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Abstract

Speech emotion recognition is a challenging classification task

with natural emotional speech, especially when the distribution

of emotion types is imbalanced in the training and test data.

In this case, it is more difficult for a model to learn to sep-

arate minority classes, resulting in those sometimes being ig-

nored or frequently misclassified. Previous work has utilised

class weighted loss for training, but problems remain as it some-

times causes over-fitting for minor classes or under-fitting for

major classes. This paper presents the system developed by a

multi-site team for the participation in the Odyssey 2024 Emo-

tion Recognition Challenge Track-1. The challenge data has the

aforementioned properties and therefore the presented systems

aimed to tackle these issues, by introducing focal loss in opti-

misation when applying class weighted loss. Specifically, the

focal loss is further weighted by prior-based class weights. Ex-

perimental results show that combining these two approaches

brings better overall performance, by sacrificing performance

on major classes. The system further employs a majority vot-

ing strategy to combine the outputs of an ensemble of 7 models.

The models are trained independently, using different acoustic

features and loss functions - with the aim to have different prop-

erties for different data. Hence these models show different per-

formance preferences on major classes and minor classes. The

ensemble system output obtained the best performance in the

challenge, ranking top-1 among 68 submissions. It also outper-

formed all single models in our set. On the Odyssey 2024 Emo-

tion Recognition Challenge Task-1 data the system obtained a

Macro-F1 score of 35.69% and an accuracy of 37.32%.

1. Introduction

It is commonly assumed that for progress in conversational AI

systems it is essential to enable computers to understand emo-

tions from human speech signals. Speech emotion recognition

(SER) is gaining increasing attention due to its wide range of

potential application, especially in the context of the recent ad-

vancement of large language models [1]. SER has been a re-

search focus for a long time, however it is still a complex task

⋆The work does not relate to Huy Phan’s position at Amazon.

Figure 1: The architecture of each model in the ensemble sys-

tem. ‘MLP’ denotes multi-layer perceptron.

because of the multitude of factors that affect the task, includ-

ing context information, speaking environments, the personal-

ity and the speaking style of speakers, language, cultural aspect,

commonsense knowledge etc. [2, 3].

Typically there are two types of SER task due to the anno-

tation style used in emotion labelled datasets, namely classifi-

cation and regression [3]. In SER classification tasks, speech

segments are typically annotated with labels from a small set

(4–8) of emotion classes. The task is to predict the correct (sin-

gle) emotion class representing the complete speech segment.

Many datasets [4, 5, 6] have been created for SER. Most of

them [6] are created by recording actors portraying the required

emotion in their speech. Other type of dataset [4] have been cre-

ated by prompting speakers to express specific emotions. There

are a few datasets [5], usually referred to as natural datasets,
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that are directly collected from sources containing spontaneous

speech with natural emotional expressions. Previous work [7, 8]

has shown that the performance of SER models on these three

types of datasets differs significantly. SER classification tasks

on natural datasets are still challenging, for many reasons [9].

One of the many challenges of SER classification on nat-

ural datasets is the imbalanced class distributions. Discrimina-

tive machine learning methods typically also choose decision

boundaries on the basis of the prevalence of a class. Classes

with low occurrence will not only get a poor representation, but

also end up being considered of less relevance. Thus the train-

ing of machine learning models is difficult for minor classes.

Models can be easily trained on major classes but can tend to

ignore minor classes. One simple solution is to re-balance (re-

weight) the loss of a class by class frequencies. Many other

solutions have been proposed to solve this problem, such as

data augmentation [10, 11], new sampling strategies [12], and

the use of a modified loss function [13]. However, all of the

above methods are likely to cause over-fitting problems on mi-

nor classes, thus sacrificing performance on major classes. This

issue is particularly pertinent here, as the SER system is de-

signed for participation in the Odyssey 2024 Emotion Recog-

nition Challenge Track-1, which has class imbalanced training

data, but a class balanced test set.

