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Tropical biodiversity loss from land-use 
change is severely underestimated by 
local-scale assessments

 

Jacob B. Socolar    1,2,14, Simon C. Mills3,4,14, James J. Gilroy4,5, 

Diego E. Martínez-Revelo    6,7, Claudia A. Medina-Uribe7, 

Edicson Parra-Sanchez8, Marcela Ramirez-Gutierrez9, Jørgen Sand Sæbø    1, 

Henry S. Meneses10, Giovanny Pérez    3,8, Jos Barlow    11, 

Jose M. Ochoa Quintero7,12, Robert P. Freckleton    3, Torbjørn Haugaasen    1 & 

David P. Edwards    8,13 

Human impacts on nature span vast spatial scales that transcend abiotic 

gradients and biogeographic barriers, yet estimates of biodiversity loss 

from land-use change overwhelmingly derive from local-scale studies. 

Using a field dataset of 971 bird species sampled in forest and cattle pasture 

across 13 biogeographic regions of Colombia, we quantify biodiversity 

losses from local to near-national scales. Losses are on average 60% worse at 

the pan-Colombian scale than in individual regions, with underestimation 

remaining until six to seven biogeographic regions are sampled. Regional 

losses greatly exceed local losses when beta-diversity is high due to 

reduced species turnover in pasture across geographic space and elevation. 

Extrapolation from local-scale studies causes major underestimation of 

biodiversity loss, emphasizing the need to incorporate spatial structure into 

measures of change.

The tropics are the most hyperdiverse region on the planet1,2, with 

tropical forests harbouring ~62% of terrestrial vertebrate species on 

just 18% of the land surface3. In addition to exceptionally high lev-

els of local (alpha) diversity4, much of this tropical hyperdiversity is 

explained by a rapid turnover of species composition across space 

(beta-diversity), with markedly different communities found in differ-

ent locations. Rapid species turnover in the tropics occurs across steep 

environmental gradients, including elevation and precipitation5,6, and 

across dispersal-limiting features, such as major river or mountain top 

barriers5,7. There are thus sharp turnovers of species between different 

but spatially proximate habitats, such as the terra firme, varzea, river 

island and white-sands forests of the western Amazon8.

Land-use change is a leading driver of the global biodiversity 

crisis9, particularly in the highly diverse tropics10. Land conversion 

erodes habitat complexity, reduces microclimate variability, and  

limits niche availability and dispersal potential across remaining 
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generate a near-nationwide inference of the impact of converting loca-

tions from natural habitat to cattle pasture. Specifically, our fieldwork 

spans 848 forest and cattle pasture points matched for geographic 

and elevational proximity across 13 biogeographic regions (Fig. 1a), 

dwarfing the typical spatial scale at which field-based studies quantify 

biodiversity change. We sampled birds using a point count methodol-

ogy with four visits across consecutive days, obtaining 24,981 detec-

tions of 971 bird species (excluding individuals detected flying over or 

at distances >100 m). We then modelled species-specific responses to 

forest conversion for 1,614 bird species (including 643 never-detected 

species) using a multi-species biogeographic occupancy modelling 

framework28 that accounts for imperfect detection while incorporating 

detailed range and trait information for all species (Fig. 1b and Supple-

mentary Table 1). This allows us to predict within-range occupancy for 

each species at 2-km resolution across the 13 biogeographic regions and 

entire study region in both forest and pasture (Fig. 1c). We then quanti-

fied each species’ sensitivity to habitat conversion as the ratio of the 

number of cells it occupied if they were forested versus pasture (Fig. 1d 

and Supplementary Methods), generating a distribution of species’ 

sensitivity to habitat conversion, ranging from those that benefited to 

those that were strongly negatively affected by conversion. We used 

the 25th, 50th and 75th percentiles of this distribution to represent a 

subset of the community related to an assemblage of species that have 

the lowest, average and highest sensitivity to habitat conversion. The 

percentile-based species assemblages were used in downstream inter-

pretation to understand how these different assemblages responded 

to habitat conversion.

Results and discussion
Severe losses at pan-Colombian versus ecoregion scale
The pan-Colombian community is far more sensitive to habitat con-

version than the community present in any single region. Taking the 

relative median difference in sensitivity scores as our initial metric 

of biodiversity loss, losses at the pan-Colombian scale were 60%  

(credible interval (CI): 47–78%) more severe than single-region losses 

and 28% (CI: 21–38%) more severe than two-region losses (Fig. 2f). 

Species with higher sensitivity to habitat conversion (75th percentile; 

Fig. 1 and Supplementary Information) showed even greater losses at 

the pan-Colombian scale relative to losses at single-region (67%, CI: 

49–89%) or two-region (30%, CI: 21–44%) scales (Fig. 2i), while species 

with lower sensitivity to habitat conversion (25th percentile) were simi-

lar in severity of losses to the median difference (Fig. 2c). Sampling of 

six to seven biogeographic regions was required before estimates were 

within 5% of the pan-Colombian value for species with low sensitivity 

(Fig. 2c), medium sensitivity (Fig. 2f) and high sensitivity (Fig. 2i) to 

habitat conversion. The majority of biodiversity field studies attempt-

ing to quantify the consequences of deforestation sample just one 

biogeographic region, or at best two to three18,29, probably leading to 

underestimation of the severity of deforestation-driven biodiversity 

loss, especially as findings are subsequently scaled-up using global 

meta-analysis22,25,26.

natural habitat11. The result is that a characteristic suite of species 

tends to persist in converted habitats, no matter where they are located. 

Habitat conversion thus results in biotic homogenization, with increas-

ing compositional similarity across spatially disparate communities11–13. 

However, efforts to quantify the severity of biodiversity change across 

land-use transitions are beset by problems of spatial scale14–18, and biotic 

homogenization can produce spatial scaling phenomena that decouple 

local from regional biodiversity change14–17,19. Spatial decoupling can 

occur via the increasing loss of small-ranged forest-dwelling species 

across broader relative to local spatial scales (subtractive homogeni-

zation), coupled with the colonization of farmland by edge-tolerant 

species that are large-ranged and become ubiquitous from local to 

broader scales (additive homogenization)14, generating patterns of 

more severe biotic homogenization at regional versus local scales.

