
This is a repository copy of Efficient state identification for finite state machine-based
testing.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/230260/

Version: Accepted Version

Article:

Turker, U., Hierons, R. orcid.org/0000-0002-4771-1446, Mousavi, M.R. et al. (1 more
author) (2025) Efficient state identification for finite state machine-based testing. IEEE
Transactions on Software Engineering. ISSN: 0098-5589

https://doi.org/10.1109/TSE.2025.3604472

© 2025 The Authors. Except as otherwise noted, this author-accepted version of a journal
article published in IEEE Transactions on Software Engineering is made available via the
University of Sheffield Research Publications and Copyright Policy under the terms of the
Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits
unrestricted use, distribution and reproduction in any medium, provided the original work is
properly cited. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1109/TSE.2025.3604472
https://eprints.whiterose.ac.uk/id/eprint/230260/
https://eprints.whiterose.ac.uk/

1

Efficient state identification for finite state

machine-based testing
Uraz Cengiz TÈurker Member, IEEE, Robert M. Hierons, Mohammad Reza Mousavi, and Khaled El-Fakih

AbstractÐThe practice of testing software systems modelled as
Finite State Machines (FSMs) has garnered significant attention
owing to its simplicity. In FSM-based testing, the tester derives
a test suite from the FSM model representing the system’s
specification. Subsequently, this test suite is executed against
the implementation, and the tester uses the output to decide
whether the implementation conforms to the specification. Often,
a test suite generation technique requires input sequences to
check whether the FSM is in the intended state. This task is
referred to as state identification and is often carried out using a
set of input sequences called a characterising set. Even though
the use of characterising sets simplifies testing, they require a
reliable reset or reset sequence and additional transfer sequences.
Unfortunately, resetting the underlying system can be costly or
may entail manual configuration. In addition, transfer sequences
do not directly contribute to testing. This work introduces a
class of characterising sets (Ordered Characterising Sets (O-
WSets)) that avoid using resets or transfers by design. We show
that checking the existence of such a characterising set is NP-
complete. We introduce the notion of bounded O-WSets (BO-
WSets), which are types of O-WSets that limit transfer usage,
and give an algorithm that constructs these. In experiments,
on average, the proposed approach led to reductions in the
number of resets (95% for real FSMs; 99.73% for synthetic
FSMs), the number of transfer inputs (53% for real FSMs;
63.3% for synthetic FSMs) and the number of inputs in state
identification sequences (50% for real FSMs; 66.6% for synthetic
FSMs). Additionally, the proposed algorithm reduced the time
and memory required to derive state identification sequences by
85% and 23%, respectively. Finally, the approach led to test suites
with 49.3% fewer sequences and 33.3% fewer inputs on average.

Index TermsÐState identification, finite state machines, soft-
ware engineering/ software/program verification, software engi-
neering/test design, software engineering/testing and debugging.

I. INTRODUCTION

TESTING is a costly but indispensable part of software

development [1]. Manual configuration and test case

design comprise a large portion of this cost. Automating

software testing is the most promising pathway to reducing

this cost, and model-based testing (MBT) has been shown

to be an efficient test automation method. In MBT, when

the underlying system can be represented using finitely many

states and transitions between them, the model is typically an

abstract machine, such as a Finite State Machine (FSM) [2],

U.C. TÈurker was with the School of Computing and Communications, Lan-
caster University, Lancaster, UK, LA1 4YW. E-mail: u.turker@lancaster.ac.uk

Robert M Hierons was with the School of Computer Science, The Univer-
sity of Sheffield, Sheffield, UK.

Mohammad Reza Mousavi was with the Department of Informatics, Kings
College London, UK.

Khaled El-Fakih was with the Department of Computer Science and
Engineering, American University of Sharjah, UAE.

Extended FSM [3], or a timed FSM [4]. Such models are often

converted into FSMs for test derivation.

The term FSM is an umbrella term, and based on

the underlying system, an FSM can be complete/partial

and deterministic/non-deterministic. This work concerns test

derivation for an important class of FSMs: FSMs that are com-

plete and deterministic. We use the term FSM for such FSMs.

FSM-based testing provides a rigorous discipline for func-

tional (conformance) testing of communication protocols [5]±

[10], sequential circuits [2], [11]±[14], parsers and compil-

ers [15], software design [5], object-oriented systems [16],

embedded components [17], and web services [18]±[21].

A multitude of FSM-based testing techniques have been

proposed [2], [5], [9], [11], [12], [22]±[37] based on the

concept of a fault detection experiment originally introduced

for sequential circuits and switching systems [2], [11], [12],

[14]. Such techniques have been shown to be effective when

used in significant industrial projects [38].

FSM-based testing techniques derive a test suite T from

the specification FSM M. Such a test suite is a set of test

cases, where each test case has an input sequence and the

corresponding expected output sequence. Testing then involves

applying the input sequences in the test cases from T to the

implementation under test (IUT) N and checking that the

expected output sequences are produced by N. FSM-based

test generation techniques are appealing because they can be

automated and, in addition, some such techniques produce a

finite test suite such that, if certain well-defined assumptions

hold, every faulty IUT N of the specification M is guaranteed

to fail the test suite.

In FSM-based testing, the size of the test suite (the total

number of inputs and the total number of input sequences)

and the time required to derive the test suite are important as

they affect the cost of testing. Naturally, techniques that can

derive reduced-cost test suites are preferred, and developing

such techniques is an active research area [39], [40].

Many FSM-based test generation techniques utilise se-

quences to i) identify the states and ii) verify the transitions

of the IUT N [5], [27], [41]. State identification, for a state s

of M, is usually achieved through a set W containing one or

more input sequences (state-identification sequences). Here,

for every other state s′ ̸= s of M, W must contain an input

sequence w that separates s and s′: different output sequences

are produced by applying w in states s and s′. A set of state-

identification sequences can then be used to check that N

is in the expected state s: One separately applies the input

sequences from W to N (in the current state) and observes the

output sequences produced by N. If N produces the expected

2

output sequences, we say that s is identified in N. To verify

whether N correctly implements a transition of M, we reset

N, bring it to the starting state of the transition, apply the

transition’s input, observe the output produced by N, and then

identify its ending state using state-identification sequences. If

N produces the expected outputs, then the transition is verified.

If all the states are identified and all the transitions are ver-

ified, then we know that N is a (conforming) implementation.

If, during testing, N produces an unexpected output sequence,

then we know that N is a faulty implementation. As a result

of their role in state identification and transition verification,

the size of and the time required to derive state identification

sequences affect the cost of testing [7], [42].

Several types of state-identification sequences have been

proposed. The most commonly used are Distinguishing se-

quences (DSs) [11], [14], Unique Input-Output sequences

(UIOs), and characterising sets (W -Sets). Both DSs and UIOs

use only one sequence to identify a state s of M, making it

easier to identify a state of the IUT. However, not all FSMs

have UIOs or DSs. Checking the existence of a DS or UIOs is

PSPACE-complete [23], although there are classes of FSMs for

which these problems can be solved in polynomial time [43].

In contrast, every completely specified minimal FSM M

has a W -set: a state identification set that can contain more

than one input sequence. In addition, a W -set can be found

in time that is polynomial with respect to the size of M [5]

and, if M has n states, there is always such a W -set that

contains at most n−1 input sequences, all of length at most

n−1 [11]. Therefore, W -Sets are often preferred. W -Sets are

employed by the prominent W [5], Wp [27], H [30], and

HSI [41] test suite derivation methods and have been used

in many other test generation techniques (see, for example,

[41], [44]). Furthermore, W -Sets are also utilised in automated

model learning [45] where the W -Method is used to decide

whether a given hypothesis (FSM) is conforming [46]±[53].

The W -method is a systematic test generation technique with

guaranteed fault detection and many industrial software test-

ing systems (such as X-Machine Testing [54]) and machine

inference tools (such as LearnLib [55]±[57], and AalPy [58])

use the W -method. Note, however, that there are FSM-based

test generation algorithms that utilise other approaches to state

identification (see, for example, [35], [59], [60]).

Unfortunately, the use of W -Sets introduces additional costs

into testing due to resets and transfer sequences. Specifically,

to identify a state or verify a transition of N, for every sequence

w in the W -Set, we bring N to its initial state using a reset and

then we bring N to the intended state using a transfer sequence

and finally we apply w. As a result, resets and transfers

are required for each state and transition. Unfortunately, the

process of resetting the system (implementing a reliable reset)

can be expensive or may entail manual configuration. The

cost of the resets and transfers is so disruptive that there is

a plethora of results aiming to reduce it [28], [35], [36], [61]±

[65]. A limitation of these methods is that they assume that the

W -set is given, and focus on reducing the cost by efficiently

combining resets, transfers and the sequences in the W -set.

Observe also that there are also methods that do not require

there to be a reliable reset, with such techniques returning a

single test sequence rather than a set of sequences [33], [35],

[36], [44], [59], [60], [66], [67].

The approach presented in this paper requires that the IUT

has a reliable reset or a reset sequence. This allows one to

construct in polynomial time a test suite that is guaranteed to

determine whether the IUT conforms to the specification as

long as the IUT has at most some given number of states [5],

[7]. Practically, the requirement that there is a reset sequence

is not a limiting factor. It is known that the probability of an

FSM with n states having a reset sequence is 1−Θ(1
n
) so

the higher the number of states of the FSM, the higher the

probability of having a reset sequence [68]. In addition, there

are systems that can be reset by simply turning the power off

and then on again.

Our motivation for the work described in this paper comes

primarily from the desire to reduce this cost and enable testers

to use W-Sets while deriving test suites from large FSMs.

In contrast to previous work, we focus on the problem of

choosing a suitable W -set. We introduce a new class of W -Sets

that, by design, avoids using (some) resets and transfers. We

call such W -Sets Ordered Characterising Sets (O-WSets). The

definition of an O-WSet requires that it is possible to execute

all of the sequences in W , from all of the states of the FSM

M, without using any transfer sequences. However, although

an FSM must have a W-set, it may not have an O-WSet. We,

therefore, introduce the notion of a Bounded O-WSet (BO-

WSet), where transfer sequences are allowed, but there is an

upper bound k on their total length.

We first investigate the computation complexity of the

problem of deciding whether an FSM has an O-WSet or a

BO-WSet. This is phrased as our first research question below:

RQ1 How hard is it to check whether a given FSM possesses

an O-WSet or a BO-WSet?

Once we settle this question (in Section IV), we investigate

the cost (total number of inputs and number of sequences)

of BO-WSets compared to the state-of-the-art (unordered)

approach (in Section VI), to answer our next research question:

RQ2 Will using BO-WSet reduce the cost of identifying

states?

This is further refined into three sub-questions:

RQ2.1 Will using BO-WSets reduce the total number of inputs

(length) required to identify the states?

RQ2.2 Will using BO-WSets reduce the number of sequences

(resets) required to identify the states?

RQ2.3 Will using BO-WSets reduce the total number of

transfer inputs (length) required to identify the states?

After this, we investigate the practical efficiency (time

and memory) requirements for deriving BO-WSets, which

concerns our third research question:

RQ3 Is the proposed algorithm for constructing BO-WSets

more efficient than the state of the art approaches?

This is refined into the following two sub-questions:

RQ3.1 How does the time required to construct BO-WSets

differ from state-of-the-art approaches for deriving W-Sets?

RQ3.2 How does the memory required to construct BO-WSets

differ from state-of-the-art approaches for deriving W-Sets?

Finally, we investigate the implications of using BO-WSets

in test suite generation.

3

RQ4 Will using BO-WSets lead to more succinct test-suites?

This is decomposed into the following two sub-questions:

RQ4.1 Will using BO-WSets reduce the total number of inputs

(length) in test suites?

RQ4.2 Will using BO-WSets reduce the number of sequences

(resets) in test suites?

To answer RQ4 we needed to use a test generation tech-

nique. For this task we equipped our testing system with the

W -Method [5], [69].

This paper makes the following main contributions.

1) We introduce and provide theoretical foundation for O-

WSets.

2) We show that it is possible to decide in polynomial

time whether a given characterising set is an O-WSet.

However, the problem of deciding whether a given FSM

has an O-WSet is NP-Complete.

3) We show that the problem of deciding whether an FSM

has a BO-WSet, for a given upper bound k, is also NP-

Complete.

4) We introduce two algorithms, one to derive BO-WSets

and one to derive test sequences using BO-WSets. Since

the problem of deciding the existence of a BO-WSet

is NP-Complete, we do not fix the upper bound k but

instead aim to produce a BO-WSet that minimises k.

5) We report the results of experiments that compared the

proposed algorithms with the state-of-the-art approaches

for W -Set generation. These experiments used both

industrial and synthetic FSMs.

The second and fourth of these contributions address RQ1.

The remaining research questions were addressed by the

experiments.

This paper is structured as follows. We provide preliminaries

in Section II and then explore the motivation for the work in

Section III. We formalise the problem and derive its compu-

tational complexity in Section IV. We outline the proposed

algorithm in Section V and then describe the experimental

evaluation in Section VI. We discuss threats to validity in

Section VII. Finally, we summarise in Section VIII.

II. BACKGROUND

In this section, we provide an overview of the terminology,

definitions and concepts used in this paper. We begin with

material regarding FSMs and then move to directed graphs.

A. Finite state machines

Definition 1 (Finite State Machine). An FSM M is defined by

a tuple (S,s1,X ,Y,δ ,λ) where S = {s1,s2, . . . ,sn} is the finite

set of states, s1 ∈ S is the initial state, X = {x1,x2, . . . ,xp}
and Y = {y1,y2, . . . ,yq} are finite sets of inputs and outputs,

δ : S×X → S is the next state function, and λ : S×X → Y is

the output function.

Here, × denotes the Cartesian-Product between two sets.

Given states s,s′ ∈ S, input x ∈ X , and output y ∈ Y , when

λ (s,x) = y and δ (s,x) = s′, we represent this transition by a

tuple τ = (s,x,y,s′) and visualise it as s
x/y
−−→ s′. Transition τ has

starting state s, ending state s′, and label x/y. We can interpret

τ as meaning that if M receives input x when in state s, then

it outputs y and moves to s′. Given a set X , we let X∗ denote

the set of finite (including empty) sequences of elements of

X and let Xk denote the set of sequences in X∗ of length k.

