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Abstract
To enhance the consistency between the quantum descriptions of waves and particles, we quantise
mechanical point particles in this paper in the same physically-motivated way as we previously
quantised light in quantum electrodynamics (Bennett et al 2016 Eur. J. Phys. 37 014001). To
identify the relevant Hilbert space, we notice that mechanical particles can occupy any position x
while moving at any velocity v. Afterwards, we promote the classical states (x, v) to pairwise
orthogonal quantum states |x,v⟩ and demand that these evolve according to Newton’s equations of
motion. The resulting quantum theory is mass-independent, when Newton’s equations of motion
are mass-independent, as one would expect. The basic formulation of quantummechanics emerges
from quantum mechanics in configuration space as a semi-classical approximation when a fixed
mass is imposed and several other adjustments are made.

1. Introduction

In classical physics, Hamilton’s formulation of the laws of mechanics specifies the motion of a point particle
moving in one-dimension in terms of two quantities: its position x and its momentum p [1]. The dynamics
of the position x and the momentum p can be found by solving Hamilton’s equations of motion [2, 3],

∂x

∂t
=
∂H

∂p
,
∂p

∂t
=−∂H

∂x
, (1)

where H=H(x,p) is the relevant Hamiltonian. When solving these equations, we obtain a function x(t)
which defines the trajectory of the particle. As pointed out by Dirac [4], if the HamiltonianH of the system is
not appropriately defined, equation (1) can lead directly to inconsistencies in the theory. Nevertheless,
Hamiltonian mechanics lends itself naturally to the quantisation of mechanical point particles. In canonical
quantisation, this is done by identifying the observables for the position and the momentum of quantum
mechanical point particles with a pair of canonically conjugate operators which we denote x̂ and p̂ [5–12].

Notice that Hamiltonian mechanics provides just one formulation of classical mechanics, and other
alternative descriptions are available. One example is the earlier Newtonian description [3, 12], which we
adopt in the following as the starting point for a physically-motivated quantisation of mechanical point
particles that move in the presence of a non-zero potential V(x) along the x axis. Newton’s second law states
that the force F(x) =−∂V(x)/∂x experienced by a particle at position x equals

F(x) =mẍ (2)

wherem and ẍ= ∂2x/∂t2 denote its rest mass and its acceleration respectively. To turn the second order
differential equation (2) into two first order differential equations, Newton, and also Leibniz, described
mechanical particles by specifying not only their position x but also their velocity v. The result is Newton’s
equations of motion,

∂x

∂t
= v ,

∂v

∂t
= f(x) (3)
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with the function f (x) representing a position-dependent force per mass,

f(x) =− 1

m

∂V(x)

∂x
. (4)

This variable is the key variable which fully determines the dynamics of a mechanical point particle in a
potential V(x) with given initial conditions, like its initial position and velocity, x(0) and v(0).

The starting point for the quantisation of a mechanical point particle in the basic formulation of
quantum mechanics (QM) which we review in section 2 is Hamilton’s formalism. In this paper, we quantise
instead Newton’s equations of motion while taking the whole configuration space of the mechanical point
particle into account, i.e. while considering its position and its velocity. Here the term configuration space
refers to the fundamental space of all possible states that a physical system can be in. As we shall see below,
the resulting formalism, which we refer to as QM in configuration space, has several advantages. For example,
its Schrödinger equation is mass independent, if the same is true for Newton’s equations of motion in
equation (3). This connection increases the consistency between quantum and classical mechanics. Moreover,
QM in configuration space enhances wave–particle duality, i.e. the consistency between the quantum
descriptions of wave and particles, by quantising mechanical point particles in the same physically-motivated
way as we quantise the electromagnetic field and its photonic carriers in free space [13–16].

The first step of any physically-motivated quantisation of a physical system is to identify the relevant
configuration space. Afterwards, we associate its classical states with pairwise orthonormal quantum states.
These are themost classical quantum states of the physical system and form a complete orthonormal basis of
its Hilbert spaceH. In addition, we assume in the following that all quantum states evolve according to the
Schrödinger equation based on a dynamical Hamiltonian Ĥdyn. This Hamiltonian can be derived by
demanding that the most classical quantum states evolve in a way that is consistent with classical physics. As
we have seen already in the case of photons, Ĥdyn is in general unbounded from below [14, 15]. It therefore
does not coincide with the energy observable of the quantum system, although there is a close connection
between the energy observable and Hdyn [16]. Notice also that our quantisation approach [13] has some
similarities with the quantum reconstruction program [17, 18] which already attracted some attention
[19–22].

As mentioned previously, in Newtonian mechanics we describe the dynamics of a mechanical point
particle by specifying its position x and its velocity v at all times t, since position and the velocity represent
two different physical variables. In fact, the initial position x(0) and the initial velocity v(0) of the particle can
be chosen independently. To ensure that position and velocity are of equal importance in the corresponding
quantum theory, we promote the distinguishable classical states (x, v) to orthonormal quantum states |x,v⟩
with

⟨x,v|x ′,v ′⟩= δ (x− x ′) δ (v− v ′) . (5)

These states form a basis in the Hilbert spaceH, i.e. the configuration space, of quantum mechanical point
particles. Although the |x,v⟩ states seem to have some similarities with the coherent states |z⟩= |x+ ip⟩ that
represent the classical phase space in alternative formulations of QM [23–30]), they are not the same. For
example, while the |x,v⟩ states describe individual particles, the |z⟩ states are many-body quantum states. An
important difference between basic QM and QM in configuration space is that the Hilbert spaceH of the
latter is significantly larger and allows quantum mechanical point particles to be simultaneously localised in
position and in velocity. In general, the quantum state |ψ(t)⟩ of a quantum mechanical point particle is a
superposition of the |x,v⟩ states with |⟨ψ(t)|x,v⟩|2 representing the probability for finding the particle at
time t at position x while moving at velocity v.

Since the state |x,v⟩ represents the (x, v) state of a classical point particle in the corresponding quantum
theory, consistency between classical mechanics and QM in configuration space requires that this state
remains localised at all times. In addition, its position x and its velocity vmust evolve according to Newton’s
equations of motion. In the following, we identify the dynamical Hamiltonian Ĥdyn that generates the above
dynamics and ensures that the variables x(t) and v(t) follow their classical trajectories in configuration space
(cf e.g. figure 1). Once the dynamical Hamiltonian Ĥdyn is known, we also know how all other possible
quantum states |ψ(t)⟩ evolve in time.

