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S U M M A R Y 

Green’s function expressions for seismic interferometry in acoustic and elastic media have been
extensively studied and applied across a wide range of applications, including surface-wave
tomography and generating virtual shot gathers. However, analogous expressions for coupled
acoustic–elastic media systems remain absent, despite their importance for analysing cross-
correlation wavefields from ocean-bottom nodal and seismometer recordings and other seismic
problems in marine settings. To address this issue, we derive convolution- and correlation-type
reciprocity relations for physically coupled acoustic–elastic media by combining Rayleigh’s
and Rayleigh–Betti reciprocity theorems, incorporating the constitutive equations governing
coupling at the acoustic–elastic interface, and applying time-reversal invariance principles for
an arbitrary 3-D inhomogeneous, lossless medium. The derived relationships show that the
acoustic and elastic Green’s functions between any two observation points in the medium can
be expressed as integrals of cross-correlations of wavefield observations at those locations,
generated by sources distributed over an arbitrarily shaped closed surface enclosing the two
observation points. When the Earth’s free surface coincides with the enclosing surface, inte-
gral evaluation is required only over the remaining portion of the closed surface. If the sources
are mutually uncorrelated ambient sources, the Green’s function representation simplifies to a
direct cross-correlation of wavefield observations at the two points, generated by a specific am-
bient source distribution on the closed surface. However, in practical scenarios, the ideal source
distribution necessary to retrieve Green’s functions is rarely realized, for example, due to non-
uniform illumination. To address these challenges, we represent the ambient cross-correlations
as self-consistent observations and introduce a cross-correlation modelling methodology that
accounts for practical limitations in source distribution for coupled acoustic–elastic media
scenarios. We illustrate the theory by modelling ambient cross-correlation wavefields for a
deep-water scenario. 

Key words: Empirical Green’s function; Seismic interferometry; Surface waves and free
oscillations; Theoretical seismology; Wave propagation. 

 I N T RO D U C T I O N  

ecent advances in sparse, large-scale, multicomponent ocean-bottom sensor array deployments— including ocean-bottom seismometers
OBSs), cables (OBCs) and nodes (OBNs)—offer a unique opportunity to enhance our understanding of marine ambient wavefield phenomena
y extracting low-frequency (sub-2.0 Hz) wavefield information at the seabed. Many continuous ocean-bottom acquisitions lasting for
urations spanning one to three months are designed for active-source seismic exploration, where short-duration windows are extracted
o form shot gathers, with the remainder of the data archived and often disregarded as containing little useful information for subsurface
nvestigation—especially below the 2.0 Hz low-frequency cutoff of typical marine air-gun sources. 

Long-time continuous seafloor recordings, though, also capture a rich broad-band spectrum of ambient seismic energy in the 0.01–1.0 Hz
requency range, and a growing number of studies demonstrate that this low-frequency energy can be transformed into useful surface-wave
nformation through seismic interferometry (de Ridder & Dellinger 2011 ; Girard et al. 2023 , 2024 ). For example, ambient virtual shot gather
VSG) volumes derived from continuous wavefield data recorded on OBC arrays at the Valhall (de Ridder & Dellinger 2011 ) and Ekofisk
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(de Ridder & Biondi 2015 ) fields in the Norwegian North Sea, as well as OBN arrays in the Gulf of Mexico (Stewart 2006 ; Girard et al.
2023 , 2024 ), reveal dispersive surface- and guided P -wave modes. These VSGs also exhibit surface-wave sensitivity to strong lateral velocity
heterogeneities (e.g. salt bodies) within the sub-2.0 Hz frequency band. de Ridder & Dellinger ( 2011 ) further used VSG data for ambient
eikonal tomography to perform near-seabed imaging at the North Sea Valhall field, while de Ridder & Biondi ( 2015 ) used VSG-derived
dispersion panels to image Scholte-wave group velocities via straight-ray tomography. These examples demonstrate the potential of using 
the low-frequency information recorded on ocean-bottom sensors for subsurface investigation, complementing conventional exploration 
methods. 

To fully exploit the potential of ambient VSG data and move towards low-frequency elastic Earth model building through full-waveform
inversion (FWI), it is essential to understand the physical significance of the cross-correlated wavefield recorded on ocean-bottom sensors.
This understanding requires interpreting ambient wavefield information within the context of marine settings characterized by physically 
coupled acoustic–elastic media and accurately modelling these wavefields for FWI workflows within an appropriate seismic interferometry 
(SI) framework. Consequently, it is imperative to develop Green’s function representations for SI in such coupled-media systems, to understand
when the underlying assumptions are realized, and to develop methodologies for using approximate representations for SI when they are
not. 

In SI, waves recorded at two receiver locations are correlated to approximate Green’s function between these locations. Seismic 
wavefield energy, continuously generated by a diverse array of sources—including active sources, oceanic phenomena, and localized seismic 
events such as ear thquakes—for m the basis for such correlation-based interferometric analyses. Wapenaar & Fokkema ( 2006 ) provides a
comprehensive overview of Green’s function representations in terms of cross-correlations of full wavefields in arbitrary configurations 
(Weaver & Lobkis 2004 ; van Manen et al. 2006 ) and discusses modifications for their application in SI for both acoustic and elastodynamic
systems, without assuming wavefield diffusivity. Lobkis & Weaver ( 2001 ), Wapenaar ( 2004 ) and Wapenaar & Fokkema ( 2006 ) demonstrate
that the interstation correlation of ambient wavefields can approximate the interstation Green’s function under the assumption of a diffused,
equipartitioned, random and uncorrelated ‘noise’ field. Applications of Green’s function retrieval using SI in acoustic and elastic systems have
been extensively studied and successfully applied across various fields, including helioseismology (Rickett & Claerbout 2000 ), ultrasonics 
(Lobkis & Weaver 2001 ) as well as exploration (Bakulin & Calvert 2004 ) and global (Sager et al. 2018 ) seismology. However, Green’s function
representations for SI in coupled acoustic–elastic media, such as those encountered in ocean-bottom acquisition in marine environments, 
remain poorly studied and are notably absent from the literature. 

This paper derives reciprocity relations for coupled acoustic–elastic systems by employing constitutive equations at the acoustic–elastic 
interface and reciprocity theorems for the associated acoustic and elastodynamic media. We establish source–receiver reciprocity expressions 
and give an overview of Green’s function representations for pressure and particle velocity data in such systems, expressed through cross-
correlations of full wavefields in arbitrary configurations within inhomogeneous, lossless media. We consider both open and free-surface 
configurations with approximations introduced to address practical SI challenges, including source availability and characteristics. For practical 
applications, we present a cross-correlation modelling (CCM) approach derived from Tromp et al. ( 2010 ) for realistically representing and
modelling of ambient wavefield cross-correlations, supported by a synthetic simulation that highlights CCM waveform differences from the 
corresponding direct Green’s function response. 

2  R E C I P RO C I T Y  F O R  C O U P L E D  A C O U S T I C – E L A S T I C  S Y S T E M S  

In many applications, such as exploration focused OBS deployments or globally focused marine seismic acquisition, waves propagating in an
acoustic medium are physically coupled to wave motion in the underlying elastic solid through constitutive equations (Sun et al. 2017 ; Sethi
et al. 2021 ). Fig. 1 illustrates the configuration of such a coupled domain where the acoustic medium, denoted as V a , is governed by acoustic
wave-equation physics while wave propagation in the underlying elastic medium, denoted as V e , is described by the elastic wave equations. 

2.1 Acoustic region 

In the acoustic region V a , Rayleigh’s reciprocity theorem (Rayleigh 1878 ; de Hoop 1988 ; Fokkema & van den Berg 1993 ; Wapenaar &
Fokkema 2006 ) is given by: ∫ 

V a 

(̂ pA ̂  qB −̂ vi , A ̂  fi , B −̂ qA ̂  pB + ̂ fi , A ̂  vi , B 

)
d3 x =

∮ 
∂V a 

( ̂ pA ̂  vi , B −̂ vi , A ̂  pB ) n
a 
i d 

2 x +
∮ 

∂V ∩ 
( ̂ pA ̂  vi , B −̂ vi , A ̂  pB ) n

a 
i d 

2 x , (1) 

where ̂  p ( x , ω) and ̂  vi ( x , ω) respectively represent the acoustic pressure and particle velocity with the A and B denoting two independent
acoustic states; and ̂  fi ( x , ω) and ̂  q ( x , ω) represent the source distributions in terms of external volume force density and volume injection rate
density. Domain V a represents an arbitrary acoustic spatial region enclosed by boundaries ∂V a and ∂V ∩ with the outward-pointing normal 
vector na = na 

i = [ na 
1 , n

a 
2 , n

a 
3 ] , where the superscript a indicates a quantity defined in the acoustic medium. The boundary ∂V ∩ represents a

coupled interface between the acoustic and elastic media (see Fig. 1 ). Lowercase Latin subscripts take values of 1, 2, 3, and x = [ x1 , x2 , x3 ]
denotes the Cartesian coordinate vector with the x3 -axis oriented positive downwards. Finally, note throughout that the summation convention 
applies for repeated subscripts, and a circumflex accent over a variable [e.g. ̂  p ( x , ω) ] indicates a Fourier transformed quantity in the frequency
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Figure 1. Configuration for a coupled acoustic ( V a )-elastic ( V e ) system. The domains are coupled at common interface ∂V ∩ by the constitutive equations. The 
sources acting in V a include the volume injection rate density q, and volume force density fi , while the observed wavefields are the pressure p and the particle 
velocity vector vi . In V e , the sources are the exter nal defor mation rate density hi j and the exter nal volume force density fi , with the observed wavefields being 
the stress tensor τi j and the particle velocity vector vi . The uv-plane shown is locally tangential to ∂V ∩ , with n as the normal vector. 
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omain: 

 p ( x , ω) =
∫ ∞ 

−∞ 

p( x , t ) exp ( −jωt ) dt, (2) 

here j is the imaginary unit and ω is angular frequency. 
Eq. ( 1 ) represents the acoustic reciprocity theorem of the convolution type, where frequency-domain products (e.g. ̂  pA ̂  vi , B ) correspond

o convolutions in the time domain. The field and source quantities in eq. ( 1 )—̂ p ( x , ω) , ̂  vi ( x , ω) , ̂  q ( x , ω) , and ̂  fi ( x , ω) —satisfy the space-
requency-domain acoustic wave equations representing a coupled first-order system in a lossless, arbitrarily inhomogeneous fluid medium: 

ωρa ̂ vi + ∂i ̂  p = ̂ fi (3) 

nd 

ωκa ̂ p + ∂i ̂  vi = ̂ q , (4) 

here ∂i denotes the partial derivative with respect to the xi -direction; and ρa = ρa ( x ) and κa = κa ( x ) are the density and compressibility of
he acoustic medium, respectively. 

.2 Elastic region 

n elastic region V e , we express the Rayleigh-Betti reciprocity theorem (Knopoff & Gangi 1959 ; De Hoop 1966 ; Aki & Richards 2002 ;
apenaar & Fokkema 2006 ) as ∫ 
V e 

(−̂ τi j, A ̂  hi j, B −̂ vi, A ̂  fi, B +̂ hi j, A ̂  τi j, B + ̂ fi, A ̂  vi, B 

)
d3 x 

= 

∮ 
∂V e 

(̂
 vi, A ̂  τi j, B −̂ τi j, A ̂  vi, B 

)
ne 

j d
2 x +

∮ 
∂V ∩ 

(̂
 vi, A ̂  τi j, B −̂ τi j, A ̂  vi, B 

)
ne 

j d
2 x , (5) 

here τi j ( x , ω) and vi ( x , ω) , respectively, are the components of the stress tensor and particle velocity vector with subscripts A and B again
enoting two independent elastodynamic states; fi ( x , ω) denotes the external volume force density; and hi j ( x , ω) represents the external
eformation rate density source types. Domain V e represents an arbitrary elastic spatial region enclosed by boundaries ∂V e and ∂V ∩ with an
utward-pointing normal vector ne = ne 

j = [ ne 
1 , n

e 
2 , n

e 
3 ] , where the superscript e denotes a quantity defined in the elastic solid. Boundary ∂V ∩

gain represents the common coupled interface between acoustic and elastic domains ∂V a and ∂V e . 
Eq. ( 5 ) represents the elastodynamic reciprocity theorem of the convolution type. The associated field and source quantities—̂ τi j ( x , ω) ,

 i ( x , ω) , ̂  hi j ( x , ω) , and ̂  fi ( x , ω) —satisfy the space-frequency domain elastic wave equations forming a coupled, first-order system in a lossless,
rbitrarily inhomogeneous anisotropic elastic medium 

ωρe ̂ vi − ∂ j ̂  τi j = ̂ fi , (6) 

art/ggaf271_f1.eps
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and 

− jωse 
i jkl ̂  τkl + 1 

2 

(
∂i ̂  v j + ∂ j ̂  vi 

) = ̂ hi j , (7) 

where ρe = ρe ( x ) and se 
i jkl = se 

i jkl ( x ) are the density and compliance of the elastic medium, respectively. 