We use ε to denote the empty sequence and given sequences

Åx and Åx′, we write Åx Åx′ to denote the concatenation of Åx and Åx′.

We extend the next state and output functions to a sequence

of inputs as follows: if Åx is an input sequence in the form

of Åx = x Åx′ then Åδ (s,ε) = s, Åδ (s, Åx) = Åδ (δ (s,x), Åx′). Similarly,
Åλ (s,ε) = ε , Åλ (s, Åx) = Åλ (δ (s,x), Åx′). By abuse of notation, we

abbreviated Åδ to δ and Åλ to λ .

A path ρ of M is a sequence (s1,x1,y1,s2)(s2,x2,y2,s3) . . .
(sk,xk,yk,sk+1) of consecutive transitions and ρ has starting

state start(ρ) = s1, ending state end(ρ) = sk+1, input sequence

input(ρ) = x1x2 . . .xk, output sequence out put(ρ) = y1y2 . . .yk,

and label(ρ) = x1/y1 . . .xk/yk. The behaviour of an FSM M is

defined in terms of the labels of paths leaving the initial state;

such labels of paths are called traces.

s1

s3

s2

x2/y0

x1/y1

x
3 /y

1

x 3
/y 1

x2/y2, x1/y2

x
1 /y

1 , x
3 /y

2

x2/y3

Fig. 1: FSM M1. Note that the

initial state is highlighted with

a dashed line.

An FSM can be graph-

ically represented as a di-

rected graph where the ver-

tices of the graph repre-

sent the states of the FSM,

and the edges of the graph

represent the transitions be-

tween the states. Input-

output labels of the tran-

sitions are represented as

the labels of the graph’s

edges. We now define the

terms pair set, separating

sequence and characterising

sets.

Definition 2 (Pairs Set). Let M be an FSM with the set of

states S = {s1,s2, . . . ,sn}. The pairs set S = {(si,s j)|i < j∧
si,s j ∈ S} is the set of all pairs we can derive from S. The size

of S is
(

n
2

)

= n!
2!(n−2)!=

n(n−1)
2

.

We can extend δ to pair set S ′⊆S by defining δ (S ′,x) =
{(δ (s,x),δ (s′,x))|(s,s′) ∈S ′}.

Definition 3 (Separating Sequence). Input sequence Åx ∈ X∗

separates states s and s′ of FSM M if and only if λ (s, Åx) ̸=
λ (s′, Åx).

Definition 4 (Characterising Set). Finite set of input sequence

W ⊆ X∗ is a characterising set for FSM M if for any pair

(s,s′)∈S , there exists a sequence w∈W that separates them.

Example 1. In Figure 1, we present an FSM M1 with three

states, three inputs, and four outputs. For this FSM, set W =
{w0,w1}, where w0 = x1 and w1 = x3, is a characterising set

because the pairs set is S = {(s1,s2),(s1,s3)(s2,s3)} and w0

separates pairs (s1,s2) and (s2,s3) and w1 separates pairs

(s2,s3) and (s1,s3).

Transitions with the same input and output might start from

different states and end in the same state. For such transitions,

the input is a merging input, as defined below.

4

Definition 5 (Merging Inputs). Given (s,s′) ∈S , input x ∈
X is a merging input for (s,s′), when δ (s,x) = δ (s′,x) and

λ (s,x) = λ (s′,x),

An FSM is minimal if all states are pairwise separable.

There are several practical benefits of using characterising

sets. First, every (minimal) FSM has a characterising set. In

addition, if a minimal FSM M has n states, then for every pair

s,s′ of distinct states of M, there must be an input sequence

of length at most n− 1 that separates s and s′. We observe

that any FSM can be converted into an equivalent minimal

FSM [70] and so we only consider minimal FSMs.

For efficiency reasons, using a non-redundant characterising

set, defined below, is desirable. Intuitively, a characterising set

is non-redundant when one cannot form a smaller character-

ising set by removing or replacing a sequence with a proper

prefix.

Definition 6 (Redundant Characterising Set). A characterising

set W is redundant if one of the following conditions holds:

1) there is some w ∈W such that W \{w} is a character-

ising set; or

2) there is some w ∈W with a proper prefix w′ such that

W ∪{w′}\{w} is a characterising set.

If a characterising set W is not redundant, then it is said to

be non-redundant.

As noted above, it is always possible to construct a char-

acterising set whose sequences all have length at most n−1.

Importantly, if a characterising set is non-redundant, then it

has at most n−1 input sequences.

Proposition 1. If M is an FSM with n states and W is a

non-redundant characterising set for M then |W | ≤ n−1.

Proof. We use proof by contradiction, assuming that there is

an FSM M with n states that has a non-redundant character-

ising set W such that |W |> n−1.

We can order the sequences in W to form w1, . . . ,wk and for

all 0 ≤ j ≤ k let Wj = {w1, . . . ,w j} (so W0 is the empty set).

Then a set Wj defines an equivalence relation ∼ j on the set S

of states of M defined by: s ∼ j s′ if and only if λ ∗(s,wℓ) =
λ ∗(s′,wℓ) for all 1≤ ℓ≤ j. A set of states that are equal under

a relation ∼ j forms an equivalence classes of the states.

Clearly, all states of M are equivalent under the relation ∼0,

and no pair of states of M is equivalent under ∼k (since Wk =
W is a characterising set for M). Thus, ∼0 has 1 equivalence

class and ∼k has n equivalence classes. Since k≥ n, we must

have that there exists 0 ≤ ℓ < k such that ∼ℓ and ∼ℓ+1 have

the same number of equivalence classes and so ∼ℓ=∼ℓ+1.

But this implies that {w1, . . . ,wℓ} and {w1, . . . ,wℓ+1} separate

the same pairs of states. We can, therefore, deduce that if

wℓ+1 separates states s and s′ of M, then there exists some

other input sequence in W that separates s and s′. As a result,

W \ {wℓ} is a characterising set for M. This contradicts W

being non-redundant as required.

As a result, for an FSM M with n states, we consider

characterising sets that are non-redundant and that contain at

most n−1 input sequences of length at most n−1.

In order to test a transition that has starting state s, the FSM

M must be brought to state s. To achieve this, normally M is

reset by applying a reliable reset operation (r) and brought to

the designated state using a reaching sequence. We now define

the reaching sequence set.

Definition 7 (Reaching Sequence Set). A prefix-closed set of

input sequences RS is a reaching sequences set (RSS) for

FSM M with initial state s1, if and only if for all s ∈ S, there

exists an input sequence Åx in RS such that δ (s1, Åx) = s.

Note that a sequence in RSS is used to transfer the FSM

from the initial state to another; therefore, RSSs are also

transfer sequences also covers RSSs. Finally, we can formally

define state identification sequences (set) as follows.

Definition 8 (State Identification Set). Let W be a non-

redundant characterising set and RS a RSS for FSM M.

Then, the set of input sequences T = {r Åxw| Åx∈RS ∧w∈W}
is a state identification set (SIS) for FSM M.

In addition to state identification, SISs can be used to derive

test suites. A test suite for FSM M is a set of input sequences

that separates M from every faulty implementation N in a

given fault domain. The classical fault domain is characterised

by transfer faults (transitions ending in the wrong state), state

faults (states that are not implemented correctly), output faults

(outputs are not implemented correctly), and hybrid faults (a

mixture of two or more faults given above).

The most widely used W -set based test suite generation

method is the W -Method [5], [69]. In this approach, in addition

to SIS, a Transition Verification Set (TVS) is also built.

Definition 9 (Transition Verification Set). Let W be a non-

redundant characterising set and RS an RSS for FSM M.

Then, the set of input sequences T s = {r Åxxw| Åx ∈RS ∧ x ∈
X ∧w ∈W}, where X is the finite set of inputs of M, is a

transition verification set (TVS) for FSM M.

Once a TVS has been built, the W -Method unites SIS

and TVS by removing sequences that are prefixes of other

sequences. Let PR() denote the prefix elimination operation.

A test suite with respect to the fault domain given above can

be defined as follows.

Definition 10 (Test Suite (TS)). The set T S = PR(SIS
⋃

TV S)
of input sequences is a Test Suite (TS) for M.

B. Directed graphs

A directed graph is defined by tuple G = (V,E) where V is

a finite set of vertices,= and E is a finite set of directed edges

between vertices. An edge is defined by a tuple(vi,v j, l), where

vi is the source vertex, v j is the destination vertex, and l is

the label. For a given vertex vi, the number of edges with vi

as the destination vertex is that vertex’s in-degree. Similarly,

the number of edges having vi as the source vertex is the out-

degree of that vertex. Starting from a vertex v ∈ V , one can

reach another vertex v′ ∈V by traversing edges of this graph,

without repeating an edge, forming a graph-path. A directed

graph is strongly-connected if for every pair of vertices vi, v j,

there exists a graph-path that starts at vi and reaches v j. For

5

s0 s1 s2 s3

s7s6s5s4

x0/y0

x1/y0 x0/y0

x1/y0

x0/y0

x1/
y0

x
1 /

y
0

x 0
/y

0

x0/y1

x1/y1

x0/y1
x1/y1

x 0
/y

1
x1/

y1

x 0
/y

1

x 1
/y

0

Fig. 2: Example FSM M1 ShiftRegister from [72].

a given initial vertex, if a graph-path visits every edge of the

graph exactly once, it is an Euler path. Not all directed graphs

have an Euler path. A directed graph has an Euler path if and

only if it satisfies the following conditions [71].

1) The graph is strongly connected,

2) There exists a vertex with (out-degree)-(in-degree)=1,

3) There exists a vertex with (in-degree)-(out-degree)=1,

4) For every other vertex, the in-degree and out-degree

values are the same.

III. MOTIVATION

Every minimal FSM has a W-set, making them popular

in FSM-based testing. For example, some automata learning

algorithms construct W-sets to derive test sequences (test

suites) [45]. One fundamental drawback of using W-sets is

that for every sequence in the test suite, the tester has to carry

out a reset operation, which is costly. This cost may stem

from the manual configuration of the test environment or using

expensive features to bring the underlying system back to its

initial state. This cost increases when the underlying system

has many states. Recent studies aim to generate compact

characterising sets to reduce this cost [40].

Inspired by this observation, we devise an algorithm to

derive a type of W-set with the aim of minimising the number

of resets used in testing. To better position our work, we con-

sider two well-known W -set generation algorithms, namely,

the Classical W -set generation algorithm (CWA) [5], and

the state-of-the-art Minimum Characterising Set Algorithm

(MWA) [40]. In the rest of this section, we briefly review the

two algorithms, apply them to a small example and identify

their shortcoming, hence motivating the contributions of the

approach to the state of the art.

The CWA operates on the notion of k-separability. If an

input separates a pair of states, these states are 1-separable. If

there is an input sequence of length 2 that separates a pair

of states, then they are 2-separable. If a pair is separable

by an input sequence of length k, they are k-separable. The

construction of the characterising set uses this notion and

builds separating sequences of length k by using the separating

sequences of length k−1. Note this computation scheme will

lead to redundant characterising sets (Definition 6). Once all

the pairs, i.e., elements of the pairs set, are separated, the

prefixes of other sequences are removed, and the remaining

set is returned. We picked the CWA method because it is the

most efficient algorithm that does not rely on heuristics and

many of the industrial systems for machine inference such as

LearnLib [55], [56], and AalPy [58] use this method.

As the proposed approach aims to reduce the transfer

sequences, we need a benchmark W -set generation method

with a similar flavour. Recently, TÈurker et al. introduced the

MWA to derive a smallest W -set in terms of the number

of input sequences that it contains [40]. Their motivation is

to reduce the cost of transfer sequences (and so the cost

of testing) by reducing the number of sequences of W -sets.

The authors showed that such an endeavour is PSPACE-

Complete [40]. The MWA algorithm is a greedy method that

uses a breadth-first search to construct W -sets by selecting

promising separating sequences based on their separability

facilities [40]. Since, to our knowledge, the MWA is the most

recent and the most efficient method aiming to reduce the

cost of testing by constructing compact W -sets we picked this

approach as another baseline algorithm for this work.

Example 2. In Figure 2, we are given an FSM ShiftRegister

modelling a real-circuit [72]. For the FSM ShiftRegister,

the CWA can generate a W set W = {x0x0,x0x1x0,x1x1x1}.
After removing the prefixes, the state identification set

(of sequences) is given as follows α1 = {rx0x0,rx0x1x0,
rx1x0x0x0,rx1x0x0x1x0,rx1x0x1x1x1,rx1x1x0x1x0,rx1x0x1x0x0,
rx1x0x1x0x1x0,rx1x0x1x1x1x1,rx1x1x0x0x0x0,rx1x1x0x0x0x1x0,
rx1x1x0x0x1x1x1,rx1x1x0x0x0,rx1x1x0x0x1x0,rx1x1x0x1x1x1,
rx1x1x1x0x0,rx1x1x1x0x1x0,rx1x1x1x1x1x1}.

The set α1 has 19 sequences requiring 19 reset operations

with 99 inputs. Moreover, 47 inputs (in red) out of 99 are

transfer sequences. 52% of the sequences are used for testing

(input utilisation).

Applying MWA to this FSM generates the singleton set

W = {x0x1x0x1}. In this case the state identification set α2

would be α2 = {rx0x1x0x1,rx1x0x0x1x0x1,rx1x1x0x1x0x1,
rx1x0x1x0x1x0x1,rx1x1x0x0x0x1x0x1,rx1x1x0x0x1x0x1,
rx1x1x1x0x1x0x1}. α2 has 7 sequences, requiring seven

reset operations. The total number of inputs is 45, of which

17 are for transfer1, bringing input utilisation up to 62.2%.

In this work, we increase input utilisation by reducing

the use of transfer sequences; note that input utilisation is

inversely proportional to the size of transfer sequences.

Consider the characterising set W = {x0x0x0,x1x1x1}.
By carefully scrutinising the sequences, we derive

a state identification set α3 = {rx0x0x0x1x1x1

x0x0x0x1x1x1x0x0x0x0x0x0x0x0x0x0x0x0x1x1x1x1x1

x1x0x1x1x1x0x0x1x1x1x0x1x0x0x0x1x0x0x0x1x1x1x1x0x1x1x1

x1x1}.

