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Abstract
Persistent injury to oral mucosa due to habitual quid chewing, resulting in the 

upregulation of inflammatory cytokines and consequential myofibroblastic 

persistence, emphasizes the role of epigenetic aberration in the pathogenesis of oral 

submucous fibrosis (OSF). However, there is a dearth of research on the role epistasis 

plays in the pathophysiology of OSF. Among the important epistatic interactions in 

the pathophysiology of OSF are those between Phosphatase and Tensin Homologue 

(PTEN) and Insulin-Like Growth Factor 1, Transforming Growth Factor-β (TGF-β), 

Cyclooxygenases, and lipoxygenases (LOX). Additionally, PTEN and Nuclear Factor 

Kappa B (NF-κB) have an epistatic relationship that is particularly mediated by 

the p65 subunit of NF-κB. Given the importance of epigenetic modification in 

the pathogenesis of OSF, the potential use of DNA methyltransferase and Histone 

deacetylase inhibitors as a therapeutic option holds promise. Another in vivo 

epigenetic therapeutic option for treating OSF is using stimulatory microRNAs against 

antifibrotic genes and inhibitory microRNAs against profibrotic genes. This review 

aims to connect numerous epigenetic and epistatic components to the mechanism 

of OSF. A better understanding of the disease process may provide OSF management 

with newer therapeutic options.

Article Highlights
 • Epigenetic changes from chronic oral injury drive persistent scarring and raise 

cancer risk in oral submucous fibrosis.

 • Unique gene–gene interactions amplify fibrosis, revealing new targets for future 

drug therapies.

 • Understanding these molecular pathways opens the door to innovative, 

precision-based treatments for this serious oral disease.

 • Cyclooxygenase (COX) and Lipoxygenase (LOX) enzymes that generate ROS and 

profibrotic mediators, contributing to PTEN inactivation and fibrosis.

Keywords Oral submucous fibrosis, Epigenomics, Epistasis, DNA methyltransferases, 
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1 Introduction

Oral submucous fibrosis (OSF) is a chronic, progressive disease affecting the oral 

mucosa, causing reduced mouth opening, burning sensations, and facial deformities. 

It’s a potentially malignant disorder, with 3%-10% of patients developing oral cancer [1]. 

Around 600 million people worldwide chew areca nut (AN), with approximately 5% of 

AN chewers being OSF patients, according to epidemiological statistics [2, 3]. Multiple 

studies across various countries have demonstrated a correlation between areca nut 

chewing and OSF [3, 4].

When compared with other oral potentially malignant disorders, oral leukoplakia 

(OLE), the 10-year malignant transformation rates (MTR) for OSF and OLE were 10.82 

(± 1.73) and 9.58 (± 1.02), respectively. The difference in MTR between OLE and OSF 

was further magnified with increasing follow-up times. These findings are corroborated 

by log-rank test results for long-term (≥ 10 years) time-to-event analysis, indicating that 

OLE + OSF carries a higher risk of MTR than OLE and OSF alone (p = 0.0086). Further-

more, OSF has a higher MTR than OLE for follow-up periods exceeding 10 years. The 

14-year MTR for OSF patients increased to 20%, nine years following the diagnosis of 

OLE, while the oral cancer rate stabilized at 10%. The study indicates that while oral can-

cer incidence in OLE plateaued after 10 years, it significantly increased in OSF patients, 

leading to the recommendation of a 10-year surveillance period for OLE, whereas for 

OSF, it should extend to 15 years [5, 6]. Yang et al. in a 2017 statewide cohort study in 

Taiwan, with a 13-year follow-up period, reported a 9.13% MTR (1.9 to 8.63% in previ-

ous studies) [7]. Chiang et al., in 2020, reported that in a 5-year follow-up at a single 

hospital in Taiwan, 18.5% of OSF + OLE transformed to cancer, compared to 4.6% of OSF 

patients alone [8].

According to these investigations, OSF is one of the most significant public health 

issues and may have the potential to develop into malignancy. The aetiology of OSF 

is currently thought to be complex, nevertheless. The start and progression of OSF 

are known to be influenced by metabolic disruption, hereditary factors, and chemi-

cal and physical irritants. Despite the superfluity of research in this field, a deeper 
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comprehension of molecular interactions, particularly epigenetics, is necessary to 

address this worldwide health issue.

2 Epigenetic and epistatic drivers of OSF: the overhealing wound paradigm

Epigenetics is the study of heritable changes in gene expression that are reversible with-

out involving changes in the DNA sequence. Fibrosis is greatly influenced by the epi-

genetic changes caused by DNA hyper- and hypomethylation, histone acetylation and 

deacetylation, and microRNAs, among others [9–12]. Considering all these factors, epi-

genetic modifications may best explain the transition of fibroblasts into myofibroblasts 

and their persistence in any fibrotic disorder. These factors may also be important for 

the pathogenesis of OSF [11, 13], which is now regarded as an overhealing wound [14, 

15]. Chronic injury to the oral mucosa caused by habitual quid chewing sustains a pro-

inflammatory microenvironment characterized by persistent infiltration of immune cells 

and elevated cytokine levels. This ongoing inflammatory stimulus drives an aberrant 

wound-healing response, central to the pathogenesis of OSF. Dysregulation of coagula-

tion and fibrinolysis pathways, coupled with the prolonged presence of activated myo-

fibroblasts, perpetuates a hyper-reparative state. This pathological repair response not 

only contributes to progressive fibrosis but also creates a microenvironment conducive 

to malignant transformation [2, 15–19].