2.3 Interface boundary considerations 

Applying the boundary conditions that couple the elastic and acoustic domains at the interface ∂V ∩ requires enforcing the continuity of
traction and the normal component of the particle velocity. The continuity of traction at the acoustic–elastic interface ∂V ∩ is given by: 

− ̂ p =̂ tn , (8) 

whereas 

 tu =̂ tv = 0 , (9) 

because an inviscid fluid cannot support shear stress. Here, ̂  tn represents the normal traction, ̂  tu and ̂  tv represent shear tractions, and the stresses
and tractions are related by ̂  ti = ̂ τi j n j , where i, j ∈ { u, v, n } . The continuity of the normal component of the particle velocity is expressed as 

 v a 
n = ̂ v e 

n . (10) 

In eq. ( 10 ), ̂  v a 
n and ̂  v e 

n are the nor mal par ticle velocity components in the acoustic and the elastic solid, respectively, at any point on ∂V ∩ . The
normal vector n is relative to a locally orthogonal coordinate system, where the uv-plane is locally tangential to that point on the interface
∂V ∩ (see Fig. 1 ). 

By virtue of eq. ( 9 ), two terms on the right-hand side of eq. ( 5 ), ̂  vi, A ̂  τi j, B ne 
j and ̂  τi j, A ̂  vi, B ne 

j respectively become ̂  vn , A ̂  tn , B and ̂  tn,A ̂  vn,B ,
reducing the reciprocity relation to ∫ 

V e 

(−̂ τi j, A ̂  hi j, B −̂ vi, A ̂  fi, B +̂ hi j, A ̂  τi j, B + ̂ fi, A ̂  vi, B 

)
d3 x 

= 

∮ 
∂V e 

(̂
 vi, A ̂  τi j, B −̂ τi j, A ̂  vi, B 

)
ne 

j d
2 x +

∮ 
∂V ∩ 

(̂
 vn, A ̂  tn, B −̂ tn, A ̂  vn, B 

)
d2 x . (11) 

Using eqs ( 8 ) and ( 10 ), and the fact that the normals defined on opposite sides of the interface ∂V ∩ must satisfy ne = −na , we rewrite eq. ( 1 )
as: ∫ 

V a 

(̂ pA ̂  qB −̂ vi, A ̂  fi, B −̂ qA ̂  pB + ̂ fi, A ̂  vi, B 

)
d3 x 

= 

∮ 
∂V a 

( ̂ pA ̂  vi, B −̂ vi, A ̂  pB ) n
a 
i d

2 x −
∮ 

∂V ∩ 

(̂
 vn, A ̂  tn, B −̂ tn, A ̂  vn, B 

)
d2 x . (12) 

Adding eqs ( 11 ) and ( 12 ) yields ∫ 
V a 

(̂ pA ̂  qB −̂ vi, A ̂  fi, B −̂ qA ̂  pB + ̂ fi, A ̂  vi, B 

)
d3 x 

+ 

∫ 
V e 

(−̂ τi j, A ̂  hi j, B −̂ vi, A ̂  fi, B +̂ hi j, A ̂  τi j, B + ̂ fi, A ̂  vi, B 

)
d3 x 

= 

∮ 
∂V a 

( ̂ pA ̂  vi, B −̂ vi, A ̂  pB ) n
a 
i d

2 x +
∮ 

∂V e 

(̂
 vi, A ̂  τi j, B −̂ τi j, A ̂  vi, B 

)
ne 

j d
2 x . (13) 

Eq. ( 13 ) represents the convolution-type reciprocity for a coupled acoustic–elastic system. A similar reciprocity relation to eq. ( 13 ) is given
in de Hoop ( 1990 ). 

Because the acoustic and elastic media are assumed to be lossless, the principle of time-reversal invariance (Bojarski 1983 ) can be
applied to both domains. In the frequency domain, time reversal is replaced by complex conjugation, which is denoted by the ∗ symbol over
the field quantities. Time-reversal invariance states that if ̂  p and ̂  vi are solutions to the acoustic wave-equation system in eqs ( 3 ) and ( 4 ) with
source terms ̂  fi and ̂  q , then ̂  p ∗ and −̂ v ∗

i will satisfy the same equations with source terms ̂  f ∗
i and −̂ q ∗. Similarly, when ̂  τi j and ̂  vi are solutions

to the elastic wave-equation system in eqs ( 6 ) and ( 7 ) with source terms ̂  fi and ̂  hi j , then ̂  τ ∗
i j and −̂ v ∗

i will obey the same equations with source
terms ̂  f ∗

i and −̂ h ∗
i j . 

Enforcing time reversal for state A in eq. ( 13 ) leads to ∫ 
V a 

(̂ p ∗
A ̂  qB +̂ v ∗

i, A ̂
 fi, B +̂ q ∗

A ̂  pB + ̂ f ∗
i, A ̂  vi, B 

)
d3 x 

+ 

∫ 
V e 

(−̂ τ ∗
i j, A ̂

 hi j, B +̂ v ∗
i, A ̂

 fi, B −̂ h ∗
i j, A ̂  τi j, B + ̂ f ∗

i, A ̂  vi, B 

)
d3 x 

= 

∮ 
a 

(̂ p ∗
A ̂  vi, B +̂ v ∗

i, A ̂  pB 

)
na 

i d
2 x −

∮ 
e 

(̂
 v ∗
i, A ̂  τi j, B +̂ τ ∗

i j, A ̂  vi, B 

)
ne 

j d
2 x . (14) 
∂V ∂V
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Figure 2. Configuration for coupled source–receiver reciprocity relations derived in Section 3.1 . Points xA and xB are respectively located in the acoustic ( V a ) 
and elastic ( V e ) medium. 
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q. ( 14 ) represents the correlation-type reciprocity for a coupled acoustic–elastic system, because frequency-domain products (e.g. ̂  p ∗
A ̂  vi, B )

orrespond to time-domain correlations. Finally, in both the coupled convolution and correlation-type reciprocity theorems above, the medium
roperties in states A and B are assumed to be identical. 

 C O U P L E D  A C O U S T I C – E L A S T I C  D O M A I N ’ s  G R E E N ’ s  F U N C T I O N  

E P R E S E N TAT I O N S  

n this section, we first derive the source–receiver reciprocity relations for the coupled acoustic–elastic system by substituting Green’s functions
or the wavefields in the convolution-type reciprocity relation (eq. 13 ). We then derive the coupled-domain Green’s function representations
sing the correlation-type reciprocity relation (eq. 14 ). These representations form the foundation for SI in physically coupled acoustic–elastic
ystems, such as those found in exploration OBN settings. We consider a domain V = V a ∪ V e (see Fig. 1 ). Boundaries ∂V a and ∂V e do not
ecessarily coincide with physical boundaries; however, they must be continuous on the ∂V ∩ interface. 

.1 Source–receiver reciprocity relations in coupled acoustic–elastic domain 

e consider two cases involving two impulsive point sources: one located in the acoustic medium in state A , and the other in the solid in state
 . In each case, xA is in the acoustic medium V a and xB is in the solid medium V e (see Fig. 2 ). Table 1 summarizes these two cases and the
hosen source type. 

Case 1 represents scenarios where only impulsive point sources of volume injection rate ̂  q ( x , ω) at point xA in V a in state A and
mpulsive point force sources ̂  fi ( x , ω) at point xB in V e in state B are present. In this case, the coupled convolution-type reciprocity relation
eq. 13 ) simplifies to 

−
∫ 

V a ̂
 qA ̂  pB d 

3 x −
∫ 

V e ̂
 vi, A ̂  fi, B d 

3 x 

= 

∮ 
∂V a 

( ̂ pA ̂  vi, B −̂ vi, A ̂  pB ) n
a 
i d 

2 x +
∮ 

∂V e 

(̂
 vi, A ̂  τi j, B −̂ τi j, A ̂  vi, B 

)
ne 

j d 
2 x . (15) 

or an unbounded medium, we can consider the surface of integration ∂V a and ∂V e as a spherical arc with infinite radius r → ∞ . In this
ase, the contributions from the boundary integrals over ∂ V a and ∂ V e vanish, as they will be of order O( r−1 ) . Because the right-hand side of
q. ( 15 ) vanishes on both ∂V a and ∂V e , the result is independent of the specific choice of boundaries ∂V a and ∂V e , provided points xA and

B are contained within ∂ V a ∪ ∂ V e . This further simplifies eq. ( 15 ) to ∫ 
V a ̂  qA ̂  pB d 

3 x = − ∫ 
V e ̂  vi, A ̂  fi, B d 

3 x . (16) 

art/ggaf271_f2.eps
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Table 1. Summary of different source configurations in states A and B used in the coupled convolution-type reciprocity 
theorem for deriving coupled source–receiver reciprocity expressions. 

Case State A ( xA in V a ) State B ( xB in V e ) 

1 ̂ qA = δ( x − xA ) , ̂ fi, A = 0 ̂ hi j, B = 0 , ̂ fi, B = δ( x − xB ) δil 

2 ̂ qA = δ( x − xA ) , ̂ fi, A = 0 ̂ hi j, B = δ( x − xB ) δir δ js , ̂ fi, B = 0 

̂

 

̂
̂
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Table 1 presents the Case 1 source definitions found in eq. ( 16 ): 

 qA ( x , ω) = δ( x − xA ) (17) 

and ̂ fi, B ( x , ω) = δ( x − xB ) δil , (18) 

where δ( x ) is the Dirac delta function and δil is the Kronecker delta function. The wavefields in states A and B, needed in eq. ( 16 ) due to
above sources, can be expressed in terms of impulse responses (i.e. acoustic and elastodynamic Green’s functions): 

 pB ( x , ω) = ̂ G p, f 
,l ( x , xB , ω) (19) 

and 

 vi, A ( x , ω) = ̂ Gv,q 
i ( x , xA , ω) . (20) 

Here, the Green’s function notation ̂  Gv,q 
i ( x , xA , ω) represents the impulse response observed at x due to a source at xA . The double superscripts

( v, q here) respectively represent the observed field quantity (here particle velocity v) and the applied source (here impulsive point sources of
volume injection rate q). If the observed field quantity or source is a vector or tensor, its component or direction is indicated by the subscripts.
In this case, subscript i denotes the i-th component of the observed particle velocity v. No subscript is required for scalar q quantity. A
circumflex accent on ̂  G denotes the Fourier transform of causal time-domain Green’s function Gv,q 

i ( x , xA , t) . 
Substituting eqs ( 17 )–( 20 ) into eq. ( 16 ) and using the sifting property of the delta function leads to a source–receiver reciprocity relation

for the coupled acoustic–elastic system: ̂ G p, f 
,l ( xA , xB , ω) = −̂ Gv,q 

l ( xB , xA , ω) . (21) 

The Green’s function ̂  Gv,q 
l ( xB , xA , ω) on the right-hand side of the above equation denotes the l-th component of particle velocity recorded at

receiver location xB within the elastic medium V e , in response to a point impulsive volume injection rate source located at xA in the acoustic
medium V a . In contrast, the Green’s function ̂  G p, f 

,l ( xA , xB , ω) on the left-hand side corresponds to the pressure field measured at a receiver
positioned at xA in the acoustic medium V a , due to an impulsive point force applied in the l-th direction at xB in the elastic medium V e .
Eq. ( 21 ) represents the source–receiver reciprocity for an OBN acquisition scenario where the airgun sources or ambient sources acting as
volume injection rate sources are present anywhere above the seabed (i.e. in the water column), while the receivers are located just below the
seabed (i.e. in the elastic solid). 

