Operations Research Forum (2025) 6:121
https://doi.org/10.1007/s43069-025-00529-7

RESEARCH

®

Check for
updates

An Auxiliary Hybrid Heuristic Approach for Objective
Function Design Evaluation—Using Train Unit Scheduling
as an Example

Li Lei' - Raymond Kwan' . Zhiyuan Lin?

Received: 17 September 2023 / Accepted: 6 August 2025
© The Author(s) 2025

Abstract

Real-world combinatorial optimization problems are mostly NP-hard, and often only
near-optimal solutions can be obtained practically. To differentiate as fine-grained as
possible the near-optimal solutions is therefore desirable. Moreover, a real-world prob-
lem may have numerous possible structural properties of concern to the practitioners,
too numerous to be all elicited and incorporated as optimization criteria in an objec-
tive function. In contrast with pure heuristics, we consider hybrid (meta-)heuristics
that utilize an exact solver iteratively to solve a series of significantly reduced prob-
lem instances converging to near-optimal solutions within practical time. To avoid the
hybrid heuristic being stranded in a “poorly differentiated” solution space, an effec-
tive objective function design plays an important role. We propose a methodology to
benchmark the effectiveness of alternative objective function designs. The main metric
used is the structural similarity between the solutions obtained by the hybrid heuristic
and by the exact solver. Several other solution features are also distilled and aggre-
gated in the benchmark. This methodology is explained and demonstrated on a train
unit scheduling problem tested with four alternative objective functions. The results
show that two of them are significantly more effective than the others in differenti-
ating solutions of different qualities and speeding up the solution process. Moreover,
some criteria not modeled explicitly could also be satisfied implicitly in the effective
objective designs.

Keywords Combinatorial optimization - Hybrid heuristics - Objective function
design - Objective function evaluation - Analytic hierarchy process - Train unit
scheduling

B Zhiyuan Lin
Z.Lin@leeds.ac.uk

1 School of Computing, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, West Yorkshire,
UK

Institute for Transport Studies, University of Leeds, Woodhouse Lane, Leeds LS2 9JT,
West Yorkshire, UK

Published online: 14 August 2025 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s43069-025-00529-7&domain=pdf

121 Page2of42 Operations Research Forum (2025) 6:121

1 Introduction
1.1 Research Motivation

Real-world combinatorial optimization problems such as scheduling and routing are
mostly NP-hard and have numerous possible structural properties. Thus, their objective
functions are usually a trade-off among a set of optimization criteria and also a trade-off
between computational efficiency and solution quality. A perfectly designed objective
function taking into account all aspects often does not exist except for some idealized
cases designed for theoretical interests. In practice, the ideal situation that an objective
function can rank all feasible solutions precisely is hardly achieved. The real case
is usually that the solutions with very similar or even the same objective function
value have rather different structural properties. This phenomenon is also observed in
experiments on Train Unit Scheduling Optimization (TUSO) [1-6], which is further
explained in Section 4. 1. Solution approaches for combinatorial optimization problems
can be classified into two types: exact methods and pure/hybrid heuristic methods.
Although exact methods theoretically would produce accurate solutions, they are often
computationally practical only for relatively small problem instances because of their
NP-hard nature. In addition, sometimes the claimed “exact optima” are only near-
optimal solutions as a result of pre-set termination conditions such as an optimality
gap of the branch-and-bound tree and time limit. On the other hand, heuristic methods,
either pure or hybrid, normally produce “sub-optimal” solutions, and their optimality
may be difficult to prove and control. Nevertheless, heuristic methods often have
capability of delivering multiple near-optimal solutions in relatively short time, and
the best one is claimed as the final solution.

A final solution is determined based on relations and significance (weights) among
the main optimization criteria modeled in the objective function. Taking scheduling
as an example, various complex structures in different schedules represent different
operational plans, and it is up to the objective design to differentiate them in their
quality reflected by their objective values. It is vital for an objective function to have
the ability of differentiating solutions of various structures as fine-grained as possible,
especially when they are near optimal. Exact solvers may not be as much influenced
by the structural properties of a problem instance as hybrid heuristics do. However,
hybrid heuristics are used for real-world problems, when in practice the instances are
often too large and complex for exact solvers. Hence, this paper is also motivated by
the quest for good trajectories of the hybrid heuristic process in terms of structural
properties in the intermediate working solutions, which may be achieved through the
proposed objective function design methodology.

In this paper, we propose a systematical approach to benchmark the effectiveness
of alternative objective function designs for a real-world combinatorial optimization
problem that satisfies the following features:

(i) The most important criteria are not in conflict but have a discernible importance
hierarchy reflected in a weighted sum objective function.

(i1) Due to the complexity of the problem, some hidden and minor criteria have to be
implicitly satisfied, i.e., not directly included in the objective.

@ Springer

Operations Research Forum (2025) 6:121 Page3of42 121

(iii) It is suitable for using hybrid heuristics, i.e., a feasible solution is formed based
on a set of components from which only a small fraction will be used. Thus, it is
possible to create various reduced instances by activating only a small subset of
the components [7, 8].

(iv) There is a ready-to-use exact solver for the considered problem, and we trust that
the solution obtained by the exact solver is the best as a solid benchmark. A caveat
is that the exact solver alone may only be practical for small problem instances.
However, it can be employed by hybrid heuristics for larger instances.

In addition, due to the complexity of the problem, we assume that the overall
relations among the entire hierarchical criteria are complicated. One might either
synergize or be in conflict with another, or there may be some more complicated
relations unrevealed either by the model or by the practitioners. Thus, which and what
optimization criteria should be considered in the weighted-sum objective is unclear
at the designing stage, and even experiences from practitioners would not give a
definitive answer. In this paper, we establish the concept of effectiveness of alternative
objective function design and use this concept to measure the qualities of such designs
incorporating different combinations of criteria and finally select the most desirable
design to be used for large-scale instances that are beyond the computational capability
of an exact solver.

1.2 Methodology and Contributions

We use the term auxiliary heuristics to refer to the heuristic part in a hybrid heuristic
framework, compared to the exact part such as an integer linear programming (ILP)
solver. We propose a method using hybrid heuristics to differentiate and promote
desirable structural properties in solutions and to rank alternative objective functions
based on their effectiveness. This method consists of three stages:

(1) Design alternative objective functions: The main optimization criteria potentially
to be included into an objective function are obtained through discussions with
practitioners.

(i1) Obtain solutions and their features: An exact ILP solver (P) taking the full problem
instance as its input is applied and used to deliver an “optimal” solution as a
benchmark. An auxiliary hybrid heuristic (Pyy) is developed to iteratively call
P with a significantly reduced problem instance as its input that is updated in
iterations until the hybrid heuristics converge to a final sub-optimal solution.
Through comparisons between the benchmark and heuristic solutions, a collection
of feature values reflecting the objective function effectiveness is extracted.

(ii1) Evaluate the effectiveness of alternative objective function designs: The main
measure of effectiveness is based on structural similarity between various solu-
tions found by the hybrid heuristic and the benchmark solution found by the exact
solver. In conjunction with other solution features, the effectiveness of the objec-
tive function is quantified as an aggregation of solution features derived at the
second stage based on analytic hierarchy process (AHP) [9].

@ Springer

121 Page 4 of 42 Operations Research Forum (2025) 6:121

This methodology is explained and demonstrated on the TUSO problem for which
four alternative objective functions are designed and evaluated. The results show that
the objective functions of higher effectiveness are able to help Pyy obtain solutions
with desirable differentiation properties and high structural similarities with the bench-
mark solution from P. On the other hand, the objective functions of lower effectiveness
lead Pyy to wander over poorly differentiated solutions whose structures are very dis-
similar from the benchmark solution. For the low effective objective designs, even
when the objective value of the final solution obtained by Py is close to or identical
to the benchmark from P, their structures are often still significantly different. Through
the effectiveness analysis among different combinations of optimization criteria, the
criterion that promotes/reduces the effectiveness of the objective function can also be
identified and thus can be included or discarded accordingly.

While the research on multi-criteria optimization and parameter control are exten-
sive and fruitful in literature, they mainly focus on the performance of solution
algorithms. Research dedicated to establishing high confidence in objective function
design and selecting desirable objective functions with respect to several complex can-
didate criteria with complex relations is almost blank in literature. The methodology
proposed in this research bridges these two gaps to quantify the objective function
effectiveness and to select a desirable candidate objective based on effectiveness. For
areal-world combinatorial optimization problem such as scheduling, an exact method
either produces a solution or no solution at all. Originally, to assess which objective
design is more desirable, one would need to rely on the results of an exact solver
(by trying all alternatives) and to also seek from experts’ domain knowledge. When
the problem scale is large, an exact solver may fail in giving an optimal solution.
Different experts may have different conclusions, and their judgment may be affected
by subjective reasons. This newly proposed method provides a more objective and
standardized way to systematically establish confidence in and evaluate alternative
objective functions based on the performance and structural properties from running
reduced problem instances using hybrid heuristics, thus avoiding sole reliance on an
exact solver or experts.

1.3 Organization of the Paper

This paper is organized as follows: Section 2 reviews relevant literature. Section 3
introduces the methodologies used for designing and evaluating objective function
design based on hybrid heuristics. Section4 introduces the Train Unit Scheduling
Optimization (TUSO) problem and reports the computational experiment results from
real-world instances of TUSO. Finally, Section 5 discusses conclusions and future
work.

2 Literature Review

To solve a real-world problem by optimization, model simplification is usually applied
to reduce the complexity of the problem to make it easier to solve. For instance,

@ Springer

Operations Research Forum (2025) 6:121 Page50f42 121

transforming nonlinear expressions to linear ones, ignoring insignificant factors, and
converting time-related parameters to static parameters. Many real-world problems
have multiple optimization criteria that can be modeled as a set of mathematical
objective terms fi(x), f2(x), ..., fn(x), to be considered in the objective function,
where x € X C R? are the decision variables in a d-dimensional space. These
optimization criteria can often be conflicting, and their priorities are not easy to deter-
mine such that these problems are usually regarded as multi-criteria optimization [10].
Studies in multi-criteria optimization are extensive in literature. “Errors” or “uncertain-
ties” arise when simplification and approximations are applied to models and solution
approaches. Reduction of uncertainties is thus needed during model calibration pro-
cesses such as parameter tuning and control. This section briefly reviews the literature
on multi-criteria optimization and parameter control. The focus of this research is on
the objective function effectiveness, which is based on an established mathematical
model that has been properly simplified and a readily available exact solver whose
parameters are fixed.

2.1 Multi-Criteria Optimization

Usually, there is no definite ranking on the solutions of a multi-criteria optimization
problem, i.e., no single solution can simultaneously optimize and prioritize every
criterion. This is because multiple criteria are often in conflict and do not have an
optimization hierarchy. Consequently, multi-criteria problems usually do not consider
a unique optimal solution but a set of representative trade-off solutions. A classical
methodology is to use a priori methods [11]. Two well-known a priori methods are the
e-constraint method and weighted sum method. The e-constraint method optimizes
one of the objectives and considers the others as constraints with estimated cost bounds
[12]. The weighted sum method adds all terms together to be considered as a single
linear weighted objective Eq. 1 by introducing weights «; for each objective criterion
i. Often, each f; is normalized by estimated bounds on its possible ranges, and the
weights are restricted by Condition Eq.2 [13].

min Y f;(x) M

i=1

n

dai=1 O<ai<1))

i=1
The single objective function is easier and more deterministic because it uses a
unified numerical value to measure the solution quality. Unfortunately, the estimated
bounds and scaled weights are usually hard to define and calibrate. The solution gen-
erated based on such given bounds and weights may not be preferred by users. On the
other hand, the Pareto front technique aims to compute a set of dominant trade-off solu-
tions for users to choose [14]. However, the number of solutions required to accurately
represent the Pareto front increases exponentially as the number of objectives goes
higher. The storage and time requirements of related indicators, such as hypervolume,

@ Springer

121 Page 6 of 42 Operations Research Forum (2025) 6:121

diversity measure, and hyperarea difference, also increase exponentially with the num-
ber of objectives [15].

Many train planning and scheduling problems can be considered as multi-criteria
optimization problems. For instance, a multi-objective model is proposed to deal with
the passenger train scheduling problem [16]. Two conflicting criteria are considered:
railway company-view optimization criteria and passenger-view optimization criteria
such that fuel consumption and traveling time have to be both minimized. In [17], a
two-objective integer programming model is proposed to describe the train utilization
and operation problem in a subway system, which is solved by a genetic algorithm.
In [18], a multi-objective formulation is presented to assess mainline train services
considering the interests of multiple stakeholders, such as journey times, customer
waiting times, punctuality, and crowdedness. Similarly, a genetic algorithm is applied.
The trade-off between conflicting objectives is illustrated through the Pareto analysis.

Multi-criteria optimization models in the literature mainly concern Pareto fronts
and their analysis, in which conflicting multi-objectives have individual objective
functions that are not merged. However, the multiple objectives considered in this
research are not in strong conflict and have a discernible importance hierarchy that
can be merged into a single weighted sum objective function.