While oral keratinocytes may indirectly contribute to the profibrotic effects of areco-

line on buccal mucosal fibroblasts (BMFs) by altering their collagen metabolism [20], 

emerging evidence points to a more direct role of epithelial cells in initiating fibrosis. A 

recent study on OSF identified a distinct epithelial cell subset, termed Epi1.2, character-

ized by both profibrotic and proinflammatory phenotypes. These Epi1.2 cells initiated 

the fibrotic process in fibroblasts through interactions with T cells via receptor-ligand 

interactions between macrophage migration inhibitory factor (MIF)- Cluster of Differ-

entiation 74 (CD74) and C-X-C chemokine receptor type 4 (CXCR4) [16]. The Dipepti-

dyl peptidase 4 (DPP-4) secretion by OSF epithelium drives the activation of fibroblasts, 

which also suggests an overhealing process. DPP-4 inhibitors seem to reverse the acti-

vation of alpha smooth muscle actin (α-SMA) in fibroblasts. Increased DPP-4 levels 

and collagen deposition correlate with excessive scarring and fibrosis [17]. Arecoline, a 

byproduct of AN chewing, through upregulation of phosphodiesterase 12 (PDE12) local-

ized within the mitochondrial matrix of oral mucosa cells, contributes to oral mucosal 

barrier loss [18] and makes the mucosa conditioned for further injury. The concept of 

oral mucosa as an overhealing wound is further supported by an epigenetic mechanism 

involving the induction of miR-17p in oral epithelial cells exposed to arecoline. The miR-

17p-laden exosomes secreted by oral epithelial cells fuse with the fibroblast cell mem-

brane, and intracellular miR-17p then upregulates the profibrotic signaling in fibroblasts 

by two mechanisms. First, binding to the 3-UTR region of SMA Mothers Against Deca-

pentaplegic-7 (SMAD-7) inhibits it and second, by inhibition of E3 ubiquitination ligase 

WW domain-containing E3 ubiquitin protein ligase 1 (WWP1), which targets Trans-

forming Growth Factor-beta Receptor I (TGF-βR-I) for ubiquitin-mediated proteasomal 

lysis, both changes result in upregulation of Collagen-I and α-SMA through augmented 

SMAD2/3 signaling [19]. Epistasis is a well-known concept in genetics where one gene 

masks the effect of another gene. This review seeks to connect numerous epigenetic and 

epistatic elements in the mechanism of OSF considering the dismal forecast that OSF 
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cases will increase due to an increase in BQ use. This may provide a better understand-

ing of the disease process, offering rational therapeutic options for managing OSF. The 

pathogenesis and malignant transformation of OSF caused by epigenetic and epistatic 

alterations are depicted in a graphical abstract (Fig. 1, Graphical Abstract).

3 Epigenetic mechanisms hardwired in the genesis of fibrosis

Epigenetic reprogramming orchestrates the conversion of temporary repair into per-

manent scarring in fibrosis, a maladaptive reaction to chronic damage. There is grow-

ing evidence that fibrotic development is hardwired across tissues by four interrelated 

epigenetic axes: histone acetylation, deacetylation, hypoxia-mediated remodeling, and a 

persistent inflammatory milieu. 

3.1 Histone acetylation in activation of TGF-β

Recent research suggests that the development of fibrosis may include inbuilt epigenetic 

processes [21–23]. This is clearly illustrated by the fact that epigenetic machinery is used 

during the transcription of collagen by TGF-β [13, 24–27].

Egr-1 independently stimulated collagen 1A1 (Col1A1) expression in normal fibro-

blasts by directly binding to its promoter [26, 27]. There was synergistic induction of 

OSF by constitutive overexpression of the Egr-1 protein in BMFs and increased TGF-β 

signalling during areca nut chewing. TGF-β-induced collagen production, cell migra-

tion, and myofibroblast transdifferentiation were all reduced in Egr-1-deficient fibro-

blasts, despite intact Smad activation, indicating that the full complement of fibrotic 

response to TGF-β requires Egr-1 [27].

This can be explained by the following mechanism: 1. TGF-induced Egr-1 binds to the 

Egr-1 binding Sequence (EBS) in p300 promoter to upregulate p300 expression. Aug-

mented p300 expression causes increased acetylation of the promoter chromatin of the 

Col1A1 gene, facilitating its transcriptional activation by Smad2/3 [24]. Additionally, 
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Fig. 1 Graphical Abstract: Oral submucous fibrosis is an overhealing wound caused by chronic chewing of betel 

quid, leading to barrier loss and a sustained inflammatory environment. This environment activates fibroblasts and 

epithelial cells, producing inflammatory cytokines and promoting differentiation into myofibroblasts. Key epigen-

etic regulators, such as HDAC8, HDAC9, and miR-17p, contribute to fibrosis and malignant transformation in OSF, 

perpetuating hypoxia and fibrotic remodeling
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p300 increases the amount of plasminogen activator inhibitor I (PAI-1) that TGF-β1 

induces by acetylating histone residues on the PAI-1 promoter [13]. TGF-β1 induced 

Transcription factors like Specificity Protein 1 (Sp1) also amplify the process [25]. PAI-1 

is thought to accelerate fibrosis by facilitating the accumulation of fibrin [28, 29].

The current highly selective p300 inhibitors like CCS1477, A-485, B026, CREB-bind-

ing protein 30 (CBP30) and NEO2734 target both p300 and CREB-binding protein 

(CBP), leading to side effects [30–34]. BT-O2C is a recent development that selectively 

targets p300, sparing CBP. BT-O2C achieves greater selectivity by binding the histone 

acetyltransferase domain of p300 and an E3 ubiquitin ligase like cereblon and von Hip-

pel–Lindau (VHL). This creates a ternary complex that tags p300 for proteasomal degra-

dation, sparing CBP due to structural differences. BT-O2C acts catalytically, enabling the 

degradation of multiple p300 molecules per degrader, reducing the dose required and 

minimizing off-target effects [35, 36]. These findings suggest that p300 inhibition could 

mitigate fibrosis in OSF by reducing collagen synthesis and ECM deposition (Fig. 2A).

3.2 Histone deacetylation: the role of HDACs in the pathogenesis of OSF

Fibrotic disorders are linked to the modulation of cellular signaling by histone deacety-

lases (HDACs), enzymes that modify epigenetic changes by removing the acetyl group 

from histone’s N-acetyl-L-lysine amino acid. The HDAC superfamily includes Zn-

dependent and NAD-dependent classes. HDAC8, a member of class I HDACs, promotes 

the development of oral squamous cell carcinomas (OSCCs), while class I HDAC inhibi-

tion suppresses OSCC initiation and recurrence [37].