Similarly, Case 2 is a scenario where we replace the source in eq. ( 18 ) by a point impulsive source of exter nal defor mation rate density
 hi j ( x , ω) defined as 

 hi j, B ( x , ω) = δ( x − xB ) δir δ js , (22) 

where the other sources remain the same as Case 1. Table 1 presents this Case 2 source definitions. Here, the coupled convolution-type
reciprocity relation (eq. 13 ) simplifies to ∫ 

V a ̂  qA ̂  pB d3 x = − ∫ 
V e ̂  τi j, A ̂  hi j, B d3 x . (23) 

We may express the wavefields needed in the above equation due to sources in Case 2 (Table 1 ) as 

 pB ( x , ω) = ̂ G p,h 
,rs ( x , xB , ω) (24) 

and 

 τi j, A ( x , ω) = ̂ Gτ,q 
i j ( x , xA , ω) . (25) 

Substituting eqs ( 17 ), ( 22 ), ( 24 ) and ( 25 ) into eq. ( 23 ) and using the sifting property of the delta function yields the following coupled
source–receiver reciprocity relation ̂ G p,h 

,rs ( xA , xB , ω) = −̂ Gτ,q 
rs ( xB , xA , ω) . (26) 

For sources and receivers both located either in acoustic or elastic-solid media, the source–receiver reciprocity remains as presented in
Wapenaar & Fokkema ( 2006 ). When both the source and receiver are in water and only impulsive point sources of volume injection rate q
are acting in both states, reciprocity is given by ̂ G p,q ( xB , xA , ω) = ̂ G p,q ( xA , xB , ω) . (27) 
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hen both the source and receiver are in solid media, three scenarios must be addressed. First, for cases where impulsive point sources of
orce f are acting in both states, the reciprocity relation is 

̂ Gv, f 
m,n ( xB , xA , ω) = ̂ Gv, f 

n,m 

( xA , xB , ω) . (28) 

econd, when impulsive point sources of force f act in state A and point sources of deformation type h act in state B , the reciprocity relation 

̂ Gτ, f 
qr,m 

( xB , xA , ω) = ̂ Gv,h 
m,qr ( xA , xB , ω) . (29) 

hird, when point sources of deformation type h are acting in both states, the reciprocity relation is 

̂ Gτ,h 
qr,mn ( xB , xA , ω) = ̂ Gτ,h 

mn,qr ( xA , xB , ω) . (30) 

.2 Pressure-type Green’s function expression for seismic interferometry in coupled acoustic–elastic media 

s with the coupled source–receiver reciprocity relations derived earlier, one can make specific choices regarding the wavefields and source
elds in states A and B to derive the pressure Green’s function representation for SI. In this section, we examine various cases for the locations
f points xA and xB inside ∂ V a ∪ ∂ V e and define the corresponding sources and wavefields to derive the expression for the pressure-type
reen’s functions using the correlation-type coupled reciprocity relation derived in eq. ( 14 ). 

.2.1 Points xA and xB in acoustic media V a 

or the scenario where points xA and xB are located in acoustic medium V a , one need only consider impulsive point sources of volume
njection-rate density ̂  q ( x , ω) defined by 

 χ ( x , ω) = δ( x − xχ ) for χ = A, B, (31) 

hile the external forces ̂  f ( x , ω) in V a are assumed to be zero in both states. There are no sources in V e for states A and B . In this scenario,
he correlation-type coupled reciprocity relation given in eq. ( 14 ) simplifies to ∫ 

V a 

(̂ p ∗
A ̂  qB +̂ q ∗

A ̂  pB 

)
d3 x 

=
∮ 

∂V a 

(̂ p∗
A ̂  vi, B +̂ v∗

i, A ̂  pB 

)
na 

i d
2 x −

∮ 
∂V e 

(̂
 v∗
i, A ̂  τi j, B +̂ τ ∗

i j, A ̂  vi, B 

)
ne 

j d
2 x . (32) 

e define the recorded pressure wavefield ̂  p ( x , ω) at x in V a for both the states as the observed impulse responses (Green’s functions), given
y: 

 pχ ( x , ω) = ̂ G p,q ( x , xχ , ω) for χ = A, B. (33) 

e then obtain the expressions for the particle velocities observed at x in V a for both the states by substituting eq. ( 33 ) and ̂ fA ( x , ω) =
 fB ( x , ω) = 0 into the acoustic wave eq. ( 3 ) as: 

 i,χ ( x , ω ) = −1 

jωρa ( x ) 
∂i ̂  G p ,q ( x , xχ , ω ) for χ = A, B. (34) 

or the stress and velocity wavefields recorded at x in V e for both states, we define the stress and velocity Green’s functions due to the sources
n eq. ( 31 ) as 

 i j,χ ( x , ω) = ̂ Gτ,q 
i j ( x , xχ , ω) for χ = A, B, (35) 

nd 

 i,χ ( x , ω) = ̂ Gv,q 
i ( x , xχ , ω) for χ = A, B. (36) 

able 2 summarizes the sources along with the corresponding wavefields in V a and V e for both states. 
Substituting eqs ( 31 ), ( 33 )–( 36 ) into eq. ( 32 ) and applying the sifting property of the Dirac delta function obtains 

̂ G p,q∗ ( xB , xA , ω) + ̂ G p,q ( xA , xB , ω) 

= 

∮ 
∂V a 

−1 

jωρa ( x ) 

(̂ G p,q∗( x , xA , ω) ∂i ̂  G p,q ( x , xB , ω) − ∂i ̂  G p,q∗( x , xA , ω) ̂ G p,q ( x , xB , ω)
)

na 
i d 

2 x 

−
∮ 

e 

(̂ Gv,q∗
i ( x , xA , ω) ̂ Gτ,q 

i j ( x , xB , ω) + ̂ Gτ,q∗
i j ( x , xA , ω) ̂ Gv,q 

i ( x , xB , ω)
)

ne 
j d 

2 x . (37) 

∂V
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Table 2. Choice of sources and wavefields in V a and V e in states A and B, when points xA and xB are in V a , to be used 
in the coupled convolution-type reciprocity theorem to derive pressure Green’s function expression. 

Domain Parameter State A State B 

in V a ̂ q ( x , ω) δ( x − xA ) δ( x − xB ) ̂ fi ( x , ω) 0 0 ̂ p ( x , ω) ̂ G p,q ( x , xA , ω) ̂ G p,q ( x , xB , ω) ̂ vi ( x , ω) j 
ωρa ( x ) ∂i ̂  G p,q ( x , xA , ω) j 

ωρa ( x ) ∂i ̂  G p,q ( x , xB , ω) 

in V e ̂ hi j ( x , ω) 0 0 ̂ fi ( x , ω) 0 0 ̂ τi j ( x , ω) ̂ Gτ,q 
i j ( x , xA , ω) ̂ Gτ,q 

i j ( x , xB , ω) ̂ vi ( x , ω) ̂ Gv,q 
i ( x , xA , ω) ̂ Gv,q 

i ( x , xB , ω) 

Figure 3. Seismic interferometry by cross-correlation for the pressure-type Green’s function representation when receivers are in V a . Green’s function ̂ G p,q ( xA , xB , ω) can be obtained by cross-correlating the observations at xA and xB , and integrating along the source coordinate x at ∂V a and ∂V e (eq. 38 ). 
The figure shows the wavefields observed at xA and xB along with the corresponding sources required at x on ∂V a and ∂V e for pressure Green’s function 
retrieval. Note that the rays represent the full responses between the source and receiver points, including primary and multiple scattering mode conversions 
due to inhomogeneities inside and outside the region ∂ V a ∪ ∂ V e . 
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Applying source–receiver reciprocity from eqs ( 21 )–( 27 ) into both sides of the above results in 

2 	 {̂ G p,q ( xA , xB , ω)
}

= 

∮ 
∂V a 

−1 

jωρa ( x ) 

(̂ G p,q∗( xA , x , ω) ∂i ̂  G p,q ( xB , x , ω) − ∂i ̂  G p,q∗( xA , x , ω) ̂ G p,q ( xB , x , ω)
)

na 
i d

2 x 

−
∮ 

∂V e 

(̂ G p, f ∗
,i ( xA , x , ω) ̂ G p,h 

,i j ( xB , x , ω) + (̂ G p,h ∗
,i j ( xA , x , ω) ̂ G p, f 

,i ( xB , x , ω)
)

ne 
j d

2 x . (38) 

where the 	 operator extracts the real part of a complex argument. 
In the time domain, the products on the right-hand side of the above equation (e.g. ̂  G p,q∗ ∂i ̂  G p,q ) correspond to cross-correlations, while

the left-hand side represents the pressure Green’s function and its time-reversed counterpart [i.e. G p,q ( xA , xB , t) + G p,q ( xA , xB , −t) ]. The
ter m ̂

 G p ,q under the acoustic-surface integral 
∮ 

∂V a denotes the response of the volume injection-rate density sources q at x on ∂V a . Similarly,
the terms ̂ G p, f and ̂ G p,h under the elastic-surface integral 

∮ 
∂V e respectively represent the responses of force sources f and deformation 

sources h at x on ∂V e . Integration in both integrals is performed along the source coordinate x (see Fig. 3 ). 
The exact relationship expressed in eq. ( 38 ) provides a means to retrieve the complete pressure Green’s function ̂  G p,q ( xA , xB , ω) using

cross-correlations of observed Green’s functions from sources on ∂V a and ∂V e (Fig. 3 ). This formulation applies to any lossless, arbitrary,
inhomogeneous, anisotropic, coupled acoustic–elastic medium and forms the basis for acoustic SI when receivers are located within the 
acoustic medium. The retrieved Green’s function is complete, containing all arrivals—direct and scattered—including primaries, multiples 
and mode conversions from inhomogeneities both within and outside the boundaries ∂V a and ∂V e . 

art/ggaf271_f3.eps
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Although eq. ( 38 ) is an exact representation of the acoustic Green’s function, it is impractical for field data applications in its current
orm due to its complexity. Specifically, one must evaluate the superposition of two correlation products under both integrals, 

∮ 
∂V a and 

∮ 
∂V e .

ur ther more, monopole ̂  G p ,q as well as dipole responses ∂i ̂  G p,q are required for all source positions x on V a . Similarly, two different types of
ources, ̂  f ( x , ω) and ̂  h ( x , ω) , are required for all source positions x on V e . To overcome these challenges, we develop practical approximations
or both integrals. 

.2.1.1 Simplification of the acoustic boundary integral (eq. 38 ) When the wavefield on the boundary ∂V a in eq. ( 37 ) satisfies outgoing (i.e.
adiation or absorbing) boundary conditions such that the outward-propagating wavefield at the ∂V a boundary does not return after being
cattered by external inhomogeneities, Wapenaar & Fokkema ( 2006 ) demonstrates that the acoustic boundary integral can be approximated
s: 

Acoustic Boundary Integral ≈ 2 

ρa ca 

∮ 
∂V a ̂

 G p,q∗( xA , x , ω) ̂ G p,q ( xB , x , ω) d2 x , (39) 

here the acoustic medium at and outside ∂V a is assumed to be homogeneous with a propagation velocity ca and mass density ρa . 

.2.1.2 Simplification of the elastic boundary integrand (eq. 38 ) To approximate the contribution of sources on the elastic boundary ∂V e

o the acoustic Green’s function 2 	{̂ G p,q ( xA , xB , ω) } in eq. ( 38 ), we can follow the procedure developed in Wapenaar & Fokkema ( 2006 )
tarting with eq. (A-8) found therein. This simplification involves decomposing the wavefield at the ∂V e boundary in eq. ( 37 ) into inward-
nd outward-propagating components and assuming that the medium outside the domain is isotropic and homogeneous, ensuring the absence
f cross-terms between inwards and outwards propagating waves. The complete argument is thoroughly developed in Wapenaar & Haimé
 1990 ). Accordingly, we assume the elastic medium at and outside ∂V e to be homogeneous, isotropic, and source-free, with mass density ρe ,
nd P - and S -wave velocities cP and cS . The elastic boundary integral term in the convolution-type reciprocity relation (eq. 14 ) can then be
xpressed as (see eq. A-8 in Wapenaar & Fokkema ( 2006 )): 

−
∮ 

∂V e 

(̂
 v ∗
i, A ̂  τi j, B +̂ τ ∗

i j, A ̂  vi, B 

)
ne 

j d
2 x ≈ 2 

jωρe 

∮ 
∂V e 

(
( ∂ j ̂  
∗

A ) ̂ 
B + ( ∂ j ̂  �∗
k, A ) ̂ �k, B 

)
ne 

j d
2 x , (40) 

here ̂ 
 and ̂ �k respectively represent the observed P - and S -wave potentials at x on ∂V e with subscripts A and B correspond to states A
nd B . These potentials satisfy the Helmholtz equations (Aki & Richards 2002 ). 

