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Model parsimony is an important cognitive bias in

data-driven modelling that aids interpretability and

helps to prevent over-fitting. Sparse identification

of nonlinear dynamics (SINDy) methods are able to

learn sparse representations of complex dynamics

directly from data, given a basis of library functions.

In this work, a novel Bayesian treatment of dictionary

learning system identification, as an alternative

to SINDy, is envisaged. The proposed method—

Bayesian identification of nonlinear dynamics

(BINDy)—is distinct from previous approaches in

that it targets the full joint posterior distribution over

both the terms in the library and their parametrization

in the model. This formulation confers the advantage

that an arbitrary prior may be placed over the model

structure to produce models that are sparse in the

model space rather than in parameter space. Because

this posterior is defined over parameter vectors that

can change in dimension, the inference cannot be

performed by standard techniques. Instead, a Gibbs

sampler based on reversible-jump Markov-chain

Monte Carlo is proposed. BINDy is shown to compare

favourably to ensemble SINDy in three benchmark

case-studies. In particular, it is seen that the proposed

method is better able to assign high probability to

correct model terms.

2025 The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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1. Introduction
Describing the dynamics of nonlinear processes analytically is of fundamental interest to many

branches of scientific modelling. In cases where governing differential equations are unavailable,

the practitioner has little choice but to try and discern differential equations directly from data.

This difficulty is compounded in situations whereby both the model structure (which terms

should be included) and its parametrization are unknown. In high-noise and low-data regimes,

model uncertainty quantification (UQ) becomes critical. Limited data, measurement noise and an

unknown model structure all contribute significant uncertainty.

An important facet of data-driven modelling is model parsimony. Recently, there has been

increasing interest in methods that are able to develop parsimonious models directly from

measured data. Methods such as sparse identification of nonlinear dynamics (SINDy) [1] have

been extremely effective at learning sparse representations of complex dynamics. However, a

key feature of all SINDy approaches is the specification of heuristic sparsity-inducing methods

and hyperparameters that control the inevitable trade-off between fidelity and parsimony in

data-driven modelling.

In this paper, the authors take the view that developing parsimonious models from data

is inherently an uncertain task. Parsimonious model selection in practice requires interpretable

answers to questions in the vein of ‘what is the probability that a given term should be included

given the data?’ and ‘if one were to include this term, how is its value distributed?’. In order

to access principled answers to the above, authors propose an alternative to SINDy within a

Bayesian framework.

Bayesian uncertainty quantification is a natural framework for conducting UQ in data-

driven modelling. Indeed, much has been written on the topic, e.g. [2,3]. Physical knowledge

and inductive biases (such as parsimony) can be incorporated as prior knowledge, making such

modelling assumptions explicit. Indeed, many literature contributions propose Bayesian methods

for UQ in both model parametrization [4–6] and model structure [7–10]. Further discussion of

specific related works is presented in §3(b).

(a) Contribution

In this work, interpretable prior distributions are placed over terms in the model (independently

of their parametrization) and over parameters (independently of their inclusion). This prior

structure invokes a joint posterior distribution that can be marginalized to obtain useful

distributions, that can robustly address modelling questions such as those introduced above.

The key contribution of this work is a novel Bayesian approach to the identification of

nonlinear dynamics from a library of basis terms. In particular,

— Heuristic sparsity-inducing regression is replaced with interpretable prior distributions

over models—all modelling assumptions are made up-front.
— An efficient sampler is proposed to produce samples from the target joint posterior

distribution over model terms and parameters.
— The proposed approach is shown to compare favourably to ensemble-SINDy in three

case studies including a popular population dynamics dataset consisting of only 21 data

points.

The remainder of this paper is structured as follows: The following section introduces the

necessary background, summarizing the SINDy methodology, holding some discussion on

parsimony in data-driven modelling motivating the use of reversible-jump Monte Carlo. A

third section introduces the proposed approach and its position in the literature, providing a

framework for Bayesian identification of nonlinear dynamics. A fourth section compares the

proposed approach to the ensemble SINDy method in three benchmark case studies. A final

section presents some discussion and directions for future work.
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2. Background

(a) SINDy methods

The SINDy method, proposed in 2016 by Brunton et al. [1], has received considerable attention in

the scientific literature as a computationally efficient way to learn differential equations directly

from data. Since it was first proposed, the method has been proven to be effective in correctly

identifying governing equations from both simulated and real-world data.

At their core, SINDy methods make the key assumption that the observed dynamics admit a

first-order formulation that is linear in the parameters of a library of user-specified basis functions

Θ . Let f denote the first-order ordinary differential equation (ODE) that describes the evolution

of some state-space dynamics x(t),1

ẋ(t) = f (x(t)), (2.1)

where the overdot represents a time derivative. Now the foundational assumption of the SINDy

method can be stated as

ẋ ≈ Θ(x), (2.2)

where x is the measured state, Θ(x) ∈ R
N×D is a library of D user-selected basis functions

computed from x. In the case that x is a vector, the library of terms may also include functions

of all elements in x and cross terms. Thus, it is expected that D will grow much faster than

the dimension of the ODE under investigation. Critically, the coefficient vector Ξ is assumed

to be sparse, whereby many elements of Ξ are equal to 0. In practice, it is not often the case that

measurements of both x and ẋ are available. It is usual in the SINDy literature to assume that only

the states, x, are measured, and their derivatives ẋ must be computed numerically (with sufficient

accuracy such that (2.2) holds) [1]. The SINDy framework (for identification of ODEs) can thus be

summarized by three steps:

(1) The selection of a library of candidate basis terms.

(2) The selection of a numerical differentiation scheme to compute ẋ.

(3) Sparse regression to the coefficient vector Ξ by heuristic means.

It is clear that a great deal of methods can be applied to each of the steps above. In this

way, SINDy-type methods have come to encompass a family of approaches. Since the original

SINDy algorithm was introduced in [1], extensions have been proposed to partial differential

equation (PDE) systems [11], implicit dynamics [12], discrete dynamics and weak PDE solutions

[13]. Furthermore, many methods have been applied to the sparse regression task including

sequentially thresholded least-squares [1], sparse-relaxed regression [14] and forward orthogonal

least-squares regression (FROLS) [15]. Several approaches also include uncertainty quantification

such as the ensemble formulation in [16] and sparsity-inducing Bayesian methods [10,17,18].

Many of these methods have been made readily available to practitioners via an open-source

python library [19].

Of the three components in SINDy methods described here, this paper is concerned only with

the third—determination of appropriate model terms and their parameters. At this stage, it is

useful to present some discussion as to the role of parsimony in data-driven modelling.

(b) Parsimony in data-driven modelling

Inherently, model parsimony is a cognitive bias, injected by modellers to promote interpretability

and to prevent overfitting. In many sparsity-promoting methods (such as SINDy), parsimony is

enforced by proxy; the importance of each term in the library is related to the corresponding

1The method can be extended to systems of ODEs, PDEs, etc., but for notational simplicity, the exposition in this paper
will consider scalar-valued ODEs. The authors note that the extension to systems of ODEs (as seen in the case-studies of this
manuscript) can be handled by treating each of the regression targets ẋi(t) independently, from a shared state space comprised
all xi,
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size of the parameter in Ξ . Although this is a convenient proxy for parsimony, it is not without

limitations. A critical limitation in practice is that small parameters in Ξ do not necessarily

correspond to small effects in the dynamics. Consider the effect of neglecting a small but negative

damping term in the model leading to instability in extrapolation. Practitioners cannot know

in advance how small parameters will behave in regions of the state that are not observed in

the training data. Normalization of the columns of Θ can help to address this shortcoming, but

can also introduce ambiguity between correlated library functions. For a motivating example,

consider the problem of selecting between the terms x2 and x4, x ∈ [0, 1] in the presence of noise.