Field-based biodiversity assessments across land-use transi-

tions overwhelmingly focus on understanding local-scale biodiver-

sity change rather than on assessing regional effect sizes20,21. In turn, 

global meta-analyses quantify biodiversity change by averaging across 

local-scale effects, without directly assessing regional impacts22. Aggre-

gating local estimates of species richness change—the most common 

indicator of biodiversity loss—fails to reflect global trends with enough 

accuracy to be useful for policymaking23. As a result, this approach 

leaves considerable uncertainty about the severity of biodiversity 

change at larger spatial scales14.

Without direct measurements of regional-scale biodiversity 

change, empirical support for biotic homogenization in human- 

modified landscapes derives primarily from two approaches.  

First, community dissimilarity metrics often reveal pairwise homog-

enization of species assemblages across sites undergoing land-use 

change relative to control sites that remain in a natural state (that 

is, a decrease in mean pairwise dissimilarity)15–18,24. Second, indices 

accounting for the range size of species lost and gained reveal dispro-

portionate declines in range-restricted species11,25,26, suggesting that 

regional impacts might exceed local impacts, as a higher number of 

small-ranged declining species are expected relative to the number 

of larger-ranged species that benefit from change. However, these 

approaches do not directly quantify the effects of increasing spa-

tial scale on biotic homogenization27. We hypothesize that, despite 

regional variation in community responses, biodiversity change is 

less severe within single ecoregions (local scale) than when considered 

across multiple ecoregions (regional scale). We may thus be severely 

underestimating large-scale biodiversity change, which points to 

two key questions: (1) how do very large-scale biodiversity impacts 

compare to impacts within relatively homogeneous biogeographic 

units (ecoregions); and (2) what determines the degree to which 

regional-scale impacts exceed local-scale impacts?

We tackle these questions by empirically quantifying spatial scal-

ing patterns of biodiversity loss via a large-scale avian field study con-

trasting natural habitat (mainly forest) and cattle pasture, conducted 

at a pan-national scale in the megadiverse country of Colombia. Our 

sampling used a space-for-time substitution, from which we upscale to 

Fig. 1 | Methodological pipeline. Our pipeline combines field surveys and 

external data layers to yield detailed species-specific predictions of occupancy 

in forest and pasture, which enables computing species-specific sensitivities to 

forest conversion for any area at any scale, up to and including the entire study 

region. a, The locations of our 848 avian sampling points across Colombia, with 

larger circles representing larger concentrations of points. Background colours 

show the 13 biogeographic regions used in our analysis of regional versus pan-

Colombian impacts. Portions of mainland Colombia that we exclude from our 

study region (see Methods) are rendered in grey. CC montane, Central cordillera 

montane; EC montane, Eastern cordillera montane; WC montane, Western 

cordillera montane. b, External data layers include geophysical data (elevation 

shown), species-specific biogeographic range information, functional traits and 

natural habitat associations. c, Field data (a) are integrated with external data 

(b) in a biogeographic multi-species occupancy-modelling framework to derive 

maps of occupancy probability in forest (left) and pasture (right), illustrated 

for four representative species, from top to bottom: savanna hawk (Buteogallus 

meridionalis), golden-winged sparrow (Arremon schlegeli), bicolored antpitta 

(Grallaria rufocinerea) and pompadour cotinga (Xipholena punicea). Colours 

in the map represent occupancy probability from near zero (dark blue) to high 

(yellow). d, The distribution of species-specific sensitivities to forest conversion 

is derived from species’ occupancy probabilities, here shown at the scale of the 

entire study region. Red line denotes no change in occupancy probability in 

response to land-use change. Photo credits: savanna hawk, D.P.E.; golden-winged 

sparrow, Tom Driscoll; bicolored antpitta, Mark Kosiewski; pompadour cotinga, 

Mike Goad (Pixabay).

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-025-02779-4

At the same time, we found considerable variation in the mag-

nitude of impacts of habitat conversion on biodiversity across the 13 

biogeographic regions (Fig. 2a,b,d,e,g,h). Communities in the central 

Cordillera montane forests, Napo moist forests, eastern Cordillera mon-

tane forests and Caquetá moist forests displayed greatest sensitivity 

to habitat conversion. These biogeographic regions are hyperdiverse 

lowlands or transcend major altitudinal gradients, resulting in high spe-

cies packing, ecological specialism and low disturbance tolerance30,31. 

The biogeographic regions in which communities were least impacted 

by habitat conversion were those of Santa Marta, then the Magda-

lena–Urabá moist forests, Magdalena dry forests, Llanos and Andean 

páramos (moorlands), which are relatively species-depauperate areas 

(that is, isolated massifs and valleys, or very high altitude) and grass-

land–forest systems, where species are likely to be more disturbance- or 

edge-tolerant32. Differences in community-level responses to habi-

tat conversion between biogeographic regions underscore that the 

choice of ecosystem in local-scale studies of land-use change impacts 

on biodiversity strongly affects study conclusions. While our spatial 
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scaling patterns indicate low regional sensitivity to habitat conversion 

in certain biogeographic areas, this does not imply that forests are 

unimportant in these regions. For example, while the Sierra Nevada 

de Santa Marta (SNSM) was the least sensitive region in our analysis, 

reflecting a prevalence of forest-dwelling species that can frequently 

use pastures, its protected areas are among the most irreplaceable 

globally33 and its avifauna includes 24 endemic bird species, most of 

them overwhelmingly more common in forest than pasture34. Thus, 

the impacts of forest loss in SNSM for pan-Colombian biodiversity are 

severe, even though impacts in SNSM appear modest when compared 

with all other regions studied.

High beta-diversity, distance and elevation drive losses
Because biogeographic regions differ in their size and shape, we applied 

standardized hexagonal grids across the study region (Supplementary 

Fig. 2) to systematically investigate differences between regional and 

local community sensitivities (that is, the excess regional loss) in 

relation to beta-diversity. We found that when regional multiplica-

tive beta-diversity is high, regional impacts of habitat conversion can 

average more than twice the severity of local impacts (Fig. 3), with 

progressively smaller discrepancies between regional and local impacts 

of habitat conversion in areas with lower beta-diversity. We computed 

excess regional biodiversity loss for each hexagon as the regional-scale 

loss metric (that is, percent decline of the median species, 25th percen-

tile and 75th percentile) divided by the average local-scale (2-km pixel) 

loss, and regional multiplicative beta-diversity35,36 by dividing gamma 

diversity (species richness) of each hexagon by the mean alpha-diversity 

for 2-km pixels. In fact, regional multiplicative beta-diversity pre-

dicts excess declines in regional biodiversity via a relationship that 

appears to be largely independent of spatial scale (Fig. 3). While larger 
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Fig. 2 | Avian community sensitivity to forest conversion. a–i, The distribution 

across species of regional avian community sensitivity to forest conversion 

(occupancy probability in forest divided by pasture), expressed in absolute 

terms (a,d,g) and relative to the pan-Colombia value (b,e,h), and the change in 

average sensitivity as regions are sequentially pooled together (c,f,i). a, b and c 

characterize the 25th percentile of the distribution across species (low sensitivity 

to habitat conversion), d, e and f the median (medium sensitivity), and g, h and i 

the 75th percentile (high sensitivity). In b, e and h, the vertical dashed line at  

1 indicates parity between pan-Colombia sensitivity to habitat conversion 

and the sensitivity of the avian community within each sub-region; a relative 

difference of 2 indicates that pan-Colombia sensitivity is double that of a 

particular sub-region. c, f and i give average sensitivity to habitat conversion  

of collections of different numbers of subregions (point and 90% CI lines).  