2.2 Parameter Tuning and Control

Parameter tuning and control are usually studied after objective functions are deter-
mined and solution approaches are developed. It tunes the parameters affecting the
time needed for an algorithm to find a better solution but does not contribute to the
“definition” of what is considered as optimal. Conventionally, most mathematical
algorithms have default parameter settings that are manually set in an ad-hoc manner
via considerable efforts on experiments and from experiences [19]. For instance, there
are 80 parameters in CPLEX affecting the search mechanism that can be controlled by
users [20]. In the last few decades, many automatic methods for parameter tuning and
control are reported in literature, particularly in (meta-)heuristic methods. They are
classified into four types [21]: (i) sampling methods, (ii) model-based methods, (iii)
screening methods, and (iv) meta-evolutionary methods. Sampling methods reduce
search effort by cutting down the number of parameters. However, this leads to the
challenge of predicting a limited number of parameters that have the best performance
and robustness. A sampling method to systematically tune parameters (up to five) is
proposed in [22], which is based on statistical analysis and local search techniques. The
second type of method establishes models based on parameter data to reduce the total
number of experiments. For instance, the sequential model-based algorithm configu-
ration (SMAC) method based on random forests is model-based [23], which expands
this method to general algorithm configuration problems. Screening methods identify
the best parameters with a minimum number of experiments. For example, “*-Race”
approaches are commonly used [24, 25]. Meta-evolutionary methods consider param-
eter tuning as an optimization problem, for instance, the parameter iterated local search
(ParamILS) method [20] and the focused iterated local search (FocusedILS) method

@ Springer

Operations Research Forum (2025) 6:121 Page7of42 121

[26], which have inspired many other studies on configurations of multi-objective
problem [27].

However, few researches discuss weight tuning for objective function terms. In [28],
AHP is used to assign the weights of penalized terms in the objective function acting
as soft constraints of a nurse scheduling problem. Based on historical data, a method
to automatically determine the relative importance of soft constraints is proposed in
[29]. In the area of train planning and scheduling, weights of objective function terms
are mostly set as pre-determined parameters, and the method of deriving those weights
is not explained in detail [2, 30, 31].

In this research, the main focus is to evaluate the effectiveness of alternative objec-
tive function designs formed as different combinations of the main optimization terms.
The weight of each term is set based on the hierarchical importance based on experi-
ences and experts’ domain knowledge.

2.3 Hybrid Heuristics Combining Exact Solver with Reduced Instances

Hybrid heuristics (HH), or sometimes referred to as hybrid meta-heuristics [32, 33],
are a class of optimization methods particularly designed for solving difficult combi-
natorial optimization problems. In principle, any optimization algorithm combining
heuristics with at least one other optimization approach can be regarded as “hybrid
heuristics.” [32] and [7] give in-depth surveys on the definition, taxonomy, and relevant
work in hybrid heuristics for solving combinatorial optimization problems.

In this paper, we only focus on a type of hybrid heuristics that uses the following
strategy: An exact solver (usually an ILP solver) is available, but it may only be able
to solve small to medium-sized instances. An auxiliary heuristic is thus designed to
iteratively reduce the problem instance into a suitable size that can be solved quickly
by the exact solver. The quality of an initial solution based on the reduced instance will
often be low, but customized strategies are designed to update the reduced instances
so that, in the final rounds, the reduced instance will be expected to contain most
components needed for producing an optimal or near-optimal solution. We give some
examples of the above restrictively defined HH, which we found are closely relevant
to the HH to be used in our alternative objective function design approach. They are
not meant to be exhaustive, and more comprehensive reviews on other examples can
be found in [33] and the survey paper [7].

In [34], a hybrid heuristics named PowerSolver is proposed to solve large and/or
complex driver scheduling problems [35]. Column generation is used in solving bus
and train driver scheduling problems where each column corresponds to a potential
driver shift. The number of columns in the set covering ILP model could run into
billions, making the problem intractable. PowerSolver derives a series of small refined
sub-problem instances fed into an existing efficient set covering ILP-based solver.
Instances are reduced by banning the use of most relief opportunities (RO, where/when
a driver change can take place). In each iteration, a minimum collection of RO is
retained such that the next solution will be no worse than the current best. Controlled
by a customized user strategy, a small number of the banned relief opportunities would
be reactivated, and some soft constraints may be relaxed before the new sub-problem

@ Springer

121 Page 8 of 42 Operations Research Forum (2025) 6:121

instance is solved. PowerSolver gives a step-change in fully automating UK train
operating companies’ crew scheduling in large/complex real-world scenarios. It is
proved successful by many transport operators who are routinely using it as a key
component of TrainTRACS, a commercial crew scheduling software package [36].

Like in crew scheduling, challenges in solving large scale instances also occur in the
TUSO problem. In [37], an HH approach named size limited iterative method (SLIM)
is proposed, where arcs in a DAG represent train unit connection opportunities. Since
the exact solver (RS-Opt) [2] is only able to solve small to medium-sized instances in a
reasonable time, SLIM will reduce problem instances by removing the majority of the
arcs in the DAG while still ensuring the existance of feasible solutions and the quality of
the series of solutions based on reduced instances will be improving until convergence.
By implementing SLIM, the train unit scheduling system can successfully solve large-
scaled instances with high-quality solutions.

Both PowerSolver and SLIM follow the paradigm that we generalize as “Extract-
and-Augment” in Section 3.2. In each iteration, an essence (“‘backbone”) of the
previous iteration or iterations will be retained to ensure the feasibility and quality
of the next solution. Diversification is realized by augmenting the backbone by strate-
gically adding components from different “corners” of the solution space or “wheel
rotation.” A balance between local optimality (convergence) and global optimality
(diversity) can thus be achieved by tuning the strategies in extracting the backbone
and augmentation by wheel rotations.

Reference [8] presents a general hybrid metaheuristic for combinatorial optimiza-
tion named Construct, Merge, Solve & Adapt (CMSA). It is a specific instantiation
of a framework known as “generate-and-solve” [38]. CMSA generates a reduced sub-
instance of the original problem, which a solution to the sub-instance is also a solution
to the original problem. An exact solver is applied to the reduced sub-instance to obtain
a high-quality solution to the original problem instance. A mechanism is developed
to make use of the results of the exact solver as feedback for the next algorithm iter-
ation. Two examples are tested to prove the effectiveness of CMSA: the minimum
common string partition problem and the minimum covering arborescence problem.
The obtained results show that CMSA is competitive with the exact solver for small to
medium-sized problems, and it significantly outperforms the exact solver for larger-
sized problems.

More recently, CMSA has been successfully applied in several instances and com-
pared with other heuristics. In [39], it is used to solve an NP-hard problem from the
family of dominating set problems in undirected graphs, where the minimum positive
influence dominating set problem is studied. The experiments show that CMS A outper-
forms the current state-of-the-art metaheuristics from the literature. Moreover, CMSA
is able to find competitive solutions as found by CPLEX for small and medium-sized
instances and clearly outperforms CPLEX for large instances. In [40], a comparative
analysis is given on two hybrid algorithms for combinatorial optimization problems,
i.e., large neighborhood search (LNS) and CMSA. The multidimensional knapsack
problem and minimum common string partition are used for the comparisons in the
experiments. The results show the advantage of CMSA over LNS for instances with
fewer items. LNS may perform better if there are many items. A new way of visu-
alizing the trajectories of the compared algorithms in terms of merged monotonic

@ Springer

Operations Research Forum (2025) 6:121 Page9of42 121

local optima networks also supports the conclusions. In [41], CMSA is applied to the
Prioritized Pairwise Test Data Generation Problem where a minimal subset of prod-
uct family needs to be found to test all these possible valid feature combinations in
software product lines. The problem can be formulated as an integer linear program.
The computational experiments show that CMSA is statistically significantly better in
terms of quality of solutions in most of the instances compared to other algorithms,
although it requires more execution time. CMSA also shows advantages in many other
problems such as the repetition-free longest common subsequence problem [42] and
the nuclear power plant refueling and maintenance planning [43].

CMSA and Extract-and-Augment share many common features and design philoso-
phy, especially in the ways they use an exact solver to find out high-quality components
by solving reduced instances iteratively and the need to update an instance in each
iteration based on historic feedback. They mainly differ in how a reduced instance is
constructed and how diversification is realized. In CMSA, they are achieved by merg-
ing a collection of diversified feasible solutions (known as the construction phase).
In Extract-and-Augment, they are done by the augmentation phase through wheel
rotation by strategically considering different sectors of the problem space.

3 Methodology for Evaluating Objective Effectiveness

This section describes a methodology for evaluating the effectiveness of alternative
objective function designs. The development of this methodology was inspired by
experimental investigations on the TUSO problem aforementioned in Section 1.1.
TUSO is modeled as an integer multi-commodity flow problem on a pre-generated
directed acyclic graph (DAG). A feasible solution only uses a small fraction (subgraph)
of the full DAG where commodity flows represent train units serving train trips repre-
sented by nodes. Therefore, the size of the full DAG directly affects the computational
complexity of solving the network flow problem because of enormous arc-and-flow
combinations. An exact solver called RS-Opt has been developed for small/medium
instances [2]. A hybrid heuristic method named SLIM has also been developed for
larger instances [37]. Without SLIM, RS-Opt takes the entire DAG as input and deliv-
ers an “optimal” solution s*. SLIM aims at iteratively extracting, reducing and refining
the full DAG into a small subgraph to feed to RS-Opt such that RS-Opt can yield a
solution quickly. At the convergence of SLIM, a solution § with an objective value
close to s* is expected, i.e., |z(s*) — z(§)| < & measured by some tolerance ¢;. More
importantly, it is also expected that § should possess similar structural properties com-
pared with s*. In other words, if we define a metric sim(-) for measuring structural
similarities on solutions, ideally it should also be the case that [sim (s*) —sim(5)| < &
with some tolerance >. However, it is often observed that the structural properties of
s* and s are very different, although their objective values are close or even the same.
Although the branch-and-price process inside RS-Opt may have its own influence
on the arc (component) selection over the DAG, certain deficiencies in the design
of objective function being not sensitive enough to differentiate solution structures
may have also contributed to the unexpected phenomenon. In addition, it is observed

@ Springer

121 Page 10 of 42 Operations Research Forum (2025) 6:121

that some objective combinations lead to quick convergence, while some others show
very slow progress. Interestingly, there is often a strong correlation between structural
similarities at optima and convergence speed: the more similar, the quicker.

All these show a need to create a systematic approach to design and evaluate the
effectiveness of alternative objective functions. We measure the effectiveness by a
multiple of solution features including (i) a unified solution quality score (regardless of
specific objectives in use), (ii) structural similarities, (iii) number of different solutions,
and (iv) comparison between the objective values of the HH method and the exact
solver. The details of these features will be given Section 3.3.

Figure 1 gives a flowchart on the concept of this approach for evaluating objective
effectiveness, where three stages are involved. The first stage is to design several
alternative objective functions where each may have its own pros and cons from the
designer’s point of view. A set of solution features is also created and collated based
on the objective design and the assumption that an exact solver P and a HH framework
Py are available. There can be multiple layers of features. For instance, the first layer
features are @1, &5, ..., ¥, and within each first layer, second layer features can be
further defined as ¢11, ¢12, ..., $21, P22, - - -, D1, Pm2, - - . . In the second stage, for
each objective function design, this method uses the exact solver P and the hybrid
heuristic Pyy that iteratively creates reduced instances to obtain a series of solutions.
The solution from P is considered as a benchmark, and the heuristic solutions obtained
from Py are compared with the benchmark. Through the comparisons, a collection of
feature values vyy, v12, ..., V21, V22, .-+, Unl, Un2, - . . corresponding to the solution
features ¢;; is obtained and will be used as the raw data for Stage 3.

Design alternative |

objective functions Stage 1
T
|
o]
For each objective function f
|
I S |
NBectsalver) P Py Sxactsobver) |
Heuristic wrapper :
|

An optimal solution Heuristic solutions Stage 2
compared to the !
as benchmark benchmark |
|
| |
|
i |
Obtain the values of I
solution features 1
l |

Evaluate the objective Stage 3
function effectiveness !

I B

Fig. 1 Methodology flowchart

@ Springer

Operations Research Forum (2025) 6:121 Page 110f42 121

In the third stage, the effectiveness of each objective function design is quantified by
hierarchically integrating all the solution feature values vy1, vi2, ..., V21, V22, . .., Unl,
Um2, ... into an overall metric M (-). For instance, AHP is a classical method for
such an integration where an adjusted final weight w;; for each second layer ¢;;
is calculated. The overall metric is thus calculated as a function of v;; and W; j» €.,
M@, v) = 3_;; Wijvij,if asimple weighted linear combination is used. To get reliable
and realistic values on feature weights, practitioners are often involved at this stage
to review if the evaluation results are in line with their judgement. We elaborate each
stage in the remaining of Section 3.