The sequence α3, automatically generated by the algorithm

proposed in this paper, contains a single input sequence and

requires only one reset operation. Moreover, it has 57 inputs,

ten of which are for transfer, which increases input utilisation

to 82%.

128 out of 45 inputs are used for testing, therefore 100∗28/45 = 62.2.

6

This example shows that an appropriate choice of W -set can

reduce the use of resets and transfer sequences in testing.

IV. ORDERED CHARACTERISING SETS

In this section, we explore the problem of finding a ‘good’

characterising set for an FSM M.2 Test generation techniques

typically use a characterising set to check a state s by sepa-

rating s from other possible states. As part of this, many test

techniques have a verification phase that checks the application

of sequences from W to states of the IUT.

We would like to efficiently verify the characterising set W .

This verification step involves checking the result of applying

every member of W to every state of M and so we start by

defining terminology for a single w ∈W and state s ∈ S.

Definition 11 (State-Identifying Path). A state-identifying

path (SIP) α for state s is a path starting from s with

input(α) ∈W.

We would like to execute every element of W from every

state in S, which defines |S|× |W | state-identifying paths. We

would like to use a single test sequence (defined by a path

through the FSM) that includes all of these state-identifying

paths. In the following, βi denotes a transfer sequence that

brings the underlying FSM from one state to another state.

Definition 12 (Identification Path). Given FSM M and char-

acterising set W for M, a path Åρ is an identification path for

W if Åρ can be written in the form α1β1α2β2 . . .αk such that

the following constraints hold:

1) start(Åρ) = s1

2) For all 1≤ i≤ k, we have that input(αi) ∈W.

3) For all αi,α j, 1 ≤ i < j ≤ k, it holds that input(αi) ̸=
input(α j) or start(αi) ̸= start(α j).

4) For all s ∈ S and w ∈W there exists 1≤ i≤ k such that

input(αi) = w and start(αi) = s.

Here, the αi are identification paths, and the βi are transfer

sequences that connect these identification paths. Ideally, we

would like the identification path for W to include no addi-

tional transfer sequences (and so be optimal). This is captured

by removing the βi above. In this work, we focus on deriving

identification paths that have no βi’s. This type of identification

path is formally defined below.

Definition 13 (Transfer Free State Identification Path). Given

FSM M, a Transfer Free State Identification Path Åρ for

characterising set W is a path of M that can be written in

the form α1α2 . . .αk such that the following constraints hold:

1) start(Åρ) = s1

2) For all 1≤ i≤ k, we have that input(αi) ∈W.

3) For all αi,α j, 1 ≤ i < j ≤ k, it holds that input(αi) ̸=
input(α j) or start(αi) ̸= start(α j).

4) For all s ∈ S and w ∈W there exists 1≤ i≤ k such that

input(αi) = w and start(αi) = s.

The above property is desirable since it tells us that we

can verify W without the use of additional transfer sequences.

2Proofs of the results can be found in the supplementary material.

However, this property does not preclude the possibility that

the chosen characterising set W is a relatively expensive way

of separating states of M and so of checking transitions of

the IUT in testing: The (prefixes of) sequences in W used to

separate states may be longer than necessary. The following

defines what it means for a characterising set W to be minimal:

It should allow the shortest possible input sequences to be used

to separate states.

Definition 14 (Minimal Characterising Set). Given FSM M,

a characterising set W for M is said to be minimal if for all

s,s′ ∈ S with s ̸= s′ there is a prefix w′ of a sequence w in W

such that the following conditions hold.

1) w′ separates s and s′; and

2) no shorter input sequence separates s and s′.

The definition of a characterising set does not ensure that

either of the above conditions hold. For example, if W is a

characterising set and Åx is a sequence that is not in W then W ∪
{ Åx} is also a characterising set. Naturally, one might expect

any algorithm that generates a characterising set to aim to

produce one that is minimal.

Importantly, it is possible to check whether a characterising

set W is minimal in polynomial time. The proof of the

following result is based on showing that one can determine

the length of the shortest input sequence that separates two

states s and s′ of an FSM M in polynomial time.

Proposition 2. It is possible to decide whether a character-

ising set W for FSM M is minimal in polynomial time.

We seek optimal W sets that have both of these properties,

i.e., they are minimal and also they can be verified without

the use of additional transfer sequences. We capture both with

the following conditions.

Definition 15 (Ordered characterising Set). Let M be an

FSM with n states. A non-redundant characterising set Wo =
{w1,w2, . . . ,wm} is an Ordered characterising Set (O-WSet)

for M if the following properties hold:

1) Wo is minimal; and

2) there exists a Transfer Free State Identification Path Åρ
for Wo.

As one might expect, we do not need to consider input

sequences of length greater than n− 1, when considering

alternative W set for an FSM with n states.

Proposition 3. If FSM M has n states and W is a non-

redundant and minimal characterising set for M, then no

sequence in W has a length greater than n−1.

We have the problem of checking whether a given charac-

terising set is an O-WSet.

Definition 16 (Ordered Characterising Set Checking problem).

Given a characterising set W for FSM M, the O-WSet checking

problem is to decide whether W defines an O-WSet for M.

The proof of the following result follows from it being

possible to decide in polynomial time whether W is minimal

(Proposition 2) and it being possible to express whether W

7

has a corresponding Transfer Free State Identification Path in

terms of whether a particular graph has an Euler Path.

Proposition 4. The O-WSet checking problem is polynomial

time solvable.

If we simply generate a characterising set W for an FSM M,

then W may not be an O-WSet for M. The following shows

that an FSM may not have an O-WSet.

Example 3. Given n > 1 define an FSM Mn that has two

inputs x1 and x2 and n outputs o1, . . . ,om. The transitions are

defined by the following.

1) The input of x1 simply cycles the state with constant

output o1. Thus, for all 1≤ i≤ n, we define λ (si,x1)= o1

and δ (si,x1) = s j where j = i+1 mod n.

2) The input of x2 maps all states to the initial state and

provides a unique output. Specifically, for all 1≤ i≤ n,

we define λ (si,x2) = oi and δ (si,x2) = s1.

Observe that an input sequence separates two or more states

if and only if the input sequence contains input x2. Further,

such an input sequence separates all pairs of states, i.e., all

elements in set S . We can, therefore, conclude that any non-

redundant characterising set W contains exactly one input

sequence w and w must include input x2. One can now observe

that, since w contains input x2, the input of w maps all states

to the same state of M: for all 1 ≤ i < j ≤ n we have that
Åδ (si,w) = Åδ (s j,w). It is straightforward to see that such a

characterising set cannot be an O-WSet since n > 1.

We are therefore interested in the problem of deciding

whether an FSM M has an O-WSet.

Definition 17 (Ordered Characterising Set problem (O-WSet

problem)). Given an FSM M, the O-WSet problem is to decide

whether M has an O-WSet Wo.

We now explore the computational complexity of this

problem. First, we can place a polynomial upper bound on

the size of any O-WSet since if an FSM M has n states,

then every non-redundant characterising set of M has at most

n− 1 sequences (Proposition 1), each of which has at most

n−1 inputs (Proposition 3). Thus, a non-deterministic Turing

Machine can decide whether M has an O-WSet by guessing a

possible O-WSet W and checking in polynomial time whether

W is an O-WSet for M (Proposition 4). We therefore have the

following.

Proposition 5. The O-WSet problem is in NP.

The O-WSet problem is actually NP-Complete. The proof

that the problem is NP-Hard involves mapping an instance

of the 3-Exact Cover problem to an instance of the O-WSet

problem. The 3-Exact Cover problem is known to be NP-

Complete [73].

Theorem 1. The O-WSet problem is NP-complete.

We have seen that an FSM need not have an O-WSet

(Example 3). In practice, we might instead wish to place a

bound on the size of the transfer sequences used.

Definition 18 (Bounded Ordered characterising Set). Let

M be an FSM with n states and k ≥ 0 be an integer. A

non-redundant characterising set Wo = {w1,w2, . . . ,wm} is a

Bounded Ordered characterising Set (BO-WSet) for M and k

if the following properties hold:

1) Wo is minimal; and

2) there exists a State Identification Path Åρ for Wo such

that the sum of the lengths of the transfer sequences is

at most k.

Note that for the FSM given in Figure 1, the W-set W =
{x1x2} is a BO-WSet where k = 1 and the input sequence

Åx = x1x2,x1x2,x3,x1x2 from s1 is a state identification path

and the length of the transfer sequence is k = 1 (x3).

Definition 19 (Bounded O-WSet problem). Given an FSM M

and integer k ≥ 0, the Bounded O-WSet problem is to decide

whether M has a Bounded O-WSet Wo for M and k.

The existence problem for a given k and FSM M is NP-

Complete. In the following, the problem being NP-hard is

immediate since we can set k = 0 and refer to Theorem 1.

Theorem 2. The bounded O-WSet problem is NP-complete.

This also implies that the problem of finding a state identi-

fication path with a minimal total length of transfer sequences

cannot be solved in polynomial time (unless P=NP) and so

it addresses RQ1. Motivated by this, we now develop an

algorithm to find a Bounded O-WSet for a small bound. The

algorithm developed is a heuristic (it is not guaranteed to

return an optimal solution), and we report on experiments that

evaluated this algorithm in Section VI.

V. ALGORITHM FOR DERIVING BO-WSETS

A. High-level summary

Our algorithm computes a state identification path in two

steps: first, using a heuristic, it builds a bounded ordered

characteristic set (Wo). Then, it uses Wo to build a state iden-

tification path. In the remainder of this section, we describe

these two procedures.

B. Computing a BO-WSet

The BO-WSet generation algorithm is presented in Algo-

rithm 1. In summary, the algorithm constructs a BO-WSet Wo

in a sequence-by-sequence fashion where each sequence is

built input-by-input. To achieve this, the algorithm first creates

an empty BO-WSet (Wo) and a set of all unseparated pairs

of states (S ′), which is initialised as the pairs set (S ; see

Definition 2 and Lines 1-2 of Algorithm 1). After this, it enters

a loop (the Outer-Loop) (Lines 3-15 of Algorithm 1). The

Outer-Loop terminates when all pairs are separated. As noted

in Definition 2, there are n(n−1)/2 such pairs; therefore, the

number of iterations of the Outer-Loop is of O(n2).
At each iteration of the Outer-Loop, the algorithm first

initiates two empty input sequences (Åx, Åx⋆) and enters another

loop (the Inner-Loop) (Lines 5-14 of Algorithm 1). The Inner-

Loop aims to generate a separating sequence that separates

at least one pair from S ′. Proposition 3 tells us that the

8

Algorithm 1: Bounded ordered characterising set gen-

eration algorithm.

input : M = (S,X ,Y,δ ,λ)
output: An ordered characterising set as Wo

1 Wo← /0

2 S ′←S ,V ← /0.

3 while S ′ is not empty do
// Outer-Loop.

4 Åx = ε , Åx⋆ = ε
5 while | Åx| ≤ n−1 and S ′ has items do

// Inner-Loop.

6 ξ ← set of inputs that can separate some pairs from S ′.

// If no separating input exists, then ξ = X.

7 ξ ′← argmax
x∈ξ

|δ o(S ′,x)|

/* Select based on order-friendliness. */

8 ξ ′′ = argmax
x∈ξ ′

occ(Åx,x)

// Select based on overlap-friendliness.

9 x = Rand(ξ ′′)
// Break-ties.

10 Åx← Åx.x
11 if Åx separates unmarked pairs from set S ′ then

12 Åx⋆ = Åx

13 Move separated pairs from S ′ to V .

14 S ′← δ (S ′,x)

15 if Åx⋆ is not empty then

16 Wo←Wo∪{ Åx⋆}

17 S ′←S , and using V , marks separated elements of S ′.

18 return Wo

maximum length of such a sequence is n−1, and therefore it

iterates at most n−1 times.

At each iteration of the Inner-Loop, the algorithm tries to

find a good input x to be concatenated to Åx based on separa-

bility and two independent heuristics: order-friendliness, and

overlap-friendliness, explained below.

Separability: During the Inner-Loop, the algorithm first

tries to return a set (ξ) of inputs that separate at least one pair

from set S ′; however, if no input separates any of the pairs

from set S ′, then we set ξ as the set X , i.e., ξ = X . Order-

friendliness: Order-friendliness is a heuristic method that

makes it more likely that a member of Wo brings the FSM to a

state from which a member from Wo can be applied without the

need of a transfer sequence. With this heuristic, application of

sequences from Wo will less likely require a transfer sequence

After forming ξ , the algorithm searches for a subset (ξ ′) of ξ
according to order-friendliness value (|δ 0|), which is defined

as the number of different states the FSM will reach from

S ′ (Lines 6-7 of Algorithm 1). The set δ 0(S ,x) is formally

defined as δ 0(S ,x) = {δ (s,x)|∃s′.(s,s′) ∈ S ∨ (s′,s) ∈ S }.
The higher the value of |δ 0|, the better the order-friendliness

is.

Overlap-friendliness: Once the set ξ ′ is constructed, the

algorithm constructs a subset (ξ ′′) of ξ ′ according to the

overlap friendliness value, which is defined as the number of

occurrences of input symbol x in the current sequence Åx (Line

8 of Algorithm 1). We use the occ(Åx,x) function to retrieve the

overlap friendliness value, which is the number of occurrences

of input x in Åx. Overlap-friendliness aims to create sequences

retaining similar input symbols to promote overlapping. If two

inputs have the same value for this, the algorithm selects one

randomly (Line 9 of Algorithm 1).

After this, the algorithm appends the input to Åx and then

checks whether the new input sequence separates a pair. If not,

the algorithm proceeds; otherwise, the algorithm assigns this

input sequence to Åx⋆ (Lines 10-13 of Algorithm 1). Copying

Åx to Åx⋆ prevents i) the addition of input sequences that do

not separate a pair and ii) the addition of input sequences

that have redundant post-fixes. After the input is appended,

the algorithm adds the indices of newly separated pairs to V

(Line 13 of Algorithm 1). Afterwards, the next states reached

from S ′ are calculated (Line 14 of Algorithm 1).

