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Abstract—Within the area of speech enhancement, there is an
ongoing interest in the creation of neural systems which explicitly
aim to improve the perceptual quality of the processed audio. In
concert with this is the topic of non-intrusive (i.e. without clean
reference) speech quality prediction, for which neural networks
are trained to predict human-assigned quality labels directly
from distorted audio. When combined, these areas allow for the
creation of powerful new speech enhancement systems which can
leverage large real-world datasets of distorted audio, by taking
inference of a pre-trained speech quality predictor as the sole
loss function of the speech enhancement system. This paper
aims to identify a potential pitfall with this approach, namely
hallucinations which are introduced by the enhancement system
‘tricking’ the speech quality predictor.

Index Terms—Speech enhancement, non-intrusive speech qual-
ity prediction, generative models for signal enhancement

I. INTRODUCTION

There has been an ongoing interest in the development of

neural non-intrusive speech quality (SQ) predictors, for both,

(i) replacing traditional signal-processing-based intrusive SQ

metrics [1], [2] and (ii) prediction of human mean opinion

score (MOS) quality labels [3]–[6]. Such neural-network-

based predictors have two major benefits: In the case of

predictors of traditional metrics, they allow for the creation

of non-intrusive versions of normally intrusive SQ metrics,

such as e.g. the frequently-used Perceptual Evaluation of

Speech Quality (PESQ) [7]. While traditional metrics are

often non-differentiable, these neural-network-based metrics

can then be used in a loss function for training an speech

enhancement (SE) system [8], [9]. Direct MOS predictors

estimating human signal quality assessment are also able to

leverage large datasets of audio with MOS labels as training

data where the model is trained to accurately predict the MOS

of the input audio. During inference, these models are able to

mimic the effect of actually conducting listening tests which

is often a costly and time-consuming process. Inference of

MOS predictors can also be used as a training objective for

SE systems, potentially allowing for the leveraging of large

amounts of real noisy audio (where no reference signal exists)

as training data. Approaches combining metric and MOS

prediction [10] have also proved successful, especially when

a strong correlation between metric and human labels can be

found.

This work was supported by the Centre for Doctoral Training in Speech and
Language Technologies (SLT) and their Applications funded by UK Research
and Innovation [grant number EP/S023062/1]. This work was also funded in
part by TOSHIBA Cambridge Research Laboratory.

In the recent CHiME7 challenge unsupervised domain adap-

tation speech enhancement (UDASE) task [11], [12] it was

shown that high metric scores from non-intrusive neural SQ

predictors do not always match with actual human MOS eval-

uation. The evaluation of the SE system entries to the UDASE

task had two stages; first the entries were evaluated in terms

of the scores from the Deep Noise Suppression Mean Opinion

Score (DNSMOS) [13] neural non-intrusive SQ metric. Then,

in the second evaluation stage, listening tests were conducted

and MOS scores for audio enhanced by the challenge entries

were computed from these listening tests. The best-performing

system in the first evaluation stage was [14], an SE system

which utilises a non-intrusive MetricGAN [2] framework to

directly optimise towards the DNSMOS metric. However, this

system was scoring lowest of the entries going forward to

the listening-test evaluation stage; by optimising directly for

high DNSMOS scores, the SE system may learn to introduce

specific distortions which result in high DNSMOS scores but

which negatively impact the actual perceptual quality of the

enhanced audio when assessed by humans.

In general, it was found in the UDASE task results [12]

that quality ratings from non-intrusive quality predictors such

as DNSMOS and TorchAudio-SQUIM [1] did not correlate

strongly with the MOS ratings obtained in the second eval-

uation stage by listening tests and that traditional intrusive

signal processing based metrics such as PESQ and Short-Time

Objective Intelligibility (STOI) showed significantly stronger

correlation.

This work therefore has two major objectives. Firstly, to

better understand how SE systems like that in [14] learn to

optimise their outputs towards neural non-intrusive SQ metrics

during training. Secondly, to identify why neural non-intrusive

SQ metrics fail to properly assess the human assessed quality

of the output of SE systems, even in the setting that the SE

system does not directly optimise the metric in training.