The grey-shaded area represents the point where pooled-region sensitivity to 

habitat conversion is within 95% of the pan-Colombia score, with the dashed line 

at 1.0 indicating parity between pan-Colombia sensitivity to habitat conversion 

and the sensitivity of the avian community across pooled subregions.
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regions tend to have higher beta-diversity, the slope of the relationship 

between beta-diversity and excess regional impact is similar across 

at least two orders of magnitude of variation in hexagon area (from 

290- to 70,000-km2 cells; Fig. 3). The tendency for both regions of 

high alpha-diversity (Fig. 2) and high beta-diversity (Fig. 3) to harbour 

particularly sensitive avifaunas suggests a connection between high 

species packing and disturbance sensitivity.

To unpack the drivers of beta-diversity that are associated with 

excess regional-scale impacts, we fitted generalized dissimilarity mod-

els (GDMs)37 to the bird communities at our sampling points, predict-

ing compositional dissimilarity using geographic distance, elevation 

annual precipitation, and separation by montane or valley barriers for 

forest and pasture points separately (Supplementary Methods and Sup-

plementary Fig. 3). In forests, compositional dissimilarity accumulated 

with increasing distance between sampling locations, with highly dis-

similar communities found at forest points that were far removed from 

one another. Converting forest to pasture results in a collapse of this 

pattern, with negligible turnover found in pasture communities sepa-

rated by more than 200 km, once other effects (for example, elevation) 

have been accounted for. The accumulation of disparity at spatial scales 

smaller than 200 km probably reflects small-scale variation between 

sites rather than biogeographic turnover of species: in our occupancy 

model, the random effect terms for spatial blocks corresponding to 

~0.5-km and ~20-km scales were estimated with large variances (Sup-

plementary Table 1), reflecting high small-scale heterogeneity that is 

decoupled from large-scale biogeographic variation.

The effect of elevation within forests had a similar magnitude to 

the effect of geographic distance, with substantially different com-

munities found in forests at different elevations. As with geographic 

distance, cattle farming drives a striking flattening in the accumulation 

of heterogeneity along elevational gradients, particularly between 

0–1,500 m above sea level (a.s.l.) and 3,000–4,000 m a.s.l. (Fig. 4 and 

Supplementary Fig. 6). This pattern reflects the expansion of non-forest 

species from Colombia’s low-elevation savannas and high-elevation 

grasslands into previously forested portions of the gradient. At middle 

elevations between 1,500 and 3,000 m a.s.l., the collapse of heterogene-

ity in pasture is less pronounced, in part because turnover within forest 

is substantially lower at these elevations than elsewhere. We found a 

much smaller role for mountain barriers, with increasing differences 

in both forest and pasture at lower elevations on alternate flanks of 

mountains, particularly so in forest (Fig. 4). There were no detectable 

roles for valley barriers and precipitation gradients (Fig. 4), although we 

did not sample the deciduous forests and drylands at the low extreme 

of the precipitation gradient.

Conservation impacts of biotic homogenization at large scale
Given that 219 million hectares of tropical moist forest were converted 

pan-tropically between 1990 and 201938, and the global rate of defor-

estation remains high, adequately quantifying the impacts of land-use 

change on biodiversity is critical. By synthetically analysing standard-

ized samples spanning tremendous biogeographic variation, we identi-

fied major scale-dependent losses resulting from habitat conversion. 

This suggests that substantial biodiversity losses are overlooked by 

the preponderance of local-scale studies of land-use change and their 

aggregation into meta-analyses to draw regional-scale inference. There-

fore, the failure to sample at sufficiently large spatial scales—especially 

across large geographical distances and elevational gradients—drives 

major underestimations of biodiversity loss in the Anthropocene.

In light of the ongoing drive for globally applicable metrics of bio-

diversity value to support biodiversity assessments and offsetting39–41, 

it is critical to develop measurements that accurately reflect value in 

the global biodiversity commons. Given that assessments of value are 

scale-dependent, our study makes the strong argument for the need to 

design monitoring schemes with embedded spatial structures, com-

bined with metrics tailored to the appropriate regional scale of policy 

interest. This is essential to ensure that we are not underestimating or 

missing the large-scale outcomes of local land-use changes on regional 

biodiversity, although such a shift in study design, extent and metrics 

would require significant financial and time investment at a time of 

limited conservation resources. In turn, there is an urgent need for 

the development and widespread adoption of analytical frameworks 

and statistical tools capable of reliably delivering these metrics. Our 

analyses provide an example of such a framework that is applicable at 

scale even in the megadiverse tropics.

Our study highlights that unchecked land-use change across 

larger spatial scales drives biotic homogenization. While changes in 

local diversity are well known to alter local ecosystem functioning, 
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the influence of biotic homogenization on biogeographic region to 

biome-scale ecosystem functioning is less understood. Studies con-

ducted at large scales suggest a strong spatial component to variation 

in functional trait responses to climate change42,43, so we hypothesize 

that increasing biotic similarity will make biomes less resilient to envi-

ronmental changes, increasing the risk of biome-wide tipping points. 

It is notable that the functional consequences of biotic homogeniza-

tion in montane forests of the Americas show slower rates of change 

in functional attributes to climate change than communities in the 

lowland forests43.

