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Abstract

Code-switching (CS) is the process of speakers

interchanging between two or more languages

which in the modern world becomes increas-

ingly common. In order to better describe CS

speech the Matrix Language Frame (MLF) the-

ory introduces the concept of a Matrix Lan-

guage, which is the language that provides the

grammatical structure for a CS utterance. In

this work the MLF theory was used to develop

systems for Matrix Language Identity (MLID)

determination. The MLID of English/Mandarin

and English/Spanish CS text and speech was

compared to acoustic language identity (LID),

which is a typical way to identify a language in

monolingual utterances. MLID predictors from

audio show higher correlation with the textual

principles than LID in all cases while also out-

performing LID in an MLID recognition task

based on F1 macro (60%) and correlation score

(0.38). This novel approach has identified that

non-English languages (Mandarin and Spanish)

are preferred over the English language as the

ML contrary to the monolingual choice of LID.

1 Introduction

Code-switching (CS) is the process of speakers

switching between two or more languages in spo-

ken or written language (Table 1). Spoken CS

data is scarce, and thus models for processing CS

speech often yield poor performance in comparison

to monolingual models. Given that in many coun-

tries CS is widespread (e.g. India, South Africa,

Nigeria) (Diwan et al., 2021; Ncoko et al., 2000;

Rufai Omar, 1983), it is essential to develop sys-

tems for understanding and modelling CS speech.

One of the critical tasks in analyzing code-switched

speech is determining the matrix language (ML), or

the dominant language, which serves as the struc-

tural framework for the utterance. Accurate identi-

fication of ML is essential for various applications

as well as sociolinguistic studies.

Table 1: An example of a CS utterance transcription

from the SEAME dataset of colloquial Singaporean

language.

毕业过后urh你的study life跟你的working

life有什么difference吗

The linguistic Matrix Language Frame (MLF)

theory (Myers-Scotton, 1997) provides a model

for CS production and introduces the concept of a

main, i.e. dominant language and a secondary, in-

serted language in CS utterances. These languages

are ML and Embedded Language (EL), respec-

tively. The MLF theory introduces two methods

for ML determination:

1. The Morpheme Order Principle - ML will

provide the surface morpheme order for a CS

utterance if it consists of singly occurring EL

lexemes and any number of ML morphemes

2. The System Morpheme Principle - all system

morphemes which have grammatical relations

external to their head constituent will come

from ML

The morphemes as units within the MLF frame-

work were first introduced by Myers-Scotton in

1997 (Myers-Scotton, 1997) and were split into

content and system morphemes. Some common

examples of system morphemes are quantifiers,

possessives and tense/aspect determiners, while

content morphemes include nouns, pronouns, ad-

jectives, verbs and prepositions.

Matrix language identity (MLID) is the iden-

tity of the language providing the grammatical

frame for the utterance and it can be defined for

both monolingual and CS utterances. Moreover,

the existence of ML implies a certain token distri-

bution following the System Morpheme Principle

(Myers-Scotton, 2002) which is highlighted in fur-

ther Myers-Scotton works in the 4-M model. Over-

all, MLID provides insight into the grammatical
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properties of the utterance and a computational im-

plementation of an MLID would be able to reduce

the amount of manual annotation.

In this paper three MLID systems for CS text

and audio were implemented. MLF theory for-

mulates The Morpheme Order Principle and the

System Morpheme Principle, which were imple-

mented into three systems for MLID determina-

tion from text (P1.1, P1.2 and P2) and from au-

dio (𝑀𝐿𝐼𝐷𝑃1.1, 𝑀𝐿𝐼𝐷𝑃1.2 and 𝑀𝐿𝐼𝐷𝑃2). An

extensive correlation analysis and comparison of

an MLID determination system and a traditional

acoustic language identities (LID) were carried out.

Recognised MLID and LID from CS texts and au-

dio were compared to ground truth ML annotation

and the quality of ML recognition was measured

in terms of F1 macro and Matthew’s Correlation

Coefficient (MCC). To conclude the findings, the

distributions of textual LIDs were compared to the

textual MLID distributions of the CS data.