This paper is structured as follows. In Section II a novel

non-intrusive SQ predictor system is introduced. Then in

Section III an SE system which uses inference of the SQ

predictor in its training loss function is detailed. In Section IV,

an experiment training the SE system with varying degrees of

influence of the SQ predictor is conducted, and the results

analysed. In Section V a small listening test experiment is

carried out using the models trained in the proceeding section,

and the results analysed. Section VI concludes the paper.
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II. NON-INTRUSIVE SPEECH QUALITY PREDICTOR

The non-intrusive SQ predictor D(·) used in this work

is based on [15] and consists of a Transformer [16] block,

followed by a feed-forward attention block with a sigmoid

activation on a single output neuron which represents the

predicted quality q̂′ of the input audio, normalised between

0 and 1.

The proposed predictor differs from that in [15] as follows:

Rather than an input feature derived from the XLS-R repre-

sentation, the input feature of D(·) is the output of the Trans-

former Encoder stage of a pre-trained Whisper [17] automatic

speech recognition (ASR) network. This representation has

been shown to be a useful feature representation for similar

non-intrusive prediction tasks [18], [19]. In this work, the

whisper-small1 model, trained on 680k hours of labelled

speech data is used. The encoder stage of this model returns a

representation of fixed dimension FEnc×TEnc = 768× 1500.

Note that the Whisper encoder block is used solely as a

feature extractor, and its parameters are not updated during

the training of D(·).
The metric prediction network D(·) is trained as follows:

The MOS label q in most datasets is expressed as a value

between 1 and 5, higher being better. In the training and

inference of D(·), this value is normalized between 0.2 and

1, which is denoted as q′. For a pair of audio and normalized

MOS label {x[n], q′}, the model is trained with a loss between

the output of the model (i.e. the predicted quality of x[n]) and

the true normalized MOS label q′:

LD = (D(x[n])− q′)2 (1)

The model is trained following a scheme similar to that pro-

posed in [3] where training halts if the validation performance

does not improve after 20 epochs.

The performance of the proposed non-intrusive metric pre-

diction network D(·), trained and tested on the NISQA [3]

dataset is shown in Table I, compared to the NISQA baseline.

The NISQA test set and (baseline) model are widely used

benchmarks for the SQ prediction task. The proposed predictor

network outperforms this baseline both in terms of spearman

correlation r and root mean squared error (RMSE) across all

three NISQA testsets (P501, FOR and LIVETALK), and is

comparable or better than state-of-the-art systems [15], [20]

on these testsets. In addition, a variant of D(·), denoted as

DB(·) in Table I, is trained based on additional datasets, i.e

NISQA [3], Tencent [6] and PTSN [4] speech quality datasets,

which shows similar, in mean further increased performance.

Table I
PROPOSED SQ PREDICTOR COMPARED WITH BASELINE NISQA MODEL.

Testset P501 FOR LIVETALK MEAN

Model r↑ RMSE↓ r↑ RMSE↓ r↑ RMSE↓ r↑ RMSE↓
NISQA 0.89 0.46 0.88 0.40 0.70 0.67 0.82 0.51
D(·) 0.94 0.35 0.93 0.32 0.81 0.54 0.89 0.40
DB(·) 0.93 0.37 0.94 0.32 0.85 0.50 0.91 0.40

1https://huggingface.co/openai/whisper-small

III. SPEECH ENHANCEMENT SYSTEM

The DPT-FSNet [21] single-channel speech enhancement

architecture which is based on the dual-path Transformer

(DPT) architecture is used as the baseline speech enhancement

system denoted as G(·) in this work. This model has shown

state-of-the-art performance in this task, despite a relatively

small parameter count. It takes as input the real and imaginary

short-time Fourier transform (STFT) components Xr and Xi

of the noisy time domain signal x[n], and returns mask

matrices Mr and Mi which are multiplied with the inputs

to produce estimated of the clean complex signal spectra,

i.e. Ŝr and Ŝi. These are then used as inputs to an inverse

short-time Fourier transform (ISTFT) operation to produce the

enhanced time domain audio ŝ[n]. For a detailed description

of the architecture see [21].