If all terms in Θ(x) normalized to unit standard deviation, the difference between the two terms

might appear trivial in the regime of the training data; the difference in extrapolation is evident.

Introducing correlations of this form can ultimately harm model parsimony.

A particular issue with parameter size as a proxy for term importance is the selection of a

threshold value, below which model terms should be excluded. In practice, this level can be

difficult to select in a principled manner, leading to a spectrum of models at different levels of

sparsity. In [20], an approach based on the Akaike information criterion is used to establish a

Pareto front of models trading off error against the number of identified terms. This approach

is successful in that the user is offered an interpretable choice from a small subset of possible

models. However, the theoretical interpretation of this Pareto front is limited and distributional

estimates are not explicitly available. The method also relies on parameter size as a proxy for term

importance which can lead to the issues described above.

Alternative proxies for term inclusion have been considered based on greedy reduction of

some error metric. A key example is forward regression least-squares optimization (FROLS)

[15,19] that attempts to greedily add (or remove) model terms that maximize an error-reduction

ratio. Such approaches circumvent problems of small parameter values described above. In

practice, however, these methods require the specification of a convergence threshold (or directly

number the number of terms in the model, as in the implementation in [19]) which can also be

difficult to set in advance in a principled manner.

It is the position of the authors that data alone cannot inform model parsimony. In order to

select models that are parsimonious, cognitive biases must be applied. In this work, a wider

probabilistic view of parsimony in SINDy-type methods is taken. Rather than use parameter

magnitude as a proxy for sparsity, the authors propose to target the parameter inclusion probability

directly. Taking a Bayesian view of equation (2.2), and assuming an additive Gaussian noise

model, one has,

ẋ = Θ(x)Ξ + ǫ, ǫ ∼N (0, σ 2), (2.3)

where σ 2 is the noise variance in the observation model. The model identification task at hand is

to identify a subset of the columns of Θ(x). Intuitively, this model set includes all subsets of library

functions (the powerset) and thus all possible ways that the parameter vector may be sparsified.

Let

M= {mi}
2n

i=1 (2.4)

be the set of all such possible models for Θ(x) consisting of n library functions2. Key to the

formulation here is that each model in m ∈M is parametrized by a corresponding parameter

vector Ξ , the dimension of which depends on the model m.

The objective of this work is to infer the joint posterior distribution p(Ξ, m|ẋ, Θ(x)). The

observation model in equation (2.3) gives rise to a Gaussian likelihood p(Ξ, m|ẋ, Θ(x)) for each

2The method exposed in this work does not require n to be finite and can be generalized to the case of infinite libraries (for
example, all polynomials), however, the exposition and results herein consider finite n only. Some additional discussion is
held in §5.
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model m and corresponding parameter vector Ξ . With an appropriately defined prior p(Ξ, m),

and applying Bayes rule, one may write,

p(Ξ, m|ẋ, Θ(x)) =
p(Ξ, m)p(ẋ|Ξ, m, Θ(x))

p(ẋ)
. (2.5)

For notational simplicity in the exposition that follows, the dependence of the likelihood and

posterior on Θ(x) will be dropped, and the observed (or computed) state derivatives are denoted

by D = ẋ. The above can thus be written,

p(Ξ, m|ẋ,D) =
p(Ξ, m)p(D|Ξ, m)

p(D)
. (2.6)

Access to the posterior distribution over both the model terms and its parametrization confers

a number of advantages for the data-driven discovery of nonlinear dynamics. If samples from

the posterior are available, a major advantage is that they can be marginalized (in the Monte

Carlo sense) to give direct access to a posterior distribution over models, independently of their

parametrization, i.e. p(m|D). This allows the practitioner to evaluate the probability that a term

should be included in a model (given the observed data). This permits more robust ways to

introduce model parsimony, for example by excluding terms with an inclusion probability below

a certain threshold. Alternatively, the full posterior over model terms and parameters can be

propagated to further analyses.

The joint posterior distribution p(Ξ, m|ẋ,D) over both models and their parameters is a very

challenging object to approach. As is usual in complex Bayesian inference tasks, the model

evidence term p(D) is unavailable analytically. However, this is not the only obstacle. The major

inferential challenge is that the dimension of the parameter vector Ξ has come to depend on the

particular model it parametrizes. In order to overcome these difficulties, a sampling scheme based

on reversible-jump Markov-chain Monte Carlo (RJMCMC) [21] will be employed.

(c) Reversible-jump Markov-chain Monte Carlo

It will be useful here to briefly review both Metropolis–Hastings (MH) and reversible-jump

Markov-chain Monte Carlo theory in a general setting in order to motivate the proposed

approach. Much of the exposition here is available in additional detail in references [22] for

MH and [21] for reversible-jump MCMC. Consider the well-studied problem of sampling from a

target distribution π (θ ) (that is known up to some constant), by constructing a Markov chain with

π as its stationary distribution. A sufficient condition for convergence is that of detailed balance,

whereby,

π (θ ′)κ(θ |θ ′) = π (θ )κ(θ ′|θ ). (2.7)

Where κ(θ ′|θ ) is the kernel of the Markov chain moving from state θ to new location θ ′. The MH

algorithm further divides this kernel into a transition density p(θ ′|θ ) and an acceptance probability

α(θ → θ ′),

k(θ ′|θ ) = p(θ ′|θ )α(θ → θ ′), (2.8)

the familiar MH acceptance probability can be found by maximizing the acceptance probability

while retaining the condition of detailed balance. The optimal choice is found to be

α(θ → θ ′) = min

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1,
π (θ )

π (θ )
︸ ︷︷ ︸

Target
ratio

p(θ |θ ′)

p(θ ′|θ )
︸ ︷︷ ︸

Proposal
ratio

⎫

⎪
⎪
⎬

⎪
⎪
⎭

, (2.9)

whereby an unknown normalization constant in π can be cancelled from the numerator and

denominator.

In the case that θ ′ and θ have different dimensions, detailed balance will not hold for standard

choices of the transition density. To overcome this issue, in 1995 Green introduced the reversible-

jump MCMC (RJMCMC) algorithm [21] as a method to sample from distributions defined over
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parameters of different dimension. The RJMCMC method overcomes this difficulty via dimension

matching. Let k be the dimension of the state of a Markov chain at θ . In order to move to a new

state with dimension k′ and position θ ′, an auxiliary variable u′ with dimension j′ is sampled.

