
x1, x2, x3 456548 97 10047 50% x0, x1, x2, x3, x6, x8 325458 407 10281 40%
x0, x1, x2, x3, x4, x5, x6 272260 294 10266 100% x1, x6, x8, x9, x13 295857 1145 10281 0%

RR2 x3, x4 434717 215 9596 60% Ro-C7 x0, x1, x2, x5, x9, x11, x17 297723 617 10273 0%
x1, x3 462437 195 9422 90% x2, x6, x8, x9, x16, x17 273033 674 10281 0%

x3, x4, x6, x7, x8, x9, x13 272657 1991 10272 0%
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perturbations. This enables them to make more 
informed decisions by combining suggestions from 
Pareto Set rankings with stability analysis 
indications.

Finally, we analyse the frequency with which the 
x decision variables are activated across the 10 

Monte Carlo simulations. The aim is to identify the 
centres most likely to be activated in each type of 
scenario. Table 17 reports this information.

For example, under the parameters setting con
sidered, the data suggest that when reconfiguring 
Sheffield’s current HWRC network – while 

Table 16. Active centres and objective function values for solutions with a robustness score of at least 50%. The final col
umns show the OPSBC ranking of solutions that also solved the original problem and the total number of solutions.
Scenario Active x UC RC CO %robust. Ranking #Sol.

SR3 x4 593963 38 8026 100% 7 9
x3 647612 34 7707 100% 8
x1, x3 506277 63 9969 100% 5

SR4 x0, x1, x3, x4 349679 130 10266 100% 9 12
x3 647612 34 7707 100% 7

P-Re3 x1, x3 506277 63 9969 100% 5 9
x3, x4 400553 72 9984 100% 4

P-Re4 x1, x3 506277 63 9969 100% 4 11
x1, x3, x4 365102 101 10246 100% 10
x0, x1, x3, x4 349679 130 10266 100% 8
x0, x2, x3, x4 322029 135 10266 100% 9
x0, x3, x4 369136 101 10266 100% 11

P-Re5 x0, x1, x3, x4 349679 130 10266 100% 10 13
x0, x2, x3, x4 322029 135 10266 100% 11
x0, x1, x2, x3, x4 302572 164 10266 100% 12

LH6 x1, x3 506277 63 9969 100% 7 18
x0, x2, x3, x4 322029 135 10266 100% 16
x0, x1, x2, x3, x4 302572 164 10266 100% 4
x0, x1, x2, x3, x4, x5 297039 199 10266 100% 5
x1, x3, x4 365102 101 10246 100% 9
x0, x1, x3, x4 349679 130 10266 100% 12
x1, x2, x3, x4 317995 135 10246 100% 15

LH7 x0, x2, x3, x4 322029 135 10266 100% 22 23
x0, x1, x2, x3, x4 302572 164 10266 100% 9
x0, x1, x2, x3, x4, x5 297039 199 10266 100% 4
x3 647612 34 7707 100% None
x1, x3 506277 63 9969 100% 7
x1, x2, x3, x4, x5 293005 199 10246 100% 16

LS2 x3 573215 366 8590 90% None 5
LS3 x3 573215 366 8590 90% 7 8

x5 598585 541 8636 50% 8
Ro-C7 x0, x1, x2, x3, x4, x5, x8 304215 677 10281 50% None 14
RR3 x1, x3, x4 426994 311 9596 90% None 4
RR4 x1, x3 462437 195 9422 90% 5 12

x1, x3, x4 426994 311 9596 70% None
RR5 x3, x4 434717 215 9596 80% 9 14

x1, x3 462437 195 9422 70% 4

Table 17. Frequency of activation of the location variables across the 10 Monte Carlo simulations. The final columns show 
the OPSBC ranking of solutions that also solved the original problem and the total number of solutions.
SR P-Re LH LS Ro-C RR

Var. #Occur. Var. #Occur. Var. #Occur. Var. #Occur. Var. #Occur. Var. #Occur.

x0 68 x0 137 x0 210 x0 50 x0 362 x0 76
x1 103 x1 169 x1 219 x1 20 x1 272 x1 107
x2 82 x2 143 x2 240 x2 9 x2 270 x2 57
x3 192 x3 348 x3 338 x3 77 x3 374 x3 197
x4 141 x4 258 x4 287 x4 28 x4 142 x4 108

x5 23 x5 74 x5 45 x5 204 x5 27
x6 6 x6 30 x6 21 x6 282 x6 7
x7 7 x7 18 x7 46 x7 78 x7 43
x9 19 x8 2 x8 11 x8 330 x8 13
x11 4 x9 53 x9 19 x9 100 x9 45
x13 3 x10 4 x10 16 x10 36 x10 92

x11 6 x11 2 x11 62 x11 28
x12 4 x12 9 x12 25 x12 40
x13 8 x13 4 x13 68 x13 12

x14 3 x14 59 x14 13
x15 3 x15 51
x16 1 x16 64
x17 5 x17 60
x19 2 x18 7

x19 34
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retaining its existing centres among the candidate 
sites – centres 3 and 4 are the most likely to 
remain active (see SR, P-Re, and LH scenarios). 
Similar insights can be drawn for the remaining 
scenarios.