3.2.1 HDAC-8, 1 and 5

Immunocytochemistry findings indicate a cytoskeleton-like distribution of HDAC-8, 

and double-immunofluorescence staining and confocal microscopy showed HDAC-8 co-

localized with α-SMA in stress fibre-like structures [38]. TGF-β through Rho-associated 
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protein kinase (ROCK)/cytokine LIM kinase 1 (LIMK1) upregulates phospho-cofilin 

[39], with HDAC-8 aiding in the phosphorylation of Cofilin [40]. Only when α-SMA 

and γ-SMA are incorporated into stress fibers does the myofibroblast develop contrac-

tile capabilities, at which point it should be regarded as a functionally competent cell. 

Phospho-cofilin may help α-SMA and γ-SMA integrate into stress fibers by cutting the 

actin filaments. This process is also aided by trophomyosin-1 (TPM1) through TGF-β/

SMAD2/3 pathway in OSF [39]. This indicates that it is a critical HDAC involved in the 

cytoskeletal modelling of Myofibroblasts, the knockout of HDAC-8 halts OSF progres-

sion, consistent with this role [37] (Fig. 1, Graphical Abstract).

Inspired by the garlic component ajoene, a new class of sulfur-based compounds has 

been created with a unique zinc-binding group. These substances exhibit strong HDAC8 

selectivity over other HDAC isoforms [41]. Virtual screening using ligands and struc-

tures revealed new scaffolds for novel, non-hydroxamic acid inhibitors. Specifically, 

SD-01 and SD-02 showed excellent selectivity for HDAC8 and substantial nanomo-

lar inhibition (IC₅₀: 9.0  nM and 2.7  nM, respectively) [42]. The established HDAC8 

inhibitor PCI-34051 promotes replication stress and genome instability in cancer cells, 

which results in high synthetic lethality when paired with checkpoint kinase inhibitors. 

HDAC8i-1 is another potential inhibitor that was discovered in recent high-throughput 

epigenetic screens. Similar to PCI-34051, it is effective when combined with checkpoint 

kinase inhibitors in preclinical cancer models [43]. HDAC 1 & 5 in OSF seem to have an 

antifibrotic role as they activate the co-repressors of PAI-1 and inhibit co-activators of 

PAI-1 (Fig. 2A).

3.2.2 HDAC 9

HDAC9 is involved in the activation of fibroblasts, facilitating their transformation into 

myofibroblasts, which are characterized by increased expression of markers such as 

α-SMA and collagen type I. Arecoline-induced Egr-1 seems to drive HDAC9 upregu-

lation. HDAC9 regulates the expression of pro-fibrogenic genes induced by TGF-β, 

thereby promoting the fibrotic response and ECM deposition. Knockdown of HDAC9 

significantly inhibits the transformation process, reducing collagen gel contraction, cell 

migration, and wound-healing abilities of fibroblasts, highlighting its critical role in this 

transition [44].

The transcriptional complex formed by HDAC9 and myocyte enhancer factor 2D 

(MEF2D) prevented the production of Nuclear Receptor Subfamily 4 Group A Member 

1 (NR4A1), a pro-apoptotic gene targeted by MEF2D. As a result, HDAC9 knockdown 

markedly reduced cell division and triggered cell death. This data suggested that the 

HDAC9/MEF2s axis may play a role in myofibroblasts' ability to avoid apoptosis in OSF 

tissue and may signal the possibility of malignant transformation [44] (Fig. 1, Graphical 

Abstract).

3.3 Hypoxia initiates fibrosis and propagates it through epigenetic mechanisms

3.3.1 Sustained hypoxia is obligatory for the initiation and maintenance of fibrosis

Hypoxia is critical for the maintenance of fibrosis, as demonstrated by a number of stud-

ies, including OSF [2, 15, 45–49], is sustained through several mechanisms:

1.  As fibrosis progresses, oxygen diffusion distances from blood vessels to cells gradually 

increase, which worsens hypoxia [49].
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2.  Hypoxia also increases a number of profibrotic mediators like PAI-1, Platelet 

Derived Growth Factor (PDGF), TGF-β, connective tissue growth factor (CTGF), 

basic fibroblast growth factor (b-FGF), Transforming Growth Factor-α (TGF-α), 

Tissue Inhibitor of Matrix Metalloproteinase-1 (TIMP-1), Lysyl Oxidase (LOX), 

Endothelin-1 (ET-1), and Vascular Endothelial Growth Factor (VEGF), which further 

the fibrotic state [15, 29, 49–52].

3.  The hypoxic state induces Glycolytic Switch, i.e. a shift to aerobic glycolysis in stromal 

cells, contributing to the persistence of myofibroblasts and ongoing fibrosis [15].

4.  Chronic inflammation through constant AN chewing, contributes to OSF by disrupting 

normal tissue responses to ischemia, resulting in a hypoxic microenvironment and 

perpetuating inflammation, thereby aggravating tissue damage and fibrosis [2, 53, 54].

5.  The constricted blood vessels due to fibrosis and congested blood vessels resulting 

from local hypercoagulability also add to the hypoxia profile [2, 15].

As a result, hypoxia and fibrosis create a continuous cycle that amplifies one another 

(Fig. 1, Graphical Abstract).

3.3.2 Hypoxia-induced gene methylation facilitates fibrosis

Hypoxia induced hypermethylation of antifibrotic genes (indicated by the * sign in fig-

ures), which is an important event in fibrosis induction. Hypermethylation of Glutathi-

one-S-Transferase (GST) lowers antioxidant defenses and increases ROS production 

[55]. ROS scavenging nanomaterials can be mooted as newer therapeutic agents for the 

treatment of fibrosis [56]. Increased ROS triggers the overexpression of Hypoxia Induc-

ible Factor-1α (HIF-1α), which in turn activates the anaerobic Lactic Dehydrogenase-5 

(LDH-5) isoform, promoting anaerobic glycolysis and lactic acid generation [57]. Lactic 

acid increases enhanced myofibroblast activation through increased TGF-β activation 

[58]. The Gossypol, an LDH inhibitor, effectively inhibited TGF-β-induced myofibro-

blast differentiation in both healthy and fibrotic human lung fibroblasts. It also reduced 

the expression of collagen 1, collagen 3, and fibronectin, and reduced the generation of 

extracellular lactic acid and acidification [58]. However, Gossypol inhibits all isoforms of 