Since we quantise mechanical point particles in this paper in the same physically motivated way as we
quantise light in quantum electrodynamics, QM in configuration space enhances wave–particle duality [31]
which plays an important role for quantum technology applications [32]. It can be used to model both the
dynamics of photons and the dynamics of non-relativistic quantum mechanical point particles equivalently.
The crucial difference between photons and non-relativistic quantum mechanical point particles is that,
while non-relativistic particles can move at any speed, photons are limited to travelling at only one speed,
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Figure 1. The classical phase space trajectories (red) of three mechanical point particles with energies En (n= 1,2,3)moving
along positions xn(t) with velocities vn(t) inside a harmonic potential. As time progresses, these trajectories form closed circles.
The radius of each circle depends on the energy En of the nth particle with the more energetic particles being further away from
the origin of the phase space diagram. In the following, we demand that the most classical quantum states |x(t),v(t)⟩ of quantum
mechanical point particles (represented by the blue dots) remain localised at all times and evolve along the corresponding classical
trajectory. In this way, any classical experiment with a point particle inside a harmonic oscillator can also be described by
quantum physics.

namely the speed of light c. As we shall see later in section 4.1, the dynamical Hamiltonian of a free particle in
configuration space is given by

Hdyn = v̂ p̂ . (6)

In the case of photons, this Hamiltonian simplifies to [16]

Hdyn =
∑

s=±1

sc p̂ . (7)

The summation over the direction of propagation s is needed as photons may travel left or right along the x
axis. In addition, it has recently been shown that single photons also have a position representation and can
be assigned a wave function [14, 15].

If an experiment can be modelled using both classical and quantum physics, both descriptions must yield
the same predictions; otherwise, it would be possible to contradict quantum physics with classical
experiments. Hence, we usually claim that classical mechanics and QM are consistent when the position and
momentum expectation values, ⟨x(t)⟩ and ⟨p(t)⟩ coincide with x(t) and p(t) in the classical theory. This
criterion became known as Ehrenfest’s theorem [33, 34]. It has been noticed by several authors [24, 25,
35–38], however, that in basic QM this condition only holds in certain situations, such as free space, i.e. in
the absence of a potential V(x). In particular, it was Ehrenfest who pointed out in [33] that consistency
applies in general only when we have very narrow wave packets that remain localised in position. Another
example where Ehrenfest’s theorem holds is a point particle inside a harmonic oscillator.

By construction, QM in configuration space is consistent with classical mechanics in the following sense.
One consequence of demanding that the most classical quantum states evolve as in classical mechanics is that
the position and velocity expectation values ⟨x(t)⟩ and ⟨v(t)⟩ of superposition states |ψ (t)⟩ evolve like the
expectation values of a classical statistical mixture [39]. To show that this is indeed the case, we now consider
a quantum mechanical point particle that has been prepared in a state of the general form

|ψ (t)⟩=
N∑

n=1

√
Pn |xn (t) ,vn (t)⟩ , (8)

where the Pn are probabilities that add up to one. Using this notation, the expectation values ⟨x(t)⟩ and ⟨v(t)⟩
can be expressed as

⟨x(t)⟩=
N∑

n=1

Pn xn (t) , ⟨v(t)⟩=
N∑

n=1

Pn vn (t) . (9)
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Figure 2. (a) The probability density P(x,0) for finding a quantum mechanical point particle at position x at an initial time t= 0
when localised near x= 0. (b) P(x, t) for the same particle at a later time t> 0 when the Hamiltonian of the particle is bound
from below. As shown by Hegerfeldt in [43, 44], basic QM implies that such a particle can be found anywhere along the x axis
with a non-zero probability density, even at coordinates (x, t) outside the light cone of the particle at t= 0. Hence, basic QM is
not consistent with causality or with relativity.

These expectation values coincide with the expectation values of a classical particle which moves with
probability Pn along trajectories xn(t). Hence the above equations imply that

⟨ẋ(t)⟩=
N∑

n=1

Pn ẋn (t) , ⟨v̇(t)⟩=
N∑

n=1

Pn v̇n (t) , (10)

which shows that the quantum states |ψ (t)⟩ and classical statistical mixtures with the same initial probability
distributions evolve in the same way. Hence, QM in configuration space which we introduce here has many
similarities with the mechanics of de Broglie and Bohm [40, 42].

In basic QM, the probability P(x, t) for finding a particle at a position x at time t will disperse over time,
as illustrated in figure 2. What is more, for a particle prepared in an initially localised state |x⟩, P(x, t) is even
non-zero at positions lying outside the relevant light cone, since |x⟩ contains contributions from all possible
momentum states |p⟩. As shown by Hegerfeldt [43, 44], any system with a Hamiltonian that is bounded from
below causes an initially localised particle to spread immediately everywhere. Although this might not
constitute a problem in the non-relativistic regime [43], let us point out here that superluminal spreading
does not necessarily arise in QM in configuration space, since its dynamical Hamiltonian Ĥdyn has in general
positive as well as negative eigenvalues. By construction, localised wave packets can remain localised when
evolving in time. However, it is also possible to construct wave packets with infinite dispersion.

In addition to a position and a velocity observable, x̂ and v̂, QM in configuration space supports a
momentum operator p̂. Analogous to the canonical momentum in basic QM, we define the momentum
operator p̂ in the following as the generator for spatial translations. In this way, momentum expectation
values are automatically conserved in situations with spatial translational invariance. As we shall see below,
both operators v̂ and p̂ describe different quantities. As in basic QM, the momentum expectation value of a
particle depends on the shape of its wave packet [1]. Measuring the momentum of a particle is therefore less
straightforward than measuring its velocity and requires, for example, an elastic collision with another
particle. In contrast to this, velocity expectation values which tell us how much time it takes a particle to
travel a certain distance. For example, Chang [45–47] previously treated mass in the same way as momentum
and energy to gain a better understanding why mass and energy can be converted into each other. The
difference between momentum and velocity was also noticed by other authors [48, 49].

To better illustrate the difference between the momentum and the velocity of a quantum mechanical
point particle, let us have a closer look at the case of free fall. In this situation, a quantum mechanical point
particle experiences a constant acceleration g which is the same at any height, i.e. independent of where we
place our coordinate system. Spatial translational symmetry implies that the expectation values of the
canonical momentum p̂must be conserved, since p̂ is linked to the spatial derivative of the wave function.
The same does not apply to the velocity expectation values of the particle which increase linearly in time,
since the particle is accelerating. As we shall see below, this observation is in agreement with the predictions
of QM in configuration space. However, basic QM predicts a momentum dynamics which is not compatible
with spatial translational symmetry. For a discussion of some of the intricacies involved in defining
momentum in classical mechanics see e.g. [50].

One prominent feature of quantum physics is Heisenberg’s uncertainty principle which states that the
position x̂ and the momentum p̂ of a quantummechanical point particle cannot be known simultaneously to
an arbitrarily high precision. The observables x̂ and p̂ are canonical variables and, in particular,

[x̂, p̂] = ih̄ . (11)

4



New J. Phys. 27 (2025) 084501 A Bukhari et al

Figure 3. Physics often offers different theories for modelling the same situation. Those theories must be consistent with each
other in the sense that less complex theories emerge from more complex ones, when certain approximations are applied. For
example, as well shall see below, basic QM emerges from QM in configuration space when we restrict ourselves to a fixed massm
and approximate the canonical momentum p̂ bymv̂. In addition, the Hamiltonian of the system needs to be adjusted
(cf equation (13)) such that expectation values evolve as expected. Classical physics emerges from QM in configuration space
when its quantum states are replaced by classical statistical mixtures (cf equation (10)). The formalism which we present here is
nevertheless non-classical; for example, simultaneous measurements are limited by uncertainty relations.