In the current case (Case 1 in Table 2 ), points xA and xB are located above the seafloor, and we have chosen impulsive point sources with
olume injection-rate density ̂  q ( x , ω) at points xA in state A and at xB in state B . For x in V e , the velocity and stresses in both the states due
o above sources at xA and xB are expressed in terms of coupled Green’s functions as given in eqs ( 35 ) and ( 36 ). For x at or outside ∂V e but
till in elastic medium, we express the P - and S -wave potentials in states A and B in terms of Green’s functions as 

̂ 

χ ( x , ω) = ̂ Gφ,q 
0 ( x , xχ , ω) for χ = A, B (41) 

nd 

̂ k,χ ( x , ω) = ̂ Gφ,q 
k ( x , xχ , ω) for χ = A, B, (42) 

here the superscript φ denotes that the observed wavefield quantity at x is a P - or S -wave potential. To describe both wave types with a
ingle Green’s function, we use subscript K that takes on values 0, 1, 2 and 3. Hence, in ̂ Gφ,q 

K ( x , xB , ω ) , the obser ved wavefield at x is a P
ave for K = 0 or an S -wave component for K = k = 1 , 2 , 3 . Substituting eqs ( 35 ), ( 36 ), ( 41 ) and ( 42 ) into eq. ( 40 ) gives 

−
∮ 

∂V e 

(̂ Gv,q∗
i ( x , xA , ω)̂ Gτ,q 

i j ( x , xB , ω) + ̂ Gτ,q∗
i j ( x , xA , ω)̂ Gv,q 

i ( x , xB , ω)
)

ne 
j d

2 x 

≈ 2 

jωρe 

∮ 
∂Ve 

∂ j ̂  Gφ,q∗
K ( x , xA , ω) ̂ Gφ,q 

K ( x , xB , ω) ne 
j d

2 x . (43) 

pplying source–receiver reciprocity from eqs ( 21 ) and ( 26 ) to the left side of the above results in 

−
∮ 

∂V e 

(̂ G p, f ∗
,i ( xA , x , ω) ̂ G p,h 

,i j ( xB , x , ω) + (̂ G p,h ∗
,i j ( xA , x , ω) ̂ G p, f 

,i ( xB , x , ω)
)

ne 
j d

2 x 

≈ 2 

jωρe 

∮ 
∂Ve 

∂ j ̂  Gφ,q∗
K ( x , xA , ω) ̂ Gφ,q 

K ( x , xB , ω) ne 
j d

2 x . (44) 

Note that the repeated subscript K now represents a summation from 0 to 3, accounting for the different wave types in eq. ( 40 ), and
hat the left-hand side is the elastic boundar y integ ral from eq. ( 38 ). Let us examine the source–receiver reciprocity for the Green’s function̂ Gφ,q 

K ( x , xA , ω) , where x lies in the solid and xA is in the water. In this case (refer to Table 1 , Case 1 for the source configuration), we can write
he source–receiver reciprocity relation (eq. 21 ) as 

̂ G p, f 
,l ( xA , x , ω) = −̂ Gv,q 

l ( x , xA , ω) . (45) 
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Alternatively, if the source ̂  f ( x , ω) is replaced with impulsive P - and S -wave point sources (Wapenaar & Berkhout 1989 ) at x , we can define
another coupled source–receiver reciprocity as: 

̂ G p,φ

,K ( xA , x , ω) = −̂ Gφ,q 
K ( x , xA , ω) . (46) 

In this case, the superscript φ in ̂  G p,φ

,K ( xA , x , ω) indicates a P -wave source for K = 0 or a vector-polarized S -wave source for K = k = 1 , 2 , 3 .
Accordingly, in ̂ Gφ,q 

K ( x , xA , ω ) , the obser ved wave potential at x is the P -wave potential for K = 0 , and the S -wave potential for K = k =
1 , 2 , 3 . Introducing the above reciprocity relation in eq. ( 43 ) results in 

Elastic Boundary Integral ≈ 2 
jωρe 

∮ 
∂V e ∂ j ̂  G p,φ∗

,K ( xA , x , ω) ̂  G p,φ

,K ( xB , x , ω) ne 
j d

2 x . (47) 

Despite its simple form, the above equation requires the availability of monopole and dipole responses, ̂  G p,φ and ∂i ̂  G p,φ

,K , from P - and S -wave
sources at x . Assuming as previously that the elastic medium at and outside ∂V e is homogeneous with mass density ρe and P - and S -wave
velocities cP and cS , respectively, the dipole response can be approximated in terms of a monopole response (Wapenaar & Fokkema 2006 ) as 

∂ j ̂  G p,φ

,K ( xA , x , ω) ne 
j ≈

ω 

jcK ̂
 G p,φ

,K ( xA , x , ω) , (48) 

where 

cK =
{ 

cP for K = 0 
cS for K = k = 1 , 2 , 3 . 

(49) 

Note that since K does not appear as a subscript in cK , no summation takes place over K on the right-hand side of eq. ( 48 ). Using the dipole
approximation from eq. ( 48 ) in eq. ( 47 ), the elastic boundary integral reduces to: 

Elastic Boundary Integral ≈ 2 
ρe cK 

∮ 
∂V e ̂

 G p,φ∗
,K ( xA , x , ω) ̂ G p,φ

,K ( xB , x , ω) d2 x . (50) 

Using the acoustic and elastic boundary integral approximations (eqs 39 and 50 ), the pressure Green’s function in eq. ( 38 ) approximates to: 

	 

{̂ G p,q ( xA , xB , ω)
}

≈ 1 

ρa ca 

∮ 
∂V a ̂

 G p,q∗( xA , x , ω) ̂ G p,q ( xB , x , ω) d2 x 

+ 

1 

ρe cK 

∮ 
∂V e ̂

 G p,φ∗
,K ( xA , x , ω) ̂ G p,φ

,K ( xB , x , ω) d2 x . (51) 

This approximation is highly accurate when ∂V a and ∂V e are part of a sphere with a sufficiently large radius such that all rays are normal
to ∂V a and ∂V e ; otherwise, it may introduce significant amplitude errors. Additionally, events that would be otherwise completely cancelled 
when using eq. ( 38 ) may instead give rise to artifacts due to incomplete destructive interference. Nonetheless, the application of eq. ( 51 ) will
correctly retrieve the phases of all arrivals. 

It is important to note that the Green’s function retrieved under the aforementioned approximations represents only the high-frequency 
propagating component of the wavefield, rather than the complete broad-band response. As demonstrated by Zheng ( 2010 ) and Zheng et al.
( 2011 ), the far-field approximation can be removed by invoking the exact boundary integral equation method, and the exact, full-frequency
bandwidth Green’s function can be retrieved-including all scattering effects-provided that the source locations are known, as is the case for
active-source experiments. Although, unlike the far-field approximation, which requires cross-correlating wavefields observed at xA and xB 

from a common source at x ∈ ∂ V a ∪ ∂ V e , the exact method requires correlations between receiver pairs for each source as well as between
distinct source locations. For applications using ambient sources, this exact Green’s function retrieval technique remains applicable as long 
as the ambient source distribution can be reasonably estimated. 

3.2.2 Points xA and xB in the solid media V e 

When both points are located beneath the seafloor, we place impulsive point sources of the external deformation rate density ̂  hi j ( x , ω) at xA 

and xB within V e , with all other sources set to zero. Table 3 summarizes these sources and the resulting wavefields in both V a and V e for the
two states. Substituting the parameters from Table 3 into the reciprocity relation in eq. ( 14 ) and using the Dirac delta function sifting property
yields: (̂ Gτ,h ∗

rs,mn ( xB , xA , ω) + ̂ Gτ,h 
mn,rs ( xA , xB , ω)

)
=

∮ 
∂V a 

1 

jωρa ( x ) 

(̂ G p,h ∗
,mn ( x , xA , ω) ∂i ̂  G p,h 

,rs ( x , xB , ω) − ∂i ̂  G p,h ∗
,mn ( x , xA , ω) ̂ G p,h 

,rs ( x , xB , ω)
)

na 
i d

2 x 

+
∮ 

e 

(̂ Gv,h ∗
i,mn ( x , xA , ω) ̂ Gτ,h 

i j,rs ( x , xB , ω) + ̂ Gτ,h ∗
i j,mn ( x , xA , ω) ̂ Gv,h 

i,rs ( x , xB , ω)
)

ne 
j d

2 x . (52) 

∂V
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Table 3. Summary of sources and wavefields in states A and B , used for the pressure Green’s function expression when 
points xA and xB are in V e . 

Domain Parameter State A State B 

in V a ̂ q ( x , ω) 0 0 ̂ fi ( x , ω) 0 0 ̂ p ( x , ω) ̂ G p,h 
,mn ( x , xA , ω) ̂ G p,h 

,rs ( x , xB , ω) ̂ vi ( x , ω) j 
ωρa ( x ) ∂i ̂  G p,h 

,mn ( x , xA , ω) j 
ωρa ( x ) ∂i ̂  G p,h 

,rs ( x , xB , ω) 

in V e ̂ hi j ( x , ω) δ( x − xA ) δim 

δ jn δ( x − xB ) δir δ js ̂ fi ( x , ω) 0 0 ̂ τi j ( x , ω) ̂ Gτ,h 
i j,mn ( x , xA , ω) ̂ Gτ,h 

i j,rs ( x , xB , ω) ̂ vi ( x , ω) ̂ Gv,h 
i,mn ( x , xA , ω) ̂ Gτ,h 

i,rs ( x , xB , ω) 

I
i
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o
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̂
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n Table 3 , consider external deformation rate density source tensors ̂  hi j ( x , ω) = δ( x − xA ) δim 

δ jn in state A and ̂  hi j ( x , ω) = δ( x − xB ) δir δ js 

n state B , both located within V e . If we consider only their normal components and sum eq. ( 52 ) over all such sources, we can write 

3 ∑ 

 = n = 1 

3 ∑ 

r= s= 1 

(̂ Gτ,h ∗
rs,mn ( xB , xA , ω) + ̂ Gτ,h 

mn,rs ( xA , xB , ω)
)

= 

3 ∑ 

m = n = 1 

3 ∑ 

r= s= 1 

{ ∮ 
∂V a 

1 

jωρa ( x ) 

(̂ G p,h ∗
,mn ( x , xA , ω) ∂i ̂  G p,h 

,rs ( x , xB , ω) − ∂i ̂  G p,h ∗
,mn ( x , xA , ω) ̂ G p,h 

,rs ( x , xB , ω)
)

na 
i d

2 x 

+ 

∮ 
∂V e 

(̂ Gv,h ∗
i,mn ( x , xA , ω) ̂ Gτ,h 

i j,rs ( x , xB , ω) + ̂ Gτ,h ∗
i j,mn ( x , xA , ω) ̂ Gv,h 

i,rs ( x , xB , ω)
)

ne 
j d

2 x )

} 

, (53) 

r using repeated subscripts (̂ Gτ,h ∗
rr,mm 

( xB , xA , ω) + ̂ Gτ,h 
mm,rr ( xA , xB , ω)

)
=

∮ 
∂V a 

1 

jωρa ( x ) 

(̂ G p,h ∗
,mm 

( x , xA , ω) ∂i ̂  G p,h 
,rr ( x , xB , ω) − ∂i ̂  G p,h ∗

,mm 

( x , xA , ω) ̂ G p,h 
,rr ( x , xB , ω)

)
na 

i d
2 x 

+
∮ 

∂V e 

(̂ Gv,h ∗
i,mm 

( x , xA , ω) ̂ Gτ,h 
i j,rr ( x , xB , ω) + ̂ Gτ,h ∗

i j,mm 

( x , xA , ω) ̂ Gv,h 
i,rr ( x , xB , ω)

)
ne 

j d
2 x . (54) 

sing the source–receiver reciprocity of eqs ( 26 ), ( 29 ) and ( 30 ) into the above equation results in 

2 	 {̂ Gτ,h 
mm,rr ( xA , xB , ω)

}
= 

∮ 
∂V a 

1 

jωρa ( x ) 

(̂ Gτ,q∗
mm 

( xA , x , ω) ∂i ̂  Gτ,q 
rr ( xB , x , ω) − ∂i ̂  Gτ,q∗

mm 

( xA , x , ω) ̂ Gτ,q 
rr ( xB , x , ω)

)
na 

i d
2 x 

+ 

∮ 
∂V e 

(̂ Gτ, f ∗
mm,i ( xA , x , ω) ̂ Gτ,h 

rr,i j ( xB , x , ω) + ̂ Gτ,h ∗
mm,i j ( xA , x , ω) ̂ Gτ, f 

rr,i ( xB , x , ω)
)

ne 
j d

2 x . (55) 

ssuming an isotropic elastic solid, we define pressure as the negative of one third of stress tensor trace (Bennethum 2006 ) 

 p e = −1 

3 
(̂  τ11 +̂ τ22 +̂ τ33 ) . (56) 

or a point composite source of volume injection rate type, defined as 

 

e = 1 

3 
(̂  h11 +̂ h22 +̂ h33 ) , (57) 

e write the pressure eq. ( 56 ) as 

̂ G p e ,q e = −1 

9 

(
(̂ Gτ,h 

11 , 11 + ̂ Gτ,h 
11 , 22 + ̂ Gτ,h 

11 , 33 ) 

+ (̂ Gτ,h 
22 , 11 + ̂ Gτ,h 

22 , 22 + ̂ Gτ,h 
22 , 33 ) 

+ (̂ Gτh 
33 , 11 + ̂ Gτ,h 

33 , 22 + ̂ Gτ,h 
33 , 33 )

)
= −1 

9 
̂ Gτ,h 

mm,rr . 