To compensate for the mismatch between dimensions, it is required that j + k = j′ + k′, where j

is the current dimension of the auxiliary variable u. Then, a bijective map gk→k′ : {u, θ} → {u′, θ ′}

between each pair of dimensions is defined, such that the dimension of {u, θ} is unchanged by

the bijection. If the probability of ‘jumping’ from one dimension to another (via the appropriate

corresponding bijection) is given by J(k′, θ ′|k, θ )q(u′|θ ′), then the RJMCMC acceptance probability

can be reformulated as

α(θ → θ ′) = min

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1,
π (θ ′)

π (θ )
︸ ︷︷ ︸

Target
ratio

J(k′, θ ′|k, θ )

J(k, θ |k′, θ ′)
︸ ︷︷ ︸

Jump ratio

q(u′|θ ′)

q(u|θ )
︸ ︷︷ ︸

Auxillary
ratio

∣
∣
∣
∣

∂gk→k′

∂(u, θ )

∣
∣
∣
∣

︸ ︷︷ ︸

Jacobian
determinant

⎫

⎪
⎪
⎬

⎪
⎪
⎭

. (2.10)

In the general setting, working with RJMCMC can be cumbersome for the practitioner.

The specification of the bijective maps is non-trivial and has a strong effect on the sampling

efficiency of the scheme. Fortunately, a significant simplification is sometimes available and will

be employed here. The trick is to sample model parameters independently between models. This

is achieved by setting u � θ ′ and u′ � θ in each transition. Thus, each bijection can be defined as

‘exchanging’ the auxiliary parameters with new ones in the model move,

gk→k′ (u, θ ) = {u′, θ ′} = {θ , θ ′}. (2.11)

Considering the above, it is clear that the dimension matching constraint is satisfied and that

the Jacobian is a row-wise re-ordering of the identity matrix. Therefore, the Jacobian determinant

term in the acceptance ratio must be identically equal to one. The acceptance probability may now

be simplified to

α(θ → θ ′) = min

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1,
π (θ ′)

π (θ )
︸ ︷︷ ︸

Target
ratio

J(k′, θ ′|k, θ )

J(k, θ |k′, θ ′)
︸ ︷︷ ︸

Jump ratio

q(θ |θ ′)

q(θ ′|θ )
︸ ︷︷ ︸

Proposal
ratio

⎫

⎪
⎪
⎬

⎪
⎪
⎭

. (2.12)

3. Bayesian identification of nonlinear dynamics
With the relevant RJMCMC theory established, and the inference problem formalized, attention

can be returned to the problem of sampling from the posterior density p(Ξ, m|D). Development

of this posterior over both the model terms and their parametrization requires the specification

of both prior and proposal densities. It is clear that there are many appropriate choices for these

objects and, in practice, it can be expected that prior selection will be guided by the problem at

hand. However, it can be shown that certain choices of the parameter proposal can lead to drastic

simplification of the inference scheme.

Considering for now the case whereby the noise variance σ 2 in equation (2.3) is known and by

substituting the required posterior distribution into the acceptance probability (equation (2.12))

above, one has

α(Ξ → Ξ ′) = min

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1,
p(Ξ ′, m′|D, σ 2)

p(Ξ, m|D, σ 2)
︸ ︷︷ ︸

Posterior
ratio

J(m′|m)

J(m|m′)
︸ ︷︷ ︸

Jump ratio

q(Ξ |Ξ ′)

q(Ξ ′|Ξ )
︸ ︷︷ ︸

Proposal
ratio

⎫

⎪
⎪
⎬

⎪
⎪
⎭

. (3.1)

The proposal density q in equation (3.1) is freely chosen by the user. A natural choice (after

Troughton & Godsill [23] and similar to the approach of Brooks et al. [24]) is to employ the full
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conditional density,

q(Ξ ′|Ξ ) = p(Ξ ′|m′,D, σ 2). (3.2)

Substituting the proposal into equation (3.1), one finds that since

p(m|D, σ 2) =
p(Ξ, m|D, σ 2)

p(Ξ |m,D, σ 2)
, (3.3)

the acceptance ratio can be further simplified to

α(Ξ → Ξ ′) = min

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1,
p(m′|D, σ 2)

p(m|D, σ 2)
︸ ︷︷ ︸

Ratio of model
posteriors

J(m′|m)

J(m|m′)
︸ ︷︷ ︸

Jump ratio

⎫

⎪
⎪
⎬

⎪
⎪
⎭

. (3.4)

This simplification is only available for particular choices of the prior p(Ξ, m) that are conjugate,

e.g. the Gaussian likelihood defined above (and defined independently to the prior over models).

Moreover, it gives direct access to the marginal posteriors p(m|D) (see [25] (Chapter 6) or [26]

(Chapter 3) for example). Considering here a conjugate Gaussian prior at each model order

(conditioned on the model choice), one has

p(Ξ |m) � N (µ
(0)
m , Σ

(0)
m ). (3.5)

Because the prior is conjugate, for a given model and noise variance, one may write,

p(Ξ |m,D, σ 2) =N (µm, Σm), (3.6)

where

Σm =

[
1

σ 2
ΘT

mΘm + Σ
(0)−1
m

]−1

(3.7)

and

µm = ΣmΣ
(0)−1
m µ

(0)
m +

1

σ 2
ΣT

mΘTẋ (3.8)

are the posterior mean and covariance of the parameters for a given model m (e.g. [25,26]). The

marginal posteriors are thus available as

p(m|D, σ 2) ∝ p(m)p(D|m, σ 2),

= p(m)(2πσ 2)
N
2 |Σ

(0)
m |−

1
2 |Σm|

1
2 exp

(

−
1

2
[σ−2DTD − µT

mΣ−1
m µm + [µ

(0)
m ]T[Σ

(0)
m ]−1µ

(0)
m ]).

(3.9)

Now assuming a zero-mean prior over the model parameters Ξ ,3 the overall acceptance

probability of a move from Ξ to Ξ ′ can be written,

α(Ξ → Ξ ′) = min

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

1,
p(m′)

p(m)
︸ ︷︷ ︸

Model prior

J(m′|m)

J(m|m′)
︸ ︷︷ ︸

Jump ratio

|Σ
(0)
m′ |

−1/2|Σm′ |1/2 exp

(
1

2
µT

m′Σ
−1
m′ µm′

)

|Σ
(0)
m |−1/2|Σm|1/2 exp

(
1

2
µT

mΣ−1
m µm

)

︸ ︷︷ ︸

Model posterior ratio

⎫

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎭

, (3.10)

where several terms that do not depend on m have cancelled out in the model posterior ratio. The

acceptance probability in equation (3.10) can now be readily used to sample from the required

posterior. In practice, the noise variance in equation (2.3) will be unknown. This problem can

be simply addressed by including a Gibbs move for the noise variance given the model and

3Note that in the case of non-zero mean parameter priors, an additional exponentiated quadratic form will appear in the
numerator and denominator of the acceptance ratio.
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the parameters, which are available following a reversible-jump move. For example, an inverse-

gamma prior, conjugate to the Gaussian likelihood can be employed. The Gibbs step in this case

is

p(σ 2) � IG(a(0), b(0)). (3.11)

Then by the conjugacy of the prior and likelihood, the posterior over the noise variance is

available exactly as an inverse-gamma distribution,

p(σ 2|Ξ, m,D) = IG(a, b), (3.12)

where

a = a(0) +
n

2
(3.13)

and

b = b(0) +

∑n
i (ẋ − Θ(x)Ξ )2

2
, (3.14)

where n is the number of data in ẋ.