3.1 Alternative Objective Function Designs

Stage 1 aims at creating several candidate objective functions through problem inves-
tigation. The participation of practitioners is important at this stage, especially in
identifying main optimization criteria with discernible importance. The selected cri-
teria are only a subset from a theoretically complete list of criteria for the considered
problem. The optimization criteria from the perspective of practitioners are often
descriptive and macroscopical. Modeling them as mathematical terms is a vital step
to enable the problem to be solved by optimization methods.

As the main optimization criteria we considered in this paper respect a discernible
importance hierarchy, they can be formulated in a linear weighted-sum objective
function— the weights of the corresponding mathematical terms reflect a hierarchy.
Denote optimization terms and their pre-determined weights as fi, f2,..., f, and
o1, ®2, ..., o, where n is the total number of optimization terms converted from the
main optimization criteria. Thus, the alternative objective functions are designed based
on different combinations of these optimization terms in weighted-sum formulations.
A candidate objective function indexed by k can be expressed as below:

Fe=>) aifi, Ik C{l,2,...n}, 3)
i€l
where |I;| < n terms from fi,..., f, are considered. As we have mentioned in

Section 1, in reality, often n is rather big, and the designer can only afford a very much
smaller m < n terms to be included in the objective. The most desirable objective
design is the one with only m items but is still able to achieve the effectiveness of
the presence of most of the n original terms as much as possible. A set of alternative
objective functions with different objective terms I; will be generated and put into a
candidate set 7 = {Fy, F>, ..., Fi,...}. The ultimate target is to give a ranking of
the candidates in F and choose the most desirable one.

3.2 HH Framework
For a combinatorial optimization problem, let us define the instance corresponding

to the complete original input by G. The components of a feasible solution s to the
original problem G often correspond to a very small subset I' C G of the entire

@ Springer

121 Page 12 of 42 Operations Research Forum (2025) 6:121

input. This is also the case for the optimal solution s* whose components form a very
small subset I'* C G. More importantly, any subset of G containing I'* will also
yield the same optimal solution s*. We call a subset of G that is a superset of I'* an
optimal subset of G and denote it by G*. Most of the components of the entire input
G do not directly contribute to finding the optimal solution but merely increase the
computational burden. Thus, deriving minimal good-quality reduced inputs as close
as possible to a G* is an effective method to significantly improve computational
efficiency or even enable tractability. The aim of a HH [7, 8, 34, 37] is to eventually
find an appropriately reduced input instance G ~ G* enabling an exact method P to
deliver a solution whose objective value is very close the “optimal” solution obtained
by P based on the entire input G, i.e., z[P(a)] ~ z[P(G*)] = z[P(G)], where
we denote P(X) as the solution of using P to solve instance X. In most cases, it is
not possible to find an optimal subset, i.e., G = G*. An effective way of creating a
properly reduced subset for P in HH is by augmenting an existing feasible solution
[34, 37]. Often, the entire problem instance G can be partitioned into many (usually
mutually exclusive) “regions” G = G| UG, U- - -. Each region contains components
that share certain common features. For instance, they may belong to the same group
of an attribute identified in G. There are often several region types that can be used
for partitioning G based on the characteristics of a problem, e.g., by time, location,
staff allocation, and traction type. At an iteration of HH, a certain region type is in
use. Problem instances are created by augmenting feasible solutions with components
from a certain region(s). This is proved effective in increasing the potential of forming
better structural properties in resultant solutions. Suppose we arrange the regions on a
wheel. Augmenting a feasible solution by adding components from different regions
on the wheel is called a rotation process.

Thus, a heuristic approach Pyy iteratively forming feasible solutions and augment-
ing them by region rotation to promote desirable structural properties can be used to
find a large number of refined reduced instances. We denote a reduced instance by G.
Eventually, Py will be terminated when there is evidence showing G is an appropri-
ate reduced instance G that we look for. See Algorithm 1 for a detailed description
of Py, which we generalize as “Extract-and-Augment.” Applications of Extract-
and-Augment, such as PowerSolver [34] and SLIM [37], are widely used in railway

Algorithm 1 Pseudo code of Pyy (Extract-and-Augment).
Require: G, P
Ensure: solList

1: 59 <« initialFeasibleSolution
2: solList.add(sq)

3: repeat

4. I < Extraction(sol List) > Extract a backbone
5. regionList = {G1, Ga, ...} < RegionDivideMethod(I", G)

6: forall G; inregionList do

7 G < TUG; > Augment
8: si < P(G) > Solve by exact solver
9: solList.add(s;) > Update solution list
10: end for

11: until reachStopCriteria() > Thatis, G = G

@ Springer

Operations Research Forum (2025) 6:121 Page130f42 121

scheduling. Note that we present the details of Extract-and-Augment as it is the HH
approach used in the experiments in Section 4. Other kinds of HH methods (such
as CMSA [8]) are also potentially applicable as the heuristic part in our three-step
methodology.

Pyp requires a complete original input (G) and a ready-to-use exact solver (P) to
carry out an iterative process. Let sol List be alist to store all solutions found during the
converging process. Pyy starts with an initial feasible solution s¢ that can be obtained
by some simple heuristics such as a greedy algorithm. The Extraction() method
takes the solList as input to extract an essential subset (“backbone”) corresponding
to a very small subset I of G to ensure the reduced input formed at this iteration
has a feasible solution. Extraction() can be defined in many customized ways. For
instance, extracting the best solution in sol List could be an option, which is helpful
to speed up the convergence. Randomly extracting any solution is also an option
that has the advantage of helping Pyy jump out of local optima. According to the
characteristics of a specific problem, G can be partitioned in various ways to obtain
the regions in regionList.

The loop on region List represents the rotation on regions to ensure that every “cor-
ner” of the entire problem space is reached as much as possible. The merge between
I" and region G; is called augmentation by adding components from region G; on
the “wheel.” The augmentation process results in a reduced input G to be solved by
the exact solver P. By looping over steps of “Extract—-Augment—Solve—Update,” a
collection of solutions is found and stored in solList. The augmentation is applied
systematically and, in particular, tries to divide the problem space taking care of com-
binatorial features for promoting good structural properties in the solutions. Pyy will
stop when it is believed that the best reduced instance so far G is a good approximation
of the desirable G. Commonly used criteria are maximum time/iterations and/or none
improvement on the objective function value for a certain number of iterations. The
size of a region can be controlled through a parameter u, logically, 0 < u < 1 to
make sure |G| < |G| such that P can deliver an “optimal” solution quickly [37]. On
the other hand, the benchmark solution s* is obtained by considering the entire input
G for P,i.e., s* = P(G). At convergence, Pgy feeds an almost optimal reduced input
Gto Pto produce the final solution §. Before convergence, the reduced input at each
iteration is sub-optimal but is of a very small size such that P can be executed very
quickly to claim an “optimal” solution s;, which may be extracted as an essential sub-
set (backbone) for the next iteration. A good feature of Extract-and-Augment is that
given the entire input G, Pgy can find a set of solutions S = {s1,s2,...,5;,...,58}
during the process of skimming G into G.

Consider the network flow-based TUSO problem as an example to illustrate the
working mechanism of Pgyg as shown in Fig.2. The entire input G that could be
massive is shown in Fig.2a. Figure2b gives an essential subset T that is a naive
solution where every node is covered by the arcs related to the source and the sink.
Figure2c is an augmented reduced input in which the augmented region of blue arcs
is added by augmentation to the original essential subset. Finally, Fig.2d shows an
improved solution graph obtained by P considering the augmented subset in Fig.2c
as input.

@ Springer

121 Page 14 of 42 Operations Research Forum (2025) 6:121

O D O O C 8, O O

O O O @) O O O @) ,
® (ONNO; ©

O O) @) O O O O

O O O O O O O O

(a) (b)

O O 0 O O O O O

O @) @) @) O O O @)
® © © ©

O L@) O O O O O O

O O © O O O O @ O O

Fig.2 Working mechanism of Pyy

3.3 Solution Features

The convergence procedure of most HH-based approaches (and other heuristics, such
genetic algorithms) only focuses on objective values. As mentioned earlier, ideally
we would like to assess solution quality by a few more criteria, such as the similarity
between HH solutions and the benchmark solution. In order to evaluate the effective-
ness of alternative objective function designs, four main features are used to make
systematic comparisons between solutions derived from P and Pyy:

(i) ®1: Unified solution quality score (regardless of specific objectives in use);
(i) ®,: Structural similarities;
(iii) ®3: Number of different solutions obtained during the iterations of Pyy
(iv) ®4: Comparison between optimal objectives produced by P and Pyy.

3.3.1 Feature @+: Unified Solution Quality Score

Often, itis the objective value that reflects solution qualities and guides the convergence
of optimization algorithms, but this objective value is often less directly meaningful or
useful to practitioners. On the other hand, actual results and/or contents of optimization
criteria found in a solution are important to practitioners since they directly reflect
certain operational and business targets and preferences. Thus, we design a unified
scoring system for reflecting optimization criteria values regardless of which specific
objective design is in use. This can be regarded as a way of assessing how good an
objective function design is in the view of practitioners. By “unified,” we mean the same
scoring system for all candidate alternative objective designs in F = {F1, F», ... }.

This unified scoring system consists of several indicators as sub-features under
Layer 1, denoted as ¢11, ¢12, ... used to reflect practitioners’ way of assessment.
They are often problem-specific, and the details of the indicators we use for the TUSO
problem will be reported in Section 4.

@ Springer

Operations Research Forum (2025) 6:121 Page150f42 121

3.3.2 Feature @,: Structural Similarities

As we have mentioned in Section 1.1, the benchmark solution s* found by P is the
“best” optimal solution we can obtain. Pyy iteratively solves reduced instances that
are updated throughout until convergence. An ineffective objective function often has
the tendency of letting Py search over a large “poorly differentiated” solution sub-
space, resulting in a solution § whose structural property is different from s* even if
they have similar or even the same objective value. For instance, the solution of the
TUSO problem is based on a subgraph of the original graph. A solution schedule usu-
ally contains many unit “diagrams” (daily work plans for train unit vehicles) where
how diagrams connect to each other is important because the structural properties
of a solution schedule convey the detailed operational plans and these structures are
difficult to be fully presented by objective terms. Thus, comparing structural simi-
larities between the heuristic solutions and the exact solution s* yields the second
solution feature to benchmark an objective function’s effectiveness. For an objective
function, all the heuristic solutions found by Puy, i.e., s, 52, ..., s, are compared to
the benchmark s*, as illustrated in Fig. 3. The comparison is not made individually on
each HH-generated solution s;, but in a way that sy, 53, ..., § are integrated into some
metrics to be compared to s*. To achieve this, four indicators served as sub-features
in the second layer @, are devised.

Sub-Feature ¢,1: Overlapping Arc Percentage The first indicator (sub-feature) ¢»
is the overlapping percentage between the final HH-generated solution § and exact
solution s*. Let & be the percentage of overlapped arcs in a heuristic solution s;

Al
compared with all the arcs found in s*, i.e., & = %, where A* is the set of arcs in
the optimal exact solution s*, and A/ is the set of arcs overlapping with A* found in a
HH solution s;. Then, the first indicator is defined as the largest one of this percentage

in a complete HH process among all solutions, i.e., £+ = max; (&).

Sub-Feature ¢,,: Structural Similarity Range The second indicator ¢ is the structural
similarity range, defined as r = £+ — £~, where £ is the same largest percentage
aforementioned and & ~ is the smallest similarity percentage value,i.e., £~ = min, (§;).
The range r shows how much the similarities are increased through the iterations of
Pyp. All alternative objective functions start with the same initial feasible solution
such that the lower bounds (£ ™) of the ranges (corresponding to alternative objective
function designs) are comparable.

Iterative solutions ranked by
objective function values

. @ Structural comparison .
S So |memeem S |« — > S
1 2 between § and s*

Structural comparison between

Benchmark solution

iterative solutions s; and s*

Fig.3 Comparisons of structural similarities

@ Springer

121 Page 16 of 42 Operations Research Forum (2025) 6:121

Sub-Feature ¢3: Homogeneous Solution Entropy The third indicator ¢,3 is the homo-
geneous solution entropy (or simply “HS entropy”). We define HH-generated solutions
(under the same objective function design) having the same objective value as homo-
geneous solutions (HS). HS are regarded as being of the “same quality” in terms of
their numerical objective values, but they may actually differ in their structures. HS
entropy is proposed here specifically for measuring how diverse homogeneous solu-
tions are in a collection of solutions from an objective design. This idea is borrowed
from Shannon’s information entropy of a random variable [44], which gives average
level of “information,” “surprise,” or “uncertainty” inherent in the variable’s possible
outcomes. Given a discrete random variable X with possible outcomes x1, x2, ..., X
each with the probability P(x1), P(x2), ..., P(x,). The entropy of X is defined as
H(X) = —> 7, P(xi)log P(x;). Let L be a list of HS with the same objective
value, whose members are HS with different structural similarity percentages defined
by & (HS with the same similarity are treated as different members, too). So each L
corresponds to a unique objective value. Let £ be the set of all such HS lists from a
complete HH process. For each L € L, we define its homogeneous solution entropy,
denoted by H (L), to reflect how diverse/uncertain these HS of the same L are. To be
more specific, let/ € L be a member (i.e., a solution with a similarity percentage) of
HS list L and p; be the frequency of / among all similarities. The HS entropy for an
HS list L is defined in the same way as the traditional information entropy,

H(L)=—Y pilogp. “
leL

For example, if a HS list L has five members (represented by their similarity percent-
ages): L1 = [50%, 50%, 60%, 70%, 90%], using natural logarithm, its HS entropy is
H(L1) = —(0.4%x1n0.443x0.2x1n0.2) & 1.3321. If another HS list L, = [90%]
has only one member, its HS entropy is simply H(L;) = —1 xIn1 = 0.