LDH [59], leading to undesirable side effects. The recent pyridazine derivative RS6212 

has shown specificity to inhibit LDH-5, which might hold promise [60] (Fig. 2B).

p14 Alternate Reading Frame (p14ARF) hypermethylation, which inhibits apoptosis, 

allows the persistence of fibroblasts [12, 61]. 5-Azacytidine (5-AzaC) or 5-Aza-2'-De-

oxycytidine (5-Aza-CdR), and HDAC inhibitors like trichostatin A (TSA) can epige-

netically activate p14ARF [62]. Moreover, the hypermethylation of RAS Protein Activator 

Like 1 (RASAL1) and peroxisome proliferator-activated receptor-γ (PPAR-γ) prevents 

the dedifferentiation of myofibroblasts [12, 63, 64]. The ten-eleven translocation (TET) 

family enzyme TET3, which catalyzes DNA demethylation via hydroxymethylation, can 

be specifically induced by Bone Morphogenic Protein-7 (BMP-7). BMP-7 significantly 

reduces methylation of the RASAL1 promoter, thereby enhancing RASAL1 expression 

[65]. Administration of 5-Aza-CdR and glycyrrhizic acid (GA) demethylated PPARγ pro-

moter, restored PPARγ loss and alleviated fibrotic lung pathologies, including structural 

alterations and adverse expression of fibrotic mediators and inflammatory cytokines [66] 

(Fig. 2B).
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3.3.3 Hypoxia-induced upregulation of DNA methylation enzymes

The key enzymes mediating epigenetic modification influencing fibrosis through hypoxia 

are DNA methyltransferase (DNMT), histone acetyltransferase (HAT), and HDACs. 

These mediators of epigenetic regulation increase HIF binding to HIF-responsive ele-

ments (HRE) of DNMT-1 & DNMT-3B promoters [67]. Additionally, HRE of promoters 

of CTGF [68], TGF-β [69], PAI-1 [70] and LOX [71] increase the profibrotic signaling 

upon HIF binding. Through the upregulation of TGF-β and the promotion of fibrosis, 

BMP-7 is downregulated by CTGF, and it even appears to be necessary for TGF-β's pro-

fibrotic effect [72] (Fig. 2C). The culmination of all these hypoxia-induced modifications 

results in fibrosis and constitutively activated myofibroblasts.

3.4 Inflammation initiates fibrosis and propagates it through epigenetic mechanisms

Areca nut chewing induced inflammation upregulates the inflammatory cytokine Inter-

leukin-6 (IL-6). IL-6 acts through its receptor IL-6  receptor (IL-6R), which comprises 

of the ligand-binding chain (IL-6Rα) and the signal-transducing chain (gp130) subunits. 

Upon binding to IL-6R, the Janus kinase (JAK)/Signal Transducer and Activator of Tran-

scription-3 (STAT-3) pathway signalling is initiated, which then downregulates SMAD-

7. Since SMAD-7 downregulates TGF-β, SMAD7 inhibition leads to upregulation of 

TGF-β signaling [73].

IL-6 employs miR-148a and miR-152 to epigenetically upregulate the expression of 

DNMT-1 [74]. As a result, IL-6 increases its own activity by inhibiting its antagonist 

(p53-wt) via DNMT-1 induced hypermethylation. Also inhibits RASAL1, p14ARF, Phos-

phatase and Tensin Homologue (PTEN), PPARγ by the same mechanism [74, 75]. The 

increased IL-6 signaling changes the caveolin receptor to the non-raft fraction, which 

results in a reduction in the caveolin-mediated internalization of TGF-β and an amplifi-

cation of TGF-β signaling [76].

The inflammation-induced DNMT-1 upregulation also promotes fibrosis through 

hypermethylation of the PTEN promoter and upregulation of Akt, Erk and FAK path-

ways [74, 75, 77, 78]. IL-6 is increased in BMFs, and studies have indicated that this 

enhances OSF [79, 80]. According to Tsai et al. (2004), the depletion of intracellular glu-

tathione in OSF fibroblasts leads to an increase in IL-6, with arecoline acting as a dose-

dependent mediator of this effect [79].

IL-6 through STAT-3 upregulates miR-21 [81], which then inhibits SMAD-7 [82].TGF-

β and Arecoline upregulate NADPH Oxidase-4 (NOX-4), which then augments ROS 

[83, 84], and subsequent miR-21 upregulation [85]. Given the persistent inflammation 

that exists in the microenvironment of OSF, the increased levels of cytokines that are 

linked with inflammation, such as IL-6, may channel epigenetic mechanisms to propa-

gate OSF (Fig. 3A).

Current clinical trials examining IL-6 inhibitors as antifibrotic agents are predomi-

nantly in phases 2 and 3. Tocilizumab, an IL-6 receptor inhibitor, has undergone phase 

2 and phase 3 trials for systemic sclerosis-associated interstitial lung disease. Phase 3 

results indicate a potential benefit in preserving lung function, although the primary 

endpoint related to skin fibrosis was not achieved. Moreover, new inhibitors targeting 

the IL-6/JAK/STAT3 pathway are currently undergoing early-phase clinical trials for 

fibrotic diseases [86]. DNMT inhibitors like 5-AzaC and 5-Aza-CdR are widely used for 
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haematological malignancies, with nearly 70 in development. However, fibrosis inhibi-

tors are in preclinical or early clinical research [87–89].

4 Epigenetic and epistatic interaction in OSF

The PTEN gene is a tumor suppressor gene that acts as a negative regulator of the Akt/

PKB signaling pathway. PTEN dephosphorylates FAK, inhibits AKT activation [90], 

downregulates adhesive signaling and inhibits fibrosis. PTEN loss is seen in a number 

of cancers and fibrotic disorders, including OSF, and this loss signals the onset of TGF-β 

induced myofibroblast differentiation [77, 78]. Loss of epithelial PTEN thereby disrupts 

the process of epithelial repair, exacerbates epithelial damage, and unfavorably advances 

to fibrosis [77, 91], which is aided by the phosphorylation of FAK and PI3K/Akt path-

ways [91] (Fig. 3A).