Once the Inner loop terminates, the algorithm updates the

Wo set if Åx⋆ is not an empty sequence and then resets S ′

(Lines 15-17 of Algorithm 1). Finally, once the BO-WSet

is constructed, the algorithm returns this set (Line 18 of

Algorithm 1). Since the upper-bound on the number of pairs

in S is O(n2) and the Inner-loop iterates at most O(n) times,

Algorithm 1 requires O(n3) steps of computation.

Running example: Consider the FSM given in Figure 2.

Initially the set S ′ (and S) has all the pairs i.e.

S ′ = {(s0,s1),(s0,s2) . . .(s6,s7)}. After the execution of

line 6 of Algorithm 1, we have the set ξ = {x0,x1} as

both inputs pairwise separate some elements from set S ′.

However, among these inputs, the highest order-friendliness

value belongs to the input x0 as δ 0(S ′,x0) = {s0,s2,s3,s5,s6}.
For x1, we would have δ 0(S ′,x1) = {s1,s3,s4,s7}. Since ξ ′

has one element the algorithm forms the set ξ ′′ = {x0} and

proceeds to line 14 of Algorithm 1 after moving the separated

pairs to V (V = {(s0,s4),(s0,s5),(s0,s6),(s0,s7),(s1,s4),
(s1,s5),(s1,s6),(s1,s7),(s2,s4),(s2,s5),(s2,s6),(s2,s7),
(s3,s4),(s3,s5),(s3,s6),(s3,s7)}) and appending x0 to Åx⋆.

Then, at line 14, the set S ′ is updated by applying x0 to the

remaining members of S ′, leading to S ′ = {(s0,s2),(s0,s3),
(s0,s6),(s2,s3),(s2,s4),(s0,s5),(s2,s5),(s2,s6),(s5,s6)}.

In the second round of the loop, ξ ′ returns {x0,x1} as

both inputs separate some pairs and lead to |δ 0(S ′,x0)| =
|δ 0(S ′,x1)| (both have five elements). At this point, as line

8 of Algorithm 1 dictates, the algorithm selects input x0 as

Åx⋆ = x0. After executing line 13, we have S ′ = {(s0,s2),
(s2,s3),(s5,s6)} and after line 14 we have S ′ = {(s0,s3)
,(s3,s6),(s2,s5)} and Åx⋆ = x0x0. 3

In the third iteration, as both inputs x0 and x1 can pairwise

separate states from set S ′ we have ξ = {x0,x1}. How-

ever ξ ′ = {x0} as the cardinality of the set |δ 0(S ′,x0)| >
|δ 0(S ′,x1)|. Which (after line 13) leads to set S = {(s0,s3)}.
After line 14, we have δ (S ′,x0) = {(s0,s6)}. Clearly, after

this iteration the algorithm sets ξ ′ = {x0,x1} but due to

the overlap-friendlines sets ξ ′′ = {x0}, which leads to the

termination of the algorithm with Åx⋆ = x0x0x0x0.

C. Computing a state identification path

The steps in constructing a state identification path are given

in Algorithm 2. The algorithm (BOWA) begins by receiving a

3Please note that we do not explicitly write the contents of set V .

9

BO-WSet and building a directed graph Go = (V,E
⋃

E ′) using

this BO-WSet (Lines 1-2 of Algorithm 2).

The graph Go has two classes of edges and is constructed as

follows. For each state s of the FSM, the algorithm introduces

a vertex v(s) to Go, and for each transition τ = (s,x,y,s′),
it introduces an edge e = (v(s),v(s′)) with label x/y to E.

Furthermore, for each sequence Åx ∈Wo and for each state s ∈
S, it introduces an edge from v(s) to v(δ (s, Åx)) with label

Åx/λ (s, Åx) in E ′. This graph has n vertices and (n∗ |X |)+ |Wo|
edges.

After this, the algorithm checks whether Go satisfies the

Euler Path conditions on edges E ′ given in Section II-B. If

so, this path corresponds to the state identification path, and

the algorithm returns the label of such a path as the state

identification path (Lines 3-4 of Algorithm 2).

Otherwise, the algorithm constructs a state identification

path through a heuristic that minimises the use of transfer

sequences. The heuristic step deployed in this algorithm

Algorithm 2: BO-Wsets-based state identification path

generation algorithm (BOWA).

input : M = (S,X ,Y,δ ,λ), Wo

output: State identifying path

1 Wo← BO-Wset(M)
2 Construct Go = (V,E

⋃

E ′) using M and Wo, ρ ′← /0.

3 if Euler path exists then

4 Return the label of the path ρ ′ and terminate.

5 Compute all-pair shortest paths using edges E on Go.

6 foreach v ∈V do

7 Compute (cost(v)) the total length of shortest paths

leaving v using Go and set the number of outgoing E ′

edges of v as unv(v).

8 v⋆←V (s0)
9 while not all sequences in Wo are applied at every state in

set S do

10 χ ← argmax
v∈ad j(v⋆)

cost(v)

// Select vertex with largest cost.

11 χ ′← argmax
v∈χ

unv(v)

// Select vertex with largest unvisited edges.

12 if χ ′ ̸= /0 then

13 v⋆← Rand(χ ′), unv(v)← unv(v)−1

// Break-ties.

14 Add edge e = (v⋆,v) to path ρ ′, v⋆← v

15 else

16 Find a path ρ from v⋆ to a vertex having maximum

cost(v) and unv(v) values.

17 ρ ′← ρ ′ρ , v⋆← v

18 Return ρ ′

prioritises edges emanating from vertices having a higher cost

for visiting other vertices, i.e. selects vertices with the highest

Σv′∈V SP(v,v′) where SP is the length of the shortest path from

v to v′. Doing this reduces the chance of reaching a vertex

and selecting an edge that requires longer transfer sequences.

To achieve this, the algorithm computes the all-pair shortest

paths between the vertices of Go using the edges in E and

Names States inputs

dk14 7 8

mc 4 8

dk15 4 8

dk16 27 4

dk17 8 4

dk27 7 2

keyb 19 24

lion9 with loops 9 4

lion with loops 4 4

lion with loops with hidden states 4 4

opus with sink 10 11

s27 with loops 5 12

shiftreg 8 2

tma with loops 20 6

train11 with loops 9 4

train4 with loops 4 4

train4 with loops with hidden states 5 4

train4 with sink 5 4

TABLE I: The benchmark FSMs used.

then for each vertex v ∈ V of Go, it computes the sum of

the total shortest paths (cost(v) = Σv′∈V SP(v,v′)), denoted by

cost(v). While doing this, the algorithm also stores the number

of outgoing E ′ edges from v represented as unv(v). The value

of unv(v) is used to keep the number of unvisited E ′ edges

emanating from vertex v and, therefore, is updated at every

visit (Lines 5-7 and 13 of Algorithm 2).

Then, the algorithm selects the vertex corresponding to the

initial state of M (v(s0)) as the current vertex and enters a

loop. At each iteration of the loop, the algorithm first finds

a set of vertices (χ) having maximum cost and then finds a

subset (χ ′) of these vertices having maximum unvisited edges,

randomly picks one edge of a vertex from χ ′, and adds this

to ρ ′ (Lines 10-14 of Algorithm 2).

However, if no such χ ′ exists, then the algorithm retrieves

the shortest path ρ from the current vertex v⋆ to a vertex having

maximum cost(v) and unv(v) values and appends it to the end

of ρ ′ (Lines 15-17 of Algorithm 2). Finally, the algorithm

terminates after returning the path it constructs (Line 18 of

Algorithm 2). Since the underlying FSM is connected, the

algorithm is guaranteed to return a state identification path.

Due to construction of graph G, Euler path, and all-pairs

shortest paths, we need O(n3)+O(n3)+O(n3) = O(n3) steps

of computation. Computing cost(v) and unv(v) require O(n2)
steps of computation. The While loop iterates O(n2) times

where at each iteration it has to find a path using a BFS search

in the worst case which needs O(n+ p) steps of computation

where p is the number of inputs. So Algorithm 2 needs O(n3)
steps of computation assuming p is less than n. This cubic time

requirement is a limiting factor for processing large FSMs.

VI. EXPERIMENTS

In this section, we provide the results of controlled exper-

iments and use them to answer our research questions two,

three, and four.

We first provide information regarding the software and

experimental setup; then, we introduce our test subjects.

Afterwards, we describe the structure of the experiments and

10

the visual encodings used in presenting the results. Finally, we

present the experiment results.

A. Experiment setup

We used an 11th Gen Intel(R) Core(TM) i7-

11800H@2.30GHz CPU having 24MB cache, paired

with 32GB DDR4 memory on Intel(R) WM590

chipset. We implemented the algorithms in C++ using

Microsoft Visual Studio 19. We used the R tool to

generate plots and conduct statistical analysis [74].

For reproducibility reasons, we provide the C++ code,

data (FSM specs, constructed sequences) and the R

tool scripts for producing the results and illustrations,

in https://github.com/urazc/OrderedWSets. During the

experiment, we used the GetProcessMemoryInfo

function with PeakWorkingSetSize to compute the

number of memory pages kept in RAM by the operating

system. When comparing the memory requirements, we

ignored the memory used for storing the FSMs and just

compared the memory needed for the data structures used

by the algorithms. Moreover, in order to measure the time

required for an algorithm to build W-sets, we used the

high_resolution_clock::now() interface of the

chrono.h library. Throughout the experiments, we did not

allow algorithms to run for more than 120 seconds in order

to complete the experiments in a reasonable amount of time.

B. Experiment subjects

We used two classes of experiment subjects. The first class

consisted of real FSM specifications based on earlier industrial

case studies. These FSMs can be found in the following repos-

itory: https://automata.cs.ru.nl/BenchmarkCircuits/Mealy. We

picked this repository as it has been used in number of

studies (see for example [75]. We used all minimal and

strongly connected FSMs in this repository. Table I presents

an overview of these FSMs. The second class of FSMs was

synthetic FSMs derived using an existing tool used in many

similar studies [40], [76], [77]. The synthetic FSMs were

further classified according to the number of states (n), ranging

from 10 to 200, increasing by 5, and number of inputs and

outputs (i/o) ranging from 6 to 8 increasing by one. Each

subclass contained 100 FSMs, so we used 11,700 synthetic

FSMs during the experiments.

C. Structure of the Experiments & visual encodings

1) Structure: Proposition 2 answered RQ1 negatively, i.e.,

checking the existence of bounded ordered W -sets is NP-

hard. In order to answer RQs 2, 3 and 4, we compared the

Bounded-Ordered W-Set generation algorithm (BOWA) with

two baseline techniques: the classical W-Set generation algo-

rithm (CWA), and the minimum W-Set generation algorithm

(MWA) using different metrics pertaining to the respective

research questions. The first metric relates to the quality

dimension (RQ2), in which we compared algorithms based

on the total number of inputs, total number of transfer inputs

and total number of sequences for state identification. Next, we

investigated the algorithms’ efficiency (RQ3): time and mem-

ory requirements. Finally, we evaluated the performances of

the algorithms when generating a test suite with the W -method

by measuring the total length of the test cases encompassing

the generated sequences (RQ4).

The experiment begins by applying BOWA, MWA, and

CWA to the experimental subjects. For each algorithm, we

computed the SISs and SIPs using the W -sets and stored

the total number of inputs and sequences in SISs and the

total number of inputs for transfers. We provide the results in

Sections VI-D1, VI-D2 and VI-D3, respectively. Moreover, we

present the time and memory requirement while constructing

the W -sets in Section VI-E. Finally, we used W -sets, SISs, and

SIPs to compute TSs and stored the total number of inputs and

sequences in TSs; the results are given in Section VI-F.

2) Visual encodings: To represent the results obtained from

FSM systems modelling real systems, we used line and point

charts, where the x-axis represents the FSM’s name, and the

y-axis represents the relative gain/loss (in percents) using the

formula
(a−b)∗100

a
for the metric. A similar technique is used to

visualise the results for synthetic FSMs. The main difference is

that since we have a larger population of subject systems and

a larger variety, we could group the FSMs based on number of

input/output (6,7 and 8) and number of states. We produced

separate charts for the different numbers of input/output. In

each chart, the x-axis represents the number of states, and the

y-axis represents the relative gain/loss (in percentage).

D. State Identification Costs

In this section, we analyse different metrics to answer RQ2,

namely, whether using BO-WSets reduces the cost of state

identification. To do so, we compare the total number of

inputs (also referred to as the length of the state identification

sequences), the number of sequences (also referred to as the

number of reset operations), and the number of transfer inputs

among the three algorithms.

1) Total number of inputs (length) of state identification

sequences: We start by answering RQ2.1, i.e., whether using

BO-WSets reduces the total number of inputs (length) required

to identify the states.

The results for FSMs modelling real systems are given in

Figure 3a. To begin with, we observe that BOWA generates

state identification sequences with fewer inputs except for one

FSM (train4_with_loops_with_hidden_states),

where MWA produces state identification sequences with

fewer inputs. For the other benchmark FSMs, BOWA gen-

erates state identification sequences containing 50% fewer

inputs on average. In the best case, FSM opus_with_sink,

our approach uses 88% fewer inputs. Moreover, we

can claim that the total number of inputs of the

SISs generated by the second baseline technique, CWA,

is comparable to MWA except for FSMs dk16 and

train4_with_loops_with_hidden_states.

Figure 3b illustrates the averages of the total number of

inputs of the SISs constructed for synthetic FSMs. When the

number of inputs/outputs is 6, 7, and 8, on average, BOWA

generates state identification sequences with 58%, 68%, and

https://github.com/urazc/OrderedWSets
https://automata.cs.ru.nl/BenchmarkCircuits/Mealy

11

(a) Results obtained from FSMs modelling real systems.

(b) Average results obtained from synthetic FSMs

Fig. 3: The gains regarding the total number of inputs of state

identification sequences.

74% fewer inputs than MWA, respectively. However, com-

pared to CWA, BOWA generates state identification sequences

having 95% fewer inputs on average, regardless of the number

of inputs that the FSMs have. Finally, in Supplementary

Table 1 we present how often BOWA leads to shorter state

identification sequences. The results show that in all cases,

BOWA generated state identification sequences with fewer

inputs.