For an entire HH process with solutions of different objectives values (thus different
HS lists L € £), we use the following weighted average HS entropy as the final metric
for measuring the diversity of for this process.

— 1
H=— Z GLHL. (5)
I£] Lel

In the above, o, is the standard deviation of the percentage values in list L such that
a HS list with a higher deviation will be penalized more by having a higher average
entropy. For instance, a list [10%, 20%, 50%, 80%] is less desirable than another list
[70%, 80%, 85%, 88%]. This is the final value metric used for sub-feature ¢»3, and
the higher this entropy is, the less desirable. In a “perfect” alternative objective design
that is highly efficient in differentiating objective values and structural similarities,
or in a simple instance without much complexity, the HS entropy should be close 0.
From a less efficient objective design and/or complex instances, it is expected that
large positive average HS entropy values will be observed.

@ Springer

Operations Research Forum (2025) 6:121 Page170f42 121

¢+ =1 y=-17.852x+150.33 ® 100.00%
R?=0.6704 99.00%

® o 98.00%

95 97.00%

r=1-09; '.' e 96.00%
S E— = 95.00%

® . o o 94.00%

e 93.00%

=092l o 92.00%

8.3695 8.369 8.3685 8.368 8.3675 8.367 8.3665 8.366 8.3655

Fig.4 An example of solutions s; in a complete HH process shown with their objective values z; (x-axis)
and percentage similarities &; (y-axis). Two homogeneous solutions are highlighted by red

Sub-Feature ¢34: Convergence Rate (“slope”) The fourth indicator ¢4 is the conver-
gence rate of the entire HH process as reflected by a “slope” of similarity percentage
against objective values. To be specific, all the solutions in an HH process are plotted
in a graph where the x-axis represents the solutions’ objective values and the y-axis
represents their similarity percentage &;. The convergence rate is measured by the
linearly fitted line over all the points. Figure4 gives an example of how the slope is
derived. This sub-feature demonstrates how quickly the similarity is improved through
the iterative solutions of Pyy.

Some other sub-features under ®, can also be illustrated by Fig.4. If we take
é = &7, then the value of ¢ is 100%. The range for ¢p2 is ¥ = 1—0.92 = 0.08. There
are 17 distinct objective values, giving 17 HS lists. Only the HS list with 8.368 has more
than one solutions with different similarity values (96.55% and 93.79%, highlighted
in red). The standard deviation of [0.9655, 0.9379] is 0.0138. Therefore, the average
entropy of all the HH solutions is H = —% x (16 x0+0.0138 x2 x 0.5 %x1n0.5 =
0.00956.

3.3.3 Feature ®3: Number of Different Solutions Obtained During HH Iterations

This feature investigates the capability of a given objective function to differentiate
solution properties during HH iterations. Three sub-features are designed to assess the
number of different solutions found during an entire HH process. The first sub-feature
¢31 is the number of different solutions in terms of objective values. The second sub-
feature ¢35 is the number of different solutions based on structural similarities. The
third one is the average number of HS.

Let us use an example to illustrate HS. Suppose there is a network flow problem
where the nodes are customers who need to be served, with a source and sink node
added as usual. A directed arc between any two customers means they can be served
consecutively. Suppose the optimization target only considers minimizing the number
of workers to serve all customers. For this example, the two solutions shown in Fig. 5
both need four workers, but these customers are served in different sequences, thus are
regarded as two HS. When connection lengths matter, these two HS could be of very
different quality to practitioners. Therefore, apart from the number of workers used,
a well-designed objective function for this problem should be able to differentiate as

@ Springer

121 Page 18 of 42 Operations Research Forum (2025) 6:121

Fig.5 An example of homogeneous solutions

fine-grained as possible the structural properties in the solutions, especially when the
solutions are near-optimal.

Suppose the complete solution space and the optimal solutions are both known.
Figure 6a and b show an example of a solution space in which all feasible solutions
are ranked by (as indicated by the arrows) two alternative objective functions F; (a)
and F; (b), respectively.

The gray area represents the solution sector with the theoretically optimal objective
function value. The other solutions are getting worse along with the arrow direction.
The size of the top-rank solution sector and hence the number of optimal HS of
Fig.6b are smaller than that in Fig. 6a, indicating that the second objective function
can differentiate the structural properties better. To find all HS in the top sector, some
exhaustive (or brute-force) search methods can be used to explore the entire solution
space. However, it is computationally expensive. Usually, a solver will terminate if any
solution in the top sector is found, which means the other HS are abandoned without
further investigation. Moreover, the real optimality condition (e.g., upper bound (ub)
= lower bound (/b) on a branch-and-bound tree) is hard to achieve in practice for large
scale and complex problems. Thus, some less strict stopping criteria are used instead.
For instance, the “relative gap” from the optimum, denoted as &, is often calculated

ub —1b
by § = 7
Because of this, even an “exact” method may return only a sub-optimal solution whose
objective function value is worse than that of the solutions in the top sector. “How
much worse it could be” depends on the value of § (also shown in Fig. 6¢). We would

, where ub and [b are upper bound and lower bound, respectively.

(a) (b) (c)

|:] Gray area represents the solution sector of the optimal objective function value

Fig.6 Ranked solution space

@ Springer

Operations Research Forum (2025) 6:121 Page190f42 121

like to point out that this optimality gap controlled by § commonly set in many exact
solvers actually allows a HH method to find some solutions better than s*, the optimal
solution found by P with a tolerance § taking the entire G as its input.

In each iteration, Pyy rotates to a different region of the entire problem space
based on an essential subset to form a reduced input. Each reduced input corresponds
to a solution subspace. Equivalently, Pgy extracts many subspaces from the complete
solution space. Each solution subspace is searched by P to claim one “(near-) optimal”
solution as the representative in the top-rank solution sector of this subspace. Thus,
Pyy iteratively ranks the representative solutions from different solution subspaces.
For some ineffective objective functions, the representative solutions from different
solution subspaces may have the same objective value, although their structures are
significantly different. This may lead to quick convergence, but the presence of many
HS is not a good sign for objective function effectiveness. In conclusion, for an effective
objective function, it is expected to find many different HH solutions both with the
same or similar objective values and solution structures. Therefore, the feature on the
number of HS for each objective function is included as ¢33.

3.3.4 Feature ®,4: Comparison Between Final Objective Values Produced by P
and PHH

The objective values of the final solutions from Pyy are compared with that from P
for each objective function design. The comparison results have three possible values:

4 = {better(¢41), same(¢42), worse(hs3)}.

The reason why it could be “better” is because of some relaxed stopping criteria
discussed earlier, for example, the “relative gap” introduced in Fig. 6¢ with a tolerance
8 > 0. The comparison results will be converted to a binary array (v41, v42, v43) €
{0, 1}3 in one-hot encoding style. For example, if the result is “better,” the array will
be (1, 0, 0).

Finally, Fig. 7 illustrates the hierarchical structure of solution features.

‘ Goal: effectiveness evaluation for alternative objective function designs

Quantified values Structural Number of Objective function X
e PO " First
of optimization similarities different values of the final |¢-- laver
criteria (1) (v2) solutions (®3) solutions (®4) 'y

G) G () G-

‘ Results: integrated importance weights for every sub-feature ‘

Fig. 7 Hierarchical structure of solution features

@ Springer

121 Page 20 of 42 Operations Research Forum (2025) 6:121

3.4 Evaluation

Each solution feature in @1, . . ., @4 reflects the effectiveness of the objective function
in certain aspects. Therefore, a scheme of integrating all solution features is proposed
to comprehensively benchmark the effectiveness of objective function design. This
scheme consists of the following two steps:

3.4.1 Step 1: Estimate Feature Relative Importance by AHP

Step 1 estimates the relative importance of all the solution features @1, ..., $4 based
on the understanding of real-world problem and algorithm behaviors, where AHP [9]
is applied to ensure consistency and accuracy. This process is a widely used systematic
approach for quantitatively measuring the relative importance among different factors
to support the decision-making for multi-criteria problems. The relative importance
between any two same-layer features is measured on the basis of a 1 to 9 scale, where
1 means they are equally important and 9 means one is extremely more important
compared to the other. For instance, if feature i is w (1 < w < 9) times more
important than feature j, the relative importance of i over j is w;; = w. Conversely,
the relative importance of j over i is wj; = 1/w. Hence, a comparison matrix can
be obtained, written as a square matrix W in Eq. 6, in which w;; = 1/w;. To obtain
the importance weight vector, each element in W is firstly normalized by its column

. . / n
summation to be converted as W"", i.e., wi; = wjj/) i wij.
!/ !/ /
I wp ... wiy w/”w/lz...w}n
W= | w2 I ... wyy wror — | War W2 = Wy, ©)
/ / /
Wyl Wp2 ... 1 W, Wy« e Wy
. . . Z?=1 wl{j nor
The estimated weight vector is calculated by w; = ——— based on W"".

The consistency ratio (C R) refers to the reliability of the mez?sured weights through
the pairwise comparison method. Generally, the measured weights are acceptable if
CR < 10% [45]. The features reflecting the effectiveness of objective function have
two layers, and each feature at the first layer has some sub-features, as explained in
Section 3.3. The global weight of each sub-feature w;; is its local weight multiplied
by the local weight of its parent feature, w;; = w; - w;;.

3.4.2 Step 2: Quantify Integrated Effectiveness
Step 2 quantifies the integrated effectiveness for alternative objective function designs

based on the derived solution sub-features values vi1, v12, ..., v4q corresponding to
o11, $12, . . ., Pag. The magnitudes of solution feature values may differ; thus, they

@ Springer

Operations Research Forum (2025) 6:121 Page210f42 121

are normalized to ensure comparability. Features are categorized into two sets based
on their optimization direction relative to effectiveness:

e Positive features (PF): Features preferred to be minimized (smaller values indicate
better effectiveness) and thus take a positive sign in the objective function in a
minimization problem, e.g., solution entropy.

o Negative features (NF): Features preferred to be maximized (larger values indicate
better effectiveness) and thus take a negative sign in the objective function in a
minimization problem, e.g., structural similarity, solution quality scores.

To unify these directions under a single minimization framework, we apply the equiv-
alence max f = min(— f). Thus,

e P F features contribute directly to the minimization objective.

e NF features are converted via negation to align with minimization: maximizing
NF _ C e e NF

v;j = minimizing —v;:".

The integrated effectiveness My for an objective function F; € F combines both sets

as

M@, v) = Y v+ (=) = Y v — Yy vy (1)

ijePF ijeNF ijePF ijeNF

Minimize directly =~ Maximize via negation

where w;; is the AHP-derived weight for ¢;;. The design F* with minimal M is
optimal:
F* = argmin My (W, v).
FreF

3.5 Scalability Considerations

The proposed methodology relies on solving reduced instances G using exact solver
P within the Py framework. While these reduced instances are significantly smaller
than the original problem G, they remain NP-hard combinatorial optimization prob-
lems. This section addresses key scalability considerations and limitations:

(a) Computational Tractability Boundariesx

e Problem-Specific Complexity: For problems where even small instances exhibit
high complexity, reduced instances may still exceed P’s solving capacity. The
tractability threshold varies by problem class and solver capability.

e Size-Quality Tradeoff : The reduction parameter u controls |G|/|G|. Aggressive
reduction (e.g., u < 0.1) risks excluding optimal components, while conservative
reduction (e.g., u > 0.3) may yield instances too large for practical solution. This
tradeoff requires careful calibration.

@ Springer

121 Page 22 of 42 Operations Research Forum (2025) 6:121

(b) Mitigation Strategies

e Approximate Solving: When P cannot solve G within time limits, replace it with

P'(G) = Heu_ristic method if ¢tp >.tmaX
P(G) otherwise
Effectiveness metrics remain valid if benchmark s* exists, though structural com-
parisons may be less reliable.
e Adaptive Reduction: Dynamically adjust u based on P’s runtime:

G+ _ ,,0) 1D — targer
2 =p xexp| B X ———
Ttarget
where 8 is a sensitivity parameter (8 > 0), and fiarge is the desired solution time.

e Solution Space Pruning: Restrict G using domain-specific rules (e.g., “only con-
nections < 4h” in TUSO) to maintain feasibility while reducing size.