(58) 

or point volume injection rate sources q , eq. ( 56 ) becomes 

̂ G p e ,q = − 1 

3 
(̂ Gτ,q 

11 + ̂ Gτ,q 
22 + ̂ Gτ,q 

33 ) 

= − 1 ̂ Gτ,q 
mm 

or − 1 ̂ Gτ,q 
rr . 

(59) 
3 3 
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Figure 4. Pressure-type Green’s function representation through interferometry when both the receivers are in V e . According to eq. ( 60 ), the Green’s function ̂ G pe ,qe 
( xA , xB , ω) can be obtained by cross-correlating the observations at xA and xB , and integrating along the source coordinate x at ∂V a and ∂V e . The 

wavefields observed at xA and xB , along with the corresponding sources required at x on ∂V a and ∂V e for Green’s function ̂  G pe ,qe 
( xA , xB , ω) retrieval, are 

shown. Note that the rays in this figure represent the full responses between the source and receiver points, including primary and multiple scattering, as well 
as mode conversion due to inhomogeneities inside and outside the region ∂ V a ∪ ∂ V e . 
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Similar expressions apply for point force sources f and point stress sources hi j as well. Using these definitions, we rewrite eq. ( 55 ) as: 

2 	 {̂ G pe ,qe 
( xA , xB , ω)

}
= 

∮ 
∂V a 

−1 

jωρa ( x ) 

(̂ G pe ,q∗( xA , x , ω) ∂i ̂  G pe ,q ( xB , x , ω) − ∂i ̂  G pe ,q∗( xA , x , ω) ̂ G pe ,q ( xB , x , ω)
)

na 
i d

2 x 

−
∮ 

∂V e 

(̂ G pe , f ∗
,i ( xA , x , ω) ̂ G pe ,h 

,i j ( xB , x , ω) + ̂ G pe ,h ∗
,i j ( xA , x , ω) ̂ G pe , f 

,i ( xB , x , ω)
)

ne 
j d

2 x . (60) 

Fig. 4 illustrates the Green’s functions of the above equation observed at xA and xB and corresponding sources required at x on ∂V a and ∂V e 

to obtain the Green’s function ̂  G pe ,qe 
( xA , xB , ω) . 

Eq. ( 60 ) is identical to eq. ( 38 ), except that ̂  p e and ̂  q e in this context are defined for the elastodynamic state. Consequently, it can be
approximated using a similar expression to eq. ( 51 ): 

	 {̂ G pe ,qe 
( xA , xB , ω)

} ≈ 1 

ρa ca 

∮ 
∂V a ̂

 G pe ,q∗( xA , x , ω) ̂ G pe ,q ( xB , x , ω) d2 x 

+ 1 

ρe cK 

∮ 
∂V e ̂

 G pe ,φ∗
,K ( xA , x , ω) ̂  G pe ,φ

,K ( xB , x , ω) d2 x , 
(61) 

where the superscripts p and q in the Green’s functions on the left-hand side of eq. ( 38 ) are respectively replaced by the elastodynamic
pressure and source, ̂  p e and ̂  q e as both xA and xB are located within the solid. Similarly, the superscript p in the Green’s functions on the
right-hand side is replaced by ̂  p e , reflecting that xA is within the solid medium. 

3.2.3 Point xA in the acoustic media V a and xB in the solid media V e 

We now consider impulsive point sources of volume injection-rate density ̂  q ( x , ω) at point xA in V a for state A, and point impulsive sources
of external deformation rate density ̂  hi j ( x , ω) at xB in V e for state B. Table 4 summarizes the sources and corresponding wavefields in V a and
V e for both states. Substituting the parameters from Table 4 into the correlation-type reciprocity relation ( 14 ) results in: 

̂ G p,h 
,rs ( xA , xB , ω) − ̂ Gτ,q∗

rs ( xA , xB , ω) 

= 

∮ 
∂V a 

−1 

jωρa ( x ) 

(̂ G p,q∗( x , xA , ω) ∂i ̂  G p,h 
,rs ( x , xB , ω) − ∂i ̂  G p,q∗( x , xA , ω) ̂ G p,h 

,rs ( x , xB , ω)
)

na 
i d

2 x 

−
∮ 

e 

(̂ Gv,q∗
i ( x , xA , ω) ̂ Gτ,h 

i j,rs ( x , xB , ω) + ̂ Gτ,q∗
i j ( x , xA , ω) ∗ ̂ Gv,h 

i,rs ( x , xB , ω)
)

ne 
j d

2 x . (62) 

∂V
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Table 4. Summary of sources and wavefields in states A and B, used for the pressure Green’s function expression when 
point xA is in V a , and point xB is in V e . 

Domain Parameter State A State B 

in V a ̂ q ( x , ω) δ( x − xA ) 0 ̂ fi ( x , ω) 0 0 ̂ p ( x , ω) ̂ G p,q ( x , xA , ω) ̂ G p,h 
,rs ( x , xB , ω) ̂ vi ( x , ω) j 

ωρa ( x ) ∂i ̂  G p,q ( x , xA , ω) j 
ωρa ( x ) ∂i ̂  G p,h 

,rs ( x , xB , ω) 

in V e ̂ hi j ( x , ω) 0 δ( x − xB ) δir δ js ̂ fi ( x , ω) 0 0 ̂ τi j ( x , ω) ̂ Gτ,q 
i j ( x , xA , ω) ̂ Gτ,h 

i j,rs ( x , xB , ω) ̂ vi ( x , ω) ̂ Gv,q 
i ( x , xA , ω) ̂ Gv,h 

i,rs ( x , xB , ω) 
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imilar to the previous section, in Table 4 , we consider exter nal defor mation rate density source tensor ̂  hi j ( x , ω) = δ( x − xB ) δir δ js in V e for
tate B. If we consider only its normal components and sum eq. ( 62 ) over all such sources, we can write: 

3 ∑ 

= s= 1 

(̂ G p,h 
,rs ( xA , xB , ω) − ̂ Gτ,q∗

rs ( xA , xB , ω)
)

= 

3 ∑ 

r= s= 1 

{∮ 
∂V a 

−1 

jωρa ( x ) 

(̂ G p,q∗( x , xA , ω) ∂i ̂  G p,h 
,rs ( x , xB , ω) − ∂i ̂  G p,q∗( x , xA , ω) ̂ G p,h 

,rs ( x , xB , ω)
)

na 
i d

2 x 

−
∮ 

∂V e 

(̂ Gv,q∗
i ( x , xA , ω) ̂ Gτ,h 

i j,rs ( x , xB , ω) + ̂ Gτ,q∗
i j ( x , xA , ω) ∗ ̂ Gv,h 

i,rs ( x , xB , ω)
)

ne 
j d

2 x

}
, (63) 

r using repeated subscripts 

̂ G p,h 
,rr ( xA , xB , ω) − ̂ Gτ,q∗

rr ( xA , xB , ω) 

= 

∮ 
∂V a 

−1 

jωρa ( x ) 

(̂ G p,q∗( x , xA , ω) ∂i ̂  G p,h 
,rr ( x , xB , ω) − ∂i ̂  G p,q∗( x , xA , ω) ̂ G p,h 

,rr ( x , xB , ω)
)

na 
i d

2 x 

−
∮ 

∂V e 

(̂ Gv,q∗
i ( x , xA , ω) ̂ Gτ,h 

i j,rr ( x , xB , ω) + ̂ Gτ,q∗
i j ( x , xA , ω) ∗ ̂ Gv,h 

i,rr ( x , xB , ω)
)

ne 
j d

2 x . (64) 

sing the source–receiver reciprocity relations ( 21 )–( 27 ), ( 29 ) and ( 30 ) on both sides of the equations gives, 

̂ G p,h 
,rr ( xA , xB , ω) + ̂ G p,h ∗

,rr ( xA , xB , ω) 

= 

∮ 
∂V a 

1 

jωρa ( x ) 

(̂ G p,q∗( xA , x , ω) ∂i ̂  Gτ,q 
rr ( xB , x , ω) − ∂i ̂  G p,q∗( xA , x , ω) ̂ Gτ,q 

rr ( xB , x , ω)
)

na 
i d

2 x 

+ 

∮ 
∂V e 

(̂ G p, f ∗
,i ( xA , x , ω) ̂ Gτ,h 

rr,i j ( xB , x , ω) + ̂ G p,h ∗
,i j ( xA , x , ω) ̂ G p, f 

,i ( xB , x , ω)
)

ne 
j d

2 x . (65) 

pplying summation notation and using the previously defined elastodynamic pressure pe and its corresponding composite source qe 

efinitions at point xB yields, 

2 	 {̂ G p,qe 
( xA , xB , ω)

}
= 

∮ 
∂V a 

−1 

jωρa ( x ) 

(̂ G p,q∗( xA , x , ω) ∂i ̂  G pe ,q ( xB , x , ω) − ∂i ̂  G p,q∗( xA , x , ω) ̂ G pe ,q ( xB , x , ω)
)

na 
i d 

2 x 

−
∮ 

∂V e 

(̂ G p, f ∗
,i ( xA , x , ω) ̂ G pe ,h 

,i j ( xB , x , ω) + ̂ G p,h ∗
,i j ( xA , x , ω) ∗ ̂ G pe , f 

,i ( xB , x , ω)
)

ne 
j d 

2 x . (66) 

ig. 5 illustrates the Green’s functions of the above equation observed at xA and xB , along with the corresponding sources required at x on
 V a and ∂ V e to obtain the Green’s function ̂  G p,qe 

( xA , xB , ω) . This expression is analogous to eq. ( 38 ), except that ̂  p e and ̂  q e at point xB are
efined for the elastodynamic state. An expression similar to eq. ( 51 ) can be written to approximate this Green’s function, as was done in the
revious section. 

.3 Velocity Green’s function expression for seismic interferometry in coupled acoustic–elastic domain 

o derive particle velocity Green’s function expressions appropriate for SI, we keep points xA and xB in solid V e (see Fig. 6 ) and choose
mpulsive point force sources ̂  f ( x , ω) at both points; all other sources in V e and V a are set to zero. Table 5 summarizes the choice of sources
long with the wavefields they generate in V a and V e for both states. Substituting parameters from Table 5 into the correlation-type reciprocity
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Figure 5. Pressure-type Green’s function representation through interferometry when one receiver is in V a and other in V e . According to eq. ( 66 ), the Green’s 
function ̂  G p,qe 

( xA , xB , ω) can be obtained by cross-correlating the observations at xA and xB , and integrating along the source coordinate x at ∂V a and ∂V e . 
The wavefields observed at xA and xB , along with the corresponding sources required at x on ∂V a and ∂V e for Green’s function ̂  G p,qe 

( xA , xB , ω) retrieval, 
are shown. Note that the rays in this figure represent the full responses between the source and receiver points, including primary and multiple scattering, as 
well as mode conversion due to inhomogeneities inside and outside the region ∂ V a ∪ ∂ V e . 