The remainder of the paper is structured as fol-

lows. The next section reviews the relevant re-

search presented previously on MLF and LID in

CS text and speech. The third section provides

a detailed description of the methods used. This

is followed by a section on experiments, which

provides information on datasets, detailed imple-

mentation, experiment descriptions as well as a

discussion of results. Conclusions summarise and

complete the paper.

2 Related work

MLF theory has rarely been used to automatically

analyse speech or text. Up until now it was only

used for text augmentation (Bhat et al., 2016; Yil-

maz et al., 2018; Lee et al., 2019) or for Language

Model (LM) adaptation for code-switching. For

example additional grammatical information was

used during LM construction (Adel et al., 2015;

Soto and Hirschberg, 2019) or a self-supervised

training procedure was set up which encouraged

generation of CS utterances (Chang et al., 2019).

MLID classification for CS text was carried out in

Bullock et al. (2018) where the ML was identified

based on the token and system POS majorities.

Simultaneously in the speech processing domain

a common technique to separate languages in CS

is LID. LID of a whole CS utterance may be per-

formed when CS is regarded as a separate language

(Mary N J et al., 2020), in this case the component

performs both LID and CS detection. A multi-

lingual ASR system with an utterance-wise LID

component as an auxiliary task was tested for CS

utterances in Toshniwal et al. (2018) but the model

was not able to generate CS text as a result. LID

and language segmentation (LIS) systems make

decisions based on similarity to the data they were

trained on (Muralikrishna et al., 2021) and, to the

best of our knowledge, no study was done to de-

termine if pretrained LID/LIS are able to predict a

dominant language in a CS utterance.

Neither MLID nor LID were previously used for

CS analysis. Furthermore, ML determination prin-

ciples were never fully implemented and compared.

However, statistical methods were introduced be-

fore (Guzmán et al., 2017) which can assess the

nature of CS. Among the statistical methods only

the M-index (Multilingual Index) quantifies the

representation of the languages in multilingual cor-

pora. While the M-index is useful to learn about

the balance of the token LIDs, it might be insuffi-

cient to learn about the utterance LID and MLID

distributions.

The above indicates that theoretical methods to

identify ML from text exist but previously there

was only one attempt to determine MLID which

was not based on the two ML determination prin-

ciples. Furthermore, there are no existing MLID

predictors from audio to the best of our knowl-

edge. Therefore the objective of this study is to

advance technologies for multilingual understand-

ing and analysis by describing the implementation,

comparison and performance of automatic MLID

predictors from CS audio and text based on the ML

determination principles from the MLF theory.

3 Principles for ML determination

The MLF theory principles mentioned above have

to be implemented in order to compare the main lan-

guage recognised by an LID system to the MLID.

Each of them provides estimates for MLID but is

conditioned by different evidence in the utterance.

The Morpheme Order Principle is separated into

two implementations of the 1st Principle (P1.1 and

P1.2). The implementations of the principle deduc-

tion as per MLF theory are described below.

3.1 Principle 1.1: The singleton principle

The ML provides the context for singly occurring

words from the EL, which will be further referred

to as "singleton insertions". Although the original

principle operates on the level of lexemes, the cur-
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Figure 1: Detection error tradeoff (DET) curve for possible log 𝛼 values. Thin diamond is the default value of

log 𝛼 = 0, thick diamond - result of log 𝛼 estimation, red star - ground truth log 𝛼.

rent implementation operates on the level of words.

Suppose there is a CS utterance y of length 𝑛, then

(y′, l′) = ((𝜀, 𝑙𝜀), (𝑦1, 𝑙1), .., (𝑦𝑛, 𝑙𝑛), (𝜀, 𝑙𝜀)) are

morphemes with corresponding language ID la-

bels, 𝜀 is an empty morpheme and 𝑙𝜀 is an empty

language morpheme tag from an empty language

𝐿𝜀 . If ((𝑦𝑖 , 𝑙𝑖), .., (𝑦 𝑗 , 𝑙 𝑗)) constitute a word where

0 < 𝑖 < 𝑗 < 𝑛 + 1, ∀𝑘 that 𝑖 < 𝑘 < 𝑗 | 𝑙𝑘 = 𝐿2

and 𝑙𝑖−1, 𝑙 𝑗+1 ∈ 𝐿1, 𝐿𝜀 then the language of the

context 𝐿1 is the ML while 𝐿2 is the embedded

language. For example in “哦你 post在你的那个

blog“ Mandarin will be ML since it is a context for

English singleton insertions.