The mechanism underlying the loss of PTEN expression in OSF appears to be epi-

genetic, which was previously unknown. Significantly, ROS mediates fibrosis in OSF 

by oxidizing the nucleophilic cysteine residue of the PTEN protein, leading to loss of 

PTEN function [92]. Furthermore, ROS have been proven to stimulate TGF-β, creating a 

vicious loop [93, 94].
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Fig.  3 A Schematic representation of molecular mechanisms involved in AN-induced fibrotic signalling path-

ways leading to collagen production. AN chewing introduces arecoline, which triggers inflammation and activates 

interleukin-6 (IL-6) production. IL-6 further upregulates miR-148a and miR-152, influencing DNMT-1 expression. 

DNMT-1 downregulates tumor suppressor genes such as p53-wt, p14ARF, and PTEN, promoting activation of 

Akt, Extracellular signal-regulated kinase (Erk), and Focal adhesion Kinase (FAK) pathways, which contribute to 

enhanced collagen production. Inflammatory responses also suppress RASAL-1 and PPARγ, further exacerbating 

fibrotic signaling. Arecoline stimulates NOX-4 expression, leading to increased Reactive Oxygen Species (ROS) and 

miR-21, which enhance TGF-β1 signaling. TGF-β1 expression is influenced by STAT-3 activation and further modu-

lated by caveolin-mediated TGF-β receptor internalization. JAK/STAT-3 and SMAD-7 pathways interact with IL-6 

and TGF-β1 to regulate caveolin receptor localization, affecting receptor internalization and signaling. B The An-

tifibrotic Switch-ON: An Epistatic Pathway Regulating Fibroblast Apoptosis. C The Antifibrotic Switch epistatically 

switched "OFF" through the ROS/PTEN pathway and the PI3K/NF-κB/IL-6/Caveolin-1 (Cav-1) pathway. D Schematic 

representation of the regulatory network involving TGF-β1 and miRNA clusters in fibroblast proliferation and col-

lagen production. TGF-β1 activates three distinct miRNA clusters: Cluster-1 (miR-200a, miR-200b, miR-429), Clus-

ter-2 (miR-200c, miR-141), and Cluster-3 (miR-216A, miR-217b). Cluster-1 promotes PI3K/AKT signaling, enhancing 

fibroblast proliferation. Cluster-3 downregulates PTEN, further activating the PI3K/AKT pathway. Both mechanisms 

synergistically lead to increased collagen production. Cluster-2 also contributes to collagen production through a 

separate pathway. Red lines indicate inhibitory interactions, and arrows indicate activation
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Low membrane expression of PTEN often correlates with low membrane expression 

of Cav-1 [91]. Overexpression of Cav-1 restores PTEN levels, inhibits AKT phosphory-

lation and fibroblast proliferation, indicating the role of Cav-1 as a determinant of mem-

brane PTEN levels. Normally, fibroblast interaction with polymerized type I collagen 

results in the formation of Cav-1-PTEN-β1 integrin complex in the fibroblast membrane, 

positioning PTEN in a precise location to inhibit PI3K/AKT signal generated by integrin 

β1-matrix interaction. PTEN is a lipid phosphatase and is epistatic to Phosphoinositide 

3-kinase (PI3K)/AKT/mTOR by dephosphorylating PI3K product Phosphatidylinosi-

tol (3,4,5)-trisphosphate (PIP-3) into phosphatidylinositol 4,5-bisphosphate (PI (PIP-2). 

PIP-3 dephosphorylation into PIP-2 helps to downregulate the PI3K/AKT/mTOR sig-

naling pathway, leading to fibroblast Apoptosis, the antifibrotic switch is turned “ON” 

[95–97] (Fig. 3B). However, loss of Cav-1 or any of the three members of this complex 

leads to reduced membrane accumulation of PTEN-Cav-1-β1 integrin complex, turning 

the antifibrotic switch “OFF”. This restricts the ability of PTEN to inactivate AKT phos-

phorylation [96], thereby facilitating fibrosis (Fig. 3C).

4.1 Role of microRNA in OSF

TGF-β also regulates three microRNA clusters via miR-192. Cluster 1 consists of miR-

200a, miR-200b, and miR-429, and it drives fibroblast proliferation via the PI3K-Akt 

pathway and upregulates collagen [98]. Cluster 2 includes miR-200c and miR-141, while 

cluster 3 includes miR-216a and miR-217, both of which have been demonstrated to 

mediate fibroblast proliferation through the PI3K-Akt pathway [98]. TGF-β has also 

been demonstrated to inhibit PTEN through miR-216a, miR-217 and miR-21 [99, 100]. 

TGF-β-mediated increases in miR-21 block inhibitory SMAD-7, thereby promoting 

fibrosis [101–103] (Fig. 3D).

No FDA-approved drugs directly target miR-216a and miR-217, but preclinical stud-

ies suggest PI3K/Akt inhibitors (e.g., LY294002) or TGF-β pathway blockers (e.g., gal-

unisertib) could counteract their effects [104, 105]. The expression of miR-21 can be 

suppressed by increasing methylation at the promoter region. According to studies, 

using miR-21 inhibitors (such locked nucleic acid (LNA) anti-miR-21) raises the expres-

sion of DNMT1, DNMT3A, which lowers miR-21 levels and boosts promoter methyla-

tion [106]. Preclinical models have employed synthetic miR-200a/b mimics to decrease 

fibrosis and restore function [107–109].