Figure 6. Illustration of interferometry by cross-correlation for the velocity Green’s function representation when receivers are in V e . According to eq. ( 68 ), 
the Green’s function ̂  Gv, f 

k,l ( xA , xB , ω) can be obtained by cross-correlating the observations at xA and xB , and integrating along the source coordinate x at ∂V a 

and ∂V e . The wavefields observed at xA and xB , along with the corresponding sources required at x on ∂V a and ∂V e for velocity Green’s function retrieval, 
are shown. Note that the rays in this figure represent the full responses between the source and receiver points, including primary and multiple scattering, as 
well as mode conversion due to inhomogeneities inside and outside the region ∂ V a ∪ ∂ V e . 

Table 5. Choice of sources and wavefields in V a and V e for states A and B, when xA and xB are in V e , to be used in 
the coupled convolution-type reciprocity theorem to derive velocity Green’s function expression. 

Domain Parameter State A State B 

in V a ̂ q ( x , ω) 0 0 ̂ fi ( x , ω) 0 0 ̂ p ( x , ω) ̂ G p, f 
,k ( x , xA , ω) ̂ G p, f 

,l ( x , xB , ω) ̂ vi ( x , ω) j 
ωρa ( x ) ∂i ̂  G p, f 

,k ( x , xA , ω) j 
ωρa ( x ) ∂i ̂  G p, f 

,l ( x , xB , ω) 

in V e ̂ hi j ( x , ω) 0 0 ̂ fi ( x , ω) δ ( x − xA ) δik δ ( x − xB ) δil ̂ τi j ( x , ω) ̂ Gτ, f 
i j,k ( x , xA , ω) ̂ Gτ, f 

i j,l ( x , xB , ω) 

̂ vi ( x , ω) ̂ Gv, f 
i,k ( x , xA , ω) ̂ Gv, f 

i,l ( x , xB , ω) 
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Figure 7. Modified configuration with a free surface ∂V free . 
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elation (eq. 14 ) yields ̂ Gv, f ∗
l,k ( xB , xA , ω) + ̂ Gv, f 

k,l ( xA , xB , ω) 

= 

∮ 
∂V a 

−1 

jωρa ( x ) 

(̂ G p, f ∗
,k ( x , xA , ω ) ∂i ̂  G p , f 

,l ( x , xB , ω) − ∂i ̂  G p, f ∗
,k ( x , xA , ω)̂ G p, f 

,l ( x , xB , ω)
)

na 
i d 

2 x 

−
∮ 

∂V e 

(̂ Gv, f ∗
i,k ( x , xA , ω)̂ Gτ, f 

i j,l ( x , xB , ω) + ̂ Gτ, f ∗
i j,k ( x , xA , ω)̂ Gv, f 

i,l ( x , xB , ω)
)

ne 
j d 

2 x . (67) 

pplying source–receiver reciprocity of eqs ( 21 ), ( 28 ) and ( 29 ) yields 

2 	
{ ̂ Gv, f 

k,l ( xA , xB , ω)
} 

= 

∮ 
∂V a 

−1 

jωρa ( x ) 

(̂ Gv,q∗
k ( xA , x , ω) ∂i ̂  Gv,q 

l ( xB , x , ω) − ∂i ̂  Gv,q∗
k ( xA , x , ω)̂ Gv,q 

l ( xB , x , ω)
)

na 
i d 

2 x 

−
∮ 

∂V e 

(̂ Gv, f ∗
k,i ( xA , x , ω)̂ Gv,h 

l,i j ( xB , x , ω) + ̂ Gv,h ∗
k,i j ( xA , x , ω)̂ Gv, f 

l,i ( xB , x , ω)
)

ne 
j d 

2 x . (68) 

ig. 6 illustrates the Green’s functions of the above equation observed at xA and xB , along with the corresponding sources required at x on
 V a and ∂ V e to obtain the Green’s function ̂ Gv, f 

k,l ( xA , xB , ω) . The above expression provides an exact representation of the elastodynamic
reen’s function in a coupled system. However, similar to the case of the pressure Green’s function, it is not particularly useful in its current

orm due to the superposition of two correlation products under both integrals, as well as the need for different source types on the boundary.
o address this, we again approximate the acoustic and elastic boundary integrals by adopting a similar approach and assumptions as in the
implification of the pressure Green’s function in Section 3.2.1 . Assuming homogeneous material properties at and outside of boundaries
V a and ∂V e leads to the following result: 

	
{ ̂ Gv, f 

k,l ( xA , xB , ω)
} 

≈ 1 

ρa ca 

∮ 
∂V a ̂

 Gv,q∗
k ( xA , x , ω)̂ Gv,q 

l ( xB , x , ω) d 2 x 

+ 1 

ρe cK 

∮ 
∂V e ̂

 Gv,φ∗
k,K ( xA , x , ω) ̂  Gv,φ

l,K ( xB , x , ω) d 2 x . 
(69) 

he above approximation is again highly accurate when ∂V a and ∂V e are portions of a sphere with a sufficiently large radius, such that all
ays are normal to ∂V a and ∂V e . In other cases, the approximation primarily introduces amplitude errors but correctly retrieves the phases
f all arrivals. However, it may also lead to artifacts due to incomplete destructive interference of events, which would otherwise be fully
ancelled when using the exact form in eq. ( 68 ). 

.4 Configuration with a free surface 

e consider a modified configuration (Fig. 7 ) in which the closed surface is defined as ∂ V = ∂ V a′ ∪ ∂ V free ∪ ∂ V e . Here, ∂ V free represents a
ortion of the Earth’s free surface, ∂V a′ 

is an arbitrarily shaped surface enclosing part of the closed surface within the acoustic medium, and
V e bounds the elastic solid part of the closed surface (see Fig. 7 ). ∂V a′ 

and ∂V e do not necessarily coincide with a physical boundary. The
bservation points xA and xB are located within the volume enclosed by ∂ V a′ ∪ ∂ V free ∪ ∂ V e . For this configuration, the results derived in the

art/ggaf271_f7.eps
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Figure 8. (a) Uniform source distribution on a sphere of radius 0.35 km enclosing the receivers xA and xB , to model the retrieved Green’s function (RHS of 
eq. 68 in time domain for k, l = 3 ) convolved with the source wavelet. (b) x1 − x3 cross-section of source and cP model through x2 = 0 . 5 km. 
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previous sections for the pressure and velocity Green’s functions can be directly applied. Because the acoustic pressure p( x , ω) vanishes on
∂V free , the integral 

∮ 
∂V a appearing in equations above need only only be evaluated over ∂V a′ 

. Consequently, Green’s functions ̂  G p,q ( xA , xB , ω)
and ̂  Gv, f 

k,l ( xA , xB , ω ) can be obtained by cross-correlating and integ rating the responses of sources located solely on ∂ V a′ 
and ∂ V e ; no sources

are needed on the free-surface boundary ∂V free . 

3.5 Numerical example 

We illustrate the validity of eq. ( 68 ) using a 3-D numerical example. The model consists of a coupled acoustic–elastic domain measuring
1.0 km × 1.0 km × 1.0 km ( x1 × x2 × x3 ) discretized with unifor m g rid spacing of 0.01 km × 0.01 km × 0.01 km ( dx1 × dx2 × dx3 ). The
acoustic region occupies the upper 0.30 km of the model and is characterized by cP = 1500 m s−1 and ρ = 1000 kg m−3 . In the elastic region,
we set cP = 2000 m s−1 , cS = 1100 m s−1 , and ρ = 2250 kg m−3 . To compute the retrieved Green’s function, we uniformly distribute 20,000
sources over a spherical surface of 0.35 km radius centred at [0 . 50 , 0 . 50 , 0 . 50] km using the Fibonacci sphere algorithm (Keinert et al. 2015 ).
The spherical source distribution encloses the receiver locations xA = [0 . 325 , 0 . 50 , 0 . 50] km and xB = [0 . 675 , 0 . 50 , 0 . 60] km. Fig. 8 shows
the spherical source distribution, the receiver locations xA and xB , and a cross-section of the x1 - x3 plane through the centre of the cP model.
All external model boundaries are treated as absorbing. To compute the Green’s functions appearing on the right-hand integrand in eq. ( 68 ),
we use the source–receiver reciprocity of eqs ( 21 ), ( 28 ) and ( 29 ). We use a Gaussian source wavelet with a narrow half-width of 12 ms to
simulate the Green’s functions in eq. ( 28 ). To suppress numerical noise prior to comparison, both sides of eq. ( 68 ) are convolved with a 30 Hz
central frequency Ricker wavelet. 

Fig. 9 (a) shows the time-domain representation of individual traces of the integrand on the right of eq. ( 68 ) for the case k, l = 3 after
convolution with the 30 Hz Ricker wavelet. Each trace corresponds to a fixed source position x on ∂ V a ∪ ∂ V e , ordered from the top to
the bottom of the enclosing sphere (see Fig. 8 a). Fig. 9 (b) shows the summation of all traces, representing the retrieved velocity Green’s
function Gv, f 

3 , 3 ( xA , xB ) convolved with the wavelet. This result accurately matches the overlain time-domain representation of the left-hand
side of eq. ( 68 ), that is, Gv, f 

3 , 3 ( xA , xB , −t) + Gv, f 
3 , 3 ( xA , xB , t) , also convolved with the same 30 Hz Ricker wavelet. The main contributions to

the retrieved velocity Green’s function come from the Fresnel zones around the stationary points of the integrand. The causal arrivals are
associated with stationary-point sources located to the right of xB , while the anticausal arrivals originate from stationary-point sources located
to the left of xA . Figs 9 (c) and (d) respectively show zoomed-in views of the causal direct and reflected events from the acoustic–elastic
coupled boundary, demonstrating close agreement between the retrieved and true Green’s functions. 

4  U N C O R R E L AT E D  A M B I E N T  S O U RC E S  

4.1 Green’s function through uncorrelated ambient sources 

The previous sections assumed that the sources on the boundaries ∂V a and ∂V e are impulsive point sources. However, many ocean-bottom 

SI studies (de Ridder & Dellinger 2011 ; Girard et al. 2023 , 2024 ) rely on ambient sources. Therefore, in this section, we consider mutually
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Figure 9. (a) Time-domain representation of individual traces of the right-hand side integrand in eq. ( 68 ) for k, l = 3 . (b) Retrieved Green’s function (red), 
that is, the sum of all traces shown in panel (a), overlain on the true Green’s function (black). (c) Zoomed-in view of the causal direct arrival events in (b). The 
solid black line represents the true Green’s function Gv, f 

3 , 3 ( xA , xB ) , and the red plus signs ( + ) denote the retrieved Green’s function. (d) Zoomed-in view of the 
causal reflected events in panel (b) from the coupled acoustic–elastic boundary. 
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ncorrelated ambient sources (Weaver & Lobkis 2001 ; Snieder 2004 ; Wapenaar 2004 ; Shapiro et al. 2005 ; Wapenaar & Fokkema 2006 )
cting on these boundaries. 

We assume that ambient sources are acting on a closed surface ∂ V a ∪ ∂ V e (see Fig. 1 ) with volume injection rate sources on ∂V a and
 - and S -wave source type on ∂V e . When all ambient sources act simultaneously, the observed particle velocity wavefield ̂  v obs 

k at xA and xB

an be expressed as 

̂ v obs 
k ( xA , ω) = ∫ 

∂V a ̂
 Gv,q 
k ( xA , xa , ω)̂ N q ( xa , ω) d 2 xa + ∫ 

∂V e ̂
 Gv,φ

k,K ( xA , xe , ω)̂ NK ( xe , ω) d 2 xe (70) 

nd 

̂ v obs 
l ( xB , ω) = ∫ 

∂V a ̂
 Gv,q 
l ( xB , xa ′ , ω)̂ N q ( xa ′ , ω) d 2 xa ′ + ∫ 

∂V e ̂
 Gv,φ

l,L ( xB , xe ′ , ω)̂ NL ( xe ′ , ω) d 2 xe ′ , (71) 

here ̂  N q ( xa , ω) and ̂  N q ( xa ′ , ω) are the volume injection rate-type ambient signal at the boundary ∂V a with xa and xa′ 
as acoustic boundary

nteg ration variable. ̂  NK ( xe , ω ) , ̂  NL ( xe ′ , ω ) are the ambient signal at the boundary ∂V e with xe and xe′ 
as elastic boundary integration variable.

ere, K , L = 0 correspond to a P -wave source and K , L = 1 , 2 , 3 for a S -wave source with different polarizations,. 
The continuous cross-correlation functions (CCFs), denoted as ̂ C v,v 

k,l , of the ambient wavefield recordings ̂  v obs 
k ( xA , ω) and ̂  v obs 

l ( xB , ω)
an be written as 

̂ 

v,v 
k,l ( xA , xB , ω) = ̂ v obs∗

k ( xA , ω)̂  v obs 
l ( xB , ω) . (72) 

art/ggaf271_f9.eps
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Here, the notation ̂ C,v,v 
k,l specifies the physical quantities being cross-correlated in the superscripts and their components in the subscripts.