As we shall see below, this commutator relation also applies in configuration space, since we identify the
momentum operator p̂ with the generator for spatial translations. Using this momentum definition,
momentum expectation values are automatically conserved when the same physics applies everywhere.
Moreover, it implies that x̂ and p̂ are related via a Fourier transform. In contrast to this, since the position
and the velocity of quantum mechanical point particles can be localised simultaneously, we have

[x̂, v̂] = 0 . (12)

As we shall see below, in configuration space, velocity and momentum are represented by two very different
commuting observables. A possible test of QM in configuration space is therefore to compare uncertainties
of position, momentum and velocity measurements. While Heisenberg’s uncertainty relations restrict the
precision of momentum measurements, the same is no longer true for velocity measurements.

Needless to say, over the last century QM has successfully modelled a wide range of experiments. An early
example is the calculation of the emission spectrum of the hydrogen atom to a very high precision [51]. It is
therefore important to show that basic QM emerges from QM in configuration space under certain
approximations, as illustrated in figure 3. The main difference between basic QM and QM in configuration
space is that the former lacks a velocity operator v̂. As we shall see below, basic QM emerges from the
formalism which we introduce here when we replace v̂ with p̂/m wherem is fixed. Here the massm is an
intrinsic property of the particle and can therefore be represented by a scalar. In addition, we need to replace
the dynamical Hamiltonian Ĥdyn with the standard Hamiltonian in basic QM [1]

ĤBQM =
p̂
2

2m
+V(x̂) (13)

of non-relativistic particles as this is the only way to ensure that the position and momentum expectation
values ⟨x(t)⟩ and ⟨p(t)⟩ evolve according to Hamilton’s equations of motion (cf equation (1)).

Despite considering different observables and different equations of motion, there are many similarities
between basic QM and QM in configuration space. For example, as we shall see below, by construction both
theories predict exactly the same physical trajectories of the position expectation values ⟨x(t)⟩ of mechanical
point particles. Nevertheless, the formalism we introduce here offers clear advantages, avoiding some pitfalls
(see e.g. [38, 52] for more details). Notably, certain areas of quantum physics—such as quantum
electrodynamics and condensed matter physics [53]—often rely on phenomenological models to reconcile
experimental results with theoretical predictions. Indeed, previous successes of these models [16, 54–56]
have inspired the formalism we introduce here.

Another advantage of modelling quantum mechanical point particles in configuration space is that it
offers a much wider range of possible initial states due to the increased size of its Hilbert spaceH. It also
provides more clarity regarding the physical meaning of its variables and the origin of its equations.
Although further investigations are needed, we suspect that our approach might shine new light on
situations which range from quantum transport problems to situations that we currently approach using
non-Hermitian quantum physics [57, 58]. Our theory also might provide new insights into quantum
relativity [59] and into the emergence of chaotic behaviour in the quantum theory of mechanical systems
due to its improved consistency between quantum and classical physics [60].

The paper is organised as follows. In section 2, we review the basic formalism of QM using Dirac
notation, thereby also introducing the notation that we use throughout the remainder of this paper. We then
construct wave functions and the basic observables of QM in configuration space in section 3. In addition, it
is shown here that momentum and position expectation values are still subject to Heisenberg’s uncertainty

5
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relation. Afterwards, in section 4, we take a closer look at the non-relativistic case and derive the dynamical
Hamiltonian Ĥdyn of quantum mechanical point particles in the presence of a non-zero potential V(x).
Moreover, we have a closer look at the emergence of basic QM from our configuration space formulation and
at the implications of our approach for wave–particle duality. Finally, we review our findings in section 5.

2. The basic formulation of QM

After the conceptual and mathematical foundations of QM were laid about a century ago [2, 5–7], QM
established itself as an independent branch of physics, and a large number of popular textbooks have been
written about it [1, 8–12, 52]. In this section, we review the main findings of basic QM and introduce the
notation that is used throughout the remainder of this paper. The state of a quantum mechanical point
particle at time t is represented by a complex state vector |ψ(t)⟩ which belongs to a complex Hilbert spaceH.
For simplicity, we only study the one-dimensional case of a single particle that moves in the presence of a
potential V(x) along the x-axis. In the following, we consider both the position and momentum
representations. Finally, we have a closer look at uncertainty relations.

2.1. A single particle in position space
Wave–particle duality tells us that a quantum mechanical point particle can be at different positions x at the
same time. Its state vector |ψ(t)⟩ is therefore, in general, a superposition of localised states |x⟩. To ensure that
a localised particle with a well-defined position x cannot be found at a position x ̸= x ′, the states |x⟩ and |x ′⟩
must be orthogonal to each other. In addition, they must be normalised. Hence, we require that

⟨x|x ′⟩= δ (x− x ′) , (14)

with the Dirac delta-function δ(x− x ′) given by

δ (x− x ′) =
1

2π h̄

ˆ

R

dpeip(x−x ′)/h̄ . (15)

Here R= (−∞,∞) denotes the real numbers. Since the states |x⟩ form a complete orthonormal basis in the
Hilbert spaceH of quantum mechanical point particles,

Î=

ˆ

R

dx |x⟩⟨x| (16)

is the identity operator. Taking into account that Î |ψ (t)⟩= |ψ (t)⟩, we find that the state vector |ψ (t)⟩ can be
written as

|ψ (t)⟩=
ˆ

R

dx |x⟩ψ (x, t) , (17)

with the complex wave function ψ(x, t) given by ψ(x, t) = ⟨x|ψ(t)⟩. By definition, |ψ(x, t)|2 dx represents the
probability to find the particle at time t between x and x+ dx. Since the probability of finding the quantum
mechanical point particle anywhere along that axis must equal one, we require that

ˆ

R

dx |ψ (x, t) |2 = 1 . (18)

This condition applies when the state vector |ψ(t)⟩ is normalised and ⟨ψ (t)|ψ (t)⟩= 1.
In addition, we know that any physical observable A of a quantum mechanical point particle can be

represented by a Hermitian operator Â. By construction

⟨A(t)⟩= ⟨ψ (t) |Â|ψ (t)⟩ (19)

coincides with the expectation value of A at time t when measured on systems prepared in the state |ψ (t)⟩.
The above equations can be used to show that

⟨x(t)⟩=
ˆ

R

dxx |ψ (x, t) |2 (20)

is the expectation value of the position of a quantum mechanical point particle at time t. Hence its position
operator x̂must equal

x̂=

ˆ

R

dx |x⟩x⟨x| . (21)

6
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When applied to the state vector |ψ (t)⟩, this operator multiplies the wave function ψ(x, t) with x since

x̂ |ψ (t)⟩=
ˆ

R

dx |x⟩xψ (x, t) . (22)

Equation (21) moreover shows that |x⟩ is an eigenvector of x̂ with x being the corresponding eigenvalue. This
is not surprising since the eigenvectors of any observable Â are the states that reveal the corresponding
eigenvalue upon measurement with maximum probability.