We sampled low-productivity pastures, which represent the typi-

cal cattle ranching system in Colombia44 and sometimes contained 

isolated trees, hedgerows, small forest fragments or narrow riparian 

strips45,46. Relative to these traditional pastures, silvopastoral sys-

tems can triple bird species richness, double dung beetle species rich-

ness and increase ant abundance by 60% at local scale47. Whether the 

homogenizing effects of land-use change we observe in low-intensity 

cattle pastures could be at least partially mitigated by the retention of 

natural habitat features or silvopasture remains an important ques-

tion. However, even in highly wildlife-friendly pasture in the Amazon, 

forest specialists are functionally absent46, suggesting that improving 

agriculture may be insufficient to counter biotic homogenization.

In conclusion, the failure to sample at sufficiently large spatial 

scales means that there is a systematic underestimation of the impacts 

of cattle farming. Our results further imply that biodiversity impacts 

of land-use conversion are underestimated in general, including any 

other crop or commodity that spans many ecoregions, including oil 

palm, soy, coffee and sugar cane48–50, as well as timber production from 

natural forests, including selective-logging practices51,52. The accrual 

of loss at larger spatial scales also highlights the value of preventing 

deforestation at any scale, as the conservation value even of small-scale 

protection increases when viewed through a regional lens as opposed 

to a local one. We thus need to implement effective protection across 

landscape-scale biogeographic variation combined with integrated 

conservation approaches that promote larger-scale retention of natural 

habitat. These strategies could involve major area-based targets (for 

example, 30% by 203029; Half-Earth53), measures that focus on main-

taining system-wide integrity (for example, Intact Forest Landscapes54) 

and the pan-tropical role of Indigenous communities in protecting 

lands from deforestation and degradation55. They should be under-

pinned by improved national to regional level land-use planning and 

by context-dependent targets that reflect the variation in community 

sensitivity to land-use change between biogeographic regions.

Methods
Study area and data collection
Study area. Colombia is a megadiverse tropical country56 whose bio-

geography is dominated by mountains. Three chains of the Colombian 

Andes and the isolated Santa Marta massif all reach elevations above 

4,000 m a.s.l. and harbour distinctive endemic faunas on their slopes. 

These mountains structure climate and life zones, and together with 

the intervening Cauca and Magdalena inter-Andean valleys create 

imposing dispersal barriers between major biogeographic provinces. 

The east Andes, which extend north nearly to the Caribbean coast, 

are particularly significant as a biogeographic barrier for Colombia’s 

lowland fauna found to the east in the western Orinoco and Amazon. 

Additional salient features of Colombian biogeography include major 

lowland precipitation gradients and the abrupt transition between the 

savannas of the Llanos and the forests of Amazonia and the east Andes.

Across these diverse landscapes, pasturelands are the dominant 

agricultural land use in every major region of Colombia57, accounting 

for over 34 million hectares (30% of Colombia’s land area) and over 75% 

of all cleared forestland57–59. The importance of pasturelands (primar-

ily for cattle) as a deforestation driver is expected to persist into the 
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Fig. 4 | Impact of spatial and biogeographical gradients on community 

turnover. Community turnover across spatial and biogeographical gradients 

is substantially lower in pasture (red) than forest (blue). The panels indicate 

how the partial ecological distances vary along each respective gradient, based 

on a GDM fitted to the observed species assemblages at 848 cattle and pasture 

sampling points comprising 3,357 point visits (with the line of best fit (mean; 

black line) and 90% CI from a Bayesian bootstrap overlaid). Kilometres (km) 

represents the distance between pairs; other metrics represent the rate of 

turnover across the gradient for that variable (for example, m a.s.l.).  

For metres below 4,100, 0 represents being on the same side of the mountain 

barrier, increasing numbers represent being on the opposite side of the 

mountain and progressively farther down from the summit. Definitions of the 

mountain and valley barrier covariates are given in Supplementary Methods 

and Supplementary Fig. 3. Differences are based on Sørensen dissimilarities 

of observed communities, but an alternative set of results based on Simpson 

dissimilarities and detection-corrected data is given in Supplementary Fig. 6. 

Note that the y-axis scale changes between upper and lower panels.
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future60, posing a serious biodiversity threat10. The ubiquity of pastures 

across elevations and biogeographic regions allows us to study a single 

major land-use change across Colombia’s biogeographic variation.

We sought to capture as much biogeographic variation as possible 

with our fieldwork (Fig. 1). Fieldwork encompassed all three Andean 

cordilleras, the Santa Marta massif, and the lowlands of the Amazon, 

Llanos and Magdalena Valley, spanning elevations of 100–4,060 m a.s.l. 

(Fig. 1 and Supplementary Fig. 1). Fieldwork thus covered nearly all of 

Colombia’s major mainland biogeographic regions, yielding a dataset 

of sufficient breadth and depth to probe the spatial scaling of biodi-

versity change in a strongly heterogeneous region of the megadiverse 

tropics. We did not sample in the Pacific lowlands and northern dry 

forests due to COVID-19 travel restrictions, and eastern Llanos due to 

lack of extensive natural forest. When projecting species distribution 

models across Colombia, we therefore do not project to elevations 

below 1,100 m a.s.l. on the Pacific slope or in eight northern depart-

ments (northwestern Antioquia, Atlántico, Bolivar, Cesar, Córdoba, 

La Guajira, Magdalena, Sucre). We additionally refrain from predicting 

species distributions in the isolated Tacarcuna highlands of the Panamá 

border, the highest elevations of the SNSM (above 3,000 m a.s.l.), the 

eastern Amazon (where white-sand soils largely preclude cattle farm-

ing) and the eastern Llanos (where natural forest cover is minimal).

Site selection. We selected sites where high-quality forests or páramos 

(hereafter forest points) and cleared pastures (pasture points) exist 

within several kilometres of one another. Within sites, we installed 

clusters of three (very occasionally two) sampling points with 200 m 

minimum spacing. We selected points based on visual examination of 

current and historical imagery in Google Earth and options for access 

in extremely rugged terrain and amidst complex political situations. In 

total, we sampled 848 points in 287 clusters across Colombia.

In sampling broadly across a biogeographically complex study 

area, we took special care to ensure that our forest and pasture samples 

consisted of biogeographically comparable units. At middle elevations 

in the west Andes45, middle-to-high elevations of the east Andes21,32 and 

on the Llanos61, we sampled both forests and pastures intensively within 

well-defined biogeographic units62, and we took care to ensure that 

forest and pasture points had comparable geographic and elevational 

distributions. Elsewhere (that is, the central Andes, southern Andes, 

Santa Marta massif, Magdalena Valley, east Andean foothills, northern 

east Andes and Amazonia), we ensured comparability between forest 

and pasture samples by strictly matching paired clusters of forest 

and pasture points for elevation (<200 m difference) and geographic 

proximity (<21 km distance). The only exception to this rule came 

from one Amazonian site, where we surveyed eight forest clusters 

near the base of a sandstone outcrop, but found space to install only 

three pasture clusters. Therefore, we installed five additional pasture 

clusters near the base of a different sandstone outcrop, at similar 

elevations but 320 km to the north. The matched pairs design does not 

figure directly in our analysis, but ensures that our overall forest and 

pasture points sample from strictly comparable biogeographic units. 