3.2 Principle 1.2: The token order principle

Figure 2: Pipeline of the morpheme order-based princi-

ple for ML determination P1.2.

In P1.2 the second part of the Morpheme Order

Principle is implemented which postulates that the

morpheme order is determined by the ML. For ex-

ample, in “你觉得我们speak clear enough吗“ the

English translation of the auxiliary Mandarin verb

吗will never appear at the end of an utterance in

English, signifying that Mandarin is ML in this

utterance. Assume languages (𝐿1, 𝐿2) ⊂ 𝐿 are

present in a bilingual utterance where 𝐿 are all lan-

guages, then the original CS utterance y can be

translated into two monolingual utterances ŷ𝐿1
and

ŷ𝐿2
. ŷ𝐿1

and ŷ𝐿2
are obtained from the original ut-

terance y by a Neural Machine Translation (NMT)

systems 𝑔𝐿1
and 𝑔𝐿2

. Consider an LM 𝑃(𝐿 |y)

which is used to provide a probability of the utter-

ance belonging to a language 𝐿, then given the two

languages 𝐿1 and 𝐿2 classification leads to:

𝑃(y|𝐿1)𝑃(𝐿1)

𝑃(y)
⋚

𝑃(y|𝐿2)𝑃(𝐿2)

𝑃(y)
(1)

In the above the denominator may be eliminated.

The probability 𝑃(y|𝐿) may be estimated using in-

dependent monolingual LMs 𝑃𝐿 (y) and translation

ŷ𝐿 defined above 𝑃(y|𝐿) ≈ 𝑃𝐿 (ŷ𝐿) resulting in

following:

𝑃𝐿1
(ŷ𝐿1

)

𝑃𝐿2
(ŷ𝐿2

)
⋚ 𝛼 (2)

Where 𝛼 is the scaling factor for weighing the

impact of the models. Taking the log 2 leads to:

log 𝑃𝐿1
(ŷ𝐿1

) − log 𝑃𝐿2
(ŷ𝐿2

) ⋚ log 𝛼 (3)

Assume the difference of language log-

probabilities can be expressed in terms of a factor

𝛼. This factor may be estimated by calculating the

expectation of log-probabilities using utterances

scored by monolingual LMs:

log 𝛼 = E{log 𝑃𝐿1
(y𝐿1

)} − E{log 𝑃𝐿2
(y𝐿2

)} (4)

All of the above leads to the following decision

function:
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Table 2: Monolingual dataset splits used for LM training in P1.2.

Unit
Callhome

English

Callhome

Mandarin

Callhome

Spanish

Token set size tokens 6160 6853 3236

Train 20029 15827 19672

Valid utterances 6030 3959 5500

Test 2609 1775 2665

ML =

{

𝐿1, log 𝑃𝐿1
(ŷ𝐿1

) − log 𝑃𝐿2
(ŷ𝐿2

) ≥ log 𝛼

𝐿2, otherwise

(5)

A visual representation of the resulting algorithm

is shown in Figure 2.

3.3 Principle 2: The system word principle

From the examples in Section 1 it is evident

that there exists an overlap of content/system

morphemes duality with the traditional con-

tent/function words opposition defined in linguis-

tics, although they are not equivalent and the tra-

ditional classifications also not strictly distinguish-

able. Therefore in the implementation of the 2

Principle (P2) for ML determination instead of

content/system morpheme duality (Myers-Scotton,

2002) a content/function Part of Speech (POS) du-

ality is considered.

System POS are identified, namely determiners,

auxiliaries, subordinating conjunctions and coor-

dinating conjunctions, while the rest of POS are

considered as content POS. ML is determined in a

CS utterance if one of the participating languages

provided function POS for the utterance and the

other language did not. The language that pro-

vided the function POS is determined as the ML.