We have therefore developed a system that makes use of an

ensemble system of 7 models. Each model takes in multi-modal

features, from both audio and text. In order to obtain text rep-

resentations an automatic speech recognition (ASR) model [14]

is used to generate transcriptions from speech segments. To en-

hance the quality of the ASR transcriptions, an error correction

model is used in post-processing

In the ensemble system all models share the same architec-

ture. They are trained independently with different audio fea-

tures or different optimisation configurations. The loss function

chosen is either the focal loss [15] or the cross entropy loss,

weighted by prior-based class weights or uniform class weights.

The prior-based class weights are used to give more prefer-

ence to minor classes than major classes during training. How-

ever, this strategy was found to cause over-fitting for minor

classes, and thus a reduction in overall performance. In order

to alleviate this issue, the use of focal loss [15] was included,

which aims to give higher weights to more difficult samples and

lower weights to easier samples.

The model trained with the focal loss together with the

prior-based class weights obtained the best overall performance.

However, this model performs more poor on major classes than

the models trained with uniform class weights. To reach better

overall performance the ensemble system is designed to com-

prise of models with different preferences on major classes and

minor classes. Experimental results show that the ensemble

system reaches the state-of-the-art performance in the Odyssey

2024 Emotion Recognition Challenge track-1 [16]. The system

obtained a Macro-F1 of 35.69%, and has ranked the first among

68 submissions.

2. Related Works

2.1. Fusion Techniques for SER

Over the past decade, research on fusion techniques for SER

has made significant progress. Alongside traditional feature-

level fusion (i.e., early fusion) and decision-level fusion (i.e.,

late fusion), there has been widespread exploration of sophis-

ticated tensor-level fusion methods. For instance, [17] com-

bined both modality-invariant and modality-specific features

and applied various regularisation functions to reduce the dis-

tance between the modalities. [18] proposed a weighted fu-

sion method based on a cross-attention module for encoding

inter-modality relations and selectively capturing effective in-

formation. [19] developed a dual-branch model, with one time-

synchronous branch that combined speech and text modalities,

and a time-asynchronous branch integrating sentence text em-

beddings from context utterances. [20] fused ASR hidden states

and ASR transcriptions with audio features in a hierarchical

manner.

2.2. ASR Error Correction

As outlined above, the system makes use of ASR for transcript

generation, using an off-the-shelf system. To enhance ASR per-

formance ASR Error Correction (AEC) methods can be help-

ful, by post-processing using some knowledge about the task or

target domain. The standard method for addressing language

domain mismatch is to train an in-domain language model for

direct integration with ASR systems. [21, 22]. However, an

alternative is to use AEC sequence to sequence models that cor-

rect the output. This is particularly useful in scenarios where the

ASR is a black box [23]. More recently, there has been interest

in employing generative error correction using large language

models [24]. Furthermore, some studies have explored using

both speech and ASR hypotheses as input, instead of relying

solely on text data, leading to the development of cross-modal

AEC methods [24].

3. System Description

As mentioned above, the system yielding the best performance

makes use of an ensemble of models. Each model takes as input

in frame-level audio features as well as token-level text features.

The output of each model are the probabilities for each emo-

tion class. In the majority voting, the prediction of each model

is equally used for voting to emotion classes. The most voted

emotion class is going to be the final prediction of the ensemble

system.

To extract text features, this work used transcriptions gener-

ated by the Whisper-large-v2 model [14]. As there are no tran-

scriptions available for the test set, an ASR system is needed

for transcriptions, but it will inevitably produce erroneous tran-

scripts. Training an emotion classification model on ground

truth transcripts would result in a mismatch between training

and test conditions, thus all models make use of ASR output.

To enhance the quality of the ASR transcriptions, an ASR error

correction model [25] is trained and then used to correct errors

in the transcriptions in the test set.