These results are consistent with our expectations; BOWA

can reduce the number of inputs used during state identi-

fication. To further investigate the results, we applied the

Wilcoxon Signed-Rank Test with a confidence interval of

95%, where the null hypothesis states that the median differ-

ence between the paired observations is zero (no significant

difference). Wilcoxon test results obtained from BOWA and

MWA confirm that the populations’ medians are statistically

different (minimum was p = 0.0000231 and maximum was

p = 0.0019).

2) Number of sequences (resets) of state identification se-

quences: In this section, we address RQ2.2, i.e., whether using

BO-WSets reduces the number of sequences (resets) required

to identify the states.

In all experiments, whether performed on real-FSMS or syn-

thetic FSMs, BOWA generated a single sequence, reducing the

number of resets to one4. Therefore, these experiments show

immense differences between BOWA and baseline algorithms.

When analysing real FSMs (Figure 4a), we observe that the

performances of CWA and MWA are comparable. Compared

4Please see Supplementary Table 1

(a) Results obtained from FSMs modelling real systems.

(b) Averages of the results obtained from synthetic FSMs.

Fig. 4: The gains regarding the total number of sequences in

state identification sequences.

to these baseline approaches, BOWA leads to an average

reduction in the total number of SISs (number of resets) of

95%. The maximum reduction is 99.99% in FSM keyb.

As expected, the results on the total number of SISs derived

from synthetic FSMs also favour BOWA (Figure 4b). We

see that, on average, BOWA requires 99.73% fewer resets

than MWA (minimum is 98%, and maximum is 99.9%) and

requires 99.99% fewer resets than CWA, on average. We also

observe that the number of resets due to MWA is typically

fewer than CWA, but it tends to converge to CWA as the

number of states increases.

3) Number of transfer inputs: Finally, we consider RQ2.3,

namely, whether using BO-WSets reduces the total number of

transfer inputs (length) required to identify the states.

For the real FSMs (Figure 5a), we observe that using BOWA

reduced the number of transfer inputs by 70% compared to

CWA, on average (the maximum is 99.99%, the minimum is

49%). Moreover, we see that MWA performs slightly better

than CWA, and this time BOWA reduced the number of inputs

in transfer sequences by 53%, on average (the maximum is

99.99%, the minimum is 22%).

Figure 5b summarises the averages of the percentage-wise

gain/loss regarding the number of transfer inputs during state

identification for synthetic FSMs. The results confirm those

gathered from real FSMs. On average, the BOWA algorithm

generates 87% fewer transfer inputs for state identification

than CWA, regardless of the input and output number (the

maximum is 91%, the minimum is 80.5%). Moreover, in all

test subjects, BOWA generated fewer transfer sequences (see

Supplementary Table 1). When comparing BOWA and MWA,

12

(a) Results obtained from FSMs modelling real systems.

(b) Averages of the results obtained from synthetic FSMs.

Fig. 5: The gains regarding the total number of transfer inputs

in state identification.

the average gain dropped to 59%, 63%, and 68% for 6,7, and

8 input/output values, respectively (the maximum is 76%, the

minimum is 40%). We also noted that the gain increases with

the number of states. Supplementary Table 1 shows that when

the number of states is larger than 30, BOWA generates fewer

sequences in all test subjects than the baseline approaches.

E. Scalability

In this section, we address RQ3, i.e., the computation

resources that we need to construct BO-WSets and how this

demand differs from other state-of-the-art approaches.

To answer this question, we compared both the execution

time and the memory requirements of our BOWA algorithm

against the state-of-the-art CWA and MWA algorithms.

1) Time Requirements: We start by analysing the execution

times to answer RQ3.1: How does the time required to

construct BO-WSets differ from state-of-the-art approaches for

deriving W -Sets?

The time requirements of algorithms while deriving W -sets

from FSMs modelling real systems are given in Figure 6a.

We observe that for real systems, which do not feature much

variance in size and are all relatively small, the execution

times of the baseline approaches (CWA and MWA) are similar.

However, we also observe that the performance of BOWA

varies across different FSM specifications. To investigate this,

we used the Pearson correlation coefficient (PCC) analysis to

investigate the factors that cause this variance. PCC analysis

indicates that the number of states is the main factor impacting

on the time (p-value: 0.00023) [74]. The cutoff value for the

number of states that affects the computation time (using a

(a) Results obtained from FSMs modelling real systems.

(b) Averages of the results obtained from synthetic FSMs.

Fig. 6: The gains regarding the time requirements of algo-

rithms while deriving W -Sets.

quantile 0.90) is n = 9. Based on these test subjects, we can

claim that the BOWA algorithm will perform better if the

number of states is larger than nine.

The differences are more pronounced for synthetic FSMs

because they feature much more variety in size, and these

FSMs feature many more states. We provide the average

time the algorithms require to construct W -sets from synthetic

FSMs in Figure 6b. These reinforce the results obtained from

FSMs modelling real systems. On average, BOWA is 97%

faster than CWA regardless of the number of inputs/outputs.

Moreover, for all FSMs having more than 15 states, BOWA

was faster than CWA (see Supplementary Table 1). However,

on average, when n < 80 BOWA is 60%, 68.5% and 69%

faster for 6, 7, and 8 inputs/outputs, respectively than MWA.

Moreover, regardless of the input size, on average, BOWA

is 95% faster than MWA when n ≥ 80. The Supplementary

Table 1 indicates that for all test subjects having more than 25

states BOWA was quicker. Considering the cost of sequences

generated by BOWA, CWA and MWA (please see Section

VI-D), these results are as expected: CWA generates many

sequences, forcing it to spend more time, and MWA spends

a significant amount of time to create compact W -sets, which

require extra processing. On the other hand, BOWA generates

a single W -set using simple heuristics.

2) Memory Requirements: In this section, we address

RQ3.2, i.e., how the memory requirement for constructing

BO-WSets differs from the state-of-the-art approaches for

deriving W -Sets.

The results for real systems (Figure 7a) indicate that except

for dk16, keyb and tma_with_loops the algorithms used

13

(a) Results obtained from FSMs modelling real systems.

(b) Averages of the results obtained from synthetic FSMs.

Fig. 7: The gains regarding the memory requirements obtained

from synthetic FSMs while deriving W -Sets.

a comparable amount of memory. However, for these three

FSMs, BOWA needs 33%, 30.5%, and 17.5% less memory,

respectively.

Figure 7b summarises the memory requirements for syn-

thetic FSMs. The results suggest that, on average, BOWA

requires 76% less memory than MWA (maximum of 99.99%;

minimum of 0%) and Supplementary Table 1 indicates that

BOWA needs less memory than MWA in all cases when

n > 25. When compared to CWA, Figure 7b indicates that the

average reduction is 23%, however, when n< 180, the memory

requirements of the algorithms are comparable. We investi-

gated this and performed a PCC analysis, which indicated that

a threshold n = 180 for the variable ªnumber of statesº (using

quantile 0.90) was statistically significant. So, for CWA, when

the number of states exceeds this threshold, BOWA is expected

to use less memory. However, when we inspect Supplementary

Table 1, we observe that in most cases, BOWA needed less

memory than CWA. These results indicate that concerning

memory requirement, BOWA is as light-weight as CWA and

can be more efficient when the number of states exceeds 180.

To assess these observations, we applied the Wilcoxon test

[74], [78] using .95 significance level to check whether there

is a statistically significant difference between the memory

requirements across these three algorithms. As suspected, we

reject the null hypothesis when analysing BOWA and MWA

based on the p-value (max: 0.0064, min: 0.0055), which

indicates statistical significance. Moreover, when comparing

CWA and BOWA, we accept the null hypothesis for n≤ 180

as the minimum p-value is 0.062 and reject the null hypothesis

when n > 180 as the maximum p-value was 0.000122.

(a) Results obtained from FSMs modelling real systems.

(b) Averages of the results obtained from synthetic FSMs.

Fig. 8: The gains regarding the total number of inputs in TSs.

F. Test Suite Costs

Our last and final measurements concern the total cost of

test suites in which the generated state identification sequences

are embedded. Using these measurements, we aim to answer

RQ4, namely, whether using BO-WSets reduces the cost of

test suites.

1) Total number of inputs (length) of test suites: We start

by answering RQ4.1, i.e., whether using BO-WSets reduces

the total number of inputs (length) in test suites.

In this section, we compare the performances of algorithms

by considering the total number of inputs and sequences

generated by the W -Method [5]. For CWA and MWA, we

executed the W -Method using the W -sets produced by these

algorithms as exemplified in Section III. For BOWA, we fed

the W -Method with the SIPs constructed by Algorithm 2.

However, we used the BO-WSETs produced by Algorithm 1

while generating transition verification sequences in the W -

Method.

The total number of inputs (length) in tests using the W -

Method generated from the FSMs modelling real systems

are given in Figure 8a. Except for two FSMs (dk27, and

train4_with_loops_with_hidden_states), the W -

Sets generated by the BOWA algorithm contain fewer inputs

(maximum 80% reduction, on average 30% fewer inputs).

Figure 8b shows the average number of inputs in tests

derived from synthetic FSMs. When comparing BOWA against

MWA, we observe that on average i) 15% reduction in the

number of inputs when there are 6 input/output, ii) 40% re-

duction in the number of inputs when there are 7 input/output,

and iii) 48% reduction in the number of inputs when there are

14

8 input/output. However, we also observed that the reduction

gradually reduces as the number of states increases.

When we inspect the number of test subjects for which

BOWA leads to shorter test suites (Supplementary Table 1),

we observe that as the number of inputs/outputs increases,

BOWA starts performing better than MWA (there are only

three FSMs with eight inputs and outputs for which MWA

was better than BOWA). However, when the number of inputs

and outputs reduces, MWA performs better and this is more

evident when inputs/outputs is six. This is probably due to the

impact of the test sequences used for the transition verification

phase of the test suites. It is important to note that MWA is an

optimisation algorithm focusing on deriving compact W -sets.

So, as the number of states increases, this impact becomes

more visible. However, we also note that in all computations,

this reduction tends to evolve into a plateau, suggesting that

the advantage of MWA is limited compared to the BOWA.

As expected, BOWA leads to test suites having fewer inputs

(92% on average) compared to CWA5. To investigate our

findings, we applied the Wilcoxon test to the results. For all

n and input/output values, we observed that the p value was

below 0.05, indicating statistical significance.

2) Number of sequences (resets) in test suites: We now

address our last research question RQ4.2, i.e., whether using

BO-WSets reduces the number of sequences (resets) in test

suites.

The total number of sequences in TSs generated for

FSMs modelling real systems are given in Figure 9a.

We observe that, the performances of MWA and CWA

are similar, with the largest difference being found with

FSM dk16. However, overall, the tests constructed us-

ing the BOWA algorithm have fewer sequences. The max-

imum is 83% fewer sequences (shiftreg), the min-

imum is 22.3% fewer sequences (dk16, dk17, and

train4_with_loops_with_hidden_states).

Similar results can be observed with synthetic FSMs (Fig-

ure 9b). Compared to MWA, the reduction in the number of

test sequences in TSs is 39%, 54%, and 56% on average when

the number of inputs/outputs is 6, 7 and 8, respectively. Similar

to the results we obtain in Section VI-F1, the percentage-

wise gain due to BOWA tends to reduce as the number of

states increases. However, interestingly, the Supplementary

table 1 indicates that in the majority of the cases, BOWA

leads to fewer sequences in TSs, which indicates that there are

relatively few cases for which MWA leads to fewer sequences

in TSs and the difference between MWA and BOWA is high.

Again, we relate this reduction to the impact of the transition

verification phase, as described above. In comparison with

CWA, the reduction is 94% on average regardless of the

number of inputs/outputs.

We applied the Wilcoxon test to verify the difference.

The results indicate that the distributions of the number of

sequences in the tests constructed by BOWA and MWA are

statistically different (the maximum was p= 0.000378163, the

minimum was p = 0.0001464).

5In only one case out of 11,700 did CWA generate a TS with fewer inputs
(Supplementary Table 1).

(a) Results obtained from FSMs modelling real systems.

(b) The averages of the results obtained from synthetic FSMs.

Fig. 9: The gains regarding the total number of sequences in

TSs.

VII. THREATS TO VALIDITY

The major external threat to the validity of our work is

generalisability. To address this, we not only used synthetic

FSMs but also used FSMs modelling real systems.

With respect to internal validity, the primary concern is the

selection of synthetic FSMs: they may have common transition

structure reducing the variety of the test subjects. To minimise

this threat, we used a framework previously used in several

works ([40], [77], [79]±[81]) to generate synthetic FSMs. In

Figure 10, we provided the average sample variance of the

results obtained from synthetic FSMs for different metrics with

varying input/output values. The charts in the first row are for

FSMs with 6 input/output symbols, the second row is for FSMs

with 7 input/output symbols and the last row is for FSMs with

8 input/output symbols. The y-axis is given in log10 scale.

As can be seen, typically, the variance is high in almost

all experiments. This suggests that the experimental subjects

are relatively dissimilar and so the results may generalise to

a wide range of FSMs. We shared our data with the public

to address repeatability concerns. Moreover, we also checked

the code for implementation errors and verified whether the

generated sequences (W -sets, SISs, SIPs) were really W -sets,

SISs and SIPs for the underlying FSM M.

VIII. CONCLUSION

Model-based testing (MBT) provides an approach that

can automate much of software testing by utilising abstract

mathematical models representing components. Owing to its

simplicity and the variety of test generation methods, the finite

15

Fig. 10: Averages of sample variance of the number of inputs

and number of transfer inputs of state identification sequences

across varying numbers of inputs/outputs and algorithms given

in log10 scale. Higher variance reflects increased structural

diversity in the state-transitions of the synthetic FSMs.

state machine (FSM) formalism is often used while deriving

tests. Most FSM-based testing algorithms include steps that

identify the states of the tested system, and state identification

sequences are used to achieve this. Many test generation

methods use a characterising set since every minimal FSM

possesses a characterising set. Unfortunately, however, the use

of characterising can require frequent reset operations and

transfer sequences to bring the FSM to a dedicated state. In

this work, we introduced a class of characterising sets (ordered

characterising set) that reduces the number of resets and the

number of inputs used for transfer.