4.2 TGF-β is epistatic to PPAR-γ

Areca nut mediated epithelial injury may lead to fibrosis by upregulating CCL-2/MCP-1 

[14], which in turn, downregulates prostaglandin E2 (PGE2) and PPAR-γ, both of which 

are positive regulators of PTEN stimulating its expression [110]. It has been demon-

strated that PPAR-γ is epistatic to PAI-1 and suppresses endothelial and platelet acti-

vation [111]. The combined effects of these processes make up the antifibrotic action 

of PPAR-γ. TGF-β is epistatic to PPAR-γ [112]. Thus, PPAR-γ and TGF-β1 demonstrate 

reciprocal epistatic effects [112, 113]. This coercive interaction shifts to a more fibrotic 

phenotype through IL-6, IL-13, Wingless-related integration site (Wnt), lysophospha-

tidic acid (LPA), CTGF, hypoxia, epigenetic modifications along with CCL-2/MCP-1, all 

of which inhibit PPAR-γ [14, 113]. Arecaidine, another Areca nut byproduct has also 

been shown to be epistatic to PPAR-γ [20] (Fig. 4A).
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4.3 TGF-β1 is epistatic to PTEN

TGF-β1 inhibits PTEN via the TGF-β1-mTOR complex 2 (mTORC2)-ROS pathway, 

which downregulates PPAR-γ [83, 114–116]. Additionally, it is epistatic to the PTEN 

gene via NOX-4, which increases ROS generation and thus oxidizes the nucleophilic cys-

teine residues of the PTEN protein, inhibiting PTEN’s phosphatase activity [83, 92]. The 

NOX-4 gene has been found to be overregulated in OSF through hypomethylation [12, 

83]. Although compounds such as GKT-136901 and Setanaxib are commonly referred 

to as NOX-4-selective inhibitors, they also inhibit NOX-1. The dual NOX-1/4 inhibi-

tion may promote early vascular ageing, causing increased perivascular fibrosis and 

inflammation [117–119]. This suggests the need for next-generation therapeutics that 

selectively inhibit NOX-4 while sparing NOX-1, achieving antifibrotic efficacy without 

adverse vascular effects, in OSF. As a result of elevated CTGF around the blood vessels, 

loss of PTEN expression around the blood vessels may be the cause of the perivascu-

lar fibrosis seen in OSF [91, 120]. As CTGF is undetectable in normal tissues and only 

upregulated in fibrosis [51], making it an attractive molecular target of drugs like Pam-

revlumab, which are Peptides targeting CTGF (Phase II clinical trials) [121, 122].

In BMFs, arecoline increases phosphodiesterase-4 (PDE-4), which blocks the activity 

of Exchange Protein Directly Activated by cAMP 1 (EPac1) by inhibiting cAMP [123]. 

Although it has been demonstrated that both protein kinase A (PKA) and EPac1 inhibit 

JNK [124], the PKA pathway is inactive in BMFs [123]. JNK is unable to be inhibited by 

low EPac1 levels, and as a result, profibrotic factors such as TGF-β1, CTGF, TNFα, and 

CCL-2 are upregulated by JNK in conjunction with SMAD-3 and Activating Transcrip-

tion Factor 2 (ATF2) [125] (Fig. 4A).

Insulin-like growth factor-1 (IGF-1) is markedly increased in a variety of fibrotic 

disorders, including OSF [126–129]. IGF-1 overexpression, however, has a synergistic 

effect on fibrosis when expressed just before TGF- β1 but does not cause fibrosis on its 

own [126]. The in-vitro animal models of fibrosis have confirmed this sequential pat-

tern of expression [126]. Furthermore, α-SMA, a marker of myofibroblast increases fol-

lowing the co-expression of IGF-1 and TGF-β1, confirming their role in myofibroblastic 

proliferation [126]. While IGF-1 may induce myofibroblastic differentiation via ZEB-1 

(Fig. 3B), neither TGF-β1 inhibitors nor IGF-1 inhibitors reverse fibrosis [126], implying 

that the signaling activity downstream is important. TGF-β1 is required for the initia-

tion of fibrosis, while CTGF is required for the maintenance of fibrosis. CTGF, however, 

remains constitutively active in areas of fibrosis after its initial induction and escapes 

regulation by TGF-β1 [51, 130, 131]. IGF-1, along with ROS, may directly promote fibro-

sis by suppressing PTEN protein (Fig. 4B).

IGF-1, through its receptor on the fibroblast membrane, activates PI3K, which then 

converts PIP-2 to PIP-3. PIP-3 then activates phosphoinositide-dependent kinase-1/2 

(PDK-1/2), which then phosphorylates Akt/Protein Kinase B (Akt/PKB). Akt/PKB, with 

its recruitment on the cell membrane, inhibits fibroblast apoptosis through a molecular 

circuit involving Bcl-2-associated death promoter (BAD), B-cell lymphoma 2 (BCL-2), 

B-cell lymphoma extra-large (Bcl-XL), PDGF, Forkhead Transcription factor (FKHR), 

First Apoptotic Signal (FAS), Nuclear Factor Kappa-B (NF-κB) and Inhibitor of Nuclear 

Factor Kappa-B Kinase-α (IKK-α). IGF-1 receptor inhibition lowers fibrosis by facilitat-

ing apoptosis of the fibroblasts [126, 132] (Fig. 4B).
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It is interesting to note that IGF-1 (as well as TGF-β1 and NF-κB) inhibits PTEN by 

decreasing its phosphorylation or indirectly through the upregulation of NF-κB phos-

phorylation (Fig. 4A). The fibroblast proliferates because of the suppression of P21, P27 

and Glycogen Synthase Kinase-3 (GSK-3), which increases Cyclin D1 (CCND-1) expres-

sion (Fig. 4C).

Additionally, the cyclooxygenase (COX) and lipoxygenase (LIOX) are epistatic on the 

PTEN gene, as they generate ROS by metabolism of arachidonic acid (AA), leading to 

inactivation of the PTEN protein through oxidation [92, 133]. LIOX produces profibrotic 

leukotrienes—LTB-4, LTC-4, LTD-4, LTE-4 by its effect on AA metabolites. The latter 

three leukotrienes, through cysteinyl leukotriene 2 receptor (CysLT2R) may transacti-

vate PDGF-βR, which then causes fibrosis via PDGF-CTGF signaling [134]. In addition, 

LTC-4 may also directly upregulate TGF-β1 [134]. Inflammatory environment upregu-

lates COX, which also has profibrotic action via PGF-2α/Prostaglandin F Receptor 

(FP)/Rho/ROCK/CTGF pathway [28]. Furthermore, phospholipase A-2 (PLA-2) via its 

action on cell membrane phospholipids may bestow additional risk for fibrosis by pro-

viding a steady state AA level [135]. Cytosolic PLA-2 has been shown to be activated in 

the chronic hypoxic environment, which is commonly found in OSF [136–138]. Cyclo-

oxygenase (COX) and Lipoxygenase (LOX) enzymes that generate ROS and profibrotic 

mediators, contributing to PTEN inactivation and fibrosis (Fig. 4C). Table 1 summarizes 

the epistatic relationships and interactions relevant to the role of TGF-β, PPAR-γ, PTEN, 

and other factors in the context of fibrosis, particularly in OSF.