6. Conclusions

The HWRCs are facilities that provide multiple 
services to residents: collection, re-use, and recycling 
of bulky waste. Therefore, the HWRCs network 
should be carefully designed in order to ensure effi
cient running and proper utilisation of these facili
ties by residents, thus encouraging their 
participation in recycling plans. Although the UK 
government is aware of this, the ongoing financial 
cuts affecting the public sector are severely challeng
ing the efficient and cost-effective operation of the 
HWRCs network in several cities. At this purpose, 
Sheffield City Council in South Yorkshire aims to 
explore new configurations for its current system of 
waste recycling centres, potentially identifying effi
cient locations for additional sites, with the dual 
aim of reducing operating costs and improving user 
satisfaction.

In doing so, we formalise the decision-making 
process underlying this specific real-world case 
study. To this end, in the present paper we define 
and model a novel Multi-Objective Facility Location 
Problem in WM, dealing with determining the loca
tion of a predefined number of HWRCs capacitated 
facilities and allocating demand accordingly, in 
order to meet the legislative requirements concern
ing the user-site distance. In particular, this problem 
owes its Multi-Objective nature to the fact that the 
objective functions incorporate the possibly conflict
ing interests of the different stakeholders involved 
in the process. Furthermore, with the aim of repre
senting the actual dynamics leading the workflow of 
design and operation, we devise a soft-constrained 
approach to the arising problem, allowing the viola
tion of the capacity constraints. Finally, in order to 
provide the authorities involved in this collaboration 
with a feasibility study of the proposed approaches, 
we derive a real-world case study based on the 
actual configuration of the Sheffield HWRCs net
work and conduct a scenario-based analysis simulat
ing different network reconfigurations.

The relevant Pareto Sets of both the original 
problem and its soft-constrained version are 
explored by tailoring the robust version of the 
AUGMEnted e-CONstraint method (AUGMECON- 
R) (Nikas et al., 2022). From the thorough analysis 
of the numerical results we derive valuable informa
tion that is of significant operational and managerial 
value. First, we notice that tighter coverage 

thresholds can reduce the compliance of the service 
network with legislative requirements related to 
user-site distance, thus challenging the resolution of 
the problem. We also find that the capacity con
straints become harder to satisfy as the number of 
users increases. In this context, the introduction of 
soft capacity constraints turns out to be instrumen
tal in reducing solution times and providing larger 
Pareto Sets. In addition, both coverage and user sat
isfaction are positively affected by the relaxation of 
capacity constraints, even when they are not exces
sively violated; however, surprisingly, this approach 
also leads to lower average running costs, as net
work configurations that were originally infeasible 
become feasible.

We undertake scenario and sensitivity analyses 
for a real-world case study, as an example to show
case the benefits of adopting the proposed tool to 
gather practical and actionable guidance and sup
port policy making. Subject to the specific setting of 
parameters adopted in these particular experiments, 
various HWRCs reconfiguration scenarios are con
sidered. The results enable the efficient exploration 
of the trade-offs between financial savings and the 
quality of the service provision associated with a 
range of different reconfiguration options. 
Furthermore, the tool facilitates careful site selection 
to ensure that more remote areas are not dispropor
tionately affected during the reconfiguration of the 
HWRC network.

In conclusion, the research presented in this 
paper proved capable of meeting the needs arising 
from the real-case study, through the solution of 
benchmark instances obtained from real data pro
vided by Sheffield City Council. Indeed, being the 
number of Pareto optimal solutions contained, the 
Multi-Objective modelling approach proves effective 
in supporting concrete decision-making. In fact, the 
policy makers can choose the HWRCs network con
figuration from a limited set of efficient alternatives. 
This choice can be even facilitated by the use of a 
ranking method: to this end, we have also adapted 
an approach recently proposed in Dosantos et al. 
(2024), which allows to rank efficient solutions 
using the Borda count aggregation rule.