In this work, we first studied the computational complexity

of checking the existence of ordered characterising sets and

showed that it is NP-complete. Next, because not all FSMs

have O-WSets, we introduced bounded ordered characterising

sets (BO-WSets) and algorithms that use heuristics to generate

BO-WSets. We then reported on the results of experiments that

used real FSM models and randomly generated FSMs. Our

results are encouraging: on average, the proposed methodology

enables us to reduce the number of reset operations, number of

transfer inputs, and number of inputs in state identification se-

quences from real FSMs by 95%, 53%, and 50%, respectively.

Considering synthetic FSMs, we observe that, on average,

there was a 99.73% reduction in the number of resets, a 63.3%

reduction in transfer inputs, and a 66.6% reduction in the

number of inputs of state identification sequences.

We also note that, on average, the proposed algorithm re-

duced the time required to derive state identification sequences

by 85%. In addition, the proposed approach led to generate test

suites with 49.3% fewer sequences and 33.3% fewer inputs,

on average.

There are several lines of future work. First, there is the

potential to investigate approaches that can run on graphics

processing units to improve the scalability of this method

further. Second, we see value in extending the method to

process non-deterministic and partial FSMs. Extending or-

dered characterising sets to the transition verification phase,

where the tester checks the transitions between states, is also

a promising research direction. Moreover, since other known

test suite generation algorithmsÐsuch as the H, HSI, and

Wp methodsÐuse a different set of sequences called state

identifiers instead of the W -set, the notion of an ordered W -

set may not be appropriate for use in these methods [27],

[30], [41]. Therefore, it would be worthwhile to investigate

new notions of ordering for state identifiers tailored to such

methods. Finally, even though the proposed approach outper-

forms the baseline methods on both the benchmark FSMs and

synthetic FSMs, it would be interesting to embed the proposed

approach in existing MBT frameworks such as LearnLib [82]

and evaluate its performance in the real-world setting.

ACKNOWLEDGMENT

We have been supported by the UKRI Trustworthy Au-

tonomous Systems Node in Verifiability, Grant Award Ref-

erence EP/V026801/2. Uraz Turker has also been partially

funded by the Royal Society project Accelerating Soft-

ware Testing using Quantum Computing grant reference is

IES/R1/241214. Robert Hierons was partially supported by

the EPSRC project titled RoboTest: Systematic Model-Based

Testing and Simulation of Mobile Autonomous Robots, grant

reference EP/R025134/1. Mohammad Reza Mousavi was par-

tially supported by the EPSRC project on Verified Simula-

tion for Large Quantum Systems (VSL-Q), grant reference

EP/Y005244/1 and the EPSRC project on Robust and Reli-

able Quantum Computing (RoaRQ), Investigation 009 Model-

based monitoring and calibration of quantum computations

(ModeMCQ), grant reference EP/W032635/1. Khaled El-

Fakih has been partially supported by AUS FRG23-R-E39

Grant.

The authors would also like to indicate that the FSM

Generator used in this work, was initially implemented by

Prof Hasan Ural, and Prof. Dr HÈusnÈu YenigÈun.

REFERENCES

[1] C. S. G.J. Myers and T. Badgett, The Art of Software Testing. John
Wiley & Sons, 2011.

[2] E. P. Moore, ªGedanken-experiments on sequential machines,º in Au-

tomata Studies (C. Shannon and J. McCarthy, eds.), Princeton University
Press, 1956.

[3] R. M. Hierons, T.-H. Kim, and H. Ural, ªExpanding an extended finite
state machine to aid testability,º in IEEE Annual Computer Software

and Applications Conference (COMPSAC 2002), (Oxford, England),
pp. 334±339, August 2002.

[4] R. M. Hierons, M. G. Merayo, and M. NÂuñez, ªTesting from a stochastic
timed system with a fault model,º The Journal of Logic and Algebraic

Programming, vol. 78, no. 2, pp. 98±115, 2009.

[5] T. S. Chow, ªTesting software design modelled by finite state machines,º
IEEE Transactions on Software Engineering, vol. 4, pp. 178±187, 1978.

[6] D. Lee, K. Sabnani, D. Kristol, S. Paul, and M. Uyar, ªConformance
testing of protocols specified as communicating fsms,º in IEEE INFO-

COM ’93 The Conference on Computer Communications, Proceedings,
pp. 115±127 vol.1, 1993.

[7] D. Lee and M. Yannakakis, ªPrinciples and methods of testing finite-
state machines - a survey,º Proceedings of the IEEE, vol. 84, no. 8,
pp. 1089±1123, 1996.

[8] K. Sabnani and A. Dahbura, ªA protocol test generation procedure,º
Computer Networks, vol. 15, no. 4, pp. 285±297, 1988.

[9] K. El-Fakih, N. Yevtushenko, and G. v. Bochmann, ªFSM-based incre-
mental conformance testing methods,º IEEE Transactions on Software

Engineering, vol. 30, no. 7, pp. 425±436, 2004.

16

[10] R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, and N. Yevtushenko,
ªFSM-based conformance testing methods: a survey annotated with
experimental evaluation,º Information and Software Technology, vol. 52,
no. 12, pp. 1286±1297, 2010.

[11] A. Gill, Introduction to The Theory of Finite State Machines. McGraw-
Hill, New York, 1962.

[12] F. C. Hennie, ªFault-detecting experiments for sequential circuits,º in
Proceedings of Fifth Annual Symposium on Switching Circuit Theory

and Logical Design, (Princeton, New Jersey), pp. 95±110, November
1964.

[13] A. Friedman and P. Menon, Fault detection in digital circuits. Computer
Applications in Electrical Engineering Series, Prentice-Hall, 1971.

[14] Z. Kohavi, Switching and Finite State Automata Theory. McGraw-Hill,
New York, 1978.

[15] A. Aho, R. Sethi, and J. Ullman, Compilers, principles, techniques, and

tools. Addison-Wesley series in computer science, Addison-Wesley Pub.
Co., 1986.

[16] R. V. Binder, Testing Object-Oriented Systems: Models, Patterns, and

Tools. Addison-Wesley, 1999.

[17] A. Petrenko, N. Yevtushenko, G. v. Bochmann, and R. Dssouli, ªTesting
in context: Framework and test derivation,º Computer Communications,
vol. 19, pp. 1236±1249, 1996.

[18] M. Haydar, A. Petrenko, and H. Sahraoui, ªFormal verification of
web applications modeled by communicating automata,º in Formal

Techniques for Networked and Distributed Systems FORTE, vol. 3235
of LNCS, (Madrid), pp. 115±132, Springer-Verlag, September 2004.

[19] A. Betin-Can and T. Bultan, ªVerifiable concurrent programming using
concurrency controllers,º in Proceedings of the 19th IEEE international

conference on Automated software engineering, pp. 248±257, IEEE
Computer Society, 2004.

[20] I. Pomeranz and S. M. Reddy, ªTest generation for multiple state-
table faults in finite-state machines,º IEEE Transactions on Computers,
vol. 46, no. 7, pp. 783±794, 1997.

[21] M. Utting, A. Pretschner, and B. Legeard, ªA taxonomy of model-
based testing approaches,º Software Testing, Verification and Reliability,
vol. 22, no. 5, pp. 297±312, 2012.

[22] G. Gonenc, ªA method for the design of fault detection experiments,º
IEEE Transactions on Computers, vol. 19, pp. 551±558, 1970.

[23] D. Lee and M. Yannakakis, ªTesting finite-state machines: State iden-
tification and verification,º IEEE Transactions on Computers, vol. 43,
no. 3, pp. 306±320, 1994.

[24] M. Yannakakis and D. Lee, ªTesting finite state machines: Fault detec-
tion,º Journal of Computer and System Sciences, vol. 50, no. 2, pp. 209
± 227, 1995.

[25] M. P. Vasilevskii, Failure Diagnosis of Automata. Cybernetics. Plenum
Publishing Corporation, 1973.

[26] R. T. Boute, ªDistinguishing sets for optimal state identification in
checking experiments,º IEEE Transactions on Computers, vol. 23,
pp. 874±877, 1974.

[27] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and
A. Ghedamsi, ªTest selection based on finite state models,º IEEE

Transactions on Software Engineering, vol. 17, no. 6, pp. 591±603, 1991.

[28] R. M. Hierons and H. Ural, ªOptimizing the length of checking
sequences,º IEEE Transactions on Computers, vol. 55, pp. 618±629,
May 2006.

[29] G.-V. Jourdan, H. Ural, H. Yenigun, and J. Zhang, ªLower bounds on
lengths of checking sequences,º Formal Aspects of Computing, vol. 22,
no. 6, pp. 667±679, 2010.

[30] R. Dorofeeva, K. El-Fakih, and N. Yevtushenko, ªAn improved FSM-
based conformance testing method,º in Proceedings of the IFIP 25th

International Conference on Formal Methods for Networked and Dis-

tributed Systems, vol. 3731 of LNCS, pp. 204±218, Springer-Verlag,
2005.

[31] A. da Silva Simão and A. Petrenko, ªChecking completeness of tests for
finite state machines,º IEEE Transactions on Computers, vol. 59, no. 8,
pp. 1023±1032, 2010.

[32] A. da Silva Simão, A. Petrenko, and N. Yevtushenko, ªOn reducing test
length for FSMs with extra states,º Software Testing, Verification and

Reliability, vol. 22, no. 6, pp. 435±454, 2012.

[33] H. Ural, X. Wu, and F. Zhang, ªOn minimizing the lengths of checking
sequences,º IEEE Transactions on Computers, vol. 46, no. 1, pp. 93±99,
1997.

[34] H. Ural and K. Zhu, ªOptimal length test sequence generation using dis-
tinguishing sequences,º IEEE/ACM Transactions on Networking, vol. 1,
no. 3, pp. 358±371, 1993.

[35] A. da Silva Simão and A. Petrenko, ªGenerating checking sequences
for partial reduced finite state machines,º in 20th IFIP TC 6/WG

6.1 International Conference Testing of Software and Communicating

Systems, 8th International Workshop on Formal Approaches to Testing

of Software TestCom/FATES, vol. 5047 of LNCS, pp. 153±168, Springer,
2008.

[36] R. M. Hierons and H. Ural, ªReduced length checking sequences,º IEEE

Transactions on Computers, vol. 51, no. 9, pp. 1111±1117, 2002.

[37] R. E. Miller and S. Paul, ªOn the generation of minimal length confor-
mance tests for communications protocols,º IEEE/ACM Transactions on

Networking, vol. 1, no. 1, pp. 116±129, 1993.

[38] W. Grieskamp, N. Kicillof, K. Stobie, and V. A. Braberman, ªModel-
based quality assurance of protocol documentation: tools and method-
ology,º Software Testing, Verification and Reliability, vol. 21, no. 1,
pp. 55±71, 2011.

[39] R. M. Hierons and H. Ural, ªGenerating a checking sequence with a
minimum number of reset transitions,º Automated Software Engineering,
vol. 17, no. 3, pp. 217±250, 2010.

[40] U. Cengiz TÈurker, R. M. Hierons, and G.-V. Jourdan, ªMinimizing char-
acterizing sets,º Science of Computer Programming, vol. 208, p. 102645,
2021.

[41] N. Yevtushenko and A. Petrenko, ªSynthesis of test experiments in some
classes of automata,º Automatic Control and Computer Sciences, vol. 4,
1990.

[42] U. TÈurker and H. YenigÈun, ªHardness and inapproximability of mini-
mizing adaptive distinguishing sequences,º Formal Methods in System

Design, vol. 44, no. 3, pp. 264±294, 2014.

[43] C. GÈunicËen, K. Inan, U. C. TÈurker, and H. YenigÈun, ªAn improved
upper bound for the length of preset distinguishing sequences of
distinguished merging finite state machines,º in Proceedings of the 29th

International Symposium on Computer and Information Sciences (ISCIS

2014), pp. 325±335, Springer, 2014.

[44] A. Rezaki and H. Ural, ªConstruction of checking sequences based
on characterization sets,º Computer Communications, vol. 18, no. 12,
pp. 911±920, 1995.

[45] D. Angulin, ªLearning regular sets from queries and counterexamples,º
Information and Computation, vol. 75, pp. 87±106, 1987.

[46] R. Braz, A. Simao, R. Groz, and C. Oriat, ªImproving model learning by
inferring separating sequences from traces,º in 2023 IEEE International

Conference on Software Testing, Verification and Validation Workshops

(ICSTW), pp. 45±51, 2023.

[47] D. Huistra, J. Meijer, and J. van de Pol, ªAdaptive learning for learn-
based regression testing,º in Formal Methods for Industrial Critical Sys-

tems: 23rd International Conference, FMICS 2018, Maynooth, Ireland,

September 3-4, 2018, Proceedings 23, pp. 162±177, Springer, 2018.

[48] R. Groz, N. Bremond, and A. Simao, ªUsing adaptive sequences for
learning non-resettable FSMs,º in International Conference on Gram-

matical Inference, pp. 30±43, PMLR, 2019.

[49] R. Groz, A. Simao, A. Petrenko, and C. Oriat, ªInferring FSM models
of systems without reset,º in Machine Learning for Dynamic Software

Analysis: Potentials and Limits: International Dagstuhl Seminar 16172,

Dagstuhl Castle, Germany, April 24-27, 2016, Revised Papers, pp. 178±
201, Springer, 2018.

[50] R. Rivest and R. Schapire, ªInference of finite automata using homing
sequences,º Information and Computation, vol. 103, no. 2, pp. 299±347,
1993.

[51] T. Ferreira, L. Henry, R. F. da Silva, and A. Silva, ªConflict-aware active
automata learning,º arXiv preprint arXiv:2308.14781, 2023.

[52] B. K. Aichernig, M. Tappler, and F. Wallner, ªBenchmarking combina-
tions of learning and testing algorithms for automata learning,º Formal

Aspects of Computing, 2023.

[53] M. Halm, R. S. Braz, R. Groz, C. Oriat, and A. Simão, ªImproving
model inference via w-set reduction,º in Testing Software and Systems -

33rd IFIP WG 6.1 International Conference, ICTSS 2021, London, UK,

November 10-12, 2021, Proceedings (D. Clark, H. D. MenÂendez, and
A. R. Cavalli, eds.), vol. 13045 of Lecture Notes in Computer Science,
pp. 90±105, Springer, 2021.

[54] M. Holcombe and F. Ipate, Correct Systems: Building a Business Process

Solution. Springer-Verlag, 1998.