Although CS POS taggers exist (Feng et al., 2022;

Bansal et al., 2022) none of them are available in

open-source and since training a POS tagger is not

a goal of this work a monolingual POS tagger is

used instead. For example in the utterance “im

okay with the蛋黄“ determiner “the“ is used and

therefore ML is determined as English.

4 Experiments

4.1 Datasets

The experiments using the algorithms described

above are carried out using monolingual Call-

home subsets and 2 CS datasets: SEAME (Lyu

et al., 2010) and Miami subcorpus from the Miami-

Bangor corpus1.

4.1.1 Monolingual data

Monolingual LM training for P1.2 was carried out

using Callhome datasets for English2, Mandarin3

and Spanish4. Pretrained LMs were not used in

this work because they do not provide likelihood

scoring of morpheme units. The summary of the

datasets is presented in Table 2.

4.1.2 CS data

CS spoken language corpora SEAME (120 hours)

and Miami (35 hours) are used for analysis and

acoustic MLID training. Agreement analysis is car-

ried out for CS utterances from the SEAME and

Miami corpora and monolingual SEAME and Mi-

ami utterances are used for estimating the scaling

factor 𝛼 (Table 4). The monolingual subsets of

SEAME and Miami are also used for training the

mapping from the LID outputs to English, Man-

darin and Spanish posteriors (𝐿𝐼𝐷𝑚𝑎𝑝). Mandarin

characters in the SEAME corpus are word seg-

mented which is helpful when applying P1.1, a

principle that operates with words. All the intro-

duced principles require morpheme-level LID tag

annotation which is available for Miami and is au-

tomatically determined for SEAME based on the

script (latin vs logographic). Finally, additional

MLID-annotated 91 CS Miami utterances were

used to measure the quality of MLID prediction

from text and audio. The annotated MLID labels

were assigned to the CS utterance transcriptions on

the basis of determiner-noun-adjective complexes

(Parafita Couto and Gullberg, 2017).

1https://biling.talkbank.org/access/Bangor/Miami.html
2LDC97T14
3LDC96T16
4LDC96T17
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Table 3: Examples of applying the principles.

Utterance baseline ML P1.1 ML P1.2 ML P2

i thought all trains都是via jurongeast去到pasirris en en en en

but他蛮zai的right en zh en en

but我的parents都没有sponsor我 zh zh zh en

还有chicken noodles en en en zh

Table 4: CS dataset splits.

Units SEAME Miami

Monolingual 53086 38401

CS raw utterances 56951 2425

CS annotated - 91

4.2 Applying ML Principles to utterance

transcriptions

P1.1 ML only applies to utterance transcriptions

with singleton insertions, therefore resulting in a

small data coverage: only for 36% (SEAME) and

60% (Miami) of the CS data the ML is determined.

In P2 POS tags are computed for constituent mono-

lingual islands (segments) of a CS utterance using

a pretrained CNN-based POS tagger (Svenstrup

et al., 2017). P2 covered 31% (SEAME) and 58%

(Miami) of all of the CS examples. Furthermore,

a baseline MLID determiner from text is imple-

mented which is based on the token LID count

following Bullock et al. (2018). Examples of run-

ning the resulting principles implementations is

presented in the Table 3.

The implementation of P1.2 includes three com-

ponents: a Machine Translation (MT) system, a

pseudomorpheme tokeniser and a language model

(LM). CS utterances are translated word by word

using Wiktionary5 to preserve the token order. The

English and Spanish LMs are trained on the to-

kenised English and Spanish Callhome datasets.

The tokenisation was carried out using a stemmer

where stem and affix would be separated. For the

Mandarin Callhome dataset separate characters are

regarded as morphemes. The two Transformer-

based (Vaswani et al., 2017) LMs with 2 lay-

ers, 2 attention heads per layer are trained for 25

epochs with negative log-likelihood loss on one

3080 Nvidia GPU for 1 hour. Validation and test

perplexities for the three languages are presented

in Table 5.

5https://www.wiktionary.org/

Table 5: Perplexities calculated for the validation and

test subsets of monolingual Callhome data.