In terms of future research directions, it could be 
interesting to define new tailored classes of budget 
constraints based on the NACAS guidelines 
(WRAP, 2018a) and to integrate a diversification of 
facility types, possibly including supersites that can 
also collect waste from neighbouring cities. From a 
computational point of view, it could be useful to 
investigate the performance of AUGMECON-R in 
solving significantly larger instances and to explore 
the need for heuristic approaches. Finally, since an 
extended set of efficient alternatives might be 
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difficult to interpret, the developed decision support 
system would benefit from an ad hoc clustering of 
the Pareto Sets (Kahagalage et al., 2023; Seyedashraf 
et al., 2023), aimed at identifying similarities 
between solutions and selecting a representative set 
of alternatives.
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Appendices

Appendix A. On the inherent multi-objective 
nature of the HWRC-Loc

As reported in Section 2.2, it is reasonable to expect that 
the trend of the running costs function RC will be oppos
ite to that of the other objectives which refer to the qual
ity of service provision. However, the criterion used to 
define the cells, i.e., the aggregation of citizens, and the 
definition of the demand function h may result in 
demand values that are possibly not uniformly distrib
uted. As a consequence, minimising UC can also conflict 
with maximising CO; as shown in the following example.

Consider an instance of HWRC-Loc featuring two 
facility sites, a and b, and two demand nodes, i and j; we 
assume that the running costs for the facility sites coin
cide and that at most one facility has to be located, i.e., 
P ¼ 1: Moreover, Ni ¼ fag; Nj ¼ ;; and hinhj (cf. 
Figure A1).

If the facility were to be located in a, COðaÞ ¼ hi and 
UCðaÞ ¼ diahi þ djahj; instead, locating the facility in b 
would yield to COðbÞ ¼ 0 and UCðbÞ ¼ dibhi þ djbhj: The 
assumption on the demand values, along with the dis
tance between j and a being greater than the distance 
between j and b implies that UCðaÞ > UCðbÞ: Therefore, 
the former choice of the facility site optimises CO; the 
latter UC:

Appendix B

AUGMECON-R framework for the household 
waste recycling centres location problem

The core of the AUGMECON-R technique consists in the 
iterative solution of a SOP, obtained from the Multi- 
Objective problem to be solved initially. In order to 
obtain the mathematical formulation of an SOP associated 
with the HWRC-Loc, let us assume that UC is optimised 

Figure A1. Demand nodes drawn as circles, facility sites as triangles. Dashed rings contain demand nodes and the sites that 
can cover them. Hypotheses and conditions for parameters shown on the right-hand side.

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 25

https://doi.org/10.1016/j.wasman.2010.06.017
https://doi.org/10.1016/j.oneear.2022.08.008
https://doi.org/10.1016/j.tre.2021.102343
https://doi.org/10.3926/jiem.2353
https://doi.org/10.5267/j.ijiec.2017.4.003
https://doi.org/10.5267/j.ijiec.2017.4.003
https://doi.org/10.1016/j.seps.2022.101396
https://doi.org/10.1016/j.resconrec.2021.105438
https://doi.org/10.1016/j.tre.2016.02.002
https://doi.org/10.1016/j.jclepro.2021.127922
https://doi.org/10.1080/01605682.2025.2460659
https://doi.org/10.1080/01605682.2025.2460659


in the objective function of this problem, and that the 
optimisation of CO is prioritised over that of RC:
Furthermore, to simplify the interpretation of the output 
solutions, we replace the function CO by −CO; so that all 
functions have to be minimised. The following variables 
and parameters are essential in formulating the SOP:

1. non-negative slack variables SCO and SRC associated 
with −CO and RC; respectively;

2. positive parameters rCO and rRC denoting the ranges 
of −CO and RC; i.e., absolute differences between 
the best and worst possible values (cf. Remark 2);

3. parameters eCO and eRC representing the threshold 
values for −CO and RC:

The resulting Single-Objective Mixed Integer Linear 
Program is given in (B1).