In the following, we assume that the momentum operator p̂ of a quantum mechanical point particle is
the generator of spatial translations [16, 61, 62]. As we will see at the end of this section when we discuss
Weyl’s commutator relation, this approach implies that

p̂=−ih̄

ˆ

R

dx |x⟩ ∂
∂x

⟨x| . (23)

Consequently, applying p̂ to the state vector |ψ (t)⟩ replaces the wave function ψ(x, t) with its spatial
derivative and

p̂ |ψ (t)⟩=−ih̄

ˆ

R

dx |x⟩ ∂
∂x
ψ (x, t) . (24)

According to equation (19), the momentum expectation value ⟨p(t)⟩ therefore equals ⟨ψ(t)|p̂|ψ(t)⟩. The
above momentum definition is analogous to the definition of energy. While momentum expectation values
are conserved in situations with spatial translational symmetry, the conservation of energy expectation
values occurs in situations with time translational invariance.

2.2. A single particle in momentum space
One way of generating an alternative basis for the position states |x⟩ is to relate them through a Fourier
transform to the states |p⟩ with p ∈ R. More concretely, we assume in the following that

|p⟩= 1√
2πh̄

ˆ

R

dxeipx/h̄ |x⟩ . (25)

Like the |x⟩ states, the |p⟩ states also form a complete orthonormal basis of the Hilbert spaceH of a quantum
mechanical point particle since

⟨p ′|p⟩= δ (p− p ′) . (26)

As the identity operator Î can also be expressed as

Î=

ˆ

R

dp |p⟩⟨p| , (27)

the state vector |ψ(t)⟩ can now be written as

|ψ (t)⟩=
ˆ

R

dp ψ̃ (p, t) |p⟩ (28)

with the complex wave function ψ̃(p, t) given by ψ̃(p, t) = ⟨p|ψ(t)⟩. To identify the physical meaning of this
new wave function, we now have a closer look at the momentum representation of p̂.

Since the position states |x⟩ are pairwise orthogonal and normalised, a closer look at equation (25) shows
that

⟨x|p⟩= 1√
2πh̄

eipx/h̄ (29)

while ⟨p|x⟩= ⟨x|p⟩∗. Using the above equations and the fact that Î p̂ Î= p̂, we can now show that

p̂=

ˆ

R

dp |p⟩p⟨p| . (30)

This equation confirms that p and |p⟩ are the eigenvalues and the eigenstates of the momentum operator p̂.
In addition, the above equations can be used to show that the wave function ψ̃(p, t) relates to ψ(x, t) via the
inverse Fourier transform,

ψ̃ (p, t) =
1√
2πh̄

ˆ

R

dxe−ipx/h̄ψ (x, t) . (31)

7
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Since Fourier transforms preserve the normalisation of wave functions,
ˆ

R

dp |ψ̃ (p, t) |2 = 1 , (32)

ψ̃(p, t) is also normalised. By definition, |ψ̃(p, t)|2 dp is the probability for finding that the momentum of a
quantum mechanical point particle with wave function ψ̃(p, t) lies between p and p+ dp.

For completeness, we finally also have a look at the momentum representation of the position operator x̂.
Since the above equations can be used to show that

⟨p|x̂|ψ (t)⟩= ih̄
∂

∂p
ψ̃ (p, t) , (33)

we know that applying the position operator x̂ in momentum space is equivalent to taking the p derivative of
the momentum space wave function ψ̃(p, t). Hence, the position operator x̂ equals

x̂= ih̄

ˆ

R

dp |p⟩ ∂
∂p

⟨p| , (34)

in momentum space.

2.3. Uncertainty relations
A feature that highlights the fundamental difference between quantum and classical mechanics is
Heisenberg’s uncertainty principle. In quantum physics, any two physical observables A and B cannot be
measured simultaneously unless their operators Â and B̂ commute. More concretely, Heisenberg’s
uncertainty relation suggests that

∆A ·∆B⩾
1

2

∣∣∣⟨ψ (t) |
[
Â, B̂

]
|ψ (t)⟩

∣∣∣ (35)

for simultaneous measurements of A and B on quantum states |ψ (t)⟩. The uncertainties (∆O)2 with
O= A,B, which are defined as

(∆O)2 = ⟨ψ (t) |
(
Ô−⟨O(t)⟩

)2
|ψ (t)⟩ , (36)

represent mean square deviations. Setting Â= x̂ and B̂= p̂ and using equations (21) and (23) to determine
the commutator of the position and momentum operators x̂ and p̂, it is relatively easy to check that

[x̂, p̂] =−ih̄

ˆ

R

dx |x⟩
(
x
∂

∂x
− ∂

∂x
x

)
⟨x| , (37)

which leads to equation (11) after applying the product rule. Equation (35) therefore yields the
position–momentum uncertainty relation

∆x ·∆p⩾
h̄

2
. (38)

This equation implies that it is not possible to simultaneously measure both the position and the momentum
of a quantum mechanical point particle with unlimited accuracy. In other words, a quantum mechanical
point particle cannot be simultaneously localised in position and in momentum.

To illustrate more clearly that the momentum operator p̂ in equation (23) represents the generator for
spatial translations, let us define the unitary translation operator T̂(ξ) in position space as

T̂(ξ) = e−iξ p̂/h̄ (39)

where ξ denotes a distance. This operator is also known as the displacement operator, since its action on a
localised state |x⟩ is given by

T̂(ξ) |x⟩= |x+ ξ ⟩ , (40)

demonstrating that T̂(ξ) changes the position of quantum mechanical particles. Showing that this is the case
can be done by applying the Taylor expansion to T̂(ξ) in equation (39) before applying the operator to |x⟩.
Using equation (40), it is relatively straightforward to verify Weyl’s relation [63]

e−iξ p̂/h̄ e−iµx̂/h̄ = eiξµ/h̄ e−iµx̂/h̄ e−iξ p̂/h̄ (41)

8
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where µ is a constant. Both sides have the same effect on an initial state |x⟩. Comparing both sides of the
above equation while taking the Baker–Campbell–Hausdorff formula into account, we see that Weyl’s
commutator relation fully encapsulates the canonical commutation relation in equation (11).

3. QM in configuration space

As we shall see below, when quantising classical point particles in a physically motivated manner, analogous
to the quantisation of light in quantum electrodynamics [13–16], we obtain an alternative formulation of
QM, namely QM in configuration space. This section, closely follows the structure of section 2. Again, we
start by identifying the relevant Hilbert space of QM by first having a closer look at the configuration space,
i.e. the fundamental space of all possible states, of classical mechanical point particles. Afterwards, we
introduce a wave function for the particles as well as their position, momentum and velocity observables. In
addition, we consider both the position–velocity and momentum-velocity representations. As in basic QM,
the position operator is diagonal in the position representation, while the momentum operator is diagonal in
the momentum representation. We conclude this section by showing that our generalised description of
quantum mechanical point particles does not violate Heisenberg’s uncertainty relations despite the fact that
the particle wave function ψ(x,v, t) now also depends on the velocity v.

