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1. Introduction

In sports video games, commentary is sometimes generated

by concatenating pre-recorded speech segments to dynamically

narrate in-game events. While enabling reactive dialogue, this

can introduce perceptual artifacts at join points, such as signal

and prosodic discontinuities. Identifying these issues typically

relies on manual quality control by audio designers, highlight-

ing the need for data-driven approaches to support the review

process. Our dataset consists of 18741 recordings of a profes-

sional sports commentator. Utterances are either names (teams

or players) or actions (e.g., “passes the ball”). Full utterances

are formed by randomly concatenating semantically compati-

ble units on consonants, as per industrial practice. We analyzed

1,500 concatenated and 3,000 non-concatenated sports com-

mentary samples using OpenSMILE’s ComParE 2016 feature

set (6,373 acoustic features) [1]. This analysis lays the founda-

tion for subjective testing and the development of a predictive

model to assist the quality assurance process by identifying per-

ceptually problematic joins.

2. Methodology

After standardizing the extracted features, we applied PCA fol-

lowed by t-SNE and UMAP (as shown in Figure 1). We ana-

lyzed feature importance by correlating individual acoustic fea-

tures with embedding dimensions, performed HDBSCAN clus-

tering [2] on the embeddings, and visualized feature distribu-

tions for concatenated and unconcatenated samples.

3. Results

3.1 Feature-Embedding Correlation

Correlation analysis between acoustic features and embedding

dimensions shows that spectral and modulation-based features

- particularly RASTA-filtered Linear Predictive Coding (LPC)

and spectral energy coefficients - strongly influenced the spatial

structure of both UMAP and t-SNE projections (|r| > 0.7 for

top features, as shown in Table 1).

Feature (UMAP) Corr

audspecRasta lengthL1norm sma lpc0 0.726

audspecRasta lengthL1norm sma lpc1 0.720

audSpec Rfilt sma[20] lpc1 0.711

Table 1: Top features by mean absolute embedding correlation.

3.2 Clustering Analysis

The UMAP projection of acoustic features indicates a strong

apparent separation between most concatenated and fluent utter-
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Figure 1: t-SNE and UMAP projections of OpenSMILE Com-

Pare 2016 features.
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Key Acoustic Features: Distribution Comparison

Mann-Whitney U test: *** p<0.001, ** p<0.01, * p<0.05, ns: not significant, d: Cohen's d

Figure 2: Top feature distribution across concatenated and un-

concatenated speech.

ances. HDBSCAN clustering in UMAP space identified 4 clus-

ters. Clusters 0 and 1 consist almost entirely of fluent speech,

while cluster 3 is > 99% concatenated and exhibits high z-

scores (relative to the dataset mean) in spectral variance and

roll-off features. Cluster 2, which contains both fluent and con-

catenated samples, shows divergent trends in RASTA-filtered

LPC-based features (e.g., +0.92 for lpc1 vs −0.91 for lpc0),

indicating deviations in the spectral envelope.

3.3 Feature Distribution

We selected a subset of features with the highest correlation

with UMAP dimensions and analyzed their distribution across

samples and HDBSCAN clusters. As shown in Figure 2, top-

ranked features display significant shifts between concatenated

and fluent samples.
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