English Mandarin Spanish

Valid 48.97 94.98 57.76

Test 57.61 98.16 52.30

Moreover, a preliminary experiment is carried

out to evaluate if the trained LMs have the ability

to detect the original word order (WO) among its

permuted variants (up to 20 word permutations).

The sequence of tokens for which the probability

was the highest was chosen as the predicted original

WO. Comparing the sequence with chosen WO to

the original WO leads to 37% accuracy for SEAME

and 60% for Miami.

Table 7: Outcomes of 𝛼 estimation. "-𝛼 MCC" is the

correlation measured between the MLID determined by

the unscaled P1.2 approach and MLID labels from other

principles (+ true MLID labels for Miami). "+𝛼 MCC"

are the correlation measurements with the scaled P1.2.

SEAME Miami

P1.1 P2 P1.1 P2 true

-𝛼 MCC 0.31 0.33 0.36 0.08 0.41

+𝛼 MCC 0.36 0.31 0.38 0.09 0.37

Outputs of the pre-trained monolingual LMs

have different probability distributions, therefore,

as described in Section 3, the factor 𝛼 is used to

allow for scale changes. 𝛼 is derived from expecta-

tions of the probabilities yielded on monolingual

examples and their translations following Equation

4. As a result of 𝛼 estimation the MCC of SEAME

P1.1/P1.2, Miami P1.1/P1.2 and Miami P2/P1.2

has increased (Table 7). Additionally, a "true" 𝛼

value is calculated using ground truth MLID for

Miami and P1.1 and P2 MLID for SEAME, and

they are compared to the estimated 𝛼. DET plots

and highlighted thresholds in Figure 1 demonstrate

that by using the estimated 𝛼 the amount of False

Positives (FP) and False Negatives (FN) becomes

more balanced for SEAME. For Miami the 𝛼 es-

timation does not lead to more balanced FP and
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Table 6: Experimental results for SEAME. First three columns and last three rows (P1.1, P1.2 and P2) refer to

the ML determination principles from text. "Coverage" row presents the percentage of all CS examples being

processed. "% English" row displays the percentage of utterances recognised as "English" LID or MLID. MCC

Baseline refers to the word LID majority implementation (Bullock et al., 2018). "𝐿𝐼𝐷" is a pretrained LID system,

"𝐿𝐼𝐷𝑚𝑎𝑝" column is a mapping trained on monolingual utterances from SEAME. 𝑀𝐿𝐼𝐷𝑃1.1, 𝑀𝐿𝐼𝐷𝑃1.2 and

𝑀𝐿𝐼𝐷𝑃2 are trained mappings similar to 𝐿𝐼𝐷𝑚𝑎𝑝 but trained on CS data and labels generated from transcriptions

by corresponding principles. 𝑀𝐿𝐼𝐷𝑃1.1, 𝑀𝐿𝐼𝐷𝑃1.2 and 𝑀𝐿𝐼𝐷𝑃2 contain correlation values with the target MLID

determined from text (italic) and correlations with other MLID targets.

P1.1 P1.2 P2 𝐿𝐼𝐷 𝐿𝐼𝐷𝑚𝑎𝑝 𝑀𝐿𝐼𝐷𝑃1.1 𝑀𝐿𝐼𝐷𝑃1.2 𝑀𝐿𝐼𝐷𝑃2

Coverage 36% 100% 31% 100% 100% 100% 100% 100%

% English 24% 46% 49% 18% 43% 42% 44% 45%

MCC Baseline 0.99 0.28 0.69 0.33 0.33 0.5 0.38 0.46

MCC P1.1 1 0.36 0.83 0.41 0.5 0.67 0.47 0.52

MCC P1.2 0.36 1 0.31 0.09 0.14 0.17 0.3 0.16

MCC P2 0.83 0.31 1 0.33 0.45 0.49 0.4 0.6

FN but this improvement is not observed due to

the limited test set and other reasons which will be

discussed later (Section 4.5.2).