(a) A framework for Bayesian identification of nonlinear dynamics

It is useful to consider here how the above may be used by the practitioner in order to arrive at a

useful estimate of the posterior distribution p(Ξ, m, σ 2|ẋ, Θ(x)) in the context of nonlinear system

identification. In practice, there are several quantities that must be selected by the user. These are

the parameter and noise variance priors, the model prior and the jump kernel. The choices of these

objects will affect the cognitive biases in the inference (including the sparsity of the posterior) as

well as affecting the convergence properties of the sampling scheme. Some discussion on how

these objects might be selected in practice is held here.

(i) Parameter and noise variance priors, p(Ξ ) and p(σ 2)

A constraint of the method introduced here is that these priors must be conditionally conjugate

to the Gaussian likelihood model in equation (2.3). Although this is a strong constraint it remains

possible to reflect many types of prior belief with these objects. For the parameter priors, vague

belief can be introduced by consideration of very wide Gaussian distributions centred around

zero. Stronger belief can be imposed by the consideration of more concentrated variances. For the

noise variance prior, lack of belief can be imposed by the improper parametrization of the inverse

gamma distribution, IG(0, 0) (although there are potentially limitations if samples are required to

be drawn from the prior). Stronger belief can be enforced by more concentrated parametrizations.

(ii) Model space priors, p(m)

One of the major advantages of the formulation considered here is that prior belief can be applied

directly in the model space without using parameter values as a proxy. The RJMCMC scheme

employed here places no restriction on the form of the prior distribution p(m). Thus, very many

cognitive biases can be injected into the inference scheme by the careful consideration of this

parameter. Ignorance as to the model structure and level of sparsity can be trivially introduced

by the consideration of a flat model prior. For example,

p(m) ∝ 1, ∀ m ∈M. (3.15)

The cognitive bias of model parsimony can also be introduced. For example, one could naively

choose to prefer models with fewer terms (thus promoting sparsity) by the consideration of

a monotonically decreasing discrete density defined over the number of terms in the model.

Appropriate choices might include the geometric distribution,

p(m) = (1 − θ )dθ , (3.16)

where θ is a hyperparameter that controls the extent to which more parsimonious models

are preferred. Other types of belief could be applied by assigning probabilities to model term
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inclusion directly. An instructive example might be in the identification of structural dynamics

in a near linear regime. One could envisage a prior structure that placed a high probability of

selecting expected linear terms (corresponding to inertia, viscous damping and linear elasticity),

while assigning less prior probability to nonlinear terms. The effect would be that the nonlinear

terms would only appear in the posterior if there was significant evidence in the likelihood.

As with all prior selection in Bayesian approaches, the choice of the model-space prior must

ultimately be guided by the problem at hand and domain knowledge (or lack thereof) [27].

However, the authors note that in most SINDy-type applications, practitioners expect the

observed dynamics to be sparse in the library of functions. This assumption motivates the use

of regularizing priors in general.

(iii) Jump kernel, J(m′|m)

The selection of the jump kernel is one of the key components of the RJMCMC and may strongly

affect the convergence of the sampler. Here, we propose the following ‘bit-flipping’ scheme. In

each proposal step a random index in [1, n] (where n is the number of rows in Θ) is selected

with equal probability. If that term is present in the model at the current state of the chain then

it is removed, if not then it is added. If a move is rejected then a new index is drawn, again

with even probability. While this approach is computationally convenient, it is likely that for

certain posterior geometries there would be significant limitations. Firstly, the proposed scheme

always proposes to leave the current model. For tightly concentrated posteriors (wherein most

of the probability mass is concentrated in a single model), this approach might result in low

acceptance rates and inefficient exploration. A second limitation may occur in situations whereby

the posterior has several modes, each corresponding to highly different model structures. In

this second scenario, the proposed approach may struggle to mix from one mode to another.

A potential solution would be to increase the number of indices drawn, although this could

exacerbate the issues with tightly concentrated posteriors.

An alternative to the ‘bit-flipping’ approach employed here could be to incorporate the idea

of neighbourhood proposals [28,29]. These methods generalize the bit-flipping scheme above to

balance exploration of the model space with exploitation near to high-probability models. These

schemes typically consider moves from the current model to one in a nearby ‘neighbourhood’

that is adaptively varied based on data or posterior probabilities. These ideas are related to the

more general idea of adaptive MCMC schemes [30] that seek to improve the efficiency of MCMC

samplers by including adaptive proposal mechanisms.

(iv) BINDy algorithm

The overall sampling approach is summarized in algorithm 1. In the algorithm, it is assumed

that there is a Gaussian prior over the parameters Ξ and an inverse gamma prior over the noise

variance. Note that because the parameter vector does not appear in equation (3.10), there is no

need to specify an initial condition for the parameter vector.

(v) Posterior interpretation

Once the practitioner has collected a sufficient set of samples (convergence of the chain can be

verified by observing the trace of the parameter values in Ξ , for example), the posterior density

can be examined in the usual Monte Carlo fashion by counting terms and by forming histograms

over model parameters. In the context of nonlinear system identification, it is often of interest

to compare the performance of the identified models in simulation. The simulation performance

of a model is a better measure of the quality of the fit to data and as such represents a more

robust challenge than prediction of state derivative from known states and library. Because

the proposed approach here generates a probability distribution and not a single model, the

simulation performance of the posterior can be evaluated sample-wise, by integrating samples

from p(Ξ, m, σ 2|D) forward in time (with or without added noise depending on the application).
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Algorithm 1. Bayesian identification of nonlinear dynamics.

Require: Parameter prior mean and variance µ
(0)
m , Σ

(0)
m , noise variance prior parameters a(0), b(0),

prior over models p(m), jump kernel J(m′|m), term library Θ(x), state derivatives ẋ, initial chain

state (m0, σ 2
0 ).

Initialize the chain at m = m0 and σ 2 = σ 2
0 .

for Number of samples N do

Propose a model move m → m′ by sampling from J(m′|m).

Sample a new parameter vector Ξ ′ for the model m′ by sampling from p(Ξ |D, σ 2) in

equation (3.6).

Accept the model and parameter move jointly with probability α(Ξ → Ξ ′) given by

equation (3.10) else remain in place.

Propose a new noise variance σ 2 using the Gibbs update given by equation (3.12).

end for

return Samples from p(Ξ , m, σ 2|D).

The overall simulation performance can then be established by considering the distribution

over sample trajectories. Access to robust uncertainty quantification in simulation has important

applications of system identification including active learning [16], model predictive control [31]

and structural health monitoring [32].

(b) Related work

Several authors have approached the joint model structure and parametrization problem from

a Bayesian perspective. A key contribution is the work of Abdessalem et al. [8,9] wherein an

approximate Bayesian computation (ABC) method was applied to the identification of a nonlinear

system from within a small number of candidate models. Although the results of the method

are compelling (approximate posteriors, jointly over models and parameters), the utility of the

method is limited by the extreme computational cost of ABC.