3.1. A single particle in position–velocity space
Newtonian mechanics [3, 12] describes mechanical point particles by stating their position x and their
velocity v. For example, if we know the initial position x(0) and the initial velocity v(0) of a particle, we can
predict its dynamics at all times t. As mentioned before, we therefore assume in the following that the
positions and the velocities of a quantum mechanical point particle can be chosen independently. In
addition, we promote the classical states (x, v) of mechanical point particles to distinguishable localised
quantum states |x,v⟩ with x and v specifying positions and velocities respectively. These states are the most
classical quantum states of QM in configuration space and form a complete orthonormal basis in the Hilbert
spaceH of quantum mechanical point particles. This is in contrast to the position representation of basic
QM, which we reviewed in section 2.1. For example, we now consider a Hilbert space that is significantly
larger than the one we had before. As we shall see below, the state |ψ (t)⟩ of a quantum mechanical point
particle at time t is, in general, a superposition of all possible localised |x,v⟩ states.

Since the |x,v⟩ states correspond to distinguishable particle states, they must be pairwise orthogonal as
stated in equation (5). Hence, the identity operator Î acting on the extended Hilbert spaceH is now given by

Î=

¨

R2

dxdv |x,v⟩⟨x,v| . (42)

Here the double integrals are taken over the parameter set R2 = {(x,v)} with x,v ∈ R. After defining the
wave function ψ(x,v, t) as ψ(x,v, t) = ⟨x,v|ψ(t)⟩, the state vector |ψ(t)⟩ can be written as

|ψ (t)⟩=
¨

R2

dxdvψ (x,v, t) |x,v⟩ . (43)

The only difference to equation (17) is that the basis vectors and the wave function now depend on the
position x and on the velocity v of the quantum mechanical point particle. Since |ψ(x,v, t)|2 represents the
probability density for finding the particle at position x and moving with velocity v at time t, we can
conclude that

¨

R2

dxdv |ψ (x,v, t) |2 = 1 . (44)

This condition guarantees the normalisation of the state vector |ψ(t)⟩.
As mentioned above, |x,v⟩ describes a quantum mechanical point particle at position xmoving with

velocity v. Hence, the observables for the position and the velocity of the particle, x̂ and v̂, are given by

x̂=

¨

R2

dxdv |x,v⟩x⟨x,v| ,

v̂=

¨

R2

dxdv |x,v⟩v⟨x,v| . (45)

Applying the position operator x̂ and the velocity operator v̂ to a state vector |ψ(t)⟩ of a quantum mechanical
point particle multiplies its wave function ψ(x,v, t) with x and with v respectively. Moreover, the above

9
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definitions ensure that the position and velocity expectation values ⟨x(t)⟩ and ⟨v(t)⟩ can be calculated using
equation (19).

As we shall see below, to construct the dynamical Hamiltonian Ĥdyn of a quantum mechanical point
particle in the presence of a potential V(x), we moreover require operators that generate changes in position
and in velocity. The first is the momentum operator p̂ which is the generator of spatial translations and has
many similarities with the momentum operator p̂ in basic QM. More concretely, we define p̂ in the following
as

p̂=−ih̄

¨

R2

dxdv |x,v⟩ ∂
∂x

⟨x,v| , (46)

in analogy to equation (23). In addition, it is useful to also introduce an operator â which is the generator for
changes in the velocity v of a moving quantum mechanical point particle. In analogy to equation (46), we
define â as

â=−ih̄

¨

R2

dxdv |x,v⟩ ∂
∂v

⟨x,v| . (47)

The factor−ih̄ has been added to ensure that â is a self-adjoint operator and that v̂ and â satisfy the same
commutation relation as x̂ and p̂. As we shall see in section 4, in the presence of a force, â changes the velocity
of a quantum mechanical point particle. We therefore refer to this operator in the following as the
acceleratum. Analogously, as we shall see below, the momentum operator p̂ changes the position of a particle
with a non-zero velocity v.

3.2. A single particle in momentum-velocity space
In the previous subsection, we replaced the position basis states |x⟩ of basic QM with the new basis states
|x,v⟩. Analogously, we now replace the momentum basis states |p⟩ of basic QM with the states |p,v⟩ which
describe quantum mechanical point particles with momentum pmoving with velocity v. Since we want the
|p,v⟩ states to have the same properties as the |p⟩ states in basic QM, like diagonalising the momentum
operator p̂, we define them such that

⟨x,v|p,v ′⟩= 1√
2πh̄

eipx/h̄ δ (v− v ′) , (48)

in analogy to equation (25) with ⟨p,v|x,v⟩= ⟨x,v|p,v⟩∗. Since all we have done is add the label v to the
position and momentum basis states, it is straightforward to check that many of the equations in section 2
still apply. For example, the basis states |p,v⟩ form a complete orthonormal basis and

⟨p,v|p ′,v ′⟩= δ (p− p ′)δ (v− v ′) , (49)

in analogy to equation (26).
In the expanded Hilbert spaceH, the identity operator Î can now also be written as

Î=

¨

R2

dpdv |p,v⟩⟨p,v| . (50)

In this representation, the state vector |ψ(t)⟩ is defined as

|ψ (t)⟩=
¨

R2

dpdv ψ̃ (p,v, t) |p,v⟩ . (51)

with

ψ̃ (p,v, t) = ⟨p,v|ψ (t)⟩ . (52)

This wave function is normalised when
¨

R2

dpdv |ψ̃ (p,v, t) |2 = 1 . (53)

This equation holds automatically, since the wave function ψ̃(p,v, t) relates to the wave function ψ(x,v, t) in
position-velocity space via the Fourier transform

ψ (x,v, t) =
1√
2π h̄

ˆ

R

dpeipx/h̄ ψ̃ (p,v, t) , (54)

10
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with the inverse transformation given by the inverse Fourier transform.
As in the previous section, we find that the momentum operator p̂ simplifies to

p̂=

¨

R2

dpdv |p,v⟩p⟨p,v| , (55)

in the expanded momentum-velocity representation, in analogy to equation (30). However, the acceleratum
â in equation (47) does not simplify and equals

â=−ih̄

¨

R2

dpdv |p,v⟩ ∂
∂v

⟨p,v| , (56)

in the basis of the |p,v⟩ states. When transforming the position operator x̂ in equation (45) into the
momentum-velocity representation, we find that it can also be written as

x̂= ih̄

¨

R2

dpdv |p,v⟩ ∂
∂p

⟨p,v| (57)

in analogy to equation (34). Moreover, the velocity operator in equation (45) becomes

v̂=

¨

R2

dpdv |p,v⟩v⟨p,v| . (58)

Before having a closer look at the dynamics of the quantum states and the expectation values of quantum
mechanical point particles in section 4, let us comment on the uncertainty relations for position,
momentum, velocity, and acceleratum measurements.