4.3 Language Identification

If one assumes that is a "dominant" language that

most acoustically resembles the spoken CS utter-

ance, then a conventional LID system can be used

as an ML determiner. An ECAPA-TDNN (Desplan-

ques et al., 2020) model pretrained on Voxlingua-

107 (Valk and Alumäe, 2020) was used to automati-

cally detect the dominant language from audio data

(Table 6 and 8, column 𝐿𝐼𝐷). The ECAPA-TDNN

model was trained to recognise a large number of

languages. In order to limit the models to binary

task a mapping function was trained from the out-

puts based on a fully-connected neural network

(Multi-Layer Perceptron, MLP) classifier. The

mapping function is trained to map 107 language

output posteriors to the binary output of the lan-

guages participating in CS. LID is a challenging

task for accented data such as monolingual subsets

from SEAME and Miami but still achieves 82%

and 79% F1-macro respectively on cross-validation

among 5 splits.

4.4 ML identification from audio

One can train an MLP mapping model using the

LID posterior distribution to also predict P1.1, P1.2

and P2 from audio. Due to the different coverage

rates of P1.1, P1.2 and P2 of the CS data the amount

of training data would vary greatly: 16582 for P1.1,

43068 for P1.2 and 23868 for P2. The resulting

systems will be further referred to as 𝑀𝐿𝐼𝐷𝑃1.1,

𝑀𝐿𝐼𝐷𝑃1.2 and 𝑀𝐿𝐼𝐷𝑃2.

4.5 Correlation analysis

The agreement between the implemented princi-

ples is measured using the MCC metric since the

MLID generated by the principles are not human

annotation and are automatically generated. F1-

macro is computed only in cases when the human-

annotated Miami subset is compared to the MLID

approaches.

4.5.1 Correlation between P1.1, P1.2 and P2

Table 9: Correlation values for SEAME with unlabelled

sentences given a third "unknown MLID P1.1", "un-

known MLID P1.2" and "unknown MLID P2" class la-

bels for the three principle implementations accordingly.

This approach ensures 100% coverage of all utterances

sacrificing the MCC.

P1.1 P1.2 P2

MCC P1.1 1 0.03 0.09

MCC P1.2 0.03 1 0.1

MCC P2 0.09 0.1 1

P1.1, P1.2 and P2 were applied to CS text data and

the agreement analysis is presented in Table 6 and

Table 8 for SEAME and Miami respectively in the

first three columns. P1.1 and P2 have to meet cer-

tain conditions to be applied, therefore they do not

have full coverage of CS data: 36% and 31% for

SEAME, 60% and 58% for Miami. Measuring the

correlations only for the utterances for which the

MLID is determined is performed to measure the

agreement of the implementations of the linguistic
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Table 8: Experimental results for Miami. "𝐿𝐼𝐷𝑚𝑎𝑝" column is a mapping trained on monolingual utterances from

Miami. "F1-macro true" and "MCC true" are the metric values when comparing the outputs of the systems to ground

truth ML annotation for Miami.

P1.1 P1.2 P2 𝐿𝐼𝐷 𝐿𝐼𝐷𝑚𝑎𝑝 𝑀𝐿𝐼𝐷𝑃1.1 𝑀𝐿𝐼𝐷𝑃1.2 𝑀𝐿𝐼𝐷𝑃2

Coverage 60% 100% 58% 100% 100% 100% 100% 100%

% English 45% 31% 31% 43% 30% 31% 42% 31%

F1-macro true 100% 67% 93% 56% 53% 56% 60% 56%

MCC true 1.0 0.37 0.86 0.27 0.35 0.27 0.24 0.38

MCC Baseline 0.99 0.28 0.67 0.59 0.81 0.83 0.42 0.8

MCC P1.1 1 0.38 0.81 0.45 0.42 0.85 0.43 0.82

MCC P1.2 0.38 1 0.09 0.26 0.34 0.35 0.53 0.34

MCC P2 0.81 0.09 1 0.7 0.86 0.87 0.51 0.82

principles. Higher correlation indicates that the

principles in agreement may be used to generate

ground truth MLID labels for downstream tasks.

Calculating MCC with unknown labels leads to ex-

tremely low correlation due to a large portion of

unknown labels which makes it impossible to as-

sess the slight changes in correlation of the labeled

data (Tables 9 and 10).