(c) Applicability Conditions The methodology is most effective when

(i) Reduced instances G are solvable by P within #pax
(ii) The problem exhibits component sparsity: Optimal solutions use |[I'*| <« |G|
components
(iii) Key structural properties are retained in G (e.g., validated by sim(§, s*) >
a threshold 8in)

For problems violating these conditions (e.g., dense constraint satisfaction), alternative
evaluation approaches may be needed.

4 Computational Experiments

This section reports the computational experiments for investigating the effectiveness
of alternative objective function designs using the TUSO problem as the studied case.
Before presenting the results, we first briefly introduce the TUSO problem.

4.1 Train Unit Scheduling Optimization

A train unit has a fixed number of passenger carriages, which cannot be split but can be
coupled with other train units to make a longer formation. TUSO assigns a limited num-
ber of train units to cover all the trips in a timetable satisfying a set of constraints such
as fleet size, passenger demand, unit-route compatibility, and turnaround time. The
goal is to obtain a set of unit diagrams (referred to as a unit schedule) with minimized

@ Springer

Operations Research Forum (2025) 6:121 Page230f42 121

operational costs. A unit diagram contains information on serving sequences of trips
and some auxiliary activities, for example, coupling/decoupling operations. TUSO is
modeled as an integer multi-commodity network flow problem based on a directed
acyclic graph (DAG) [2], in which commodities represent different types of train unit.
Nodes represent trips, plus a source and a sink by modeling convention. Arcs rep-
resent potential connections among the nodes that are generated according to some
real-world requirements and constraints. A path on the DAG represents a unit diagram
from the source to the sink. See Appendix A for a detailed integer multicommodity
flow formulation for the TUSO problem. The alternative objective function designs
for the TUSO including different optimization criteria are shown in Table 1.

There are four candidate criteria to be considered: fleet size (f1), arc usage (f>),
total carriage-mileage (f3, mileage for short), and connection compactness (f4). Fleet
size is usually the most important optimization criterion because of expensive leasing
and maintaining costs. Arc usage gives the structural connectivity relations in the dia-
grams (and DAG). Both f] and f> are core criteria that often cannot be dropped in a
reasonably designed objective function. Mileage implies fuel/electricity consumption.
The principle of connection compactness, which is greatly favored by practitioners,
emphasizes two key objectives: first-in-first-out (FIFO) connection sequencing at sta-
tions and minimization of excessively long connection waiting times. Globally, this
favors solutions with evenly distributed connection durations rather than those exhibit-
ing extreme variations. For instance, for any two connection pairs (i, j) and (k, [),
solutions minimizing the range of waiting times:

max(T;j,) — min(t;j, ;)

are preferred, where 7;; denotes the turnaround/idling time between trips i and j.
For example, connecting trip i to j in 7min and trip k£ to / in 9min is preferable to
connectingi to j in Smin and k to/ in 11 min, despite the identical total turnaround time
(16min). This preference for temporal uniformity constitutes the core compactness
criterion. This preference can be generalized to cases with more than two pairs of
connection possibilities. See [46] for generalized descriptions in a wider context of
integer multicommodity flow problems.

Table 1 Objective function candidates in F

Objectives Fleet size (f1) Arc usage (f2) Mileage (f3) Connection compactness
(fa)

F Yes Yes No No

F Yes Yes Yes No

F3 Yes Yes No Yes

Fy Yes Yes Yes Yes

@ Springer

121 Page 24 of 42 Operations Research Forum (2025) 6:121

4.2 AHP Weighting Process
4.2.1 Matrix Development Process

This section addresses the construction and justification of the pairwise comparison
matrices used in our AHP. The pairwise comparison matrices for AHP were popu-
lated based on our experience from structured engagements with practitioners from
TranPennine Express and Greater Anglia (our industry partners) and our algorithmic
performance analysis. We have eventually evaluated the relative importance of features
through:

(i) Operational criticality assessment: Features were ranked according to their direct
impact on day-to-day operations.
(i1) Algorithmic validation: Feature behavior was correlated with convergence pat-
terns observed during the solution of TUSO problem instances.
(iii) Historical schedule analysis: Patterns and structural characteristics (e.g., connec-
tion compactness between consecutive trips) were extracted from high-quality
historical train unit diagrams.

4.2.2 Key Feature Comparison Insights

The final weights presented in Table 2 reflect practitioner-informed priorities derived
from our AHP analysis. The following examples illustrate how operational insights
and algorithmic observations manifested in specific feature comparisons:

o Fleet size dominance: The significant prioritization of fleet size (¢11) at 0.2479—
four times higher than arc usage (¢13) at 0.0620—directly reflects practitioners’

Table 2 Details of solution features

ij Istlayer features 2nd layer features PF/NF ;;

11 @ Unified solution quality score ¢11 Fleet size PF 0.2479
12 ¢12 Mileage 0.1239
13 ¢13 Arc usage 0.0620
14 ¢14 Connection compactness 0.1239
21 @5 Structural similarities ¢»1 Overlapped arc percentage NF 0.1605
22 ¢22 Range 0.0267
23 ¢»3 Entropy 0.0535
24 ¢24 Slope 0.0267
31 &3 Num of different solutions ¢31 In terms of objective function value N F 0.0163
32 ¢32 In terms of schedule structure 0.0306
33 ¢33 Average # of HS PF 0.0862
41 &4 Comparison between P and Py ¢41 Better PF 0.0225
42 ¢4 Same 0.0134
43 ¢43 Worse 0.0068

@ Springer

Operations Research Forum (2025) 6:121 Page250f42 121

operational reality. This substantial weighting difference emerged from quantified
assessments showing each reduced train unit translates to a huge amount of leasing
and maintenance savings, outweighing arc usage despite their technical importance
in solution structure.

e Connection compactness priority: The equal weighting of connection compact-
ness (¢14) and mileage (¢12) at 0.1239 each demonstrates a critical operational
insight. Though not directly monetized, compact connections were prioritized due
to their proven impact on scheduling resilience and overall operational patterns.
This is also a preferred feature proposed by practitioners.

e Structural similarity prioritization: The overlapped arc percentage (¢21) was
assigned a weight six times greater than the range metric (¢22) (0.1605 vs. 0.0267),
reflecting the determination that solution completeness in terms of arc overlapping
provides a more meaningful measure of structural alignment than solution space
coverage.

e Convergence direction priority: The 3.3:1 weighting ratio favoring ¢4; (“better”)
over ¢a3 (“worse”) reflects a fundamental design philosophy. It emphasizes that
a high-quality objective function should actively improve solutions rather than
merely avoid degradation.

These examples demonstrate how specific pairwise comparisons (e.g., @11 Vs @13,
P21 VS ¢22) systematically translated domain expertise into quantifiable priorities.
The complete set of comparisons maintained logical consistency across all hierarchy
levels while accommodating the nuanced trade-offs inherent in real-world scheduling
contexts.

4.2.3 Validation and Consistency

The solution feature details designed for TUSO are listed in Table 2. TUSO is modeled
based on a DAG, and its solution is a sub-graph of the full DAG. The integrated weights
of sub-features (column ;) and how each sub-feature reflects the objective function
effectiveness (column PF/NF) are also given. Using the classical theory of AHP, the
consistency ratio (CR) for the first layer features is CR = 9.5%, and C R values for
the second layer features are 0%, 10%, 0.43%, and 1% respectively. They are in the
acceptable, range indicating the reliability of the estimated weights.

Complete pairwise comparison matrices, associated eigenvectors, and consistency
validation details are provided in Appendix C.

4.3 Experiment Dataset

For a criteria combination I C {1, 2, 3,4}, its objective function is thus Fy =
Yie 1, @i fi- Among the four objectives f1, f2, f3 and f4, to ensure an appropriate
yet not entirely fixed hierarchy, and based on the experience from our numerical anal-
ysis and discussions with practitioners, their corresponding weights oy, ..., os are
designed in the following way in our experiments. Note that strict normalization is not
applied as a result of the above analysis and discussions.

e Fleet size (f1): o1 = 1 reflects its dominant role.

@ Springer

121 Page 26 of 42 Operations Research Forum (2025) 6:121

e Arc usage (f2): @ = 0.001 indicates its secondary but essential contribution.

_ iy —1
e Mileage (f3): @3 = 0.001 x (W) , where m(j) is trip j’s mileage. This

represents the attenuated inverse of average trip mileage.

e Connection compactness (f1): Defined as f1 =) peP > ep 72 (sum of squared
turnaround times for all arcs). Letting Spmax = maxgec T4, We set g = 0.01/Smax-
This formulation, based on Theorem 1 (Appendix A), promotes compact connec-
tions. For instance, for equal sums (e.g., 3+7=10 and 4+6=10), 32 4+72 =58 >
4% + 6% = 52 favors balanced values.

Although Pyy is more suitable for large instances, experiments using small
instances were conducted so that the exact solver P alone was able to yield benchmark
solutions. When the best objective function design has been selected, it can be thus
applied to large-scale instances with more likelihood to give similar results both in
objective values and structures, as if they were given by an exact solver. Thus, three
small real-world datasets D1-D3 shown in Table 3 were used in the experiments.
These datasets are from a UK train operating company Greater Anglia mainly running
in East Anglia and other parts in East England.

! Number of locations

2 Number of locations banned for coupling/decoupling operations

A train unit scheduling system RS-Opt [2] coded in Mosel based on FICO Xpress-
MP 8.5 was used as the exact solver P. For the HH framework, the auxiliary hybrid
heuristic part Py was derived from SLIM [37] coded in C#. RS-Opt and SLIM were
specifically adapted to include the features for the objective function effectiveness
evaluation. For instance, to suit multiple alternative objective function designs, well-
calibrated weights to maintain the discernible importance of different optimization
criteria, connection compactness, and mileage were implemented. The experiments
were conducted on a 64-bit workstation PC with 16 G RAM and an Intel Core i17-6700
CPU. RS-Opt has an independent customized branch-and-price component and only
utilizes the simplex solver of Xpress-MP to solve LP-relaxation in branch-and-bound
and column generation without employing the default integer programming solver
provided by Xpress-MP [2]. One of the stopping criteria of RS-Opt was set as the
“relative gap” explained in Fig. 6¢ such that SLIM may converge to solutions whose
objective function values are better than the benchmark solution claimed by RS-Opt
solely. We set a value of 0.001 for this relative gap to ensure essential quality of the
solutions obtained in the experiments. This value was consistently applied throughout
our computational study. To get diverse HH solutions, SLIM was set to run 10 times,
and each run with a maximum of 3000 reduced RS-Opt iterations. Mixed extraction

Table 3 Datasets information

Dataset No. of trips DAG arc# Unit type Loc#! Banloc#? Unit capacity Fleet size

D1 109 1080 755/3 11 3 153 7
D2 133 1684 755/4 12 4 205 17
D3 137 1514 360/4 12 6 272 20

@ Springer

Operations Research Forum (2025) 6:121 Page27of42 121

strategies were used including only selecting the best solutions so far and selecting
random solutions. A greedy method [37] is employed to construct the initial feasible
solution to start the process to ensure that each candidate objective function has the
same start point.

4.4 Solution Feature Results

For SLIM, running time was not considered as an indicator for the objective func-
tion effectiveness because a random method was used in Extraction() attempting
to obtain iterative solutions as many as possible, which may lead SLIM to stop at
the maximum iteration. However, running time on RS-Opt is important to benchmark
objective function effectiveness because it shows how quickly the alternative objective
function designs guide RS-Opt to find s*. The average running times by RS-Opt over
the three datasets solved by the four objective function designs are given in Fig. 8.
The results show that F3 can quickly guide RS-Opt to find s*, while F, takes almost
4 times of F3’s running time to converge.

4.4.1 Unified Solution Quality Score @,

Under this high level criteria @, four sub-criteria are considered: fleet size ¢11, arc
usage ¢12, mileage ¢13, and connection compactness ¢4, reflected by total slack time
over all used arcs. Connection compactness is modeled by the time length (slack time)
of arcs. At the convergence of both RS-Opt and SLIM for each objective function
candidate, the solution quality scores of all the main optimization criteria are derived
from their final solutions. In the experiments, all of the four alternative objective
function designs Fi, ..., F4 would eventually lead RS-Opt and SLIM to converge to
solutions having the same values in three of the four sub-criteria, ¢1, ¢12 and ¢13, as
shown in Table 4.