[55] F. Howar and B. Steffen, ªActive automata learning in practice - an
annotated bibliography of the years 2011 to 2016,º in Machine Learning

for Dynamic Software Analysis: Potentials and Limits - International

Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016,

Revised Papers (A. Bennaceur, R. HÈahnle, and K. Meinke, eds.),
vol. 11026 of Lecture Notes in Computer Science, pp. 123±148, Springer,
2018.

17

[56] M. Isberner, B. Steffen, and F. Howar, ªLearnlib tutorial - an open-source
java library for active automata learning,º in Runtime Verification - 6th

International Conference, RV 2015 Vienna, Austria, September 22-25,

2015. Proceedings (E. Bartocci and R. Majumdar, eds.), vol. 9333 of
Lecture Notes in Computer Science, pp. 358±377, Springer, 2015.

[57] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, ªUp-
paalÐa tool suite for automatic verification of real-time systems,º in
Proceedings of the DIMACS/SYCON Workshop on Hybrid Systems III:

Verification and Control: Verification and Control, (Berlin, Heidelberg),
p. 232±243, Springer-Verlag, 1996.

[58] E. Muškardin, B. K. Aichernig, I. Pill, A. Pferscher, and M. Tappler,
ªAalpy: an active automata learning library,º Innov. Syst. Softw. Eng.,
vol. 18, p. 417±426, sep 2022.

[59] A. Petrenko, A. da Silva Simão, and N. Yevtushenko, ªGenerating
checking sequences for nondeterministic finite state machines,º in Fifth

IEEE International Conference on Software Testing, Verification and

Validation (ICST 2012), pp. 310±319, IEEE Computer Society, 2012.
[60] B. Serdar and K. Tai, ªA new approach to checking sequence generation

for finite state machines,º in Proceedings of the IFIP 14th International

Conference on Testing Communicating Systems (TestCom 2002), vol. 210
of IFIP Conference Proceedings, p. 391, Kluwer, 2002.

[61] G. Jourdan, H. Ural, and H. YenigÈun, ªReducing locating sequences for
testing from finite state machines,º in Proceedings of the 31st Annual

ACM Symposium on Applied Computing, Pisa, Italy, April 4-8, 2016

(S. Ossowski, ed.), pp. 1654±1659, ACM, 2016.
[62] R. Groz, A. Simao, and C. Oriat, ªAdaptive localizer based on splitting

trees,º in Testing Software and Systems (N. Yevtushenko, A. R. Cavalli,
and H. YenigÈun, eds.), (Cham), pp. 326±332, Springer International
Publishing, 2017.

[63] J. Chen, R. M. Hierons, H. Ural, and H. Yenigun, ªEliminating redundant
tests in a checking sequence,º in Testing of Communicating Systems

(F. Khendek and R. Dssouli, eds.), (Berlin, Heidelberg), pp. 146±158,
Springer Berlin Heidelberg, 2005.

[64] R. M. Hierons, ªMinimizing the number of resets when testing from
a finite state machine,º Information Processing Letters, vol. 90, no. 6,
pp. 287±292, 2004.

[65] S. C. Boyd and H. Ural, ªOn the complexity of generating optimal test
sequences,º IEEE Trans. Software Eng., vol. 17, no. 9, pp. 976±978,
1991.

[66] K. Inan and H. Ural, ªEfficient checking sequences for testing finite
state machines,º Information and Software Technology, vol. 41, no. 11±
12, pp. 799±812, 1999.

[67] R. M. Hierons and H. Ural, ªOptimizing the length of checking
sequences,º IEEE Transactions on Computers, vol. 55, no. 5, pp. 618±
629, 2006.

[68] M. V. Berlinkov, ªOn the probability of being synchronizable,º in
Algorithms and Discrete Applied Mathematics (S. Govindarajan and
A. Maheshwari, eds.), (Cham), pp. 73±84, Springer International Pub-
lishing, 2016.

[69] M. P. Vasilevskii, ªFailure diagnosis of automata,º Cybernetics, vol. 4,
pp. 653±665, 1973.

[70] J. E. Hopcroft, ªAn n log n algorithm for minimizing the states in a finite
automaton,º in The theory of Machines and Computation (Z. Kohavi,
ed.), pp. 189±196, Academic Press, 1971.

[71] H. Fleischner, Eulerian Graphs and Related Topics: v.1 (Annals of

Discrete Mathematics). Elsevier, 1990.
[72] D. Neider, R. Smetsers, F. Vaandrager, and H. Kuppens, ªBenchmarks

for automata learning and conformance testing,º 2019.
[73] M. R. Garey and D. S. Johnson, Computers and Intractability. New

York: W. H. Freeman and Company, 1979.
[74] P. Teetor, R Cookbook. O’Reilly Media, Inc., 1st ed., 2011.
[75] A. Abel and J. Reineke, ªMemin: Sat-based exact minimization of in-

completely specified mealy machines,º in Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, ICCAD 2015,

Austin, TX, USA, November 2-6, 2015, pp. 94±101, 2015.
[76] U. C. TÈurker, R. M. Hierons, M. R. Mousavi, and I. Y. Tyukin,

ªEfficient state synchronisation in model-based testing through rein-
forcement learning,º in 2021 36th IEEE/ACM International Conference

on Automated Software Engineering (ASE), pp. 368±380, 2021.
[77] K. El-Fakih, R. M. Hierons, and U. C. TÈurker, ªK -branching UIO

sequences for partially specified observable non-deterministic FSMs,º
IEEE Trans. Software Eng., vol. 47, no. 5, pp. 1029±1040, 2021.

[78] F. Wilcoxon, Individual Comparisons by Ranking Methods, pp. 196±202.
New York, NY: Springer New York, 1992.

[79] R. M. Hierons and U. C. TÈurker, ªIncomplete distinguishing sequences
for finite state machines,º The Computer Journal, vol. 58, no. 11,
pp. 3089±3113, 2015.

[80] U. TÈurker, T. ÈUnlÈuyurt, and H. YenigÈun, ªLookahead-based approaches
for minimizing adaptive distinguishing sequences,º in Testing Software

and Systems - 26th IFIP WG 6.1 International Conference, ICTSS 2014,

Madrid, Spain, September 23-25, 2014. Proceedings, pp. 32±47, 2014.
[81] R. M. Hierons and U. C. TÈurker, ªParallel algorithms for testing finite

state machines: Generating UIO sequences,º IEEE Transactions on

Software Engineering, vol. 42, no. 11, pp. 1077±1091, 2016.
[82] H. Raffelt and B. Steffen, ªLearnlib: a library for automata learning

and experimentation,º in International Workshop on Formal Methods

for Industrial Critical Systems, 2005.

18

SUPPLEMENTARY MATERIAL: PROOFS OF RESULTS

This supplementary material contains the proofs from Sec-

tion IV. Some material, such as definitions, are repeated so

that the material is relatively self-contained.

In this section, we explore the problem of finding a ‘good’

characterising set for an FSM M. Test generation techniques

typically use a characterising set to check a state s by sep-

arating s from other possible states. As part of this, many

test techniques have a phase that checks the application of

sequences from W to states of the IUT: this phase essentially

checks that W separates states of the IUT as expected.

We would like to be able to efficiently verify the character-

ising set W used. This verification step involves checking the

result of applying every member of W to every state of M and

so we start by defining the terminology for a single w ∈W

and state s ∈ S.

Definition 11 (State-Identifying Path). A state-identifying

path (SIP) α for state s is a path starting from s with

input(α) ∈W.

We would like to execute every element of W from every

state in S, which defines |S|× |W | state-identifying paths. We

would like to use a single test sequence (defined by a path

through the FSM) that includes all of these state-identifying

paths. In the following, βi denotes a transfer sequence that

brings the underlying FSM from one state to another state.

Definition 12 (Identification Path). Given FSM M and char-

acterising set W for M, a path Åρ is an identification path for

W if Åρ can be written in the form α1β1α2β2 . . .αk such that

the following constraints hold:

1) start(Åρ) = s1

2) For all 1≤ i≤ k, we have that input(αi) ∈W.

3) For all αi,α j, 1 ≤ i < j ≤ k, it holds that input(αi) ̸=
input(α j) or start(αi) ̸= start(α j).

4) For all s ∈ S and w ∈W there exists 1≤ i≤ k such that

input(αi) = w and start(αi) = s.

Here, the αi are identification paths, and the βi are transfer

sequences that connect these identification paths. Ideally, we

would like the identification path for W to include no addi-

tional transfer sequences (and so be optimal). This is captured

by not allowing the βi above.

Definition 13 (Transfer Free State Identification Path). Given

FSM M, a Transfer Free State Identification Path Åρ for

characterising set W is a path of M that can be written in

the form α1α2 . . .αk such that the following constraints hold:

1) start(Åρ) = s1

2) For all 1≤ i≤ k, we have that input(αi) ∈W.

3) For all αi,α j, 1 ≤ i < j ≤ k, it holds that input(αi) ̸=
input(α j) or start(αi) ̸= start(α j).

4) For all s ∈ S and w ∈W there exists 1≤ i≤ k such that

input(αi) = w and start(αi) = s.

The above property is desirable since it tells us that we

can verify W without the use of additional transfer sequences.

However, this property does not preclude the possibility that

the characterising set W chosen is a relatively expensive way

of separating states of M and so of checking transitions of

the IUT in testing: The (prefixes of) sequences in W used to

separate states may be longer than necessary. The following

defines what it means for a characterising set W to be minimal

for a given FSM: It should allow the shortest possible input

sequences to be used to separate states.

Definition 14. [Minimal Characterising Set] Given FSM M,

a characterising set W for M is said to be minimal if for all

s,s′ ∈ S with s ̸= s′ there is a prefix w′ of a sequence w in W

such that the following conditions hold.

1) w′ separates s and s′; and

2) no shorter input sequence separates s and s′.

Importantly, it is possible to check whether a characterising

set W is minimal in polynomial time.

Proposition 2. It is possible to decide whether a character-

ising set W for FSM M is minimal in polynomial time.

Proof. To see this, it is sufficient to show how one can deter-

mine the length of the shortest input sequence that separates

two states s and s′ of an FSM M. In order to achieve this,

one can form a new FSM, the product machine P(s,s′), that

represents two copies of M running in parallel: one FSM Ms

starting in state s and the other FSM Ms′ starting in state s′.

This product machine can be defined as follows.

The state set of P(s,s′) is (S×S)∪{se}, for a special error

state se, and the initial state is (s,s′). Given state (si,s j) of

P(s,s′) and input x the corresponding transition is defined by

the following two cases.

1) If λ (si,x) = λ (s j,x) then the transition produces output

λ (si,x) and moves P(s,s′) to state (δ (si,x),δ (s j,x)).
2) If λ (si,x) ̸= λ (s j,x) then the transition produces output

ye, for an ‘error’ output ye, and moves P(s,s′) to state

se.

Then, an input sequence separates s and s′ if and only if this

input sequence takes the product machine to the error state se.

It is now sufficient to observe that the product machine can be

represented by a directed graph of polynomial size and that

the shortest input sequence to se can be found in polynomial

time using, for example, a breadth-first search.

Ideally, we have both of these properties: the characterising

set W is optimal in the sense that it is minimal and also in

the sense that it can be verified without the use of additional

transfer sequences. We capture both with the following con-

ditions.

Definition 15 (Ordered characterising Set). Let M be an

FSM with n states. A non-redundant characterising set Wo =
{w1,w2, . . . ,wm} is an Ordered characterising Set (O-WSet)

for M if the following properties hold:

1) Wo is minimal; and

2) there exists a Transfer Free State Identification Path Åρ
for Wo.

As one might expect, we do not need to consider input

sequences of length greater than n− 1, when considering

alternative W set for an FSM with n states.

19

Proposition 3. If FSM M has n states and W is a non-

redundant and minimal characterising set for M, then no

sequence in W has a length greater than n−1.

Proof. We use proof by contradiction and so assume that there

is some w ∈W that has a length greater than n− 1. Then

w = w′x for input sequence w′ and input x.

Consider now the set W ′ = (W ∪{w′})\{w} and a pair of

states (s,s′) with s ̸= s′. Since W is minimal, there is some

prefix w′1 of some w1 ∈W such that w′1 is one of the shortest

input sequences that separates s and s′. Further, w′1 must have

length at most n−1 since if an FSM has n states, all elements

in the pairs set (S) are separated by sequences of the length

of at most n− 1 (see Section II). But this implies that if w

separates states s and s′ then either:

1) there is some w1 ∈W \{w} that separates s and s′; or

2) there is some proper prefix of w that separates s and s′.

In both cases, we have that W ′ separates s and s′. Since

this applies to all pairs of distinct states, we have that W ′ is

a characterising set for M. This either contradicts W ′ being

non-redundant or minimal, so the result follows.

We have the problem of checking whether a given charac-

terising set is an O-WSet.

Definition 16 (Ordered Characterising Set Checking problem).

Given a characterising set W for FSM M, the O-WSet checking

problem is to decide whether W defines an O-WSet for M.

Proposition 4. The O-WSet checking problem is polynomial

time solvable.

Proof. First, it is straightforward to see that one can check

in polynomial time that W is non-redundant. In addition, by

Proposition 2 we know that one can check in polynomial time

that W is minimal.

We now show how one can check whether W has a corre-

sponding Transfer Free State Identification Path. We define a

directed multi-graph (V,E) as follows. For every state si of M

there is a corresponding vertex vi. For every w ∈W and state

si, if Åδ (si,w) = sk then we include the edge (vi,w,vk). Then,

there is a Transfer Free State Identification Path if and only if

there is an Euler Path for (V,E). Further, it is straightforward

to see that the conditions required for a directed graph to have

an Euler Path (see Section II) can be decided in polynomial

time. The result thus follows.

Results regarding Euler Paths of directed graphs typically

refer to directed graphs and not directed multi-graphs. How-

ever, it is straightforward to turn a directed multi-graph (V,E),
as defined in the above proof, into a corresponding directed

graph: for each edge e = (vi,w j,vk) ∈ E we simply add a new

vertex v(i, j,k) and replace e by two edges: (vi,v(i, j,k)) and

(v(i, j,k),vk).
If we simply generate a characterising set W for an FSM M,

then W may not be an O-WSet for M. The following shows

that an FSM may not have an O-WSet.