Among the three principles P1.1 and P2 have the

greatest correlation (0.82 for SEAME and 0.81 for

Miami), P1.1/P1.2 demonstrates less correlation

(0.36 and 0.38), while the least correlation is ob-

served between P1.2 and P2 (0.31 and 0.09). P1.1

and the baseline have almost identical behavior

which is expected (0.99 and 1.0), whereas less cor-

relation is observed of the baseline with P2 (0.69

and 0.67) and P1.2 (0.28 and 0.28).

Table 10: Correlation values for Miami with unlabelled

sentences given the "unknown ML" class.

P1.1 P1.2 P2

F1-macro true 55% 67% 48%

MCC true 0.44 0.37 0.56

MCC P1.1 1 0.1 0.25

MCC P1.2 0.1 1 0.16

MCC P2 0.25 0.16 1

The high correlation values for P1.1 and P2

prove that the MLF framework can reliably pre-

dict the structure and behavior of CS text. This

enables to use the MLIDs generated by the rule-

based principles as pseudo-labels in applications.

4.5.2 Correlation of P1.1/P1.2/P2 and the

acoustic LID/MLID

The ML determined from CS text is compared to

the LID computed from the corresponding audio.

The procedure for the LID experiments is described

in the previous subsection. Columns 4 and 5 in

Tables 6 and 8 show the amount of correlation be-

tween MLID derived from text and the recognised

LID classes. The same columns for Miami in Table

8 also include F1 macro and MCC for an annotated

MLID subset. Training 𝐿𝐼𝐷𝑚𝑎𝑝 on the monolin-

gual utterances seems to increase the MCC (from

0.27 to 0.35) but decrease the F1 macro (56% from

53%) for the CS Miami data.

Suppose a conventional LID system determines

the dominant language in a CS audio based on the

majority of time the language is spoken. Then the

true annotation may be approximated by counting

the textual token LIDs in a CS utterance (Baseline).

However, correlation analysis shows that 𝑀𝐿𝐼𝐷

systems are better predictors of the token LID ma-

jority (columns 4-5 vs 6-8 row MCC Baseline in

Tables 6 and 8).

Further experimentation comprises of compar-

ing 𝑀𝐿𝐼𝐷𝑃1.1, 𝑀𝐿𝐼𝐷𝑃1.2 and 𝑀𝐿𝐼𝐷𝑃2 with

P1.1, P1.2 and P2. Upon observing the results for

SEAME data 𝑀𝐿𝐼𝐷𝑃1.2 leads to overall highest

value out-of-domain MCC scores (0.47+0.4=0.87)

for textual principles P1.1 and P2. A similar in-

spection of the Miami results shows the biggest

MCC scores for 𝑀𝐿𝐼𝐷𝑃1.1 (0.35+0.87). For the

annotated subset of Miami data 𝑀𝐿𝐼𝐷𝑃1.2 leads

to the biggest F1 macro among all systems (60%),

while 𝑀𝐿𝐼𝐷𝑃2 leads to the biggest MCC score

(0.38).
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Table 11: Distributions of languages in CS corpora. Utterance level LID for monolingual subsets is in the "Utterance

LID" row, token level LID for CS is in the "Token LID" row and utterance level textual ML for CS are in rows

P1.1/P1.2/P2.

SEAME Miami

English Mandarin English Spanish

Utterance LID (mono) 54% 46% 68% 32%

Token LID (CS) 42% 58% 66% 34%

P1.1 (CS) 23% 77% 45% 55%

P1.2 (CS) 44% 56% 31% 69%

P2 (CS) 49% 51% 31% 69%

Figure 3: Correlations between acoustic 𝐿𝐼𝐷 and

𝑀𝐿𝐼𝐷 outputs and textual P1.1, P1.2 and P2 for CS

SEAME data. Each bar segment represents the amount

of correlation for a LID or MLID model with textual

principles, therefore the whole bar represents the sum

of the correlations.

Figure 4: Correlations between acoustic 𝐿𝐼𝐷 and

𝑀𝐿𝐼𝐷 outputs and textual P1.1, P1.2 and P2 for CS

Miami data.