3.1. Model Architecture

Figure 1 illustrates the principal architecture of models. Frame-

level audio features and token-level text features are encoded by

two Multi-Layer Perceptron (MLP) modules. Then transformer

layers [26] are used to process audio and text features to encode

dynamic information in features. In order to avoid over-fitting,

the number of heads in the transformer layers is set to 1. The

transformer layers are followed by a mean pooling layer, then

the utterance-level audio features and text features are concate-

nated. The concatenated features are processed by the two MLP

modules. The softmax output of the final MLP produces class

probabilities.
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Features Modality Dim #Params Hours

WavLM-large Audio 1024 300M 94K

Hubert-extra-large Audio 1280 1B 60K

Whisper-large-v3 Audio 1280 1.5B 680K

Roberta-large text 1024 355M -

Table 1: Audio and text features, where ‘Dim’ denotes the

dimensionality of frame-level features, ‘#Params’ denotes the

number of parameters, ‘Hours’ denotes the amount of speech

data used for pretraining.

Index Loss Function Class Weights Audio Features

1 Focal (γ = 2 ) Prior-based Whisper

2 Focal (γ = 2.5 ) Prior-based Whisper

3 CE Prior-based Whisper

4 Focal (γ = 2) Uniform Whisper

5 CE Uniform Whisper

6 Focal (γ = 2) Prior-based WavLM

7 Focal (γ = 3 ) Prior-based Hubert

Table 2: Configurations of models in the ensemble systems,

where ‘CE’ denotes cross-entropy.

3.2. Audio Features and Text Features

The audio and text features used in this work are presented in

Table 1. Three types of audio features are used: the final layer

representations of WavLM-large [27]; the final layer represen-

tations of Hubert-extra-large [28]; and the final layer output of

the encoder of Whisper-large-v3 [14]. In terms of text features,

this work utilises Roberta-large [29]. In order to enhance the

representative capability of the text features, this work uses the

average representations of the last 4 layers’ from Roberta-large.

3.3. Loss Functions and Class Weights

This work considers two options for loss functions, the fo-

cal loss and the cross entropy loss. The loss function can

be weighted by the prior-based class weights or uniform class

weights. Combining loss functions with class weights, four

types of optimisation configurations can be used.

3.3.1. Uniform Class Weights and Prior-based Class weights

Consider a classification task with C classes, a training dataset

{(xi, yi)|i = 1, ..., N}, yi ∈ {1, ..., C}, xi ∈ Rd. The uni-

form class weights can be written as follows,

wuni = {wj = 1|j = 1, ..., C}.

Prior-based class weights can be written as:

wprior = {wj =
N

Nj

|j = 1, ..., C},

where Nj is the number of samples in class j in a training or

development set.

3.3.2. Cross-Entropy Loss and Focal Loss

Following the above notations , the cross-entropy loss can be

defined as:

Lce = 1/N

N∑

i=1

− log pi,

where pi = P (yi|xi) is the output probability of the corrected

class. The focal loss can be written as follows,

Lfocal = 1/N

N∑

i=1

−(1− pi)
γ log pi,

where γ is a hyper-parameter.

By combining with the class weights, the class-weighted

focal loss can be written as:

L′

focal = 1/N

N∑

i=1

−wj(1− pi)
γ log pi,

where wj is the class weight for class yi.

3.4. Ensemble Strategy

Table 2 lists the configurations of the 7 models in the ensem-

ble system. All models use the averaged representations of the

last 4 layers of Roberta-large (refer to Table 1) as text features.

Apart from the optimisation configurations, the values of the fo-

cal loss hyper-parameter was explored with γ = 2 and γ = 2.5,

as well as three types of audio features.

4. Experimental Setup

4.1. Dataset

The Odyssey 2024 Emotion Recognition Challenge [16] used

the MSP-Podcast dataset v1.11 [5]. The dataset is derived

from podcasts, and annotated through crowd-sourcing. Differ-

ent from most datasets containing acted speech [6] or elicited

speech [4], this dataset contains spontaneous speech with natu-

ral human emotions. The dataset is composed of five subsets:

the training set, the development set, the test-1 set, the test-2

set, and the test-3 set. In this challenge, the test-3 set is used

to measure the outcome, and the reference labels have not been

made public. The speech segments have been annotated with

10 classes, in which 8 classes are used for this challenge. These

are Neutral, Happy, Angry, Disgust, Sad, Surprise, Contempt

and Fear. There are two remaining labelled classes, Other and

No Agreement, are not used. Since the Other and No Agree-

ment classes are not used in the challenge, this work removed

associated samples, retaining only samples with the challenge

classes. Detailed information of the training set, development

set and test set are given in Table 3, including the subset statis-

tics, before and after the sample removal.