Example 3. Given n > 1 define an FSM Mn that has two

inputs x1 and x2 and n outputs o1, . . . ,om. The transitions are

defined by the following.

1) The input of x1 simply cycles the state with constant

output o1. Thus, for all 1≤ i≤ n, we define λ (si,x1)= o1

and δ (si,x1) = s j where j = i+1 mod n.

2) The input of x2 maps all states to the initial state and

provides a unique output. Specifically, for all 1≤ i≤ n,

we define λ (si,x2) = oi and δ (si,x2) = s1.

Observe that an input sequence separates two or more states

if and only if the input sequence contains input x2. Further,

such an input sequence separates all pairs of states, i.e., all

elements in set S . We can, therefore, conclude that any non-

redundant characterising set W contains exactly one input

sequence w and w must include input x2. One can now observe

that, since w contains input x2, the input of w maps all states

to the same state of M: for all 1 ≤ i < j ≤ n we have that
Åδ (si,w) = Åδ (s j,w). It is straightforward to see that such a

characterising set cannot be an O-WSet since n > 1.

We are therefore interested in the problem of deciding

whether an FSM M has an O-WSet.

Definition 17 (Ordered Characterising Set problem (O-WSet

problem)). Given an FSM M, the O-WSet problem is to decide

whether M has an O-WSet Wo.

We now explore the computational complexity of this prob-

lem.

Proposition 5. The O-WSet problem is in NP.

Proof. By Proposition 1, if an FSM M has n states, then

every non-redundant characterising set of M has at most n−1

sequences, and these have length at most n− 1. As a result,

it is sufficient to consider sets W that contain at most n− 1

input sequences, all of length at most n−1.

A non-deterministic Turing Machine, T , can decide whether

M has an O-WSet as follows. It starts by guessing a set W

of at most n−1 input sequences, all of length at most n−1.

The Turing Machine then checks whether W is an O-WSet for

M; by Proposition 4, we know this can be done in polynomial

time.

As a result, a Turing Machine can check in polynomial time

whether W is a solution to the O-WSet problem, and so this

problem is in NP.

We now proceed to prove that the problem is NP-hard.

This proof involves mapping an instance of the 3-Exact Cover

problem to an instance of the O-WSet problem.

Definition 18 (The 3-Exact Cover problem (X3C)). Let us

suppose that we have a universal set U = {u1,u2, . . . ,uu} and

a finite set C = {e1,e2, . . . ,ec} of subsets of U where |e j|= 3

for all e j ∈C. Then the 3-Exact Cover problem is to decide

whether there a subset C⊆C such that
⋃

e j∈C
e j =U and for

all ei,e j ∈ C with ei ̸= e j we have that ei∩ e j = /0.

Note that the last condition requires that each element of U

appears in exactly one set from C.

It is known that the X3C problem is NP-Complete [73].

Given an instance XC of the X3C problem, we will define an

FSM M(XC) and then prove that M(XC) has an O-WSet if

20

and only if there is a solution to XC. The following defines

the FSM M(XC):

1) For each item ui ∈ U , we include a state si and we

include also a special state su+1. The state set is thus

S = {s1, . . . ,su+1}.
2) For each set e j ∈ C we include a corresponding input

x j. The input set is thus X = {x j|e j ∈C}.
3) The output set is Y = {yi|ui ∈U}∪{0}. Thus, for each

state si there is a corresponding output yi, and there is

also one additional output 0.

4) Given input x j and state si, the state transitions are

defined by the following.

a) If ui ∈ e j then δ (si,x j) = si+1.

b) If ui ̸∈ e j then δ (si,x j) = si. Note that this includes

the case where i = u+1.

5) Given input x j and state si, the outputs are defined by

the following.

a) If ui ∈ e j then λ (si,x j) = yi.

b) If ui ̸∈ e j then λ (si,x j) = 0. Again, this includes

the case where i = u+1.

By construction, a state si, with 1 ≤ i ≤ u, is identified by

an input x j if and only if ui ∈ e j. No single input identifies

su+1; instead, we need to separate it from every other state

using inputs that identify these states.

Proposition 6. A solution C to an instance XC = (U,C) of

the X3C problem defines a non-redundant characterising set

W for the FSM M(XC).

Proof. Let us suppose that C is a solution to X3C problem

instance (U,C). We let W = {xi|ei ∈C} be the corresponding

set of input sequences of length 1 and it is sufficient to prove

that W is a non-redundant characterising set. First note that

for a given state si, with 1≤ i≤ u, input x j will separate state

si from all states in S\{si} if ui ∈ e j. W being a characterising

set thus follows from C being a cover for U .

Since C is a solution to the instance XC = (U,C) of the

X3C problem, we have that for all ui there is only one e j ∈C
that contains ui. But this implies that for all si, with 1≤ i≤ u,

we have that W contains only one x j that identifies si. From

this, we have that W is non-redundant.

We now prove that this characterising set is actually an O-

WSet.

Proposition 7. Let us suppose that C = {ei,e j, . . . ,ev} is a

solution to the X3C problem instance XC = (U,E). Then W =
{xi,x j, . . .xv} defines an O-WSet Wo for the FSM M(X3C).

Proof. From Proposition 6, we know that W is a non-

redundant characterising set. In addition, W contains input

sequences of length 1, and so must be minimal. We now show

how a reset free state identification path can be formed.

To form this path, we start from s1. For each state si ∈ S,

with 1≤ i≤ u, we first apply all the inputs x j ∈W such that

ui ̸∈ e j, with such inputs leading to no change in state. We

then apply the unique input x j ∈W such that ui ∈ e j, with

this leading to the FSM moving to state si+1. Note that we

know that this input is unique since C is a solution for the

instance of the X3C problem. We then repeat this procedure.

Finally, when in state su+1, we can apply the inputs from W

in any order. Since the transition structure of the FSM M(XC)
follows a linear form, the set W defines an O-WSet.

Proposition 8. Given X3C problem instance XC = (U,E), if

Wo is an O-WSet for the FSM M(XC) then this defines a

solution for XC.

Proof. Let Wo be an O-WSet for M(XC). Since a single input

can separate every pair of states, and Wo is minimal, all input

sequences in Wo have length 1. Define C= {e j|x j ∈Wo}, and

we will prove that this is a solution to XC.

Consider a state si with 1≤ i≤ u. Since Wo separates si and

su+1, we must have that Wo contains at least one input x j that

identifies si. But this implies that there is some x j ∈Wo such

that ui ∈ e j. Thus, C defines a cover.

It is now sufficient to prove that for all ui there is only

one e j ∈ C that contains ui. We use proof by contradiction,

assuming that there is a ui such that more than one e j ∈ C

contains ui. Let ea and eb two such elements of C that contain

ui. We therefore have that xa,xb ∈ Wo and the application

of either xa or xa takes M(XC) from state si to state si+1.

However, there is no path from si+1 to si, and so no path

of M(XC) can contain both the application of xa in si and

the application of xb in si. Thus, one cannot construct a reset

free state identification path based on Wo. This contradicts Wo

being an O-WSet as required.

Proposition 9. The O-WSet problem is NP-hard.

Proof. By Proposition 8, we can reduce any instance of the

(NP-complete) X3C problem to the O-WSet problem. The

result follows from observing that the construction can be

carried out in polynomial time.

We can now bring the results together.

Theorem 1. The O-WSet problem is NP-complete.

Proof. First, we know from Proposition 5 that this problem is

in NP. In addition, Proposition 9 tells us that this problem is

NP-hard. The result, therefore, follows.

Observe that the FSM constructed is not strongly connected

since moving from any state si with i> 1 to s1 is impossible. If

we required an FSM to be strongly connected, then we could

simply add an additional input r that takes all states back to

s1 with constant output 0. It is straightforward to see that no

non-redundant characterising set could have an input sequence

that contains r, and so the proof would remain unchanged.

An FSM need not have an O-WSet and to see this consider

the FSM given in Figure 1. For this FSM, the possible non-

redundant W-Sets are W1 = {x2}, W2 = {x1,x3}, W1 = {x1x2},
etc., and one can check that these cannot form W-Sets. In

practice, we might instead wish to place a bound on the size

of the transfer sequences used.

Definition 19 (Bounded Ordered characterising Set). Let

M be an FSM with n states and k ≥ 0 be an integer. A

non-redundant characterising set Wo = {w1,w2, . . . ,wm} is a

21

Bounded Ordered characterising Set (BO-WSet) for M and k

if the following properties hold:

1) Wo is minimal; and

2) there exists a State Identification Path Åρ for Wo such

that the sum of the lengths of the transfer sequences is

at most k.

Note that for the FSM given in Figure 1, the W-set W =
{x1x2} is a BO-WSet where k = 1 and the input sequence

Åx = x1x2,x1x2,x3,x1x2 from s1 is a state identification path

and the length of the transfer sequence is k = 1 (x3).

Definition 20 (Bounded O-WSet problem). Given an FSM M

and integer k ≥ 0, the Bounded O-WSet problem is to decide

whether M has an Bounded O-WSet Wo for M and k.

Theorem 2. The bounded O-WSet problem is NP-complete.

Proof. We start by proving that the problem is in NP. For

this, we adapt the proof of Proposition 5 so that the Turing

Machine also guesses transfer sequences whose length does

not exceed the bound. We can observe that one never needs a

transfer sequence of length greater than n−1 for an FSM with

n states since there is a transfer sequence from s to s′ if and

only if there is a transfer sequence from s to s′ of length at

most n−1. We can, therefore, restrict attention to polynomial

size bound and the rest of this part of the proof follows in the

same way as the proof of Proposition 5.

Proposition 9 tells us that this problem is NP-hard since it

is NP-hard for the case where the bound is zero. The result,

therefore, follows.

This also implies that the problem of finding a state identi-

fication path with a minimal total length of transfer sequences

cannot be solved in polynomial time (unless P=NP) and so

it addresses RQ1. Motivated by this, we now develop an

algorithm to find a Bounded O-WSet for a small bound. The

algorithm developed is a heuristic (it is not guaranteed to

return an optimal solution), and we report on experiments that

evaluated this algorithm in Section VI.

2
2

SUPPLEMENTARY MATERIAL: PERFORMANCE ANALYSIS TABLE.

Input/Output Metric Comparison 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200

6

SIS-Length
BOWA vs CWA 100

BOWA vs MWA 100

SIS-Resets
BOWA vs CWA 100

BOWA vs MWA 100

SIS-Transfer
BOWA vs CWA 100

BOWA vs MWA 88 91 95 98 99 100

TS-Length
BOWA vs CWA 100

BOWA vs MWA 96 95 97 97 97 94 89 87 87 92 77 96 91 89 86 78 80 75 76 74 65 62 63 66 59 59 49 54 46 43 46 57 39 39 35 37 43 40 35

TS-Resets
BOWA vs CWA 100

BOWA vs MWA 100 100 99 99 98 99 94 96 98 97 94 98 99 97 96 94 96 97 93 96 93 92 92 96 94 93 87 88 93 90 88 91 79 83 80 83 89 80 84

Memory
BOWA vs CWA 100 59 95 96 86 76 85 96 99 100 98 96 98 98 99 100 99 99 96 99 100 100 99 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100

BOWA vs MWA 100 82 87 99 100

Time
BOWA vs CWA 0 71 100

BOWA vs MWA 0 14 79 93 100

7

SIS-Length
BOWA vs CWA 100

BOWA vs MWA 100

SIS-Resets
BOWA vs CWA 100

BOWA vs MWA 100

SIS-Transfer
BOWA vs CWA 100

BOWA vs MWA 91 98 96 98 100 99 100

TS-Length
BOWA vs CWA 99 100

BOWA vs MWA 99 100 98 98 100 100 100 100 98 98 100 100 100 100 100 100 100 100 100 100 100 99 99 100 100 100 100 100 100 100 98 100 100 99 99 100 100 99 99

TS-Resets
BOWA vs CWA 99 100

BOWA vs MWA 99 100 100 98 100 100 100 99 99 99 98 100 100 99 100 99 99 100 100 99 100 99 98 99 99 100 100 99 100 99 97 99 100 99 98 100 99 97 99

Memory
BOWA vs CWA 99 34 96 90 86 84 85 95 96 97 96 100 100 97 99 96 100 98 100 100 100 99 100 100 100 100 100 100 100 100 99 100 99 100 99 100 100 100 100

BOWA vs MWA 100 66 87 98 100

Time
BOWA vs CWA 0 73 100

BOWA vs MWA 1 61 69 98 100

8

SIS-Length
BOWA vs CWA 100

BOWA vs MWA 100

SIS-Resets
BOWA vs CWA 100

BOWA vs MWA 100

SIS-Transfer
BOWA vs CWA 100

BOWA vs MWA 93 99 99 99 100

TS-Length
BOWA vs CWA 100

BOWA vs MWA 99 100 100 100 100 100 100 100 100 100 100 99 99 100

T S-Resets
BOWA vs CWA 100

BOWA vs MWA 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 99 100 99 100 100 100 100 100 100 100 99 100 99 99 100 100 100 99 100 100 100 100 100

Memory
BOWA vs CWA 52 43 91 88 80 86 91 99 98 92 99 98 99 100 100 100 100 100 99 99 100 100 100 100 99 98 100 100 99 100 100 100 100 100 100 100 100 100 100

BOWA vs MWA 77 72 81 100

Time
BOWA vs CWA 24 76 100

BOWA vs MWA 25 44 89 97 100

TABLE I: Synthetic FSM results on the number of cases in which BOWA is better than the benchmark approaches (CWA, MWA).

	Introduction
	Background
	Finite state machines
	Directed graphs

	Motivation
	Ordered Characterising Sets
	Algorithm for deriving BO-WSets
	High-level summary
	Computing a BO-WSet
	Computing a state identification path

	Experiments
	Experiment setup
	Experiment subjects
	Structure of the Experiments & visual encodings
	Structure
	Visual encodings

	State Identification Costs
	Total number of inputs (length) of state identification sequences
	Number of sequences (resets) of state identification sequences
	Number of transfer inputs

	Scalability
	Time Requirements
	Memory Requirements

	Test Suite Costs
	Total number of inputs (length) of test suites
	Number of sequences (resets) in test suites

	Threats to validity
	Conclusion
	References