Lastly, the MCC scores between the textual and

acoustic MLID determiners are summed up for

every 𝐿𝐼𝐷/𝑀𝐿𝐼𝐷 approach (Figures 3 and 4). Re-

sults show that the correlation of the proposed ap-

proaches with the MLID is higher than in 𝐿𝐼𝐷

systems in all occasions apart from 𝑀𝐿𝐼𝐷𝑃1.2 for

CS Miami data. The latter is due to the word order

of the English and Spanish languages being similar

in contrast to English/Mandarin CS. This leads to

the morpheme order having a better discrimination

power in the case of English/Mandarin CS than in

English/Spanish CS.

4.5.3 P1.1/P1.2/P2 distribution analysis

At the last step of analysis the distributions of

languages are measured on utterance level LID

for monolingual (Utterance LID row in Table 11),

token level LID for CS (Token LID row in Ta-

ble 11) and utterance level textual MLID for CS

(P1.1/P1.2/P2 rows in Table 11). The numbers re-

veal that although the majority of the monolingual

utterances are English in both corpora (54% for

SEAME and 68% for Miami), it is not the pre-

ferred ML when CS occurs in the utterance for all

principles. The token LID distribution also does

not seem to be correlated with the choice of the

ML in these corpora. In SEAME there seems to

be a strong preference towards using Mandarin as

an ML (77%) when EL insertions are single words

(P1.1). The preference is not as strong for Span-

ish in the CS Miami subset (55%) but it is still a

big difference in comparison to the monolingual

distributions (32%). P1.2 and P2 show a similar

distribution of MLIDs with the numbers indicating

the preference of speakers to use the non-English

language as the grammatical frame for a CS utter-

ance.

5 Conclusion

To the best of our knowledge this is the first work

that precisely carries out the Matrix Language (ML)

determination of a code-switched (CS) utterance

based on the Matrix Language Frame (MLF) the-

ory and that compares Matrix Language Identity

(MLID) to acoustic Language Identity (LID). Three

methods for ML determination in text and audio

are implemented using the ideas and the concepts

of the MLF theory (Myers-Scotton, 1997). An ex-

tensive correlation analysis of the MLID systems

from text and speech is carried out. A pretrained

LID system 𝐿𝐼𝐷 is adapted to the data by train-

ing a mapping function 𝐿𝐼𝐷𝑚𝑎𝑝, while also map-

ping functions 𝑀𝐿𝐼𝐷𝑃1.1, 𝑀𝐿𝐼𝐷𝑃1.2, 𝑀𝐿𝐼𝐷𝑃2

for MLID are trained. 𝑀𝐿𝐼𝐷 consistently outper-

forms 𝐿𝐼𝐷 for ML determination from audio based
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on Matthew’s Correlation Coefficient (MCC). Com-

paring the results to the ground truth ML annotation

shows that the trained 𝑀𝐿𝐼𝐷𝑃1.2 and 𝑀𝐿𝐼𝐷𝑃2

outperform 𝐿𝐼𝐷 in terms of F1-macro and MCC

respectively. Finally, this approach reveals that

despite English dominating as the utterance LID

for the monolingual utterances, non-English (Man-

darin or Spanish) languages set the grammatical

frame for CS utterances.

The proposed approaches can be used for ac-

curate automatic analysis of CS text and audio.

It can provide insight into the nature of CS for

whole datasets but also separate speakers and even

utterances. Further work will explore the useful-

ness of the MLID implementations in Natural Lan-

guage Processing and Automatic Speech Recogni-

tion (ASR) applications, namely in language and

dialogue modelling and also in end-to-end multi-

task ASR the MLID component will be used as a

part of the ASR setup. Additionally, further devel-

opment of P2 is required where the system mor-

phemes would be automatically determined from a

given set of CS data rather than using a closed set

of POS tags.

Limitations

The main limitation of the method is related to data

availability: there is limited ML-annotated CS data

openly available to date. Therefore it is problem-

atic to assess the quality of ML classification. ML

identity can be determined in CS data using the

P1.1 but the principle can only be applied in case

of singleton EL insertions. Since there is no ML

annotation, correlation was measured for most of

the experiments which is difficult to assess. Fi-

nally, although providing valuable insight into the

CS data, the usefulness of the method is yet to be

tested in NLP and ASR applications.
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