Table 1 Summary of epistatic interactions in pathogenesis of OSF

Factor 1 Factor 2 Epistatic 

Relationship

Mechanism Effect on Fibrosis Refer-

ence

CCL-2 PGE2 & 

PPAR-γ

CCL-2 is epistatic 

to PGE2 & PPAR-γ

Downregulates PGE2 & PPAR-γ, 

positive regulators of PTEN

Suppresses PTEN, ini-

tiates myofibroblast 

differentiation

[14, 

110]

TGF-β1 PPAR-γ TGF-β1 is epi-

static to PPAR-γ

Downregulates PPAR-γ via 

mTORC2-PKCα, IL-6, IL-13, Wnt, 

LPA, CTGF

Fibrotic phenotype; 

PPAR-γ inhibition 

removes antifibrotic 

brake

[112, 

113]

Arecaidine PPAR-γ Arecaidine is epi-

static to PPAR-γ

Inhibits PPAR-γ transcriptional 

activity in oral mucosa

Blocks antifibrotic 

response and pro-

motes fibrosis

[20]

PPAR-γ PAI-1 PPAR-γ is epistatic 

to PAI-1

Suppresses endothelial/plate-

let activation, inhibiting PAI-1 

expression

Reduces pro-fibrotic 

signaling

[111]

TGF-β1 PTEN TGF-β1 is epi-

static to PTEN

Inhibits PTEN via mTORC2/

PKCα and NOX-4-mediated 

ROS

PTEN loss promotes 

perivascular fibrosis

[92, 

114]

IGF-1 PTEN IGF-1 is epistatic 

to PTEN

Inhibits PTEN via PI3K/AKT and 

NF-κB phosphorylation

Promotes fibro-

blast survival and 

proliferation

[126, 

132]

NF-κB PTEN NF-κB is epistatic 

to PTEN

Activates via IKKβ, suppresses 

PTEN

Promotes fibrogenic 

signaling

[132, 

133]

COX/LIOX PTEN COX and LIOX are 

epistatic to PTEN

ROS from arachidonic acid 

metabolism oxidizes/inacti-

vates PTEN

Enhances fibrotic 

response

[92, 

133, 

134]

TGF-β1 miR-21 TGF-β1 is epi-

static via miR-21

Inhibits SMAD7, upregulates 

TGF-β loop

Sustains fibrotic 

signaling

[101, 

102]

miR-216a/217 PTEN miR-216a/217 

inhibit PTEN

Post-transcriptional suppres-

sion of PTEN

Activates PI3K/AKT, fi-

broblast proliferation

[99, 

100]
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5 Potential biomarker is OSF

Based above, we suggest the following biomarkers

1. TGF-β is a central profibrotic cytokine, upregulated in OSF, that drives collagen 

transcription and myofibroblast activation.

2. CTGF maintains fibrosis after initial TGF-β induction; serum CTGF levels correlate 

with clinical staging and histopathological grading, suggesting utility as a serological 

biomarker.

3. PTEN loss by epigenetic silencing or ROS-mediated oxidation is associated with 

myofibroblast persistence and fibrosis in OSF.

4. NF-κB -Upregulated and epistatically interacts with PTEN, contributing to OSF 

pathogenesis.

5. IGF-1-Markedly increased in OSF; works synergistically with TGF-β1 to promote 

myofibroblast differentiation and fibrosis.

6. HIF-1α -Overexpressed in response to hypoxia and ROS; activates anaerobic glycolysis 

and promotes myofibroblast activation.

7. GST hypermethylation leads to reduced antioxidant capacity and increased ROS, 

contributing to OSF.

8. α-SMA & γ-SMA are marker of myofibroblast differentiation; increases with 

co-expression of IGF-1 and TGF-β1.

9. Cav-1 Low membrane expression correlates with low PTEN and increased fibrosis; 

overexpression restores PTEN and inhibits fibroblast proliferation.

10. MicroRNAs such miR-21, miR-192, miR-200 family, miR-216a, miR-217, miR-

141, miR-148a, miR-152 regulate TGF-β signaling, PTEN inhibition, and fibroblast 

proliferation in OSF.

6 Future perspectives and therapeutic targeting of OSF through epigenetic 

mechanisms

Based on the above discussion, we have identified several epigenetic targets that might 

be utilized in the treatment of OSF in future studies. These targets are mainly based on 

the reactivation of the classical Vitamin A pathway by retinoic acid (RA) with concomi-

tant use of epigenetic modifiers and the Calcitriol pathway.

Vitamin A is taken up by the cell, crosses the cell membrane, and is acted upon by the 

enzymes responsible for RA synthesis, and converted into RA [139]. Within the Cyto-

sol, RA binds to the cellular retinoic acid-binding protein (CRABP), which transports 

it to the nucleus [140]. Once within the nucleus, it binds to the heterodimer of Retinoic 

acid receptor-α (RAR-α) and retinoid X receptor  (RXR). RAR-α-RXR heterodimer then 

binds to Retinoic acid response elements (RARE), causing the transcription of Retinoic 

acid receptor-β (RAR-β) and downregulation of TERT [140–142]. Transcription of RAR-

β is facilitated by an unmethylated promoter & acetylated Histones. RAR-β transcrip-

tion promotes differentiation, arrest, and eventual apoptosis [140]. The above pathway is 

active at the physiological levels of RA [140] (Fig. 5A).

All trans-retinoic acid (ATRA) upregulates of CBP/p300, which then acetylates 

lysine 373 of p53 [143, 144]. This leads to p53 dissociation from E3-ubiquitin ligases 

like Human Double Minute2 (HDM2) and Tripartite motif-containing 24 (TRIM24), 

thereby stabilizing p53 [144] (Fig. 5B). The activated p53 binds to tumour necrosis factor 
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(TNF)-related apoptosis-inducing ligand (TRAIL) promoter activating it [144]. Another 

mechanism by ATRA that can be used to upregulate TRAIL in cancer cells and induce 

apoptosis is by binding as a ligand in RXR-RAR heterodimer in TRAIL promoter [144] 

(Fig. 5C). While activated p53 can bind to the p21 promoter upregulating it [143, 145]. 