We characterized the elevation of each point by using GPS-derived 

geospatial coordinates to extract elevations from the ALOS digital 

elevation model63, which we found to be substantially more reliable 

near some of our sampling points than other digital elevation models.

Bird surveys. Bird sampling was conducted in 2012–2013 and 2018–

2019, avoiding the wet season months in locations with a strong 

precipitation seasonality (that is, not between mid-November and 

December, or late April to June). At each bird sampling point, one of 

five expert observers ( J.B.S., S.C.M., D.P.E., J.J.G., O. Cortes) conducted 

four 10-minute, 100-m radius avian point counts on consecutive or 

nearly consecutive days. Observer O. Cortes refers to Oswaldo Cortes, 

who sampled only in the western Andes and conducted more than an 

order of magnitude fewer point count locations than J.J.G. in this region  

(O. Cortes = 9, J.J.G. = 109). Thus, for the purposes of estimating 

observer effects on detection (see below) we lumped O. Cortes and 

J.J.G. as a single observer, because O. Cortes conducted his point 

counts at the same time and landscapes as J.J.G. In total we conducted  

3,357 point visits, representing 33,570 minutes of field observation.

We surveyed birds only in appropriate weather conditions (calm 

winds without steady rain) between the onset of the dawn chorus 

(roughly 30 minutes before sunrise) and 1230 h. At some sites above 

3,000 m, where bird activity does not fall off sharply during the after-

noon, we continued to conduct point counts to mid-afternoon. At a 

small minority of points, extenuating circumstances (illness, plane 

crash, guerrilla activity) restricted us to conduct only two or three 

visits, but this is dealt with in our analysis (see below).

We recorded sound continuously during avian point counts and 

identified unknown sounds with reference to comprehensive sound 

libraries including Xeno-canto and the Macaulay Library, and in con-

sultation with leading experts in Colombian and neotropical birdsong 

(see Acknowledgements). We recorded abundance of individuals for 

each species in the field, but later turned these into presence–absence 

data to match species identified from the sound recordings, for which 

numbers of individuals could not be accurately estimated. Local vegeta-

tion cover was recorded at each cattle pasture point.

Species list, ranges and traits
Baseline list. Our analysis explicitly handles both observed and 

never-observed species that potentially occur in the vicinity of our 

sampling points. To create a list of species that potentially occur near 

our points, we began by compiling a baseline species list for main-

land Colombian birds. Our baseline list follows the taxonomy of 

HBW-BirdLife International version 4.064 with one exception: on the 

basis of recent taxonomic revisions65, we treat BirdLife’s Grallaria 

rufula as consisting of four species in Colombia (G. alvarezi, G. rufula,  

G. saturata and G. spatiator). We harmonized an up-to-date species 

list for Colombia66 to the BirdLife taxonomy, and we removed spe-

cies whose Colombian distribution is restricted to offshore islands 

or marine/coastal environments (for example, beaches, mangroves, 

lagoons, tidal mudflats) as well as species that occur in Colombia exclu-

sively as vagrants67,68. We also removed all swifts (Apodidae) as they 

are essentially never observed perched. Finally, we removed the mal-

lard (Anas platyrhynchos) because its introduced Colombian range is 

largely confined to urban habitats that do not figure in our sampling 

or analysis66.

Range maps and distance to range. Following the biogeographic 

multi-species occupancy model framework28, we used range maps to 

constrain species distributions to: (1) avoid predicting occupancy at 

biogeographically implausible locations; (2) avoid underestimating 

occupancy within a species’ range (because fitting to out-of-range 

points can underestimate in-range occupancy probability); and (3) 

reduce the computational costs of model fitting. We obtained digital 

range maps for all Colombian birds from Ayerbe-Quiñones67–69 (hereaf-

ter AQ) via the Instituto Alexander von Humboldt (http://biomodelos.

humboldt.org.co/). We harmonized the AQ taxonomy to our baseline 

list, updating the maps as necessary to account for splits and lumps.

We used the range maps to construct a distance-to-range covariate 

for every species–point combination in Colombia. For out-of-range 

points, these are the (positive) distances to the nearest mapped 

range. For in-range points these are the (negative) distances to the 

nearest edge of the mapped range (excluding edges at coastlines or 

international borders). Colombia’s biogeography is dominated by 

four mountain ranges and the valleys between them and sometimes 

contain large rivers (that is, ríos Magdalena and Cauca). These topo-

graphic barriers imposed by Colombia’s mountains create extreme 

variation in how distance-to-range influences occupancy probabilities 

in Colombia’s birds. For example, lowland range extensions of 30 km 
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are not noteworthy, but Andean range extensions of 30 km can cross 

major topographic barriers (indeed, montane elevations on opposite 

sides of the Cauca Valley are separated by as little as 10 km in places). 

Therefore, we divided Colombia into 11 topographic units based on 

mountain and valley barriers (Supplementary Fig. 1), and we computed 

the distance-to-range for each point based only on the mapped range 

in the same topographic unit as the point (that is, range that is not 

isolated from the point by a major topographic barrier). When there 

is no mapped range within a topographic unit, those species–point 

combinations are removed via biogeographic clipping. Note that these 

topographic units are not the same as the biogeographic regions that 

we use to analyse spatial scaling patterns (see below and Fig. 1). In fact, 

the topographic units and biogeographic regions strongly cut across 

one another and never share borders.

Our field data contained very few long-distance range extensions 

against the AQ maps, with distance-to-range of >160 km or crossing a 

topographic boundary for only 12 species (five of which we detected 

during a single expedition to the Tamá massif on the Venezuelan bor-

der). For these 12 species, we manually added range as described in 

Supplementary Appendix 1, yielding our final set of range maps (here-

after, the range maps). Because of the paired sampling design, these 

range additions do not bias forest/pasture comparisons. We manually 

added range for three reasons: (1) to ensure that the minority of species 

with poorly known ranges would not force the model to predict high 

out-of-range occupancy probabilities for the better-known majority 

of species; (2) to improve the accuracy of predicted occupancy prob-

abilities for the 12 species in the vicinity of the range extensions; and 

(3) to enable biogeographic clipping at 160 km for computational 

efficiency in the occupancy model (see below)28.