3.3. Uncertainty relations
Given the formal similarities between the set of operators x̂ and p̂ and the set of operators v̂ and â, it is not
surprising that the commutator relation between the position and the momentum operator and between the
velocity and the acceleratum are the same. More concretely, one can now show that

[x̂, p̂] = [v̂, â] = ih̄ , (59)

in our expanded description of quantum mechanical point particles. All other operators commute. Using,
for example, equations (45)–(47), we can confirm that

[x̂, v̂] = [p̂, â] = [x̂, â] = [p̂, v̂] = 0 . (60)

This means that we still have Heisenberg’s uncertainty relations, but their interpretation has changed. The
description which we present here allows us to simultaneously specify, for example, the position and the
velocity expectation values ⟨x(t)⟩ and ⟨v(t)⟩ of a quantum mechanical point particle. Similarly, we can
measure its momentum and its velocity expectation values ⟨p(t)⟩ and ⟨v(t)⟩ and so on simultaneously with
arbitrarily high precision. However, using the commutator relations in equation (59), we again obtain the
position–momentum uncertainty relation in equation (38) for position and momentum measurements on
an ensemble of quantum mechanical point particles which have all been prepared in the same state.
Analogously, the commutator relation in equation (59) implies the velocity-acceleratum uncertainty relation

∆v ·∆a⩾
h̄

2
. (61)

This means that the position and the momentum are still canonical variables. In addition, we now have a
new set of canonical variables for quantum mechanical point particles, namely v̂ and â.

To illustrate that the acceleratum â which we introduced in equation (47) represents the generator for
velocity changes, we now proceed as in section 2.3 and define a unitary translation operator R̂(α) in position
space as

R̂(α) = e−iαâ/h̄ (62)

where α denotes a velocity. Using again a Taylor expansion, we now find that the action of this operator on a
velocity eigenstate state |x,v⟩ is given by

R̂(α) |x,v⟩= |x,v+α⟩ , (63)

11
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in analogy to equation (40). This equation demonstrates that R̂(α) generates changes in the velocity without
affecting the position of quantum mechanical particles. Moreover, by applying both sides of the equation
below to a velocity eigenstate state |x,v⟩ while using equation (63), one can check the validity of Weyl’s
relation [63]

e−iαâ/h̄ e−iβv̂/h̄ = eiαβ/h̄ e−iβv̂/h̄ e−iαâ/h̄ , (64)

in analogy to equation (41), where β is a constant. Notice that this equation encapsulates the canonical
commutation relation [v̂, â] = ih̄ in equation (59).

4. From consistency and emergence to wave–particle duality

In the previous section, we introduced the state vector |ψ(t)⟩, the basic observables x̂ and v̂ and the operators
p̂ and â of a quantum mechanical point particle which moves along the x axis. The main purpose of this
section is to identify the equation of motion for |ψ(t)⟩ in the presence of a potential V(x). Let us assume that
the time derivative of |ψ(t)⟩ can, as usual, be specified by the Schrödinger equation of basic QM [1],

ih̄
d

dt
|ψ (t)⟩= Ĥdyn |ψ (t)⟩ , (65)

where Ĥdyn denotes the dynamical Hamiltonian of the particle. An equation of this form should apply since
the dynamics of physical objects with no memory effects depend only on their current state |ψ(t)⟩ and are
fully determined by its time derivative. As equation (65) shows, the dynamical Hamiltonian Ĥdyn is by
definition the generator for temporal translations. As we shall see in the following, it is therefore also closely
related to the energy of the quantum mechanical point particle [61, 62], as one would expect [16].

In section 4.1, we first have a closer look at the dynamics of the most classical quantum states |x,v⟩. As
discussed in the Introduction, these states have a well-defined position x and a well-defined velocity v and
can be used to describe classical experiments. Hence, they must remain localised in x and in v and their
parameters x(t) and v(t) must evolve as in classical mechanics, namely according to equation (3). This
observation allows us to identify the dynamical Hamiltonian Ĥdyn of quantum mechanical point particles in
equation (65). Moreover, since the |x,v⟩ states form a complete basis in the extended Hilbert space of
quantum mechanical point particles, we also automatically know how general quantum states,
i.e. superpositions of the |x,v⟩ basis states, evolve in time. Afterward, in section 4.2, we show that the basic
formulation of QM is essentially a semi-classical approximation of QM in configuration space. Finally, in
section 4.3, we revisit wave–particle duality and highlight that it is enhanced in the description that we
present here.

4.1. The dynamical Hamiltonian
Suppose a quantum mechanical point particle has been prepared in an initial state |ψ(0)⟩ with a known wave
function ψ(x,v,0). Without restrictions, the time derivative of the wave function ψ(x,v, t) of the particle at a
later time t can be shown to be of the general form

d

dt
ψ (x,v, t) =

[
∂x

∂t

∂

∂x
+
∂v

∂t

∂

∂v
+
∂

∂t

]
ψ (x,v, t) . (66)

Since the |x,v⟩ states evolve as in classical physics, the partial derivatives ∂x/∂t and ∂v/∂tmust be the same
as in equation (3). Moreover, the fact that probability amplitudes move around configuration space, but do
not change in time, implies that

∂

∂t
ψ (x,v, t)≡ 0 . (67)

This equation ensures that the probability for a particle to have the coordinates (x, v) at time t is the same as
the probability to have the coordinates (x+ v∆t,v+ f(x)∆t) at time t+∆t. It also removes a constant term
from the Hamiltonian of the QM system, which has no physical consequences. Consequently, we find that

d

dt
ψ (x,v, t) =

[
v
∂

∂x
+ f(x)

∂

∂v

]
ψ (x,v, t) . (68)

Equations (45)–(47) therefore suggest that the dynamical Hamiltonian Ĥdyn must be given by

Ĥdyn = v̂ p̂+ f(x̂) â . (69)
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One can check that this is indeed the case by substituting equation (69) into the Schrödinger equation (65)
while considering the position–velocity representation of state vectors. The above Hamiltonian is
automatically self-adjoint, since v̂ and p̂ as well as x̂ and â commute. It is worth mentioning that both terms
in the dynamical Hamiltonian Ĥdyn have units of energy. Moreover, equation (69) simplifies to equation (6)
in free space when the potential V(x) = 0.

Notice that the dynamical Hamiltonian Ĥdyn in equation (69) differs from the energy observable Ĥclass

that we obtain when we apply the correspondence principle to the classical expression for the energy of a
point particle. More concretely, the correspondence principle suggests that Ĥclass equals

Ĥclass =
mv̂2

2
+V(x̂) (70)

wherem denotes a constant parameter, namely the respective mass of the particle. Fortunately, using
equation (65), one can show that

[
Ĥclass,Ĥdyn

]
= 0 . (71)

Hence, the expectation values of the above energy observable are always conserved, and QM in configuration
space does not contradict classical mechanics. Finally, let us point out that the expectation values of Ĥclass

would not be conserved if we were to replace the observablemv̂ in equation (70) with p̂. Moreover, we do not
yet know the physical meaning of the expectation values of the terms that appear in the dynamical
Hamiltonian, namely v̂ p̂ and f(x̂) â, which might explain why we usually do not consider these quantities in
classical mechanics.