The optimization terms corresponding to sub-criteria ¢11 and ¢13 are both included
in all of the four objective designs Fi, ..., F4. Therefore, it is reasonable to have
no difference because they are supposed to be minimized. We, however, notice that
there is no difference in ¢> (mileage) as well no matter whether its corresponding
optimization term is or not included into the objective functions. One reason may be

Time (s)

20 [
0
F1 F2 F3 F4

Fig.8 RS-Opt average running time

@ Springer

121 Page 28 of 42 Operations Research Forum (2025) 6:121

Table 4 Unified solution quality

scores of 11, b1 and 13 at Dataset Fleet size (¢11) Mileage (¢12) Arc usage (¢13)

convergence of Fp, ..., Fy D1 7 6902.6 116
D2 17 13382.1 190
D3 20 13691.2 230

that this optimization criterion is positively correlated to some other (sub-)criteria,
especially ¢13 (arc usage). This phenomenon shows that it is actually possible to
minimize mileage without explicitly including its corresponding objective term f3
and to even achieve the same quality as in an objective including an explicit term
for that. Note although this example contains only four sub-criteria, in many more
complex real-life problems, the number of criteria could be of tens or hundreds. In
these cases, such an ability in optimizing a criteria without explicitly including it in
the objective will be valuable.

Table 5 shows the quantified values of connection compactness (slack time) for
the three datasets. “B/A/W” represents the “best/average/worst” slack time values
in the final solutions from multiple runs of SLIM. “Max gap” shows the maximum
difference between the maximum and minimum values from RS-Opt and SLIM based
on the four alternative objective function designs. The results show that the last sub-
criterion ¢14, which can be realized by minimizing slack time in the objectives, has
significant different values among the solutions from alternative objective function
designs, where the biggest “max gap” for D2 is almost 3000 min. Rather different
from ¢11, ¢12 and ¢13, the last sub-criterion ¢4 (connection compactness) varies
significantly among the solutions converged by different objective functions. This
indicates that, on the contrary to ¢ 1> (mileage), which might be negligible, the inclusion
of the corresponding objective terms of ¢14 is necessary if it is to be optimized. Also,
this means ¢4 is an important indicator for objective function effectiveness.

4.4.2 Structural Similarities @,

Structural similarities feature @, has four sub-criteria: overlapping arc percentage
(¢21), similarity range (¢22), HS entropy (¢23), and slope (¢24). Figure9 gives the

Table 5 Unified solution quality scores on ¢4 slack time (in minutes) at convergence of Fi, ..., Fy

Dataset D1 D2 D3

Solver RS-Opt SLIM (B/A/W) RS-Opt SLIM (B/A/W) RS-Opt SLIM (B/A/W)

F F 2034 2000 8782 7693/8346/8946 9899 9507/9993/10930"
F, 21607 2000 9197 7913/8384/9634T 9597 9872/10015/10501
F3 1813* 1843 7180 7046/7193/7309 8897 8905/9020/9099
Fy 1813* 1813*/1828/1843 7257 6716%/6993/7223 9064 8789*/8993/9133

Gap 347 187/172/157 2017 1197/1391/2411 1002 1083/1022/1831

Max gap 347 2918 2141

Notes: =/ marks the minimum/maximum slack time for each dataset; OFs: objective functions

@ Springer

Operations Research Forum (2025) 6:121 Page290of42 121

100%

96%

92%

88%

84%

80%
OF1 OF2 OF3 OF4

Fig.9 Overlapped arc percentage

results of overlapping arc percentage in the final solutions obtained from all the four
objective designs over the three instances. It can be observed that F3 and F4 outper-
formed F; and F) for all the three tested datasets. Note that both F3 and F; contain
the optimization term on connection compactness (¢4) in their objectives, while F
and F> do not (see Table 1). This provides another strong evidence that “connection
compactness” plays an important role in differentiating structural properties. Consid-
ering Figs.8 and 9 together, F3 always took the shortest time to finish and yielded
to the highest similarity percentage, which was unlikely by coincidence. Moreover,
Fig. 10 gives the results of HS entropy of the runs over the four objective designs and
three instances. It can be observed that the HS entropy values of F3 and Fy tend to
be much smaller than the ones of F| and F> (except in D1 and D, where the simple
instances only gave unique solution-percentage pairs for F; and F» thus giving zero
entropy), meaning that F3 and Fy are better in differentiating HS as reflected in their
HS entropy.

To further have some in-depth look into this phenomenon, Fig. 11 shows the struc-
tural similarities between the iterative solutions and the corresponding benchmark
solutions for three datasets. The figures of F] and F; for D1 are not shown because
SLIM only finds one solution whose structural similarity to the corresponding s* can
be found in Fig. 9. Compared to F and F>, a few aspects endorsing a better objective

HS entropy (normalized)

1.2

0.8
0.6
0.4
|1
5 = N i m

D1-F1 D1-F2 D1-F3 D1-F4 D2-F1 D2-F2 D2-F3 D2-F4 D3-F1 D3-F2 D3-F3 D3-F4

Fig. 10 Results on HS entropy values from runs on different objective designs and instances

@ Springer

121 Page 30 of 42 Operations Research Forum (2025) 6:121

D1-F3 D1-F4
. 100% . 100%
99% 99%
e o o . . o
L 9% ® 97%
. . - . . . ee o
. 96% . + 96%
. . . baiad . oo . 5%
- e o 94% . . 94%
. 93% . 93%
. 9% . 92%
83695 8369 83685 8368 83675 8367 83665 8366 83655 10702 107015 10701 107005 107 106995 10699 106985 10698
D2-F1 D2-F2
8 86:
3 ! 859 . s
829
. 829
819 .
@ 80%
509
. . 99 7%
5 . 6%
7 4%
2116 2104 112 211 2108 2106 2104 294 2938 2036 2034 2932 293 2028 2926
D2-F3 D2-F4
9 . 9
9% 969
93% 93
: .
%0% 9%
. o*
P . 879 J §
' L)
840 o 7] 40
3 . e
. 819 o 819
144 2142 214 2138 2136 2134 21 13 2128 2126 2124 2122 066 2064 2062 296 2958 2056 2054 2052 205 2948 2946 2944
D3 -F1 D3 -F2
86%
; i
84
' 839 . : . . L &
8]
' . g3 i ® H 50%
4 o o8 H H i i : ' Y [A
.
. . 3
" H l.".. . e ni.' 76%
. s ° loo38 ., '@ i 3 I e
o o0 3 ° . o

X axis: the objective function values of iterative solutions; Y axis: the overlapped arc percentage compared to the benchmark

Fig. 11 Structural similarities between the iterative solutions and the corresponding benchmark solution

function effectiveness are observed for F3 and F4: (i) many more iterative solutions
are found; (ii) the solution space is ranked more precisely; (iii) the ranges of structural
similarity are larger, which means the similarities have been largely increased via the
process of objective function value getting better.

4.4.3 The Number of Different Solutions Obtained During the Iterations of Pyy

Table 6 shows the sub-feature values of @3, including the number of solutions in
terms of objective function value (¢31), the number of solutions in terms of structural
similarity (¢3>), and the average number of HS (¢33). F1 and F> can only find very few
solutions in terms of the objective function value through many runs, and even only

@ Springer

Operations Research Forum (2025) 6:121 Page31of42 121

Table 6 Number of iterative solutions

Dataset D1 D2 D3

Sub-features #31 $32 33 31 $32 33 #31 #32 33
Fi 1 1 - 6 58 9.667 40 272 6.8
F 1 1 - 4 44 11 41 269 6.561
F3 26 27 1.039 279 973 3.488 895 1190 1.298
Fy 17 21 1.235 436 918 2.106 814 1069 1.245

one solution found for D1. However, for each objective function value, there are many
more solutions of different structures. This means many different subspaces derived
by SLIM converge to the same objective function value but in different structures, i.e.,
the given objective function leads SLIM to wander over a large “poorly differentiated”
solution space. Consider the results marked in bold in Table 6 as an example.

F> found four distinct objective function values; however, these four objective
function values correspond to 44 different schedule structures.! This phenomenon
confuses SLIM to distinguish better structural properties and converge to a better
solution. In average, each objective function value has 11 HS. If the entire solution
space is searched, this number would be even larger, which means F; does not rank the
solutions well. F and F> can only lead SLIM to find a single solution whose structure
is very different from, but objective function value is identical to the benchmark
solution. This is considered as a bad indicator for objective function effectiveness;
thus, the values of ¢33 for F| and F> are empty. On the other hand, F3 and F4 can
find a lot more different solutions in terms of objective function value and schedule
structure. Besides, the average number of HS for each objective function value is
also much smaller. For D1 solutions found by F3, only one objective function value
has a HS. The others are all unique (one objective function value corresponds to one
detailed schedule), which is desirable. According to the structural comparisons, the
effectiveness of F3 and Fy4 is much superior to F and F>.

4.4.4 Objective Function Values of the Final Solutions

Table 7 gives the results of the objective function values of final solutions from SLIM
compared to that from RS-Opt for each dataset over four alternative objective function
designs. The comparison results of] and F> have three cases: better, same, and worse.

However, F3 and F4 can always lead SLIM to find solutions whose objective func-
tion values are better than their corresponding benchmark solutions. For F3 and Fy,
the solutions with the same objective function value of s* are also found by SLIM,
and their schedule structures are the same to the corresponding benchmark structures.
The feature values for the comparison of objective function values are converted as a
matrix with binary values to calculate the integrated objective function effectiveness,
as shown in the last three columns of Table 8.

1 Note: in Fig. 11 of “D2-F2,” it seems that only “two” objective function values are found. This is because
some values are very close. The “four” values are 29.2749, 29.2750, 29.3749, and 29.3750, respectively.
The same reason applies to other countable values in Fig. 11, which looks like not consistent with Table 6.

@ Springer

121 Page 32 of 42 Operations Research Forum (2025) 6:121

Table 7 Final objective function

value comparisons of three i P £ F4

datasets D1 Same Same Better Better
D2 Better Better Better Better
D3 Worse Worse Better Better

4.5 Integrated Effectiveness

Through the analysis of solution features, generally F3 and F4 have better effectiveness
than F) and F>. This section evaluates the integrated effectiveness for alternative
objective function designs by employing the method proposed in Section 3.4. To
compute the integrated effectiveness according to Eq 7, the weights and normalized
values of all the features are needed, in which weights can be found in Table 2.

To obtain comparable sub-feature values v;;, a quantified value of each sub-feature is
normalized by the largest value across the four candidate objective functions, as shown
in Table 8. The first three columns are the normalized values of fleet size, mileage, and
arc usage. Referring back to Table 4, their quantified values across the four candidate
objective functions are the same. Thus, they equally reflect the effectiveness of each
candidate, i.e., the effectiveness is mainly determined by the other features. The last
three columns are the matrix converted from the comparisons of the objective function
values of the final solutions from SLIM and RS-Opt, in which each element is binary.
For instance, the matrix for D1 means that F; and F; guided SLIM to converge at a
solution with the same objective function value of benchmark solution, F3 and F4 con-
verged to a solution with a better objective function values than the benchmark solution.

Table 9 eventually demonstrates the results of integrated effectiveness. It shows that
the effectiveness of F3 and Fy has consistently received higher overall score than F

Table 8 Normalized values of sub-features

Data F w1 vi2 vi3 vi4 v V22 V23 V24 V31 V32 U33 V4] V42 V43

D1 Fr 1 1 1 942 905 0 0 0 039 .037 8 0 1 0
o1 1 1 1 931 0 0 0 0385 .037 .8 0 1 0
F 1 1 1 84 1 1 178 1 1 1 841 1 0 0
Fq 1 1 1 84 1 1 1 868 654 778 1 1 0 0
D2 F; 1 1 1 955 808 277 .763 O 0138 .06 .879 1 0 0
o1 1 1 1 801 435 1 0 009 .045 1 1 0 0
F3 1 1 1 81 1 1 420 1 .64 1 0317 1 0 0
Fy 1 1 1 789 99 949 290 .0236 1 943 191 1 0 0
D3 Fp o1 1 1 905 847 478 1 483 .0447 229 1 0 0 1
o1 1 1 1 831 426 994 622 046 226 965 O 0 1
F3 1 1 1 848 1 1 123 1 1 1 91 1 0 0
Fy 1 1 1 863 991 98 102 928 909 .898 .183 1 0 0

@ Springer

Operations Research Forum (2025) 6:121 Page33o0f42 121

Table 9 Integrated effectiveness (bold: best values; italic: worst values)

Fi(f1. 2) F2(f1, 12, 13) F3(f1, f2, fa) Fy(f1. 12, 13, fa)

Dl 0.4608 0.4638 0.3174 0.3031
D2 0.4254 0.4262 0.2579 0.2780
D3 0.4024 04118 0.2653 0.2762
Average 0.4295 0.4339 0.2802 0.2858
Final ranking F3 > F4 > F| > F»

and F>, which well reflects the analysis of the quantified values of solution features.
The effectiveness of F3 is slightly better than F4, and similar phenomena is observed
between F and F5. This indicates that “mileage” (f3) does not significantly contribute
to the objective function effectiveness and may even have some negative influence.