Elevational ranges. Elevational ranges were derived from AQ. For 

species in our baseline list with no elevational range given by AQ (for 

example, where taxonomic treatments differ between lists), we incor-

porated information from additional references pertinent to Colombia 

and neighbouring countries68,70–73 (http://biomodelos.humboldt.org.

co/, https://datazone.birdlife.org/). To reliably pool information on 

elevation–occupancy relationships across species, we linearly rescaled 

the elevations at all of our sampling points separately for each species, 

placing the elevations on a common scale where the species-specific 

minimum and maximum elevations given by AQ correspond to values 

of −1 and 1. We term these rescaled elevations species-standardized 

elevations.

Our field data exposed six severe deviations from AQ’s bird eleva-

tional ranges. These species were recorded at points falling outside a 

species-standardized elevational range of (−2.8, 2.8) (range chosen 

following data inspection; species outside this range are clear visual 

outliers), and we replaced their AQ ranges with elevations from ref. 68, 

which in each case caused all observations to fall within the (−2.8, 2.8) 

species-standardized elevation interval. It is not the case that AQ con-

sistently reports tighter ranges than ref. 68; these cases seem to involve 

species for which AQ gives uncharacteristically conservative ranges.

Seasonality. For all migratory bird species, we compiled the approxi-

mate dates of presence in Colombia based on eBird data74 aggregated 

at the scale of Colombia supplemented by information from the field 

guide literature68,75. Our field-collected data exposed errors of omission 

in only two species, Bartramia longicauda and Setophaga cerulea, in 

each case of less than 7 days. We buffered the dates for these species 

to include the field-collected observations.

Final species lists and dataset size. We analyse only species that 

potentially occur in the spatio-temporal vicinity of our point counts, 

based on range maps, elevational ranges and migratory seasonal-

ity. In particular, we analyse only species with a distance-to-range 

of less than 160 km for at least one sampling point that falls within a 

species-standardized elevational range of (−3, 3) on an appropriate 

date. This process of biogeographic clipping (that is, excluding biogeo-

graphically implausible species–point pairs from analysis) yields large 

gains in computational efficiency without compromising the quality 

of the model fit28. These constraints yielded a final list of 1,614 bird spe-

cies for analysis. Across our 848 sampling points, we retained 591,152 

biogeographically plausible species–point pairs for analysis, of which 

971 species and 15,543 species–point pairs had at least one detection.

Functional traits and range characteristics. We compiled information 

on multiple traits that we suspected a priori76,77 might influence spe-

cies responses to pasture, including diet and body mass78, elevational 

range breadth and elevational range median67,68, migratory status68, 

range restriction at mountain barriers (that is, a species does not occur 

on both sides of the east Andes) and valley barriers67,69 (that is, a spe-

cies does not occur both east of the Magdalena River and west of the 

Cauca River), and natural habitat associations79. To avoid injecting 

external information about responses to human disturbance, we did 

not incorporate any habitat-association covariates that directly reflect 

occurrence in anthropogenic habitat categories.

Species distribution modelling
We modelled occupancy across the entire study area using a biogeo-

graphically constrained multi-species occupancy model (bMSOM)28 

with range-map clipping at 160 km and elevational clipping to 

species-standardized elevations on the interval (−3, 3). The bMSOM 

improves on previous large-scale applications of community occu-

pancy modelling by incorporating information from range maps, 

injecting species-specific trait information for never-detected species 

and reducing the computational costs of model fitting.

We leveraged our large dataset to fit a detailed data model. We 

modelled occupancy as a function of species-standardized elevation 

(linear and quadratic terms, estimated separately for species with eleva-

tional minima at zero versus greater than zero), a monotonic effect80 

of distance-to-range, land use (forest or pasture), biogeographic and 

functional species traits (Supplementary Table 1), and the interactions 

between land use and all species traits. To leverage phylogenetic infor-

mation and account for species-level variation, we included random 

intercepts grouped by species and family, a random slope for eleva-

tion by species, and random slopes for land use by species and family. 

To address spatial autocorrelation, we included random intercepts 

grouped by species-by-cluster and species-by-subregion. We included 

the subregion effects after fitting the model with just cluster effects and 

detecting unmodelled spatial autocorrelation that was strongest at the 

20-km scale via a posterior predictive check (see below). Therefore, we 

grouped points into subregions at the 20-km scale.

We modelled detection as a function of observer, time after sunrise, 

land use and five species traits (Supplementary Table 1). We included 

random intercepts grouped by species, family and species-by-observer. 

We included random coefficients for time after sunrise by species and 

for land use by species and family.

Prior specification. Overly vague priors on logit-scale parameters are 

known to cause problems in occupancy models for modest-sized data-

sets, as they induce highly informative pushforward densities on the 

probability scale, concentrated at probabilities near zero and one81,82. 

This phenomenon becomes even more extreme in models with a large 

number of covariates83. Our massive dataset probably avoids some of 

the resulting problems, but we nevertheless took care to specify prin-

cipled priors, based on extensive personal experience8,84 and literature 

on the structure and organization of neotropical bird communities84–87, 

trait-based predictors of avian sensitivity to deforestation26,76,77, and 

trait-based predictors of variation in avian detectability88. To ensure 

that covariate relationships are driven by the data and not the priors, we 

use Gaussian zero-centred priors for all coefficients. Thus, our priors 

http://www.nature.com/natecolevol
http://biomodelos.humboldt.org.co/
http://biomodelos.humboldt.org.co/
https://datazone.birdlife.org/


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-025-02779-4

constrain the effect sizes to reasonable values but inject no informa-

tion about the directionality of the effects, and any tendency for coef-

ficients to have non-zero marginal posterior distributions is not due 

to the prior. We chose weakly informative priors for both coefficients 

and scale parameters (that is, random effect standard deviations) that 

understate the certainty of our prior knowledge while simultaneously 

avoiding pushforward densities on the probability scale that are out-

landishly concentrated towards extreme probabilities near zero and 

one. We provide a detailed description of our prior selection in the sup-

plementary information accompanying ref. 28, where we develop the 

biogeographic multi-species occupancy-modelling framework that we 

use here. We provide a summary of our priors in Supplementary Table 1.