The proposed method is also not the first time that the SINDy method has been formulated in a

Bayesian context. Previous attempts have made use of sparsity inducing priors [5,17,33–36]. These

priors are placed over parameters in Ξ such that much of the posterior mass is concentrated at

or around zero (thus removing them from the model with high probability). Although sparsity-

inducing priors are shown to be very effective in correctly identifying model terms (by setting

superfluous parameters to zero), the method cannot obtain a distributional estimate over the

terms in the model independently of their parametrization.4 By contrast, the method proposed in

this work differs in that prior distributions are placed over both model terms and their parameters

independently. Another challenge with sparsity-inducing priors is that the inference is usually

intractable and can be expensive to compute. The work in this paper is able to significantly reduce

the computational burden by marginalizing the parameters Ξ from the acceptance ratio (after

[23]) such that a new parameter need only be sampled when updating the noise variance.

A related work is the recent contribution of Fung et al. [18]. The authors propose a Bayesian

formulation of the SINDy method by tracing uncertainty through the nonlinear library and the

differential operator in order to account for noise on observed x. The authors then make Gaussian

approximations to recover the model evidence in a Bayesian manner. The authors then propose

to greedily select terms that maximally increase the model evidence until no more such terms are

available. This results in a single model structure estimate with a posterior distribution over its

parametrization. The method proposed in this differs in that a joint posterior distribution over

both model terms and their parametrization is available explicitly, thanks to the reversible-jump

4Because sparsity inducing priors are usually defined continuously over the parameter range it is not possible to marginalize
out the parameter values without setting a heuristic threshold on which parameter values should be considered insignificant.
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sampler. The proposed approach is also not limited to greedily maximizing the model evidence,

which can be important in situations whereby the posterior is multimodal in model space.

The method presented herein is also not the first use of RJMCMC in the Bayesian identification

of dynamic models. Troughton & Godsill [23] and Dahlin et al. [37] consider an RJMCMC scheme

for the identification of linear autoregressive models, and an RJMCMC scheme is employed in [38]

to select between two candidate nonlinear models. Recently in [39], an RJMCMC approach is used

to select terms in a state-space formulation using Kalman filtering techniques. The paper has the

advantage that partial state observation is handled naturally, however, the technique is limited

to linear systems only. However, to the author’s best knowledge, the present work represents

the first application of RJMCMC to the SINDy-type formulation of [1], and the first to explicitly

enumerate a full posterior distribution over both model terms and their parametrization jointly

in that context.

Another related contribution is the uncertainty quantification enabled by the ensemble-SINDy

(E-SINDy) method of Fasel et al. [16]. E-SINDy enables heuristic UQ through bootstrapping and

(robust) averaging (b(r)agging) on subsets of model terms and data. In this way, the authors are

able to give heuristic estimates of quantities such as term inclusion probabilities and bootstrapped

distributional estimates of model parameters. While these quantities are undoubtably useful to

practitioners, their heuristic nature makes their theoretical interpretation difficult. Nevertheless,

E-SINDy is a natural benchmark comparison for the method proposed in this work. In all

forthcoming case studies, both methods are demonstrated.

4. Results
In order to demonstrate the effectiveness of the proposed method, three benchmark case-studies

are presented here. Results from both the proposed method and E-SINDy [16] are presented and

compared in terms of their confidence in identifying the true dynamics.

The prior structure of the inference is set up initially to be weakly informative. In particular,

the values,

µm � 0(0) and Σ
(0)
m � 103 × I (4.1)

and

a(0) � 0 and b(0) � 0, (4.2)

are chosen. The prior distribution over models is selected initially to be flat with p(m) ∝ 1, ∀ m ∈

M. The authors would note that this choice does not promote model parsimony a priori. The

chain is initialized with all terms in Θ present in the model and with the noise variance set to σ 2 =

1. The Gibbs sampler is run for 6 × 103 steps in total, with the first thousand samples discarded

to remove the effects of any transient ‘burn-in’ behaviour. The authors remark that this length

of chain appears more than adequate in terms of convergence to the target distribution (see the

appendices for a numerical study).

The E-SINDy results presented hereafter are generated using the publicly available ‘pysindy’

library [19]. In all cases, 5 × 103 models are sampled (in line with the length of the chains in the

RJMCMC) and both data and library ensembling are activated, with the number of candidates

dropped in each sample set to 1. In both cases, the sequentially thresholded least-squares (STLSQ)

algorithm is used to perform the sparse regression. For more detail on the E-SINDy method and

for interpretation of these hyperparameters, the interested reader is directed to the original article

[16] and the ‘pysindy’ documentation [19].

(a) Legendre polynomials

The first case-study is a static sparse polynomial regression problem in which Θ(x) is static and is

set to be the first 10 Legendre polynomials on the interval x ∈ [−1, 1]. In order to demonstrate the

recovery of small-valued parameters, a coefficient vector is selected with both zero and near-zero

elements. The coefficient vector was generated randomly by the following scheme:
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— 10 random parameters were sampled uniformly on [0,1].

— 4 randomly selected parameters (with replacement) were set to 0.

— 2 randomly selected parameters (with replacement) were multiplied by 0.01 to drastically

reduce their magnitude.

— All parameters are rounded to 3 decimal places (so that they can be exactly reproduced

in this document).

The resulting coefficient vector is given by,5

Ξ∗ � [0.549, 0, 0.603, 0.545, 0.424, 0.006, 0, 0, 0, 0.004]T. (4.3)

The target of the regression is then generated as

y � Θ(x)Ξ∗ + ǫ ǫ ∼N (0, σ 2
n I), (4.4)

whereby Gaussian noise is added to the target data with standard deviation equal to 5% of the

root-mean-square (RMS) of the noise-free data. The extrapolation performance of the identified

models is shown in figure 2.

The performance of both E-SINDy and the proposed method are compared in figure 1. As

can be seen in the figure, both the proposed method and E-SINDy methods are able to correctly

assign low inclusion probability to the terms in Ξ∗ that are equal to zero. The posterior samples

generated by BINDy are tightly concentrated around the true values such that they are virtually

indistinguishable from their median. However, the STLSQ algorithm is unable to identify terms

with parameters lower than the threshold parameter λ, which in this case study is set to the

pysindy default value of 0.1. While this is a simplified example, it serves to demonstrate a

particular pathology, which may appear when using parameter value as a proxy for term

importance. However, the E-SINDy method shows multi-modality, producing some samples in

clusters away from the true value. This can be attributed to the library bagging operation. Every

subset of the library functions produces a sample (none are rejected—there is no Metropolization

step). This has the effect that some samples are generated with important terms missing, biasing

the parameter values of the remaining terms (figure 2).

(b) Lynx–hare population dynamics

The second case-study considers the well-studied lynx–hare population dynamics dataset. This

dataset consists of the number of pelts collected for hares and lynxes annually between 1900 and

1920 by the Hudson Bay Company and is considered to reflect the population level of the two

species [16]. As such, the dataset is often used as a canonical example of data generated by the

Lokta–Volterra predator–prey population model. Let L and H be the number of lynx and hare

in the population, respectively, then their population dynamics are governed by the first-order

ordinary differential equation,
dL

dt
= c11L + c12HL

and
dH

dt
= c21H + c22HL

⎫

⎪
⎪
⎬

⎪
⎪
⎭

, (4.5)

where the cij are unknown constants in the model. The dataset represents a significant challenge

in that only 21 measurements are available.