Substituting eqs ( 70 ) and ( 71 ) into above yields 

̂ C v,v 
k,l ( xA , xB , ω) = 

∫ 
∂V a 

∫ 
∂V a 

̂ Gv,q∗
k ( xA , x

a , ω) ̂ Gv,q 
l ( xB , x

a ′ , ω) ̂ N q∗( xa , ω) ̂ N q ( xa ′ , ω) d 2 xa d 2 xa ′ 

+ 

∫ 
∂V a 

∫ 
∂V e 

̂ Gv,q∗
k ( xA , x

a , ω) ̂ Gv,φ

l,L ( xB , x
e ′ , ω) ̂ N q∗( xa , ω) ̂ NL ( x

e ′ , ω) d 2 xa d 2 xe ′ 

+ 

∫ 
∂V e 

∫ 
∂V a 

̂ Gv,φ∗
k,K ( xA , x

e , ω) ̂ Gv,q 
l ( xB , x

a ′ , ω) ̂ N ∗
K ( x

e , ω) ̂ N q ( xa ′ , ω) d 2 xe d 2 xa ′ 

+ 

∫ 
∂V e 

∫ 
∂V e 

̂ Gv,φ

k,K∗( xA , x
e , ω) ̂ Gv,φ

l,L ( xB , x
e ′ , ω) ̂ N ∗

K ( x
e , ω) ̂ NL ( x

e ′ , ω) d 2 xe d 2 xe ′ . 

(73) 

We assume that two ambient sources are mutually uncorrelated so that they obey 

〈̂ N q∗( xa , ω) ̂ NL ( x
e ′ , ω) 〉 = 〈̂ N ∗

K ( x
e , ω) ̂ N q ( xa ′ , ω) 〉 = 0 . (74) 

However, same ambient-source types result in 

〈̂ N q∗( xa , ω) ̂ N q ( xa ′ , ω ) 〉 = 1 

ρa ca 
δ( xa − xa ′ )̂  S ( ω ) (75) 

and 

〈̂ N ∗
K ( x

e , ω) ̂ NL ( x
e ′ , ω ) 〉 = 1 

ρe cK 
δK L δ( xe − xe ′ )̂  S ( ω ) , (76) 

where 〈·〉 denotes an ensemble average; δ( x ) is a 2-D spatial delta function; and ̂  S ( ω) is the ambient source power spectrum. All sources are
assumed to have the same power spectra for all x but different power normalization factors, 1 / ( ρa ca ) for x at ∂V a and 1 / ( ρe cK ) for x at ∂V e ,
respectively. Taking the ensemble average of eq. ( 73 ), accounting for eqs ( 74 )–( 76 ) and keeping a single integration variable x ∈ { xa , xe } for
both the boundaries ∂V a and ∂V e , eq. ( 73 ) yields the ensemble cross-correlation 

〈̂ C v,v 
k,l ( xA , xB , ω) 〉 = 

1 

ρa ca 

∫ 
∂V a ̂

 Gv,q∗
k ( xA , x , ω) ̂ Gv,q 

l ( xB , x , ω)̂ S ( ω) d 2 x 

+ 

1 

ρe cK 

∫ 
∂V e ̂

 Gv,φ∗
k,K ( xA , x , ω) ̂ Gv,φ

l,K ( xB , x , ω)̂ S ( ω) d 2 x . 
(77) 

Combining this with eq. ( 69 ) (considering the case when xA and xB lie within V e ) obtains 

	{̂ Gv, f 
k,l ( xA , xB , ω ) } S( ω ) ≈ 〈̂ C v,v 

k,l ( xA , xB , ω) 〉 . (78) 

This relation suggests that the velocity CCFs due to uncorrelated ambient sources can be approximated by the velocity Green’s function,̂ Gv, f 
k,l , multiplied with the power spectra of the ambient sources, under the following conditions: the medium at and outside ∂V a and ∂V e is

homogeneous; uniform volume injection rate sources with strength 
√ 

1 / ( ρa ca ) are present at the boundary ∂V a ; and uniform P - and S -wave
ambient sources with strength 

√ 

1 / ( ρe cK ) are present at the boundary ∂V e . 
For the case where the CCF pertains to pressure, a similar convergence to the pressure Green’s function can be derived as 

	{̂ G p,q ( xA , xB , ω ) } S( ω ) ≈ 〈̂ C p,p ( xA , xB , ω) 〉 . (79) 

Although eqs ( 78 ) and ( 79 ) demonstrate the recovery of interstation Green’s functions through ambient cross-correlations, their applicability
to practical marine SI problems is limited due to heterogeneous source distribution and the unavailability of sources of different types and at
depths. 

4.2 Modelling low-frequency ambient cross-correlation functions for ocean-bottom sensors 

In practical marine scenarios, the conditions required for Green’s function retrieval through CCFs are rarely satisfied primarily due to the
absence of an ideal ambient source distribution. Ambient sources in oceanic regions predominantly originate from pressure fluctuations at 
the Earth’s surface that are driven by interactions between wind-generated ocean storms and ocean-wave breaking, which induce pressure 
variations at the seafloor capable of generating seismic waves in the Earth. It is well known that these sources are often spatially non-
uniform. Notably, there are no microseism sources within the solid Earth’s volume itself. As a result, ambient sources caused by ocean-wave
interactions at the surface, known as secondary microseisms, are typically modelled as non-zero pressure source distributions at the ocean
surface and sources arising from the interaction of long-wavelength ocean waves with local bathymetry, referred to as primary microseisms,
are approximated as point force sources acting at the local bathymetry (Hasselmann 1963 ; Ardhuin & Herbers 2013 ; Ardhuin et al. 2015 ;
Nakata et al. 2019 ). 

We first derive the CCF expression for ambient sources modelled as point force sources acting on the ocean bottom. However, as
mentioned above, these sources also can be volume injection rate sources acting at the ocean surface. Below, we also develop expressions for
volume injection rate-type ambient sources. We refer this approach herein as cross-correlation modelling (CCM). 
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We may write the observed wavefield ̂  vobs 
k ( x , ω) due to ambient sources as 

 

obs 
k ( x , ω) =

∫ 
∂ D ̂

 Gv, f 
k,n ( x , ξ , ω )̂ Nn (ξ , ω ) dξ , (80) 

here ̂ Nn (ξ , ω) denotes the n th component of the ambient force source; and ∂ D is the region where these sources are present, which in this
ase is the ocean bottom. Substituting eq. ( 80 ) into eq. ( 72 ) for observed wavefield recorded at xA and xB from ambient sources at ξ 1 and ξ 2 ,
espectively, results in the CCF expression 

̂ C v,v 
k,l ( xA , xB , ω) =

� 

∂ D 

̂ Gv, f ∗
k,n ( xA , ξ 1 , ω) ̂ Gv, f 

l,m 

( xB , ξ2 , ω) ̂ N ∗
n (ξ 1 , ω) ̂ Nm 

(ξ 2 , ω) d ξ 1 d ξ 2 . (81) 

sually, large numbers of windowed cross-correlations of continuous ambient wavefield recordings are stacked to enhance coherent signals
nd downweight incoherent noise. We take the ensemble average of CCF and assume that the ambient force sources are uncorrelated as 

̂ N ∗
n (ξ 1 , ω)̂ Nm 

(ξ 2 , ω) 〉 = ̂ S (ξ 1 , ω) δnm 

δ(ξ 1 − ξ 2 ) (82) 

o simplify eq. ( 81 ) to 

〈̂ C v,v 
k,l ( xA , xB , ω) 〉 =

∫ 
∂ D ̂

 Gv, f ∗
k,n ( xA , ξ , ω)̂ Gv, f 

l,n ( xB , ξ , ω)̂  S (ξ , ω)dξ , (83) 

here ̂  S (ξ , ω) denotes the power-spectral density of the ambient source (Tromp et al. 2010 ). For a narrow frequency band (e.g. 0.05–1.0 Hz),
S(ξ , ω) can be partitioned into its spatial and frequency dependencies as 

 S (ξ , ω) = S(ξ )̂  S ( ω) , (84) 

here the relative spatial distribution of ambient wavefield energy is defined such that S(ξ ) = 0 and S(ξ ) = 1 represent effective sources with
ero and the highest energy at location ξ , respectively; and ̂  S ( ω) is the power spectrum of ambient wavefield sources. With these definitions,
he CCF becomes 

〈̂ C v,v 
k,l ( xA , xB , ω) 〉 =

∫ 
∂ D ̂

 Gv, f ∗
k,n ( xA , ξ , ω) ̂ Gv, f 

l,n ( xB , ξ , ω ) S(ξ )̂  S ( ω )dξ , (85) 

r rearranging after using source–receiver reciprocity (eq. 28 ): 

〈̂ C v,v 
k,l ( xA , xB , ω) 〉 =

∫ 
∂ D ̂

 Gv, f 
l,n ( xB , ξ , ω)

{ (̂ Gv, f ∗
n,k (ξ , xA , ω) S(ξ )

)̂ S ( ω)
} 

dξ . (86) 

omparing the above with eq. ( 80 ) and setting xB = x allows us to interpret the above expression as an observed wavefield generated by the
riving source, 

 fn (ξ , xA , ω) = ̂ Gv, f ∗
n,k (ξ , xA , ω ) S(ξ )̂  S ( ω ) , (87) 

lso known as the ‘generating wavefield’ (Tromp et al. 2010 ). Because complex conjugation in the frequency domain is time-reversal in
ime domain, the ‘generating wavefield’ is simply the ambient source-energy-weighted time-reversed wavefield recorded at ambient source
ocations ξ due to a source at the virtual shot point locations xA with power spectrum S( ω) . In the time domain, eq. ( 86 ) can be represented as 

 Cv,v 
k,l ( xA , xB , t) 〉 =

∫ 
∂ D 

Gv, f 
l,n ( xB , ξ , t) ∗

{ (
Gv, f 

n,k (ξ , xA , −t) S(ξ )
)

∗ S( t)
} 

dξ , (88) 

here ∗ denote the convolution operator; and S( t) is ambient-source autocorrelation time function. Note the summation convention in the
bove equation, implying that the term on the right-hand side must be computed for n = 1 , 2 , 3 , accounting for all the force components, to
valuate 〈 Cv,v 

k,l 〉 , that is, 

〈 Cv,v 
k,l ( xA , xB , t) 〉 = 

∫ 
∂ D 

Gv, f 
l, 1 ( xB , ξ , t) ∗

{ (
Gv, f 

1 ,k (ξ , xA , −t) S(ξ )
)

∗ S( t)
} 

dξ

+ 

∫ 
∂ D 

Gv, f 
l, 2 ( xB , ξ , t) ∗

{ (
Gv, f 

2 ,k (ξ , xA , −t) S(ξ )
)

∗ S( t)
} 

dξ

+ 

∫ 
∂ D 

Gv, f 
l, 3 ( xB , ξ , t) ∗

{ (
Gv, f 

3 ,k (ξ , xA , −t) S(ξ )
)

∗ S( t)
} 

dξ . 

(89) 

or ambient-energy sources acting on ocean surface as distributed volume injection rate sources, denoted by q , we may write eq. ( 85 ) as 

〈̂ C v,v 
k,l ( xA , xB , ω) 〉 =

∫ 
∂ D ̂

 Gv,q∗
k ( xA , ξ , ω)̂ Gv,q 

l ( xB , ξ , ω ) S(ξ )̂  S ( ω ) dξ . (90) 

sing source-reciprocity relation (eq. ( 21 )) and arranging the above equation gives 

〈̂ C v,v 
k,l ( xA , xB , ω) 〉 = −

∫ ̂ Gv,q 
l ( xB , ξ , ω)

{ (̂ G p, f ∗
,k (ξ , xA , ω) S(ξ )

)̂ S ( ω)
} 

dξ , (91) 

∂ D 
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Table 6. Velocity model parameters for numerical example. 