A. Network Structure

The DPT-FSNet has three sequential stages. The first stage

is an encoder comprised of a 1-D convolutional layer followed

by a dilated-dense block with 4 dilated convolutional layers.

The input to the encoder are the real and imaginary STFT

components of the noisy input signal x[n] in the form 2×T ×
F , and the output is a higher dimensional representation with

dimensions 64× T × F , i.e. 64 time-frequency maps.

The second stage comprises 4 dual path [22] Transformer

blocks, which operate over the T and F dimensions sequen-

tially. The Transformer blocks use a slight variation on the

standard structure; i.e. a gated recurrent unit (GRU) layer

is incorporated into the feed-forward network following the

multi-head attention.

The final stage is a decoder structured as a mirror of the

initial encoder stage; it takes as input the output of the second

stage and returns predicted real and imaginary masks Mr,Mi

with dimensions 2× T × F .

B. Loss Function

To train the proposed adaptation of the DPT-FSNet network

G(·), an extended loss function

L = αLSpec + (1− α)LSQ (2)

is proposed which adds a loss term

LSQ = (1−DB(ŝ[n]))
2 (3)

based on inference of the non-intrusive pre-trained SQ predic-

tor (cf. Section II) of the enhanced audio ŝ[n] to the loss used

in the original DPT-FSNet paper [21]

Lspec =
1

TF

T−1
∑

t=0

F−1
∑

f=0

∣

∣

∣

(

|Sr[t, f ]| − |Ŝr[t, f ]|
)

+

(

|Si[t, f ]| − |Ŝi[t, f ]|
)
∣

∣

∣
,

(4)

which is based on the distance of enhanced real and imaginary

spectrogram components Ŝr and Ŝi to the spectrogram com-

ponents Sr and Si of the reference audio s[n]. Note that the

time domain loss term as outlined in [21] is not utilised here.



Table II
PERFORMANCE OF SPEECH ENHANCEMENT FOR DIFFERENT α IN (2) FOR THE VOICEBANK-DEMAND TESTSET.

Best performance denoted in bold font. Unprocessed data denoted in italic font.
Composite DNSMOS

Loss α in (2) PESQ STOI
CSIG CBAK COVL

SISDR
SIG BAK OVR

DB(·)

- clean 4.50 1.00 5.00 5.00 5.00 91.14 4.27 4.36 3.88 0.67

- noisy 1.97 0.92 3.34 2.44 2.63 8.44 4.24 3.32 3.36 0.58

Lspec only, (4) 1 2.99 0.95 4.09 3.57 3.55 19.82 4.14 4.42 3.86 0.65
0.9 2.93 0.94 3.96 3.52 3.44 19.70 4.12 4.46 3.95 0.68
0.8 2.63 0.93 3.59 3.33 3.09 19.62 4.05 4.41 3.91 0.70
0.7 2.72 0.94 3.78 3.38 3.24 19.39 4.08 4.30 3.78 0.71
0.6 2.63 0.93 3.45 3.25 3.00 19.25 4.00 4.33 3.79 0.79
0.5 2.65 0.93 3.57 3.29 3.07 19.43 4.04 4.36 3.84 0.77
0.4 2.66 0.93 3.67 3.31 3.14 18.92 4.06 4.28 3.75 0.76
0.3 2.68 0.93 3.79 3.34 3.22 18.98 4.11 4.38 3.83 0.77
0.2 2.58 0.93 3.47 3.25 3.00 18.51 3.92 4.24 3.70 0.75

←
L

,
(2

)
→

0.1 2.37 0.91 3.29 3.10 2.79 17.72 4.02 4.29 3.75 0.76
LSQ only, (3) 0 1.43 0.41 1.00 1.03 1.02 -29.68 2.55 2.54 2.42 0.88

The hyperparameter α in (2) is a value between 0 and 1 which

controls the relative weight of the intrusive and non-intrusive

terms which will be analysed in the following.