Here, the derivatives of the lynx and hare populations are computed numerically in accordance

with the approach taken in [16], the columns of Θ are also normalized and a threshold value of

0.19 for λ is used. For Θ(x), the library of polynomial terms, including interactions up to third

order is used. The authors note that this constitutes a more challenging identification task6 than

the one presented in [16], where only terms up to second order are considered.

5For clarity and readability, the results of the case study here considers only a single parametrization of this polynomial. An
additional numerical study considering many such parametrizations is presented in the appendices.

6The sizes of the respective model spaces increase from 26 to 210 when considering terms up to third order.
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plot, the bar-charts depict model inclusion probability (left axis), point plots depict samples of model parameters (right, log

axis). Horizontal bars depict median parameter values, black diamonds depict true values of parameters in the underlying

data-generating model.

Figure 2. Samples from the identified posterior distribution (BINDy, green) and ensemble (E-SINDy, orange) in both

interpolation and extrapolation regimes.
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In the plot, the bar-charts depict model inclusion probability (left axis), point plots depict samples of model parameters (right,

log axis). Horizontal bars depict median parameter values, black diamonds depict maximum-likelihood values of parameters in

the Lokta–Volterra dynamics.

The distributions identified by the two methods on the lynx–hare dataset are depicted in

figure 3. In the figure, it can be seen that both models are assigning high probability to terms in the

Lokta–Volterra model. However, the probability mass is much more concentrated around these

terms in the BINDy posterior, compared with those in the E-SINDy ensemble. Once again, it can

be seen that the parameter values are tightly distributed around the maximum likelihood values

for both methods (assuming Lokta–Volterra dynamics), although the E-SINDy method produces

a number of samples close to the cutoff threshold. Particularly concerning is that the median

parameter value for all terms in the hare evolution (as identified by ensemble SINDy) is zero.

This corresponds to the STLSQ algorithm in E-SINDy removing all parameters and returning a

zero model much of the time. These constant dynamics (with no terms in the model) identified

by the SINDy ensemble are evident in figure 4 which plots time histories (integrated forward

in time numerically, from known initial conditions) of samples from both BINDy and E-SINDy.

By comparison, the samples from the BINDy posterior represent the dynamics well, given the

scarcity of data available. In extrapolation, neither model is able to closely follow the mean

dynamics (computed as the least squares estimate of a, b, c, d, assuming the model structure to be

known). However, the uncertainty in the dynamics offered by the BINDy posterior is visually far

more compelling, expanding in both the location and magnitude of the population peaks for each

species—as might be expected. Access to meaningful uncertainty quantification for real datasets

in the low-data regime is of huge importance, for example, when modelling epidemiological

dynamics, wherein predicting the height and timing of peaks is critical.

(c) Lorenz attractor dynamics

The third case study considers the chaotic dynamics of the Lorenz attractor. The dynamics of the

Lorenz attractor are well studied in the SINDy literature [1,16], and have become a benchmark

system for advancements to the SINDy method. The dynamics are driven by the following system
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Figure 4. Samples from the identified posterior distribution (BINDy, green) and ensemble (E-SINDy, orange) in both

interpolation and extrapolation regimes for the lynx–hare population example.

of ordinary differential equations:

dx

dt
= 10(x2 − x1),

dy

dt
= x1(28 − x3)

and
dz

dt
= x1x2 −

8

3
x3.

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

(4.6)

For the case study in this work, the Lorenz equations above are simulated for 10 s (with a

further 5 s of unseen data for extrapolation) from an initial condition of [x1, x2, x3]T = [−8, 7, 27]T

at a sample rate of 102 Hz. Overall, 103 points are available for training. As before, Θ(x) is

set as a polynomial library, considering terms up to third order. Before training, noise at 2.5%

RMS is added to the state variables. The state derivatives are computed numerically using a

polynomial smoothed finite-difference scheme with a difference order of 2, a window size of 5 and

a polynomial order of 3. In order to reduce the error introduced by the numerical computation

of the derivatives close to the edges of the signal, a few time points7 are dropped from the signal

endpoints. For the SINDy results, the threshold parameter is set to 0.2 (as is done in [16]). All

other parameters are unchanged from the previous case-studies.

For this third case-study, the effect of the prior over models p(m) is also considered. In

addition to the weakly informative prior used in the previous case-study examples, a regularizing

geometric prior over the total number of non-zero elements in the model is also considered. The

probability mass function of the regularizing prior is given by,

p(m) = (1 − θ )dθ , (4.7)

7Dropping 2n + 1 points from each end for an nth-order finite difference scheme is the default used in pysindy [19] and here.
After [16], a second-order finite difference scheme is used.
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Table 1. Posterior results for the Lorenz attractor case-study. Term inclusion probabilities p(Θi(x)|D) and expected parameter

values E[Ξi|D] (and standard deviations) for each of the three considered methods.

BINDy E-SINDy BINDy (regularized)

equation term p(Θi|·) mean (s.d.) p(Θi|·) mean (s.d.) p(Θi|·) mean (s.d.)

10(x2 − x1) x1 1.00 −10 (0.0759) 0.95 −8.74 (3.88) 1.00 −10 (0.0742)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x2 1.00 10 (0.0655) 0.95 9.33 (2.29) 1.00 10 (0.0641)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x1(28 − x3) x1 1.00 27.4 (0.314) 0.95 23.9 (9.43) 1.00 27.4 (0.317)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x2 1.00 −0.872 (0.109) 0.85 1.20 (5.82) 1.00 −0.875 (0.109)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x1x3 1.00 −0.985 (0.0074) 0.94 −0.889 (0.267) 1.00 −0.985 (0.0074)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x1x2 − 8
3
x3 x3 1.00 −2.66 (0.0169) 0.93 −2.46 (0.973) 1.00 −2.66 (0.0167)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x1x2 1.00 0.995 (0.0038) 0.94 0.946 (0.239) 1.00 0.995 (0.0039)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where d is the number of terms in model m, and θ is a hyperparameter, set to the strongly

regularizing value of 0.99 in this work. The effect of this prior over models is to strongly penalize

(by assigning low prior probability to) models with many terms (table 1).

The result of the UQ for the Lorenz equations is compared in figure 5 and table 1 for BINDy

(with and without the regularizing prior) and E-SINDy. It can be seen in the figure that all

three approaches have been highly successful in assigning high probability to the terms in the

data-generating model. As before, sampled model trajectories (integrated forward in time) are

plotted for all three methods in figure 6. The chaotic nature of the Lorenz equations makes

tracking the true dynamics highly challenging. The well-known ‘lobe-switching’ behaviour of

the dynamics means that small errors can quickly cause significant deviations as the dynamics

become governed by a different local attractor. This effect is clearly present in the identified

distributions, which quickly become multimodal after a few oscillations. Qualitatively, it is

observed that both BINDy and regularized BINDy samples remain in step with the true dynamics

for the longest, with E-SINDy the first to diverge. This divergence can be seen almost immediately

where some orange lines deviate quickly from the observed data. Indeed, this is supported by the

numerical results in table 2 which show lower error statistics for the BINDy and regularized

BINDy approach. In the extrapolation region, the distributions have become very diffuse, in

keeping with what might be expected for uncertain forecasting of a chaotic attractor such as the

Lorenz equations.