4.2. Implementations

4.2.1. Multi-Modal Classifier Model

The Hubert-extra-large model, the WavLM-large model, the

Whisper-large-v3 model and the Roberta-large model are im-

ported from the transformers toolkit [30].

In terms of the model architecture, the hidden size of the

transformer layers is 512 and the number of the transformer lay-

ers is set to 2. The MLP module before the transformer layers

has a hidden size of 512. The MLP modules after the concate-

nation layer has a hidden size of 512 and the output size of the

final MLP module is 8.

The models are trained with a batch size of 128, an initial

learning rate of 1e-4, with a learning scheduler [31]. The model

checkpoint of the epoch with the best Macro-F1 on the devel-

opment set is chosen for evaluation. The implementations are
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Subset # Samples All # Speakers All Duration All # Samples Used # Speakers Used Duration Used

Training 68119 1405 110.2h 53386 1391 86.3h

Dev 19815 454 31.7h 15341 446 24.4h

Test-3 2437 187 3.9h - - -

Table 3: The detailed information of subsets of the MSP-Podcast v1.11, where ‘All’ denotes subset statistics before the filtering and

‘Used’ denotes subset statistics after the filtering.

Class # Training Samples # Dev Samples

Neutral 25016 5667

Happy 13440 3340

Angry 3053 2413

Sad 3882 1101

Disgust 1426 486

Contempt 2443 1323

Surprise 2897 729

Fear 1139 282

Table 4: Class distributions in the training set and the develop-

ment set after the filtering.

based on the recipe of the speechbrain toolkit [32]. All mod-

els are implemented and trained with the PyTorch toolkit [33].

Training takes about 2 hours and uses a maximum of 20 epochs.

4.2.2. Feature Fusion

A number of methods for feature fusion were considered. Due

to limited time, however, only the following ones were imple-

mented and compared.

• Early fusion: text and audio features are concatenated at the

embedding level.

• Late fusion: text and audio features are learned independently

and the final decision is determined based on respective outputs.

• Early fusion + late fusion.

• Tensor fusion: unimodal information and bimodal interactions

are learned explicitly and aggregated [34].

• Low-rank tensor fusion: multimodal fusion with modality-

specific low-rank factors, which scale linearly in the number

of modalities [35].

While sophisticated fusion approaches have often outper-

formed early fusion in various scenarios, this phenomenon was

not observed in the experiments. Therefore, early fusion was

used in the model, as it was found to outperform all other meth-

ods tested.

4.2.3. ASR Error Correction

A pretrained AEC model was used in this work, which has been

trained on the English version of Common Voice 13.0 [36] and

TED Talk corpus [37] using a publicly available Sequence-to-

Sequence (S2S) encoder-decoder architecture [25]. This model

was trained to convert ASR transcriptions to human-transcribed

transcriptions (i.e., ground-truth text). Considering the disparity

between the MSP-Podcast dataset and the two AEC pretraining

corpora (e.g., out-of-domain words), this model was fine-tuned

to enhance its performance. Specifically, the model was trained

on the training set of the provided MSP-Podcast corpus for 10

epochs and then validated on the development set. The best

checkpoint was saved to correct errors on the test set. The cor-

rection quality was evaluated using WER, BLEU, and GLEU

scores for a comprehensive assessment. The results of the best

checkpoint on the development set are presented in Table 5,

demonstrating the effectiveness of the AEC model. As there

is no ground-truth text for the test set, there is no way to further

evaluate its effectiveness. Given the same domain of the devel-

opment and test sets, it is expected an improvement in accuracy

on the test set by approximately 1%, as suggested by previous

research on the impact of WER on SER performance [38].

Transcription WER ↓ BLEU ↑ GLEU ↑

Original 17.65 81.32 78.02

Corrected 14.51 83.48 81.19

Table 5: Comparison of the quality between the original and

corrected transcriptions on the development set. All values are

presented in percentage scale (%). ↓: the lower the better. ↑:

the higher the better.