On the other hand, there is great evidence showing that “connection compactness”
(f1) plays a key role in helping SLIM differentiate better structural properties to the
solutions and further boosts objective function effectiveness. Moreover, these three
datasets have consistent effectiveness rankings for the four alternative objective func-
tion designs tested, which is F3 > F4 > F; > F,. This is also consistent with the
effectiveness ranked by the average running times of RS-Opt shown in Fig. 8. Accord-
ing to the feedback from the practitioners, F3 is the most effective objective function
using only three main optimization criteria to deliver solutions that are considered as
good quality even when they consider some other hidden criteria to judge. And the
solutions found by F3 and Fj are significantly better than that found by F| and F> in
practice. This feedback endorses that the proposed methodology can effectively and
systematically establish confidence in alternative objective function designs. Through
this investigation and discussions with the practitioners, it is concluded that consid-
ering fleet size, arc usage, and connection compactness in the objective function is
the most effective combination of main optimization criteria. Through the comparison
between the alternative objective function designs containing different optimization
criteria combinations, we eventually identify that the inclusion of mileage will slightly
reduce objective function effectiveness, while connection compactness significantly
increases objective function effectiveness.

4.6 Connection to Objective Function Landscapes

The concept of an objective function landscape provides a powerful theoretical lens for
interpreting our methodology’s effectiveness evaluation. In combinatorial optimiza-
tion, the objective function defines a multidimensional landscape where solutions
correspond to spatial coordinates and their objective values represent elevation [47].
Characterized by features like peaks, valleys, plateaus, and basins of attraction (regions
where local search dynamics converge to particular optima), this landscape struc-
ture profoundly influences algorithmic behavior and solution quality [48, 49]. Our
methodology connects to this concept through key relationships bridging empirical
observations with landscape theory.

@ Springer

121 Page 34 of 42 Operations Research Forum (2025) 6:121

4.6.1 Landscape Transformation via Weighted-Sum Scalarization

Weighted-sum objectives Fi =), 1, @i fi fundamentally reshape optimization land-
scapes through three primary mechanisms. First, poorly designed objectives create
extensive plateaus—flat regions where structurally distinct solutions share identical
objective values: e.g., manifested as high homogeneous solution entropy (Eq. 4). This
phenomenon explains the “poorly differentiated solution space” we observed with
F1/F, in TUSO. Conversely, effective weight combinations create landscapes with
strong gradients that steer search toward desirable regions, as seen when including
connection compactness (f1) in F3/F4. Each weight combination {¢;} also represents
a scalarization of the underlying multi-objective landscape, where our benchmarking
reveals which projections best preserve structural preferences.

4.6.2 Landscape Navigation by Hybrid Heuristics

The Pppy algorithm’s trajectory through solution space is governed by landscape
topography. During backbone extraction (I'), the method may operate within basins
of attraction. Effective objectives create basins retaining structural properties of
s*, measured by overlapped arc percentage (¢21). Wheel rotation enables escape
from flat regions, with high-differentiation landscapes permitting discovery of struc-
turally distinct solutions (¢31, ¢32). The convergence slope (¢24) quantifies descent

efficiency—directly determined by landscape gradient strength and ruggedness.

4.6.3 Landscape-Aware Effectiveness Metrics

Our feature design implicitly characterizes fundamental properties of objective func-
tion landscapes through a few principal metrics that serve as proxies for critical
topological features. For instance, structural similarity measures the degree of basin
alignment between the heuristic’s trajectory and the benchmark optimum’s basin of
attraction. This metric quantifies the congruence between the solution space region
explored by the heuristic and the basin containing the benchmark solution, where
higher values indicate that the hybrid heuristic consistently navigates within the same
topological neighborhood as the benchmark. Homogeneous solution entropy quantifies
the extent of solution space plateaus by measuring the information-theoretic diversity
of solutions sharing identical objective values. This metric captures the landscape’s
neutrality—the degree to which structurally distinct solutions are indistinguishable
under the objective function. High entropy values signal extensive flat regions where
the objective function fails to provide directional gradients, resulting in search stag-
nation and reduced solution differentiation capability.

4.6.4 Pareto Frontier Heterogeneity and Objective Design
In multi-objective optimization, the Pareto frontier represents solution sets where no

objective improves without worsening another [10]. Our framework could reveal cer-
tain frontier heterogeneity: near boundary points such as the region that extremely

@ Springer

Operations Research Forum (2025) 6:121 Page350f42 121

prefers fleet size, landscapes may exhibit steeper gradients but narrower basins, favor-
ing sparse designs like F3. In transitional zones, comprehensive designs like Fy
mitigate plateaus through finer differentiation. Structural clustering enables ¢»; to
identify optimal /; combinations for preserving region-specific features, suggesting
adaptive objective functions that dynamically adjust composition during optimization.

This landscape perspective strengthens our foundation by explaining performance
differences (e.g., F3’s advantage through favorable gradients), linking metrics to land-
scape analysis techniques, and providing predictive frameworks for new criteria.

While these connections establish valuable conceptual grounding, detailed theo-
retical analysis remains beyond our current scope. We defer rigorous investigation to
future work. This connection positions our methodology at the intersection of empirical
evaluation and landscape theory—offering both academics and practitioners action-
able insights with theoretical guarantees.

5 Conclusion and Future Work

For complex real-world scheduling problems that are virtually all NP-hard and each
has numerous possible structural properties, it is not easy to establish confidence in
the effectiveness of objective function designs. Research on this topic is scarce in the
literature. There is a lot of research studying real-world multi-criteria optimization
and automatic methods for algorithm parameter control, seen in the literature review
in Section 2. However, they mostly address the issue of promoting performance of
algorithms to deliver better quality solutions or shorten computational time. In this
research, a methodology evaluating objective function effectiveness through compar-
isons between solutions obtained from an exact ILP solver and an auxiliary hybrid
heuristic is presented, where different combinations of main optimization criteria are
considered. A set of solution features reflecting objective function effectiveness is
designed, where the key metrics in measuring effectiveness are derived from struc-
tural comparisons between heuristic solutions and the exact solution. A hierarchical
scheme of integrating all features together is devised to quantify the objective function
effectiveness. The experiments carried out with TUSO instances strongly support this
methodology. The experiments have shown that the main optimization criteria com-
bination in the objective function can be optimized, i.e., it is not necessary to include
all these criteria in the objective function to obtain a “good” solution. The review and
feedback from the practitioners also endorse this methodology.

While our methodology demonstrates good performance on the TUSO problem,
we acknowledge fundamental scalability constraints inherent to NP-hard combina-
torial optimization. The core limitation stems from the fact that reduced instances
G, though significantly smaller than the original problem G, remain instances of the
same NP-hard class. For problems where even modestly sized instances are compu-
tationally challenging (e.g., high-dimensional vehicle routing or protein folding), the
requirement for repeated exact solving of G within Py may become impractical.

This limitation manifests primarily in two scenarios: First, for problems exhibiting
dense solution spaces where optimal components cannot be isolated through reduction
(i.e., |T*| & |G|), the necessary size of G may approach that of G. Second, constraint-

@ Springer

121 Page 36 of 42 Operations Research Forum (2025) 6:121

dense problems often require large G to maintain feasibility, potentially exceeding
solver capacity. In such cases, the hybrid heuristic may fail to generate meaningful
solution trajectories.

To extend the methodology’s applicability, we propose two adaptive strategies: (1)
replacing the exact solver P with approximation algorithms when solving G exceeds
time thresholds, and (2) implementing dynamic reduction control that adjusts u based
on real-time solver performance.

In ongoing work, we are going to investigate methods to improve the auxiliary
heuristics to perform better in deriving reduced inputs. Another direction is how to
evaluate the objective function effectiveness if no practical exact method solver is
available. We may consider a dynamic benchmark that can be updated once a better
solution is found until no improvement can be achieved. Finally, we will conduct
algorithmic design and experiments regarding the above-mentioned scalability issues.

Appendix A. Proof of Method for Encouraging Arc Compactness

Theorem1 Let x = (xy,...,x,) andy = (y1, ..., Yn) be vectors in R" such that
Yol xi =Y iy yi = S.Ifyisobtained fromx through a finite sequence of disparity-
reducing operations, then) ;_, yi2 <>, xiz.

Proof 1t suffices to prove that a single disparity-reducing operation strictly decreases
the sum of squares. Consider a disparity-reducing operation applied to components x;
and x; where x; > x;. Lett € (0, %] and define

xi=xi—t, x;=x;+t,

J

while x; = x for all k # i, j. The change in the sum of squares is

A = [(xi — 1)2 + (x; + t)2] — [xlz +xj2-]

= [xl-z—int—i—tz—l—x]z-—i—ijt—i—tz] —x,-z—sz

=217 4 2(x; — x;).
Let§ = x; — x; > 0. Substituting x; — x; = —4 yields
A =2t —§).
Since 0 <1 <§/2,wehavetr — 8§ < —§/2 < 0. Ast > 0, it follows that
2t(t —8) < 0.

Thus, A < 0, meaning the sum of squares strictly decreases. Since y is obtained by
finitely many such operations, 7, y? < 3", x?.]

@ Springer

Operations Research Forum (2025) 6:121 Page37o0f42 121

Appendix B. Integer Multicommodity Flow Formulation for the Train
Unit Scheduling Optimization Problem

The TUSO problem is formulated as an integer multi-commodity flow problem based
on a directed acyclic graph G = (N, A). The commodities are train unit types denoted
by k € K. NV = N U {s, t} represents the nodes where s, ¢ are the source and sink
with a number of b* train units to be routed from s to ¢ for each type k € K. N is
the set of trip nodes j each with a passenger demand r; and a coupling upper bound
uj. A = AU Ay is the arc set where A = {(i, j) : i, j € N} contains turnaround
connection arcs and Ag = {(s, j) : j € N}U{(j,t) : j € N} contains sign-on/-off
arcs. A path is defined restrictively as an s-f path from the source to the sink, which
contains a potential plan of daily work for a train unit. Let P* be the set of paths
associated with type k (i.e., the paths can be used to route unit type k) and x, be
the flow amount in p € P¥. An integer multi-commodity flow model based on path
variables can be formulated as

min Z Z CpXp (B1)

keK pePk
5. t. Z xp < by, Vke K; (B2)
pePk
> > axp=rj. VYjeN: (B3
keK; [?EP]I-{
SN wexp <uy. VjeN; (B4
kekj pepy
Coupled units for j are compatible, VjeN; (B5)
No coupling/decoupling at banned locations for j, VjeN; (B6)
Xp € Ly, VpePk,VkeK.
(B7)

In Objective Eq.B1, ¢, is the cost of one unit of flow on path p. This cost is a
weighted sum of four optimization criteria:

cp= oa1-1 Hax-|platoaz-d,+ a4-Zr§
acp
—_————
Connection compactness

Fleet size weight Arc usage Mileage

where

o Fleet size (f1): Represented by o per path. Total fleetis 3, >~ xp.

e Arcusage (f>):|p|a =number of arcs in path p. Total arc usageis), Zp xplpla.

e Mileage (f3): d, = distance (mileage) of path p (sum of trip distances + empty
movement distances).

@ Springer

121 Page 38 of 42 Operations Research Forum (2025) 6:121

e Connection compactness (f4): 7, = turnaround time on connection arc a. Total
squared turnaround time is) 4 >, Xp D 4c) 2. See Section 4.1 and Appendix A
for a justification of this technique.

Constraints Eq. B2 require the number of units used to be no more than the fleet
limit by for each type k. Constraints Eq.B3 ask the capacity provision (gx being
the unit capacity in number of seats of type k) for each trip to be no less than the
passenger demand r;. Constraints Eq. B4 limit the number of coupled cars at j to
be no more the an upper bound u ;, where vy is the number of cars in unit type k.
Constraints Eqs.B5 and B6 are additional requirements on unit type compatibility
and banning coupling/decoupling operations at certain locations. They are satisfied
by customized branching strategies rather than explicit linear constraints [2]. Finally,
Constraints Eq. B7 give the variable domain.

Appendix C. AHP Calculation Matrices

C.1 First-Level Criteria Matrix

Table 10 First-level pairwise

comparison matrix (CR = 0.095) 1 3 ®2 4 Eigenvector
[oF] 1 5 3 9 0.558
D3 1/5 1 1/3 5 0.133
[o3) 173 3 1 7 0.268
Dy 1/9 1/5 177 1 0.042
Consistency Validation
Amax = 4.255
4255 — 4
Cl = — = 0.085
0.085
CR=——=0.095 <0.1
0.90

C.2s-Level Matrices
C.2.1 Target Value (@) Sub-Criteria
Justification Practitioners prioritized fleet size due to leasing costs, while connection

compactness and mileage were equally weighted for operational stability. See Table 11
for details.

@ Springer

Operations Research Forum (2025) 6:121 Page39o0f42 121
Table 11 Target value -
sub-criteria matrix (CR = 0.00) ol o2 13 14 Eigenvector

b1 1 2 4 2 0.444

é12 12 1 2 1 0.222

?13 1/4 172 1 172 0.111

b14 172 1 2 1 0.222
C.2.2. Structural Similarities (d5) Sub-Criteria
Table 12 Structural similarities R

E t

sub-criteria matrix (CR = 0.10) 21 92 923 924 rgenvector

@21 1 6 3 6 0.524

[05%) 1/6 1 172 1 0.199

®23 1/3 2 1 2 0.093

b4 1/6 1 172 1 0.093

Justification Overlapped arc percentage deemed most critical for solution complete-
ness, while entropy received higher weight than range/slope for its correlation with
diversity-based solution quality evaluations. See Table 12 for details.