5. Discussion
In all three case studies, strongly parsimonious models were identified by the proposed

methodology. Counterintuitively, these models were assigned high posterior probability despite

a flat prior over the model space. It is interesting to consider how this can be the case, for which

the authors offer two explanations. On examination of the acceptance ratio in (3.10), one finds that

the ratio is proportional to |Σ
(0)
m′ |

−1/2/|Σ
(0)
m |−1/2. Intuitively, this ratio has a regularizing effect that

penalizes larger models that have the same fit to the data due to the differing dimensions of the

prior covariance. This effect scales with the parameter covariance meaning that wide priors (like

those considered in the case studies here) have a stronger regularizing effect. Another important

consideration is the correlations between the columns of Θ(x) and the state derivatives ẋ. These

correlations depend on the data, the system under study and chosen library of basis functions.

Many, highly correlated terms can complicate the identification procedure with many models

able to produce predictions close to the observed data. By contrast, in the case where only a few

terms have high correlation, the identification of models with few terms is simplified. This effect

could also explain the parsimonious models in the first two case studies.
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Figure 5. Comparison between RJMCMC and SINDy in quantifying model uncertainty for the Lorenz attractor example. In the

plot, the bar-charts depict model inclusion probability (left axis), point plots depict samples of model parameters (right, log

axis). Horizontal bars depictmedian parameter values, black diamonds depict true values of parameters in the underlying data-

generating model.

Table 2. Median, mean and standard deviations of sample mean-squared errors computed from the trajectories in figure 5.

BINDy E-SINDy BINDy (regularized)

equation median mean s.d. median mean s.d. median mean s.d.

10(x2 − x1) 73.7 73.5 18.1 82.8 83.8 19 74.8 75.2 14.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x1(28 − x3) 100 98.1 22.9 110 112 25 100 101 18.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x1x2 − 8
3
x3 56.4 62.2 18.5 79.3 86.5 36.8 59 65 20

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As with any Bayesian approach, the specification of prior distributions plays an important

role. A limitation of the current approach is that the priors over the parameters themselves are

required to be conjugate. For most applications, this is not expected to be an issue, although there

are several situations (for example bounded parameter spaces or monotonic functions) where this

requirement could become restrictive. The authors cannot presently envisage a solution to this

issue that does not come at considerable computational cost, should alternative, non-conjugate

priors be desired.

The choice of prior over models p(m) may be critical in enforcing parsimony. Here, a strongly

regularizing geometric distribution parametrized by the number of terms in the model has been
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Figure 6. Samples from the identified posterior distribution (BINDy, green) and ensemble (E-SINDy, orange) in both

interpolation and extrapolation regimes for the Lorenz attractor example.

applied successfully. However, vastly many more parametrizations are possible. It is expected

that prior selection in practice will be driven by expert domain knowledge, wherever possible. For

example, one could set the prior over each term directly, assigning high prior probability to terms

that are expected to be in the model and low probabilities otherwise. Alternatively, one could

promote parsimony in some types of library functions while permitting dense models in other

types. The flexible nature of the Bayesian formulation presented in this work allows modellers to

encode both domain knowledge and cognitive biases a priori. An interesting avenue for further

investigation is hierarchical prior structures whereby the model-space prior is permitted to be

conditional on the values its parametrization.

One could even imagine a library tempering scheme (similar in some ways to the sequential

library and parameter bagging in [16]) whereby model terms with low probability are tempered

out of the prior during sampling. Practically, this would enable more efficient sampling (as more

model moves are likely to be accepted) as well as permit the operator to start the sampler with

a vastly greater (or even infinite) library of terms, with the expectation that all but those in the

typical set would be tempered out. Such a scheme would bear some resemblance to well-studied

sequential Monte Carlo (SMC) samplers [40], for which a great deal of analysis has already

been conducted. However, the application of SMC samplers to domains whereby parameters are

permitted to change (such as in the interacting scheme of Jasra et al. [41]) has not been as widely

studied and remains an open challenge.

A related area for future investigation is the choice of the ‘jump’ kernel J(m′|m). The ‘bit-

flipping’ method applied herein has proved to be effective in the case-studies considered so

far, but it might be ineffective when significant multi-modality is expected in the posterior, for

example, when very differently parametrized models describe the data well, low probability

intermediate steps might inhibit exploration of the posterior. Instead, it is interesting to imagine

more sophisticated schemes that could better suit problems of this type. Also interesting are

the so-called ‘non-reversible’ jump methods [42] that use an adaptive scheme to ensure that

the posterior is explored efficiently. Another possibility for the jump kernel is to include an
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approach based on the adaptive neighbourhood proposals of [28,29]. For very large model

libraries (whereby evaluation of a model with all the terms included may be computationally

infeasible), such approaches may give practitioners a method to retain a computationally viable

sampler, by considering model moves only to ‘nearby’ models.

The computational complexity of the proposed approach is of interest. The core computational

cost in each iteration of the proposed algorithm is the matrix inversion required to perform the

conjugate update of the proposed parameters in each iteration of the sampler. Because this cost

is (naively) cubic O(d3 + Nd2) for an RJMCMC move to a model order of d (from a model order

less than d) given N observations, the worst-case analysis is that the method is O(D3) for a library

of size D terms. However, because we expect many of the samples in the posterior to be sparse

(d ≪ D) the actual computational complexity (per sample) is likely to be significantly lower than

this. Despite the lack of a concrete computational complexity, the authors remark that empirically

the method is extremely fast. The authors are able to run the sampler at over 200 iterations per

second on a single core of a Dell XPS laptop with an i7 processor.

Although the case studies in this paper have focused on systems of the first-order ODEs, it

is of interest to consider applications to other types of dynamical systems. Since their initial

conception, SINDy-type methods have been extended to include PDEs [11], implicit dynamics

[12], discrete dynamics and weak PDE solutions [13]. Because the approach here can be thought

of as a replacement for the sparse regression at the core SINDy modelling there is no reason that

it cannot be applied in any of these cases. However, there are some important considerations. For

example in the case on implicit dynamics, care would need to be taken to treat the ill conditioning

of the implicit dynamics in a robust probabilistic manner. The authors see these areas as very

interesting for future investigation. It is also interesting to imagine the application of the proposed

method to systems of very many differential equations. Such high-dimensional problems pose a

challenge in that the libraries under consideration would grow combinatorially with the number

of degrees of freedom. In this setting, the adaptive neighbourhood proposals in [28,29] may

encourage better mixing in the chain.

A key assumption in SINDy methods is that the dynamics are described as ẋ ≈ Θ(x)Ξ . Implicit

in the least-squares formulation of [1] (as well as almost every other approach for learning sparse

Ξ ) is the Gaussian noise model in (2.3). The assumption of Gaussian noise on ẋ only, with x (or at

least Θ(x)) noise free, is unlikely to hold for many practical applications—especially in the low-

data, high-noise regime. The calculation of ẋ numerically from noisy x is likely to only compound

this issue, particularly for second-order dynamical systems where the numerical derivative must

be computed twice. It is certainly possible to envisage more advanced statistical descriptions of

the noise model, whereby noise entering the observed x is transformed nonlinearly by Θ and by

the numerical differentiation in computing ẋ (such an attempt is made in [18]). However, such a

formulation is likely to make the inference described in this work impractically expensive. Despite

the strong assumption of the noise model in equation (2.3), the authors are encouraged by the

strong performance of the proposed method in both numerical and experimental case-studies.