To ensure that pushforward densities for different species–point 

combinations are not unduly influenced by our choices of reference 

categories for dummy-coded binary predictors, we coded all binary 

predictors as −1/1 rather than 0/1 (ref. 89). In addition to ensuring 

equivalent prior pushforward densities across different combinations 

of predictors, this coding places binary predictors and standardized 

continuous predictors on the same scale90.

Model fitting and criticism. We fitted the occupancy model in Stan91 

via R package flocker92, which provides an occupancy-modelling 

front end for R package brms93. We ran four chains for 1,000 warmup 

iterations and 1,000 sampling iterations each. All chains ran without 

post-warmup divergences and yielded estimated fractions of missing 

information greater than 0.88. Across all four chains, all parameters 

yielded R-hat (split, folded, rank-normalized) of less than 1.02 and bulk 

effective sample size greater than 100.

Our data are sufficiently strong to robustly estimate the global 

model and constrain species-specific occupancy estimates despite 

some covariates having small or uncertain effects. Therefore, we did 

not perform model selection. However, our final model was developed 

via a process of model refinement in response to posterior predictive 

checking (see below). To promote transparent science and expose 

‘researcher degrees of freedom’94 in our approach that would otherwise 

remain hidden, we document our model-building process in detail in 

Supplementary Appendix 2.

We assessed model adequacy with multiple posterior and mixed 

predictive checks95 tailored to detect specific forms of misspecifica-

tion. Because our model is fitted to over 2 million data points, we have 

tremendous power to detect mild forms of misspecification. Therefore, 

our focus is not on ensuring that we ‘pass’ the checks, but rather on 

guiding model development to arrive at an adequate model without 

obvious avenues for further improvement. We describe these checks 

in detail in Supplementary Appendix 3.

Cross-scale metrics of biodiversity impact
For both our ecoregion-based analysis and our grid-based analysis, we 

require a metric of biodiversity impact that captures the biodiversity 

change associated with forest conversion to pasture. Crucially, this 

metric must straightforwardly capture the relative conservation value 

of forest and pasture, but must also be straightforwardly comparable 

across spatial scales. For example, raw population size of a species of 

conservation concern is not a useful metric, as it will naturally tend 

to increase with increasing spatial scale, even in the absence of any 

noteworthy scaling dynamics.

The natural metrics for our use involve characterizing the dis-

tribution across species of percent changes in occupancy between 

forest and pasture. For example, over any spatial area we can assess 

the ratio of forest occupancy to pasture occupancy for the median 

species (among all species present in the area), and then ask whether 

and how this median varies systematically with spatial scale. To pro-

vide a more complete view of how the distribution of species-specific 

abundance ratios varies across spatial scales, we report not only the 

median but also the 25th and 75th percentiles. If communities tend to 

accrue disproportionately more losers than winners with increasing 

spatial scale, then these metrics will report greater biodiversity impacts 

at large scales compared with small scales.

Using our species distribution models, range maps and digital 

elevation model, we predicted species-specific occupancy in forest and 

pasture landscapes on a 2-km spatial grid across Colombia. We made 

these predictions for hypothetical forest and pasture landscapes at 

each location irrespective of current land use. Because one 2-km grid 

cell contains sixteen 500-m cells, each corresponding to the scale of 

one of our sampling clusters, we computed the predicted occupancy 

sampling sixteen times from the cluster-level random effect and then 

averaging on the back-transformed probability scale.

From these predictions, it is straightforward to calculate the pro-

portional change in total occupancy (expected number of total forest 

points occupied divided by total pasture points occupied) for any spe-

cies in any region of any size. Thus, we can compute the metrics laid out 

above by taking these ratios for all species in the regional species pool 

and finding the 25th, 50th and 75th percentiles. However, a challenge 

remains, namely that of selecting the set of species we use to represent 

the regional species pool. In particular, we wish to avoid results in which 

the distribution of population changes is dominated by a huge number 

of species that are absent or vanishingly rare in the region. On the other 

hand, we want to allow our metrics of biodiversity impact to reflect the 

fates of highly localized species and/or constitutively rare species that 

are characteristic of the region.

Therefore, we classified species as potentially present at the pixel 

scale based on thresholds of occupancy probability. Results in the 

main text are based on species pools defined as all species that reach 

an occupancy probability of at least 0.2 on at least one relevant 2-km 

pixel. Thus, regional species pools are species that reach the thresh-

old occupancy probability on at least one pixel within the region. 

Local species pools are species that exceed the threshold locally. In  

Supplementary Results, we additionally present results for alterna-

tive thresholds of 0.1 and 0.3. Note that because of the relatively large 

variance associated with subregion and cluster effects in our model, 

even constitutively rare species can be expected to exceed occupancy 

probabilities of 0.2 at some points. For example, in a single homoge-

neous subregion (20 km × 20 km) a species with the following mean 

occupancy probabilities would be expected to meet our threshold in 

at least one 2-km pixel: mean occupancy of 0.03 would be expected 

to meet the threshold probability of 0.1; mean occupancy of 0.09 

would be expected to meet the threshold probability of 0.2; and mean 

occupancy of 0.15 would be expected to meet the threshold probability 

of 0.3. In regions spanning multiple subregions, the large fitted vari-

ance of the subregion effects would come into play, depressing these 

numbers still further.

We chose these thresholds to ensure, on the low end, that we 

include constitutively rare species within our metrics of biodiversity 

loss and to reflect, on the high end, values at which a well-powered 

local-scale study of 100 points (50 in forest and 50 in pasture, each one 

exhaustively sampled to detect all species that are present) would be 

expected to obtain enough detections to make single-species inference 

about the relative value of forest and pasture.

Quantifying multi-region impacts
To quantify the sensitivity to habitat conversion of the community in 

a particular region of Colombia, as well as across the union of regions 

(the ‘Colombia-wide’ scale), we calculate the community that is present 

in each region, and then quantify how these communities respond to 

forest conversion. To establish how a given species responds to forest 

conversion, we first calculate the ratio of the number points that a 

species is predicted to be on if all points were forested to the number 

of points if all points were pasture. Following this, we ask which spe-

cies are present in which region’s community based on the threshold-

ing above. Identifying the species pool associated with each region  
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(and their union, for the Colombia-wide pool) results in a distribution 

of species’ sensitivity to habitat conversion, ranging from species 

that benefit from forest conversion to species that are strongly nega-

tively affected by forest conversion. To generate measures of the full 

distribution of sensitivity to habitat conversion, we use three metrics 

to quantify the response of the community: the effect of habitat con-

version on the 25th, 50th and 75th percentiles of sensitivity. We carry 

out this calculation for 100 draws from the posterior distribution, and 

present this posterior distribution in Fig. 2.