Now that the Hamiltonian Ĥdyn has been identified, we can predict the dynamics of arbitrary initial states

and analyse the dynamics of expectation values of physical observables Â. Using Schrödinger’s equation, one
can show that

d

dt
⟨A(t)⟩=− i

h̄

〈[
Â,Ĥdyn

]〉
. (72)

Using equations (69) and (59)–(60), we therefore find that

d

dt
⟨x(t)⟩= ⟨v⟩ , d

dt
⟨v(t)⟩= ⟨f(x)⟩ (73)

in agreement with equation (3). For example, when ⟨f(x)⟩= f(⟨x⟩), these two equations form a closed set of
differential equations which means that we only need to consider position and velocity to predict the
trajectory of a quantum particle in configuration space for any given initial state |ψ(0)⟩. However, in general,
we should also have a closer look at the dynamics of the expectation values of the momentum p̂ and the
acceleratum â of the particle. Using again the above equation, we find that

d

dt
⟨p(t)⟩=−

〈
df(x)

dx
a

〉
,

d

dt
⟨a(t)⟩=−⟨p⟩ . (74)

To show that this is the case, we write f (x) without restrictions as a Taylor expansion,

f(x̂) =
∞∑

n=0

cn x̂
n (75)

where the cn are real coefficients, and notice that

[f(x̂) , p̂] =
∞∑

n=0

cn [x̂
n, p̂] =−

∞∑

n=0

ncn x̂
n−1 . (76)

For example, in free space, we have V(x) = f(x) = 0 and hence one can easily check that both the velocity and
the momentum of the particle are conserved in time. Next we consider a mechanical point particle in free
fall. In this case, V(x) =−mgx where x denotes the initial height of the particle and where g denotes the
gravity acceleration constant. Consequently, f(x) = g which implies that

d

dt
⟨v(t)⟩= g ,

d

dt
⟨p(t)⟩= 0 . (77)

As noted previously in the Introduction, the velocity of the particle increases linearly in time while its
momentum is conserved due to the spatial translational invariance of the situation. Independent of where we
place the coordinate system, the particle experiences the same physics, i.e. the same acceleration g.
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4.2. The emergence of basic QM
The basic formulation of QM has already been used successfully to explain experiments in many areas of
physics, from quantum optics to condensed matter physics. It is therefore important to show that basic QM
emerges from QM in configuration space, as illustrated in figure 3, when certain approximations are applied.
As we shall see below, basic QM is essentially a semi-classical approximation of QM in configuration space.
As we have seen in section 2, basic QM only considers one set of canonical variables, x̂ and p̂. To reduce the
four observables x̂, v̂, p̂ and â of QM in configuration space to x̂ and p̂ requires three simplifications:

(i) Since the Hilbert space of the basic formulation of QM is much smaller than the Hilbert spaceH of
QM in configuration space, we need to decomposeH as shown in figure 4 into subspacesHm and
replaceH byHm. Each subspaceHm contains all |p,v⟩ states satisfying |p/v|=m. In basic QM, a
quantum mechanical point particle of a given massm can only occupy superposition states withinHm.
This means, p and v cannot be chosen independently and every particles has a well-defined massm
which is a real parameter.

(ii) We need to replace the velocity operator v̂ of QM in configuration space such that

v̂= p̂/m , (78)

where p̂ is the canonical momentum operator andm denotes the mass of the respective particle. In
addition, we need to discard â. There is no acceleratum in basic QM.

(iii) The main observables of the basic framework of QM are the position x and the momentum p with the
intrinsic assumption that p̂=mv̂, as stated in equation (78). In other words, basic QM needs to ensure
that

d

dt
⟨x(t)⟩= ⟨v⟩ , d

dt
⟨p(t)⟩= ⟨mf(x)⟩ (79)

in analogy to equation (73) in order to be in agreement with equation (3). Since the commutators [x̂, v̂]
and [x̂, p̂], however, are not the same (cf equations (11) and (12)), we also need to replace the dynamical
Hamiltonian Ĥdyn in equation (69) with the standard Hamiltonian ĤBQM in equation (13), while
retaining the Schrödinger equation, i.e. equation (65).

As we have discussed in detail in section 3, in QM in configuration space, the momentum and the
velocity of a quantum mechanical point particle correspond to commuting observables p̂ and v̂ but
nevertheless describe two different physical properties. To measure the velocity expectation value ⟨v(t)⟩ of a
particle, we need to measure, for example, the distance that it travels in a certain time interval. In contrast to
this, the momentum expectation value ⟨p(t)⟩ can be measured, for example, by colliding the particle with
another object while observing momentum conservation. The independence of the momentum and the
velocity of quantum mechanical point particles is well reflected in QM in configuration space by the fact that
the momentum depends only on the x distribution of the wave function ψ (x,v, t), but not on its velocity
distribution. In contrast to this, the velocity of a quantum mechanical point particle does not depend on its
position distribution.

4.3. Wave–particle duality
As indicated by the title of this paper, the main motivation for the introduction of QM in configuration space
is to fully realise the duality between the trajectories of classical point particles and the evolution of QM wave
functions, which is not fully realised in basic quantum physics. For example, a photonic wave packet can be
of any shape. Nevertheless, the photon only ever travels at one speed, namely the speed of light c. In contrast
to this, the motion of quantum mechanical point particles in basic QM depends on the shape of their wave
packets. To illustrate the duality of particles and waves brought out in QM in configuration space, we show in
the following that QM in configuration space also applies to photons. Although photons are carriers of
electromagnetic fields, we can ignore the presence of these field observables in the following discussion. A
detailed account of how to obtain the electric and magnetic field observables of light through
physically-motivated field quantisation schemes, and how to link those to monochromatic waves and local
photon excitations, can be found in [13–16].

For simplicity, we consider a single photon of a given polarisation λ which travels along the x axis in the s
direction, with s=±1. As already mentioned above, photons move at only one speed, the speed of light c.
For the mechanical point particles, the basic building blocks of the system are localised excitations prepared
in states |x,v⟩ with a well-defined position x and velocity v. Analogously, the basis states of the wave packets
of single photons with polarisation λ which travel in the s direction along the x axis are states |x, sc⟩ with

|x, sc⟩= a†sλ (x) |0⟩ (80)
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Figure 4. The momentum representation of the Hilbert spaceH of quantum mechanical point particles. In QM in configuration
space, the state vector |ψ (t)⟩ is in general a superposition of all basis states |p,v⟩. These can each be represented by a point in the
diagram. In contrast to this, basic QM restricts the states of a quantum mechanical point particle of a given massm effectively to
|p,v⟩ states with |p/v|= m, thereby reducing the total Hilbert spaceH to a subspaceHm. The subspaceHm of particles of equal
massm can be represented by two lines through the origin of the (p, v)-space diagram (red). As in classical physics, the massm is a
parameter which identifies the type of particle that is being considered. When allowing for particles of any massm, the Hilbert
spaces of QM in configuration space and basic QM become the same.

with |0⟩ denoting the vacuum state of the electromagnetic field. Moreover, asλ(x) and a
†
sλ(x) are

locally-acting bosonic annihilation and creation operators that were introduced in [14, 15]. Alternatively, we
can decompose the wave packets of single photons into monochromatic field excitations. In this case, their
basis states |p, sc⟩ are given by

|p, sc⟩= ã†sλ (k) |0⟩ (81)

with p= h̄k. Here ãsλ(k) and ã
†
sλ(k) are the annihilation and creation operators of monochromatic photons

which relate to the asλ(x) and the a†sλ(x) operators via a Fourier transform. This means that the quantum
states of single photons occupy the same Hilbert space as quantum mechanical point particles in QM in
configuration space, but with their velocities v restricted to v=±c.