One potential explanation for this performance is that the noise variance parameter σ 2 is freely

able to inflate during the sampling. This can have the effect of ‘swallowing’ additional variance

that may be present in a more accurate likelihood model. The result is a Gaussian approximation

to the likelihood function (in a manner similar to [18]).

6. Conclusion
In this work, a novel method for Bayesian identification of nonlinear dynamic systems in a

SINDy-like manner has been proposed, considering a joint inference over both model terms and

their parametrization. It is the argument of this paper that such a posterior over models is more

useful than single (or even an ensemble of) sparse models as it permits the operator to make

probability-informed choices, and propagate meaningful uncertainty to further analyses.

Overall the proposed methodology has several advantages in heuristic quantification of

uncertainty over ensemble-based SINDy, including prior choice over models and a valid
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distributional formulation. The Bayesian formulation has been shown to be effective in three

benchmark case studies, correctly assigning high posterior probability to terms in the underlying

differential equations.
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Appendix A. Effect of parametrization in identification of small-valued
parameters

In the first case study example, a single parametrization of the Legendre polynomial was

considered. Here, the effect of this parametrization is studied. Both BINDy and E-SINDy are

applied to 100 parametrizations of the Legendre polynomial in equation (4.3). Parameters are

sampled uniformly in the range [0,1] and rounded to three decimal places (as was done in

the generation of the coefficients in equation (4.3)). Of the sampled parameters, 4 were set to

have zero magnitude and a further two were set to have a small magnitude by multiplication

by 0.01. In order to aid in the interpretation of the results, the indices of the zero-valued and

small-valued parameters were fixed to be the same as those in the first case study ([P1, P6, P7, P8]

and [P5, P9], respectively). Added Gaussian noise was also re-sampled at a level of 5% RMS in

every case.

The results of this investigation are plotted in figure 7. As can be seen in the figure, BINDy

assigns higher probability to the correct model terms in every case. It is interesting to note that

the small-valued parameters (P5 and P9) are only identified by BINDy at around 60% of the time

on average, less confidence than was seen in the specific parametrization of the results in figure 1.

Some of this drop might be explained by the fact that sampling parameters in [0,1], shrinking them

by a factor of 100 and then rounding to three decimal places will almost certainly produce some

parameters that have zero magnitude or a magnitude so small as to be indistinguishable from

noise. However, the authors would note that even this slightly reduced performance represents

a significant improvement over the E-SINDy approach that fails to identify the small-valued

parameters in almost every case.

Appendix B. Convergence of BINDy
The convergence of RJMCMC methods depends strongly on the choices of the prior distribution

and jump kernel as well as the geometry of the posterior. Here we consider the convergence of the

proposed scheme to the polynomial case study example in the main body of the paper. In total, 100

samples are drawn from the prior (as defined above) as initial conditions for the Gibbs sampler.

The sampler is then run for 1000 iterations, with no samples discarded so that the convergence

during the burn in period is visible. The trace of the parameter values in Ξ is plotted in figures 8

and 9.
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Figure 7. Posterior probabilities of BINDy and E-SINDy of selecting polynomial terms, averaged over 100 parametrizations of

the Legendre polynomial in the first case study. Solid blocks correspond to terms that are truly in the data-generating model,

hollow bars correspond to spurious terms.

As can be seen in figure 8, the values of the parameters (green dots) converge quickly to the

true values (horizontal black lines) and remain there. Although there is increased variance for

the small-valued parameters (corresponding to P5 and P9 in the polynomial library), it appears

visually to be stationary indicating that the chain has converged. Figure 9 depicts a zoom on the

first 100 iterations of the sampler. Here, it can be seen that despite high initial variance, the chain

quickly converges and appears well converged after only 100 iterations.

Although the simplistic ‘bit-flipping’ jump kernel used in this study has a number of

theoretical limitations, it appears that it is sufficient to produce a well-converged chain in this

example.

Appendix C. Robustness of BINDy
An important concept in SINDy-type modelling is the robustness in the high-noise, low-data

regime. Indeed, this is a practical consideration for nonlinear system identification approaches

more generally. Most SINDy-type approaches return point estimates of the model and its

parametrization, given the cognitive bias of sparsity injected into the chosen sparse regression

scheme. In this context, one can interpret robustness as choosing the ‘correct’ data-generating

model.

The proposed approach targets the posterior probability distribution p(Ξ, m|ẋ, Θ(x)). This

distribution explicitly incorporates sources of uncertainty such as low-data and high-noise by

way of the data-likelihood model in equation (2.3). Thus, the probability of selecting the correct

model is very likely to diminish in the presence of high noise or low data (as the data likelihood
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Figure 8. MCMC trace of the elements ofΞ (fitted to the polynomial case-study). Superimposed trace of 100 chainswith initial

conditions drawn from the prior.

Figure 9. Zoomed view of traces of the elements ofΞ for the first 100 iterations of the sampler.
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Figure 10. Posterior term inclusion probabilities at a fixed data length for various levels of added Gaussian noise. Estimated by

BINDywith a flatmodel prior. Subplot axes are identical to those of figure 5. Solid bars indicate terms truly in the data generating

model, while hollow bars indicate spurious terms.

would become more diffuse). For even very large Gaussian noise, with perfect state observation

the conjugate update of the parameters is exact (for a given model order) and so the posterior

would exactly reflect the uncertainty due to noise. However, in practice, large noise levels

are very likely to introduce non-Gaussian disturbances to the state derivative computation

(as is the case in SINDy methods generally) and so this would likely be the limiting factor

in practice.

Nevertheless, it is instructive to consider the effect of low-data and high-noise regimes. In

figures 10 and 11, the posterior term inclusion probabilities are plotted. BINDy is applied to the

Lorenz case-study example with a flat model prior. In figure 10, the length of the observed data

is held constant at 10 s (or 1000 observations) and the variance of the added noise is varied from

1% to 15%. As can be seen in the figure, BINDy is very robust to noise and assigns high posterior

probability to correct terms in the data-generating model, with some spurious and missed terms

assigned low probability at the highest noise levels.

In figure 11, the effect of decreasing amounts of available data is investigated. The level

of added noise is held constant at 2.5% RMS and the length of the observed dynamics

available for inference is varied between 1.0 s (corresponding to only 100 datapoints) and

10 s (corresponding to 1000 datapoints). The proposed BINDy approach with a flat model

prior is applied to the data. Once again BINDy performs excellently, correctly assigning high

probability to terms in the Lorenz equations with some spurious and missed terms in the shortest

data lengths.

Figure 12 depicts the robustness of BINDy to the effect of data length and noise in a heatmap

format. Each element of the heatmap considers the probability of the true data-generating model

under the posterior estimated by BINDy. As can be seen in the figure, the probability approaches

unity for low noise and long sequences.
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Figure 11. Posterior term inclusion probabilities at a fixed noise level for various amounts of observed dynamics. Estimated by

BINDywith a flatmodel prior. Subplot axes are identical to those of figure 5. Solid bars indicate terms truly in the data generating

model, while hollow bars indicate spurious terms.

Figure 12. Heatmap depicting the posterior probability of the true model for different noise levels and data lengths.
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