C.2.3 Solutions (P3) Sub-Criteria

Table 13 Solutions sub-criteria

matrix (CR = 0.043) 931 #33 Eigenvector
. 1 1/5 0.125
P 2 13 0222
o33 5 1 0.651

Justification Overlapped arc percentage deemed most critical for solution complete-
ness, while entropy received higher weight than range/slope for its correlation with
diversity-based solution quality evaluations. See Table 13 for details.

C.2.4 Convergence () Sub-Criteria

Justification : “Better” outcomes prioritized for solution quality improvement, with

“same” rated higher than “worse” for stability. See Table 14 for details.

@ Springer

121 Page 40 of 42 Operations Research Forum (2025) 6:121

Table 14 Convergence

sub-criteria matrix (CR = 0.01) P41 P42 43 Priority
ba1 1 2 3 0.545
%) 172 1 2 0.286
Pa3 1/3 12 1 0.168

C.3 Global Weight Calculation Example

For ¢ (Fleet Size):

Local weight = 0.444
Parent weight = 0.558
Global weight = 0.444 x 0.558 = 0.2479

All CR values were maintained to be not larger than 0.1, confirming judgment
consistency throughout the hierarchy.

Acknowledgements This research is supported by an Engineering and Physical Sciences Research Council
(EPSRC) project EP/M007243/1. Zhiyuan Lin is partly supported by an EPSRC Impact Acceleration
Accounts grant (No. 127410). We would like to also thank train operating companies First TransPennine
Express and Abellio (UK).

Author Contributions Lei Li (LL) and Raymond Kwan (RK) conceived of the presented idea and developed
the theory and methodologies. Zhiyuan Lin (ZL) conceived part of the finalized idea and contributed to the
development of the theory, methodologies, and mathematical rigorousness. LL and ZL conducted the coding
and performed the analytic calculations, numerical experiments, and validations. RK and ZL conducted the
supervision work. All authors contributed to the writing and revision of the manuscript.

Funding This research is supported by an Engineering and Physical Sciences Research Council (EPSRC)
project EP/M007243/1. Zhiyuan Lin is partly supported by an EPSRC Impact Acceleration Accounts (IAA)
grant (No. 127410).

Data Availability Part of data involved in the research is commercially sensitive. Where possible, the data
that can be made publicly available is deposited in http://archive.researchdata.leeds.ac.uk/.

Code Availability Not applicable due to confidentiality reasons.

Declarations

Conflict of Interest The authors declare no competing interests.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer

http://archive.researchdata.leeds.ac.uk/
http://creativecommons.org/licenses/by/4.0/

Operations Research Forum (2025) 6:121 Page41o0f42 121

References

14.
15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. Lin Z, Kwan RSK (2014) A two-phase approach for real-world train unit scheduling. Public Transp

6(1):35-65

. Lin Z, Kwan RSK (2016) A branch-and-price approach for solving the train unit scheduling problem.

Transp Res Part B: Methodol 94:97-120

. LinZ, Kwan RS (2016) Local convex hulls for a special class of integer multicommodity flow problems.

Comput Optim Appl 64(3):881-919

. Lin Z, Barrena E, Kwan RSK (2017) Train unit scheduling guided by historic capacity provisions and

passenger count surveys. Public Trans 9(1-2):137-154

. Lei L, Kwan R, Lin Z, Copado-Mendez PJ (2018) Resolution of station level constraints in train unit

scheduling. In: 14th International conference on advanced systems in public transport and transitdata.
Brisbane, Australia

. Luo Y, Lin Z, Liu R (2025) Train unit scheduling optimization considering unit ordering.

arxiv:2506.16329

. Blum C, Puchinger J, Raidl G, Roli A (2011) Hybrid metaheuristics in combinatorial optimization: a

survey. Appl Soft Comput 11:4135-4151

. Blum C, Pinacho P, Lépez-Ibéfiez M, Lozano JA (2016) Construct, merge, solve & adapt a new general

algorithm for combinatorial optimization. Comput Oper Res 68:75-88

. Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83-98

. Ehrgott M (2005) Multicriteria optimization. Springer, vol 491

. Cohon JL (2004) Multiobjective programming and planning. Courier Corporation, vol 140

. Haimes Y (1971) On a bicriterion formulation of the problems of integrated system identification and

system optimization. IEEE Trans Syst Man Cybern 1(3):296-297

. Marler RT, Arora JS (2010) The weighted sum method for multi-objective optimization: new insights.

Struct Multidisc Optim 41(6):853-862

Pareto V (1912) Manuel d’économie politique. Bull Amer Math Soc 18(462-474):3

Li M, Yang S, Liu X (2014) Diversity comparison of pareto front approximations in many-objective
optimization. IEEE Trans Cybern 44(12):2568-2584

Ghoseiri K, Szidarovszky F, Asgharpour MJ (2004) A multi-objective train scheduling model and
solution. Transp Res Part B: Methodol 38(10):927-952

. Yang X, Ning B, Li X, Tang T (2014) A two-objective timetable optimization model in subway systems.

IEEE Trans Intell Transp Syst 15(5):1913-1921

Chow AH, Pavlides A (2018) Cost functions and multi-objective timetabling of mixed train services.
Transp Res Part A: Pol Pract 113:335-356

Montero E, Riff M-C, Rojas-Morales N (2018) Tuners review: how crucial are set-up values to find
effective parameter values? Eng Appl Artif Intell 76:108-118

Hutter F, Hoos HH, Leyton-Brown K, Stiitzle T (2009) ParamILS: an automatic algorithm configuration
framework. J Artif Intell Res 36:267-306

Eiben AE, Smit SK (2011) Parameter tuning for configuring and analyzing evolutionary algorithms.
Swarm Evol Comput 1(1):19-31

Adenso-Diaz B, Laguna M (2006) Fine-tuning of algorithms using fractional experimental designs
and local search. Oper Res 54(1):99-114

Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm
configuration. In: International conference on learning and intelligent optimization. Springer, pp 507—
523

Birattari M, Stiitzle T, Paquete L, Varrentrapp K (2002) A racing algorithm for configuring metaheuris-
tics. In: Proceedings of the 4th annual conference on genetic and evolutionary computation. Morgan
Kaufmann Publishers Inc, pp 11-18

Balaprakash P, Birattari M, Stiitzle T (2007) Improvement strategies for the f-race algorithm: sampling
design and iterative refinement. In: International workshop on hybrid metaheuristics. Springer, pp
108-122

Hutter F, Hoos HH, Stiitzle T (2007) Automatic algorithm configuration based on local search. In:
AAAI vol 7, pp 1152-1157

Blot A, Hoos HH, Jourdan L, Kessaci-Marmion M—E, Trautmann H (2016) MO-ParamILS: a multi-
objective automatic algorithm configuration framework. In: International conference on learning and
intelligent optimization. Springer, pp 3247

@ Springer

http://arxiv.org/abs/2506.16329

121

Page 42 of 42 Operations Research Forum (2025) 6:121

28.

29.

30.

31.
32.
33.
34.
35.

36.
37.

38.

39.

40.

41.

42.

43.

44.
45.

46.

47.
48.

49.

Azaiez MN, Al Sharif SS (2005) A 0—1 goal programming model for nurse scheduling. Comput Oper
Res 32(3):491-507

Mihaylov M, Smet P, Van Den Noortgate W, Vanden Berghe G (2016) Facilitating the transition from
manual to automated nurse rostering. Health Syst 5(2):120-131

Tsuji Y, Kuroda M, Kitagawa Y, Imoto Y (2012) Ant colony optimization approach for solving rolling
stock planning for passenger trains. In: 2012 IEEE/SICE international symposium on system integration
(SI). IEEE, pp 716-721

Fioole P-J, Kroon L, Mar6ti G, Schrijver A (2006) A rolling stock circulation model for combining
and splitting of passenger trains. Euro J Oper Res 174(2):1281-1297

Talbi E-G (2002) A taxonomy of hybrid metaheuristics. J Heuristics 8:541-564

Christian Blum GR (2016) Hybrid metaheuristics: powerful tools for optimization. Springer

Kwan R, Kwan A (2007) Effective search space control for large and/or complex driver scheduling
problems. Ann Oper Res 155:417-435

Kwan R (2004) Bus and train driver scheduling. Handbook of scheduling: algorithms, models, and
performance analysis, pp 51-1

Kwan R (2011) Case studies of successful train crew scheduling optimisation. J Schedul 14:423-434
Copado-Mendez P, Lin Z, Kwan R (2017) Size limited iterative method (SLIM) for train unit schedul-
ing. In: Proceedings of the 12th metaheuristics international conference. Barcelona, Spain
Nepomuceno N, Pinheiro P, Coelho ALV (2008) In: Cotta C, Hemert J (eds) A hybrid optimization
framework for cutting and packing problems. Springer, Berlin, Heidelberg, pp 87-99

Akbay MA, Blum C (2021) Application of CMSA to the minimum positive influence dominating set
problem 339:17-26

Blum C, Ochoa G (2020) A comparative analysis of two matheuristics by means of merged local
optima networks. Euro J Oper Res 290

Ferrer J, Chicano F, Ortega-Toro J (2021) CMSA algorithm for solving the prioritized pairwise test
data generation problem in software product lines. J Heuristics 27:1-21

Blum C, Blesa MJ (2018) A comprehensive comparison of metaheuristics for the repetition-free longest
common subsequence problem. J Heuristics 24:551-579

Dupin N, Talbi E-G (2021) Matheuristics to optimize refueling and maintenance planning of nuclear
power plants. J Heuristics 27:63-105

Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379-423
Saaty TL, Vargas LG (2012) Models, methods, concepts & applications of the analytic hierarchy
process. Springer, vol 175

Lin Z, Kwan RSK (2020) Avoiding unnecessary demerging and remerging of multi-commodity integer
flows. Networks 76(2):206-231

Stadler PF (2002) Fitness landscapes. Biol Evol Stat Phys 183-204

Malan KM, Engelbrecht AP (2013) A survey of techniques for characterising fitness landscapes and
some possible ways forward. Inf Sci 241:148-163

Reidys CM, Stadler PF (1997) Combinatorial landscapes. Santa Fe Institute

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	An Auxiliary Hybrid Heuristic Approach for Objective Function Design Evaluation—Using Train Unit Scheduling as an Example
	Abstract
	1 Introduction
	1.1 Research Motivation
	1.2 Methodology and Contributions
	1.3 Organization of the Paper

	2 Literature Review
	2.1 Multi-Criteria Optimization
	2.2 Parameter Tuning and Control
	2.3 Hybrid Heuristics Combining Exact Solver with Reduced Instances

	3 Methodology for Evaluating Objective Effectiveness
	3.1 Alternative Objective Function Designs
	3.2 HH Framework
	3.3 Solution Features
	3.3.1 Feature Φ1: Unified Solution Quality Score
	3.3.2 Feature Φ2: Structural Similarities
	3.3.3 Feature Φ3: Number of Different Solutions Obtained During HH Iterations
	3.3.4 Feature Φ4: Comparison Between Final Objective Values Produced by P and PHH

	3.4 Evaluation
	3.4.1 Step 1: Estimate Feature Relative Importance by AHP
	3.4.2 Step 2: Quantify Integrated Effectiveness

	3.5 Scalability Considerations

	4 Computational Experiments
	4.1 Train Unit Scheduling Optimization
	4.2 AHP Weighting Process
	4.2.1 Matrix Development Process
	4.2.2 Key Feature Comparison Insights
	4.2.3 Validation and Consistency

	4.3 Experiment Dataset
	4.4 Solution Feature Results
	4.4.1 Unified Solution Quality Score Φ1
	4.4.2 Structural Similarities Φ2
	4.4.3 The Number of Different Solutions Obtained During the Iterations of PHH
	4.4.4 Objective Function Values of the Final Solutions

	4.5 Integrated Effectiveness
	4.6 Connection to Objective Function Landscapes
	4.6.1 Landscape Transformation via Weighted-Sum Scalarization
	4.6.2 Landscape Navigation by Hybrid Heuristics
	4.6.3 Landscape-Aware Effectiveness Metrics
	4.6.4 Pareto Frontier Heterogeneity and Objective Design

	5 Conclusion and Future Work
	Appendix A. Proof of Method for Encouraging Arc Compactness
	Appendix B. Integer Multicommodity Flow Formulation for the Train Unit Scheduling Optimization Problem
	Appendix C. AHP Calculation Matrices
	C.1 First-Level Criteria Matrix
	C.2s-Level Matrices
	C.2.1 Target Value (Φ1) Sub-Criteria
	C.2.2. Structural Similarities (Φ2) Sub-Criteria
	C.2.3 Solutions (Φ3) Sub-Criteria
	C.2.4 Convergence (Φ4) Sub-Criteria

	C.3 Global Weight Calculation Example

	Acknowledgements
	References