P -wave velocity S -wave velocity Density cp gradient cs gradient 
Domain cP (m s−1 ) cS (m s−1 ) ρ (kg m−3 ) (km s−1 per km) (km s−1 per km) 

Water 1500 0 1000 – –
Solid 1800 600 2100 0.40 0.23 

Figure 10. Ambient sources, OBNs and virtual shot point location for results in Figs 11 and 12 . 
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or equivalently in the time domain 

〈 Cv,v 
k,l ( xA , xB , t) 〉 = −

∫ 
∂ D 

Gv,q 
l ( xB , ξ , t) ∗

{ (
G p, f 

,k (ξ , xA , −t)) S(ξ )
)

∗ S( t)
} 

dξ . (92) 

For pressure CCFs when both receivers xA and xB are in water, similar time-domain equations can be written for ambient force sources 

〈 C p,p ( xA , xB , t) 〉 = −
∫ 

∂ D 
G p, f 

,n ( xB , ξ , t) ∗ {(
Gv,q 

n (ξ , xA , −t) S(ξ )
) ∗ S( t)

}
d ξ , (93) 

and for ambient volume injection rate sources 

〈 C p,p ( xA , xB , t) 〉 =
∫ 

∂ D 
G p,q ( xB , ξ , t) ∗ { ( G p,q (ξ , xA , −t) S(ξ )) ∗ S( t)} d ξ . (94) 

Eqs ( 88 ) and ( 92 )–( 94 ) enable the forward modelling of all (velocity and pressure) CCFs for dense OBN arrays for different ambient source
types, locations and configurations. 

4.2.1 Numerical example 

We simulate the low-frequency vertical-velocity and pressure component cross-correlation wavefields, 〈 Cv,v 
3 , 3 〉 and 〈 C p,p 〉 , respectively, recorded 

on OBNs due to ambient sources acting on the ocean surface, using their corresponding CCM modelling equations (eqs 92 and 94 , respectively). 
A detailed workflow for implementing the CCM modelling equations (eqs 88 and 92 –94 ) in the time domain is described in Pandey et al.
( 2025 ). The synthetic ocean model is 176 km × 76 km × 14.6 km ( x1 × x2 × x3 ) with a regular grid spacing of 0.4 km × 0.4 km × 0.2 km
( dx1 × dx2 × dx3 ). We assume a flat seafloor with 0.8 km water depth and 1-D cP ( x3 ) and cS ( x3 ) velocity profiles beneath the ocean bottom.
Table 6 presents the model properties where the cP , cS and ρ in the solid medium are defined at the ocean bottom and increase with depth
according to the listed gradients. The ambient source-time autocorrelation function S( t) is a zero-phase Ricker wavelet with a 0.35 Hz central
frequency. The time step for the simulation is 3.5 ms, with a 170 s total duration. With these parameters, the computational domain resolves a
maximum frequency of 1.2 Hz. Fig. 10 shows the geometry of ambient sources, OBNs and the virtual shot point location. The ambient sources
are uniformly distributed at each grid point across the ocean surface as volume injection rate sources. For velocity-velocity cross-correlations,
〈 Cv,v 

3 , 3 ( xA , xB , t) 〉 , the OBNs located at xA and xB in eq. ( 92 ) are positioned 10 m below the seafloor, placing them within the elastic medium.

art/ggaf271_f10.eps
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Figure 11. Vertical-component velocity: (a) VSG 〈 Cv,v 
3 , 3 〉 and (b) Green’s function, Gv, f 

3 , 3 , for the model shown in Fig. 10 . The relative amplitudes between shot 
gathers are not preserved. (c) Normalized traces from the location indicated by the red lines in panels (a) and (b). (d) Traces from panel (c), low-pass filtered 
to 0.35 Hz with 〈 Cv,v 

3 , 3 〉 uniformly phase-shifted by −π/ 2 . 
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n contrast, for pressure-pressure cross-correlations, 〈 C p,p ( xA , xB , t) 〉 , the OBNs at xA and xB in eq. ( 94 ) are positioned 10 m above the
eafloor, within the acoustic medium. In both cases, the OBNs are aligned along the x1 -axis. This placement ensures numerical stability in
he forward modelling by avoiding coincident receiver locations with the fluid–solid boundary where coupled-interface boundary conditions
re enforced. Moreover, the 10 m offset is negligible relative to the model dimensions and the dominant wavelength of the low-frequency
0.35 Hz) source wavelet used in the simulations. The virtual shot point, indicated by a star, is located at [ x1 , x2 , x3 ]A = [48 . 0 , 38 . 0 , 0 . 81] km
or 〈 Cv,v 

3 , 3 〉 and at [ x1 , x2 , x3 ]A = [48 . 0 , 38 . 0 , 0 . 79] km for 〈 C p,p 〉 . We use a free-surface top boundary with all other sides modelled as absorbing
oundaries. We simulate forward wave propagation using SPECFEM3D Cartesian 4.1.0 (Komatitsch & Tromp 2002a , b ; Komatitsch et al.
023 ) published under the GPL3 license. The open-source software implements the 3-D spectral element method (Komatitsch et al. 2000 )
or wave propagation modelling. 

Fig. 11 (a) presents the causal part of the simulated 〈 Cv,v 
3 , 3 〉 VSG. Two distinct wave modes are evident: (1) the fundamental Scholte S0

c 

ave mode (black arrow) along with higher-order overtones (blue arrows); and (2) guided P waves (yellow arrows). These wave modes are
onsistent with field data VSG observations from the Gulf of Mexico, as reported in Girard et al. ( 2023 , 2024 ). The S0 

c wave mode exhibits
ignificantly higher energy compared to its higher-order modes and the guided P waves. 

Fig. 11 (b) depicts the causal part of the vertical-component velocity Green’s function, Gv, f 
3 , 3 , computed by injecting a vertical point force

ource at the virtual shot point location. In this case, the guided P waves are notably weaker than the Sc waves, and its higher-order modes are
bsent. Fur ther more, the fundamental and higher-order Scholte wave modes display a broader frequency bandwidth in comparison to those
bserved in 〈 Cv,v 

3 , 3 〉 . 
Fig. 11 (c) provides a trace comparison at the location marked by the red line at an offset of 24 km in Figs 11 (a) and (b). The amplitudes

f both traces are normalized to unity. The comparison shows a phase discrepancy, as the main peaks exhibit misalignment between the
reen’s function and the 〈 Cv,v 

3 , 3 〉 trace. Fig. 11 (d) shows the traces after low-pass filtering to 0.35 Hz, with 〈 Cv,v 
3 , 3 〉 uniformly phase-shifted by

π/ 2 . Following this phase adjustment, the phases of the main peaks are better aligned. 
Fig. 12 (a) shows the causal part of the pressure VSG 〈 C p,p 〉 . In this figure, the S0 

c wave and its higher-order overtones (blue arrows)
re weakly visible, while the guided P waves appear strong. Again, this observation is consistent with field-data 〈 C p,p 〉 VSG examples from
he Thunderhorse field OBN array in the Gulf of Mexico, where the ocean bottom, as seen by low-frequency S0 

c waves, is soft with average

art/ggaf271_f11.eps
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Figure 12. Pressure-component: (a) VSG, 〈 C p,p 〉 and (b) Green’s function, G p,q , for the model shown in Fig. 10 . The relative amplitudes between shot gathers 
are not preserved. (c) Normalized traces from the location indicated by the red line in panels (a) and (b). (d) Traces from (c), low-passed to 0.6 Hz, with 〈 C p,p 〉 
uniformly phase-shifted by −π/ 2 . (e) Traces from panel (d), further low-passed to 0.35 Hz. 
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near-seafloor shear velocities of approximately 0.5-0.6 km/s (Girard et al. 2023 ). In contrast, the pressure Green’s function, G p,q , shown
in Fig. 12 (b), exhibits a clearly visible and strong S0 

c mode along with higher-order modes. The red arrow in Fig. 12 (a) indicates spurious
cross-mode events. 

Fig. 12 (c) provides a trace comparison between 〈 C p,p 〉 and G p,q at the location marked by the red lines in Figs 12 (a) and (b).
Both traces are again normalized to unity. Similar to the observations above, S0 

c and its higher-order mode are barely notable in the full
frequency band and the main peaks of the guided P modes also show a misalignment between 〈 C p,p 〉 and G p,q . Fig. 12 (d) shows the
traces after applying a 0.6 Hz low-pass filter, with 〈 C p,p 〉 uniformly phase-shifted by −π/ 2 . At this stage, the phases of the main peaks
of the guided P modes are better aligned; however, Scholte waves are still not visible at these frequencies. To further suppress the guided
P modes, we again low-pass filter the traces to 0.35 Hz (Fig. 12 e). At this point, S0 

c and its higher-order modes become more visible, and
their main peaks align with G p,q . However, more spurious events are observed due to cross-mode correlations and imperfect absorbing
boundaries. 

This example clearly illustrates: (1) the non-convergence of the cross-correlations to Green’s functions; and (2) the differential sen-
sitivity of various components CCFs to different wave modes, using a simple velocity model with flat bathymetry and uniform ambient
sources on ocean surface. The results highlight the importance of modelling cross-correlations as self-consistent observations, rather than 
as (exact or approximate) Green’s functions, when the conditions required for SI Green’s function retrieval are unmet. Significant phase
differences are observed between various wave modes in VSGs and the Green’s function across different components. If not accurately

art/ggaf271_f12.eps
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ccounted for, these differences can introduce significant errors in velocity model building through FWI using cross-correlation gath-
rs. Moreover, other key first-order control factors—such as the ambient energy source mechanism and location, velocity heterogeneity
e.g. the presence of salt bodies), bathymetric variations, and non-uniform ambient source distributions—also can significantly affect
ave-mode excitation and par titioning, fur ther emphasizing the complexity of the problem and need for accurate SI wavefield modelling

olutions. 

 C O N C LU S I O N S  

e derived reciprocity relations for coupled acoustic–elastic media using the constitutive equations governing the coupling at the acoustic–
lastic interface, as well as acoustic and elastodynamic reciprocity theorems. From these derivations, we established source–receiver reciprocity
xpressions for the coupled acoustic–elastic system. Subsequently, we provided an overview of the pressure and velocity Green’s function
epresentations in such systems, expressed in terms of wavefield cross-correlations at two observation points within arbitrarily heterogeneous
ossless media. Both open and free-surface configurations were considered. For the former, the wavefields are assumed to originate as sources
istributed along arbitrarily shaped boundaries enclosing the observation points. For the latter, it is sufficient for sources to exist on an open
urface that, together with the free surface, form a boundary enclosing the observation points. 

The pressure and velocity Green’s function representations are exact but are not directly suitable for SI applications. Specifically, this is
ecause the integrand of these representations comprises a superposition of four correlation products, two arising from the acoustic boundary
ntegral and two from the elastic boundary integral, that must be evaluated separately. The methodology also assumes the availability of
pecific types of sources at all positions along the enclosing boundary: scalar monopole and dipole sources on the acoustic boundary, and
ector force and deformation sources on the elastic boundary. Moreover, these sources are assumed to be impulsive point sources, which
ften do not align with practical scenarios. 

To address these challenges, we adopted a series of approximations to simplify the integrand into two correlation product involving
ewer source types. Specifically, monopole sources are used for both states on the acoustic boundary, and monopole P - and S -wave sources
ere used for both states on the elastic boundary. We also discussed modifications for scenarios involving uncorrelated ambient sources.

n such cases, the representation integral reduces to a direct cross-correlation of the recorded wavefields at two observation points. Finally,
ecognizing that ideal ambient source distributions rarely exist in practical scenarios, we develop modelling cross-correlation functions as
elf-consistent observations. This approach, referred to as CCM, only requires assuming uncorrelated ambient sources. It enables more
ealistic representations of cross-correlations in field data from ambient wavefield studies. We present a synthetic example that simulates a
ertical-velocity and pressure component cross-correlation wavefield using CCM, generated by ambient sources distributed across the ocean
urface, and compare them with their corresponding Green’s functions. Scholte waves are more prominent in the velocity VSGs, while in
he pressure VSGs they are barely noticeable across the full frequency band. Additionally, there are significant phase differences between
ifferent wave modes identified in VSGs and Green’s functions across different components, underscoring the importance of not treating
ross-correlated data as Green’s functions in the absence of the assumptions required for SI-based Green’s function retrieval. 
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