Retinoids through RXR-RXR homodimer or RAR-RXR Heterodimer by binds to P21 

promoter can cause its upregulation leading to p21-mediated cell growth arrest [145] 

(Fig. 5D).

At pharmacological doses of retinoic acid, the recruitment of epigenetic modifiers 

such as nuclear receptor corepressor (NCOR) and silencing mediator of retinoic acid 

and thyroid hormone receptor (SMRT) still enables the RAR-β transcription [140]. But 

continued recruitment of epigenetic silencers like DNMT and HDACs renders classi-

cal RA pathway inoperative [140]. The inhibition of RAR-β causes the upregulation of 

TERT, which in turn promotes progression and the dedifferentiation of tumor (Fig. 5E).

While DNMT inhibits p53 by methylating it, p53 activates miR-34a and miR145 [143]. 

Additionally, miR-34a, a tumor suppressor microRNA that blocks n-Myc, is inhibited by 

DNMT. These microRNA suppress the stemness associated factors like SOX2, OCT4, 

KLF4, and Lin-28 Homolog A (LIN28A) [143]. n-Myc in turn promotes TERT, NRTK-1, 

NME, and ODC1. LIN28A downregulation and upregulation of TERT, NRTK-1, NME2, 

and ODC1 [146]. The net result of these epigenetic changes is the suppression of differ-

entiation (Fig. 5F).
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(SOX2), Octamer Transcription Factor 4 (OCT4), Krüppel-like factor 4 (KLF4), and Lin-28 Homolog A (LIN28A), while 

downregulation of miR-34-a leads to an augmentation of Telomerase Reverse Transcriptase (TERT), neurotrophic 

receptor tyrosine kinase 1 (NRTK-1), NME/NM23 Nucleoside Diphosphate Kinase 2 (NME2), Ornithine Decarboxyl-

ase 1 (ODC 1) through n-Myc. G Use of HDAC inhibitors like Entinostat & Valproic Acid and DNMT inhibitors like 

5-AzaC or 5-Aza-CdR, along with ATRA, can inhibit tumors. H Vitamin D induced inhibition of myofibroblasts dif-

ferentiation from fibroblasts and reduced profibrotic gene expression like COL1A1, COL1A2 and α-SMA
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The inhibitors of DNMT (5-AzaC and 5-Aza-CdR) and HDAC (Entinostat, Valproic 

Acid) in concert with all-trans retinoic acid (ATRA) could be utilized to reactivate the 

classical RA pathway leading to growth inhibition & induction of differentiation & apop-

tosis of cancer cells [140] and downregulation of TERT (Fig. 5G).

Calcitriol (1,25(OH)2D3), also known as the active form of vitamin D binds to the 

active vitamin D receptor (VDR) and exhibits antifibrotic actions via suppressing his-

tone 3 (H3) (lys-9) deacetylation without altering the SMAD2/3 phosphorylation. As a 

result, the transformation of fibroblasts into myofibroblasts is slowed down, and profi-

brotic molecules such as collagen 1A1 (COL1A1), collagen 1A2 (COL1A2), α-SMA, and 

fibronectin are present at reduced levels [83] (Fig. 5H).

7 Prevention strategy for OSF

Vitamin E (α-tocopherol) demonstrates efficacy in alleviating clinical symptoms such 

as restricted mouth opening and reduced tongue protrusion in OSF patients. It also 

reduces oxidative stress markers. Vitamin C (ascorbic acid) offers protective effects 

against lipid peroxidation, with lower levels observed in OSF patients compared to 

healthy controls. β-carotene supplementation has been associated with symptomatic 

improvement through reduction of malondialdehyde levels and enhancement of antioxi-

dant status [141]. Lycopene acts by mitigating inflammation in OSF through the reduc-

tion of ROS and the modulation of gene expression involved in collagen deposition and 

degradation [142].

Meta-analyses indicate that curcumin treatment does not significantly improve mouth 

opening, burning sensation, or tongue protrusion in OSF patients. However, it signifi-

cantly alleviates burning sensation over six months, suggesting benefits related to bio-

availability [143].

Comparative studies reveal spirulina as more promising for clinical improvements, 

such as mouth opening and ulcer healing. Conversely, lycopene has demonstrated 

greater efficacy in similar assessments [144, 145].

8 Conclusion

The pathogenesis of OSF could be likened to a “molecular baton race”, in which molecu-

lar mediators emerge sequentially as fibrosis progresses, with TGF-β as the initiator of 

fibrosis, HIF-α as a transitional amplifier and mediator and CTGF as an endpoint profi-

brotic agent. We would like to summarize some of the key points in our manuscript that 

have not previously been highlighted in the pathogenesis of fibrotic lesions, particularly 

OSF.

1. Epigenetic & non-epigenetic loss of PTEN function in OSF is a precursor to TGF-β 

induced myofibroblast differentiation.

2. Epigenetic and or Direct or indirect epistasis effects of IGF-1 and TGF-β1 on PTEN or 

the epistasis of COX and LIOX on PTEN are relevant to the pathogenesis of OSF.

3. IGF-1 mediates its epistatic effects on PTEN either directly by decreasing 

phosphorylation or indirectly by increasing NF-κB phosphorylation.

4. TGF-β1 is epistatic to PTEN, via TGF-β1-mTORC2-PKCα pathway, resulting in 

downregulation of PPAR-γ. TGF-β1 is also epistatic to the PTEN gene through NOX-4 

via enhanced production of ROS. Even COX and LIOX are epistatic to the PTEN gene 

through increased ROS.
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5. NF-κB is epistatic to PTEN genes via the inhibitor of nuclear factor kappa-B Kinase-β 

(IKK-β) pathway.

Thus, restoring PTEN activity is an exciting treatment strategy for reducing fibrosis in 

OSF. Epigenetic intervention thus bears promise in the therapy of OSF, given that both 

surgical and therapeutic techniques to treat OSF have largely been unsatisfactory, with 

the former even accompanied by rebound fibrosis.
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