ðSOPÞmin UC-d�
SCO
rCO
þ10−1 SRC

rRC

� �� �

(B1a) 

subject to
Constraints ð1dÞ − ð1fÞ, ð1hÞ − ð1iÞ, ð2Þ

−CO þ SCO ¼ eCO

(B1b) 

RC þ SRC ¼ eRC (B1c) 
SCO, SRC � 0 (B1d) 

Constraints (B1b)-(B1c) are the parametric e-con
straints, where the values of the parameters vary over the 
iterations, by defining a two-dimensional grid of equally 
spaced points in the solution space, each corresponding 
to a pair of ðeCO, eRCÞ values (Mavrotas, 2009). The dis
cretisation step for this grid is obtained by dividing the 
range of each function in ðql − 1Þ intervals, l ¼ CO,RC;
and the e values are obtained as in (B2), where 
il ¼ 0, :::ql:

eCO ¼ max −CO½ � − iCO �
rCO
qCO

,   

eRC ¼ maxRC − iRC �
rRC
qRC

(B2) 

In correspondence with the solution of a feasible SOP, 
the so-called bypass coefficients are computed as reported 
in (B3): they represent the number of iterations of the 
corresponding loop on the e parameters to skip in order 
to avoid the resolution of redundant SOPs (Nikas et al., 
2022).

bl ¼
j

Sl �
rl

ql

k
, l ¼ CO,RC (B3) 

Algorithm 1 reports the pseudo-code for 
AUGMECON-R. Its paradigm is implemented through a 
qRC � qCO array, i.e., flag, initialised with zero values. At 
each iteration: if flag½iRC, iCO� ¼ 0 the SOP is solved, 
otherwise the algorithm performs flag½iRC, iCO� jumps in 
the innermost loop (the one relative to eCO) (Nikas et al., 
2022).

Remark 2. Ideally, for each objective function, the calcu
lation of the range would include the corresponding com
ponent of the nadir points. However, it is rather 
complicated to obtain these values efficiently (Isermann & 
Steuer, 1988). For this purpose, a well-established proced
ure consists in deriving the ranges from the minimum and 
maximum values within the payoff table obtained with the 
lexicographic approach (Fugaro & Sgalambro, 2023; 
Mavrotas, 2009; Pisacane et al., 2021) or by approximation 
(Fugaro & Sgalambro, 2023; Tautenhain et al., 2019). In 
particular, while there is no guarantee of the quality of the 
bounds obtained with a generic approximation approach, 
the use of the lexicographic method leads to an overesti
mation of the nadir points (Ehrgott & Tenfelde-Podehl, 
2003); thus, a larger grid is obtained without affecting the 
quality of the (approximations of the) Pareto Sets produced 
(Mavrotas & Florios, 2013).                                               �

Appendix C

Representation of efficient solutions for the 
case study

This section presents the alternative configurations 
obtained for the various parameter settings considered in 
the scenario-based analysis. The order of the solutions 
reflects their ranking according to the OPSBC method.

In each figure, purple indicates covered cells and a 
blue circle depicts an active HWRC. The coverage area of 
each HWRC is also represented by a dashed circle. The 
gauges on the right correspond to the values of CO; RC;
and UC: The colour of the gauges ranges from green 
(best value) to red (worst value).

Algorithm 1 AUGMECON-R Procedure

1: procedure AUGMECONR (qRC , qCO, d) 
2: Compute the payoff table PayTab.       . Lexicographically 
3: Set rRC ¼ maxPayTabRC − minPayTabRC and  

rCO ¼ maxPayTabð−COÞ − minPayTabð−COÞ
4:  Set stepRC ¼ rRC=ðqRC − 1Þ and stepCO ¼ rCO=ðqCO − 1Þ:
5:  Set q ¼ 0; g ¼ 0 and Pareto Set ¼ ;:
6:  Set bRC ¼ 0, bCO ¼ 0, SRC ¼ 0 and SCO ¼ 0:

. Bypass coefficients and slack variables 
7:  for q < qRC and g < qCO do 
8:    flag½q, g� ¼ 0 
9:   endfor 
10:   while q < qRC do 
11:    while g < qCO do 
12:     if flag½q, g� ¼¼ 0 then 
13:      eRC ¼ maxPayTabRC − q � stepRC and  

eCO ¼ maxPayTabð−COÞ − g � stepCO
14:      Pareto Set, SRC , SCO ¼ Solve SOPðeRC , eCO, dÞ
15:      bRC ¼ bSRC=stepRCc and bCO ¼ bSCO=stepCOc
16:      Update the flag matrix using bRC and bCO:

. See Nikas et al. (2022) 
17:      g ¼ gþ 1 
18:     else 
19:      g ¼ gþ flag½q, g�
20:     endif 
21:    end while 
22:    q ¼ qþ 1 
23:   return Pareto Set          . Pareto Set (approximation) 
24: end procedure
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Figure C2. Solutions for the P-Re scenarios.

Figure C1. Solutions for the SR scenarios.
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Figure C4. Solutions for the LS scenarios.

Figure C3. Solutions for the LH scenarios.
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Figure C5. Solutions for the Ro-C scenarios.
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Figure C6. Solutions for the RR scenarios.
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