To assess how the sensitivity to habitat conversion of a particular 

region’s community compares with that of the community present 

across all regions (Colombia-wide), we then calculate each region’s 

sensitivity to habitat conversion relative to that across all regions as 

the ratio of the two. A value of one indicates that there is no difference 

in the sensitivity to habitat conversion of a region’s community from 

that present across Colombia as a whole, less than one indicates that the 

region is less sensitive, and more than one, more sensitive. As before, 

we carry out this calculation for 100 draws from the posterior distribu-

tion, and present this posterior distribution in Fig. 2.

Lastly, to establish how many regions we need to pool together 

to reach a similar level of sensitivity to habitat conversion as we see 

across all regions, we randomly generate 1,000 different sequences 

of regions, each of which starts with one region and then sequentially 

adds more regions until all 13 regions are present. We then iteratively 

work through each growing region list, adding to the species pool 

and updating the sensitivity to habitat conversion metrics. For each 

posterior draw and each sequence we then calculate the sensitivity to 

habitat conversion of the community relative to that observed across 

all regions. We then calculate the average relative sensitivity to habitat 

conversion by averaging across all sequences, and then summarize this 

to a mean and 90% CI, which is presented in Fig. 2.

Quantifying predictors of spatial scaling
Beta-diversity as a predictor of excess regional impacts. To assess 

the spatial scaling of the relative conservation value of forest and pas-

ture, we aggregated on hexagonal grids of various sizes96 and computed 

the conservation value over each hexagonal grid cell. We consider grid 

cells ranging from 290 km2 to 70,000 km2 (Supplementary Fig. 2). 

In each region, we compute our cross-scale impact metrics both at 

the scale of the whole cell and for each 2-km pixel inside the cell. We 

perform these computations iteration-wise over the occupancy model 

posterior, randomly offsetting and rotating the hexagonal grid at each 

rotation to avoid any artefacts associated with particular grid configu-

rations. Note that it is because of these offsets and rotations that we 

display only a single representative posterior iteration (rather than an 

average over posterior iterations) in Fig. 3b,c. To ensure that we analyse 

cells of approximately constant size, we only include hexagonal cells 

that are at least 60% overlapped by our study area.

We compute the excess regional biodiversity loss as the 

regional-scale loss metric (that is, the percent decline of the median 

species, the 25th percentile and the 75th percentile) divided by the 

average of the local-scale (2-km pixel) metrics within the region. We 

then compute multiplicative beta-diversity35,36 based on species rich-

ness (using the thresholding approach discussed above to define the 

gamma diversity of the grid cell), and we use ordinary least squares 

to find the line of best fit in a regression of the logarithm of excess 

regional biodiversity loss against beta-diversity. We propagate 

uncertainty into this regression by re-computing the line of best fit 

iteration-wise over the posterior. Because the grid comprehensively 

covers the spatial domain under study, we employ ordinary least 

squares only to find the line of best fit through our sampled grid cells, 

not to make inference about some hypothetical larger population of 

cells. Thus, we are uninterested in the uncertainty in the fitted linear 

regression parameters within each posterior iteration. The uncer-

tainty in our line of best fit comes from posterior uncertainty in the 

beta-diversities and excess regional losses across our study region, 

and this uncertainty is propagated fully.

Drivers of turnover in forest versus pasture. To explore the patterns 

of biotic homogenization that drive the collapse of biodiversity value at 

large spatial scales, we fitted GDMs37 to our detection-corrected point 

count data separately in forest and pasture. While analyses of pairwise 

dissimilarity cannot directly reveal the spatial scaling of biodiversity 

loss27,97, they can provide post hoc insights into the mechanism and pat-

tern underlying the scaling phenomena that we have directly quantified 

through other approaches.

We used the Sørensen dissimilarity and the Simpson dissimilarity 

(that is, the turnover component of the Sørensen dissimilarity36) as 

response variables in our GDMs, and we modelled these dissimilarities 

based on geographic distance, elevation63, annual precipitation98, and 

measures of the degree to which points are separated by valley and 

mountain barriers. We define these two barrier measures as follows.

Valley barriers. We assigned all sampling points to one of four moun-

tain ranges: the east Andes (including Amazonia and the Llanos), the 

central Andes, the west Andes and the SNSM. Point pairs on the same 

mountain range were assigned a distance of zero; they are not isolated 

from one another by valleys. Point pairs on different mountain ranges 

were assigned a distance corresponding to the elevation of the lower 

point, as valley barriers should be increasingly important in structuring 

dissimilarities in higher-elevation avifaunas (Supplementary Fig. 3).

Mountain barriers. We measured mountain barriers with respect to 

the crest of the east Andes, which represents the major biogeographic 

divide between the cis- and trans-Andean avifaunas. Point pairs on the 

same side of the east Andes were assigned a distance of zero. Point pairs 

on opposite sides were assigned a distance corresponding to 4,100 (the 

highest elevation sampled, and higher than most mountain passes in 

the east Andes) minus the elevation of the higher point, as montane 

barriers should be increasingly important in structuring dissimilarities 

in lower-elevation avifaunas (Supplementary Fig. 3).

We fitted our GDMs with a negative-exponential link function via 

R package gdm99 using three I-spline basis functions per predictor with 

knots at the minimum, median and maximum predictor values37. We 

used the Bayesian bootstrap77 to account for uncertainty in the fitted 

GDMs78, based on 400 bootstrap replicates. We fitted these GDMs both 

based on our raw point count data without correction for imperfect 

detection and based on modelled detection-corrected data. When 

using detection-corrected data, we fully propagated uncertainty in 

the occupancy model by fitting a single bootstrap replicate to each of 

400 draws from the detection-corrected posterior.

Software and data
We performed all data manipulation and analysis in R100, Stan91 and 

Google Earth Engine101. We constructed and fitted our occupancy 

models using R package flocker92, which we purpose built for this work 

to provide a front end to fit occupancy models in Stan via R packages 

brms93 and cmdstanr102.

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
Data are available via Zenodo at https://doi.org/10.5281/zenodo. 

15318728 (ref. 103).

Code availability
Code to reproduce all analyses is available at https://github.com/

jsocolar/colombiaBeta.
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