In free space, the photon does not experience any potentials, and V(x) = 0. As shown in [14–16], in this
case the dynamics of light of polarisation λ can be described by the dynamical Hamiltonian

Ĥdyn =−ih̄c
∑

s=±1

ˆ

R

dxa†sλ (x)
∂

∂x
asλ (x) . (82)

When restricting the quantum state of the electromagnetic field to a single photon, this Hamiltonian
simplifies to

Ĥdyn =−ih̄c
∑

s=±1

ˆ

R

dx |x, sc⟩⟨0| ∂
∂x

|0⟩⟨x, sc| , (83)

since asλ(x) = |0⟩⟨x, sc| in this case. One can then easily check that

Ĥdyn =−ih̄c
∑

s=±1

ˆ

R

dx |x, sc⟩ ∂
∂x

⟨x, sc| (84)

if the vacuum state is normalised and ⟨0|0⟩= 1. Comparing this operator with the momentum operator p̂ in
equation (46), we see that the dynamical Hamiltonian Ĥdyn of light can indeed be written as in equation (7)
in the Introduction. In principle, single photons can also experience non-zero potentials V(x) and change
their velocity. This requires the presence of an inhomogeneous dielectric medium with a changing refractive
index n(x), which can produce novel optical effects and is still a topic of ongoing research [16, 64]. In
conclusion, QM in configuration space unifies the description of single photons and the description of
mechanical point particles, as implied by wave–particle duality.
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5. Conclusions

There is no unique way of defining the momentum p of a particle, even in classical physics [50]. For example,
the momentum of a mechanical point particle could be defined as p=mv, wherem and v denote its mass and
its velocity, respectively. Another possible definition of the momentum p is to demand that it is a conserved
quantity for systems with spatial translational symmetry [61]. In free space, where the potential V(x) = 0,
both definitions are consistent with each other. Consider, however, the situation of a particle in free fall
which experiences a constant acceleration. In this case, the same physics applies everywhere, which implies
spatial translational invariance and hence momentum conservation. Unfortunately, this is not the case when
we assume that p=mv, since the velocity of the particle and therefore also its momentum increase linearly in
time. One reason why the definition of the momentum of mechanical particles is elusive in classical physics, is
that it does not make an appearance in their dynamical equations, cf e.g. equation (3) but also equation (73).
In fact, the basic formalism of QM confuses momentum and velocity while imposing mass as a particle
property (cf equation (79)). Fortunately, quantum physics offers a unique way of defining momentum [16].

In this paper, we therefore quantise mechanical point particles in a physically-motivated way. To do so,
we first identify the variables that are needed to characterise the dynamics of particles in classical mechanics,
namely their position x and their velocity v. Afterwards, we promote all possible distinguishable classical
states (x, v) to pairwise orthonormal quantum states |x,v⟩. In this way, any classical experiment can be
mapped onto a quantum state. To ensure that the quantum dynamics of these states are consistent with the
dynamics of the associated classical system, we demand that the parameters x and v of the ‘most classical’
quantum states |x,v⟩ evolve according to Newton’s equations of motion (cf equation (3)) and choose the
dynamical Hamiltonian Ĥdyn accordingly. When preparing a quantum system in a superposition of |x,v⟩
states, i.e. in a general quantum state |ψ ⟩, expectation values can be shown to evolve in the same way as the
expectation values of a classical particle prepared in (x, v) with its probability distribution given by |⟨x,v|ψ ⟩|2
(cf equations (8)–(10)). Nevertheless, QM in configuration space is not a classical hidden variable theory
[40, 42], but a quantum theory that contains basic QM as a semi-classical approximation.

In QM in configuration space, a quantum mechanical point particle has a position and momentum
operator, x̂ and p̂. In addition, we obtain a velocity operator v̂ and an acceleratum â. Having a closer look at
the dynamical Hamiltonian Ĥdyn in equation (69), we see that the momentum p̂ generates spatial
translations whenever states with non-zero velocity v̂ are populated. By construction, its expectation values
are conserved in case of spatial translational symmetry. Analogously, the acceleratum â induces changes of
velocity for states which experience a force. In good agreement with Heisenberg’s uncertainty relation, we
find that x̂ and p̂ do not commute. The same applies to v̂ and â. As one can see from equations (59) and (60),
the momentum and the velocity observables p̂ and v̂ of QM in configuration space commute and represent
independent physical properties. Since the formalism of basic QM only considers position and momentum
observables, it is essentially a semi-classical approximation of QM in configuration space.

As mentioned already above, momentum expectation values are conserved in all situations with spatial
translational invariance. Similarly, energy expectation values should be conserved in all situations with time
translational invariance. As one can see from equation (65), the dynamical Hamiltonian Ĥdyn is the generator
for temporal translations. This suggests that the expectation values of Ĥdyn are conserved when the potential
V(x) remains constant in time [61]. However, the dynamical Hamiltonian has positive and negative
eigenvalues [14, 15], while the the energy of particles should be always positive. Suppose

Ĥdyn =
∞∑

n=0

ˆ

R

dEn |En⟩En ⟨En| (85)

represents the dynamical Hamiltonian in diagonal form. Then the energy observable of quantum mechanical
point particles can be defined as [16]

Ĥeng =
∞∑

n=0

ˆ

R

dEn |En⟩ |En| ⟨En| . (86)

In this way, energy is always positive but it is also conserved, since Ĥdyn in equation (85) and Ĥeng in
equation (86) commute by construction. Classical mechanics, however, suggests a different definition of the
energy observable, namely the operator Ĥclass in equation (70)). Fortunately, this does not create any
problems, since Ĥdyn and Ĥclass commute as well (cf equation (71)). The predictions of QM in configuration
space are therefore always consistent with the predictions of classical mechanics.

In addition, the formalism of QM in configuration space enhances wave–particle duality in comparison
to the formalism of basic QM. In fact, this paper treats quantum mechanical point particles in the same way
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as we treat photons in quantum electrodynamics [14–16]. The only difference between both types of
particles is that photons can travel only at one speed, namely the speed of light c, while quantum mechanical
point particles can move at any speed. This is important, since wave–particle duality is the cornerstone of
quantum physics. In addition, we expect that QM in configuration space has applications in the modelling of
chaotic systems and the modelling of quantum systems with currently non-Hermitian Hamiltonians with
complex eigenvalues [58]. Other areas of quantum physics, like condensed matter, already routinely employ
phenomenological Hamiltonians, such as the Hubbard Hamiltonian [53], with positive and negative
eigenvalues in order to match experimental findings. Our hope is that applying QM in configuration space to
such situations will help us gain a better understanding of complex quantum systems and will offer new tools
for designing new devices with potential applications in quantum technology. In addition, we might gain
new insight into relativistic quantum information [55, 56].
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