4.3. Evaluation Metrics

According to the challenge evaluation setup, Macro-F1 is used

as the primary metric. Macro-F1 is the unweighted average of

the F1 score of each class. Apart from Macro-F1, the weighted

accuracy (WA) and unweighted accuracy (UA) are used. 1

5. Results

Results for the 7 models in the ensemble system are presented

in Table 6. Generally speaking, different configurations of au-

dio features, loss functions and class weights yield differences

in WA and UA results. From analysing the performance dif-

ference in WA and UA results, it would be easy to understand

how the models perform on the major classes and minor classes.

For convenience, in the following discussion, the index of the

models in Table 6 are used to denote the models (e.g. model-1).

Among the 7 models, the best Macro-F1 was obtained by

the model-1, applying the focal loss (γ = 2) and prior-based

class weights. Comparing model-1 to model-4, increasing γ =
2 causes an improvement in WA but a drop in UA, causing a

reduction in Macro-F1.

Among the 3 types of audio features for model-1, model-2

and model-3, it is clear that the Whisper features yield better

results than both the WavLM features and the Hubert features.

One possible reason is that the Whisper model were trained su-

pervisedly with text transcriptions, while the other two models

were trained without supervision. These are also difference due

to the model sizes and the amount of training data used bay

these pretrained models.

1The accuracy score function and the balanced accuracy score
function from the scikit-learn toolkit are used for implementing un-
weighted accuracy and weighted accuracy, respectively
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Index Audio Text Loss Class Weights Macro-F1 (%) WA (%) UA (%)

1 Whisper Roberta Focal (γ = 2) Prior-based 34.2 35.6 45.7

2 WavLM Roberta Focal (γ = 2) Prior-based 32.4 35.3 43.6

3 Hubert Roberta Focal (γ = 2) Prior-based 32.7 34.3 45.5

4 Whisper Roberta Focal (γ = 2.5) Prior-based 33.8 35.8 45.1

5 Whisper Roberta CE Prior-based 33.8 36.0 44.0

6 Whisper Roberta Focal (γ = 2) Uniform 33.3 32.9 51.9

7 Whisper Roberta CE Uniform 32.8 32.6 51.1

Ensemble - - - - 35.6 36.6 49.3

Table 6: Development set results of the 7 models, they are trained independently with different audio features, text features, loss and

class weights.

The results for model-1, model-5, model-6 and model-7 can

help to understand the effect of the two loss functions and the

two class weights. Generally speaking, different loss functions

and class weights yields models that have different preferences

for major and minor classes. Specifically, when training with

the uniform class weights, model-6 and the model-7 show good

performance on UA but poor performance on WA. Comparing

model-7 and model-5, the prior-based class weights give more

attention to minor classes, causing a significant improvement

in WA but a large drop in UA. This means that the prior-based

class weights improve the performance on the minor classes,

but sacrificing the performance on the major classes. The per-

formance drop may be due to model-5 over-fitting on major

classes. The effect of focal loss can be found through com-

paring model-1 and model-5, which shows that focal loss helps

model-1 reach a better balance between the major classes and

the minor classes. Hence, the model-1 reaches the highest over-

all macro-F1 performance.

Based on the diverse performance of the models, an obvious

strategy to build an ensemble is to combine the outputs of these

models through a majority voting process. The results show

that the ensemble system outperforms all of the 7 models on

Macro-F1 and WA, reaching the state-of-the-art performance.

6. Conclusions

This paper introduces an ensemble system that includes 7 multi-

modal models, constructed for participation in the Odyssey

2024 Emotion Recognition Challenge. The system showed the

best performance among a total of 68 submissions to the chal-

lenge, in all metrics under consideration. The 7 models were

trained independently with different loss functions and class

weights. Specifically, the cross entropy loss and the focal loss

were used. Uniform class weights and prior-based class weights

are studied. The experiment results show that the combinations

of loss functions and class weights lead to different preference

on the major classes or the minor classes
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