IV. EXPERIMENT 1 - SCALING THE QUALITY

ESTIMATOR’S INFLUENCE

In this experiment, the SE system G(·) is trained for

different α in (2), i.e. for varying degrees of influence of the

quality estimator DB(·) in the loss function. In doing this,

it is possible to compare the performance of at one pole,

a traditional signal-processing-based intrusive loss function,

i.e. Lspec in (4) only, and at the other a purely non-intrusive SQ

predictor loss, i.e. LSQ in (3) only, as well as points between

these poles, i.e. the combined loss in (2) .

A. Experiment Setup

Each speech enhancement system model, i.e. for varying α

is trained for 200 epochs on the VoiceBank-DEMAND [23]

training set, a widely used dataset for for training speech

enhancement networks. It consists of clean English read

speech, artificially corrupted with environmental noise from

the DEMAND [24] noise dataset. The Adam [25] optimizer is

used; following [21], a dynamic strategy to adjust the learning

rate is employed, where the learning rate steadily increases

during the first few model updates and then scales down over

the remaining training epochs.

B. Results

Table II shows the speech enhancement performance of

the experiment described in Section IV-A for the VoiceBank-

DEMAND testset. The models are evaluated by frequently-

used signal-processing-based intrusive measures PESQ, STOI,

the three terms of the Composite measure [26] CSIG, CBAK

and COVL and the scale invariant signal-distortion ratio

(SI-SDR) [27]. The models are also evaluated using the non-

intrusive neural SQ measure DNSMOS [13] as well as in terms

of the score assigned by DB(·) detailed above in Section II.

The best performing model in terms of the standard intrusive

measures is the model with α = 1 in (2), i.e. where no

inference of DB(·) is used, and the loss function consists

solely of the tempo-spectral distance in the loss term defined

in (4). Generally, as the value of α decreases, so do the scores.

At α = 0 (i.e. solely using inference of DB as defined in (3)

as the loss function), the performance degrades significantly,

being drastically worse than even the input noisy data in all

intrusive measures. The difference in performance between an

α = 0 and α = 0.1 is stark, suggesting that even a small

weighting of the intrusive loss term (4) is enough to greatly

improve performance.

Performance assessed by the non-intrusive measures in the

right part of Table II follows a somewhat different pattern. All

models degrade the DNSMOS SIG score in comparison to the

noisy (as well as the clean) audio. This is consistent with the

findings in masking-based SE in general and for the UDASE

task in particular [12], where all enhancement systems show

degraded DNSMOS SIG with the exception of those systems

which explicitly optimise towards it in training. While the

DNSMOS ratings generally decrease as α does, the model

for α = 0.9 outperforms the model with α = 1 in terms

of the BAK and OVR components. Furthermore, the model

for α = 0.9 performs only slightly worse than the model for

α = 1.0 in terms of the intrusive metrics, suggesting that

a small weighting of (3) might be beneficial to the overall

audio quality. However, this DNSMOS performance should

be interpreted with some scrutiny; the results here show that

some of the models outperform even the clean reference audio

in terms of DNSMOS, which might be surprising in the first

instance. However, later spectrogram analysis (cf. Figure 1)

shows that clean signals sometimes contain noise (primarily

breathing sounds) which are removed by the SE system.

Furthermore, all DNSMOS scores for α = 0 are much too

high given that this system completely destroys the input

signal. As noted in [14], this might be due to an extreme

failure to generalise in DNSMOS. As it is to be expected, the

DB(·) score increases as α decreases and inference of DB(·)
is weighted more heavily in the loss function.

C. Spectrogram Comparison

Figure 1 exemplarily shows spectrograms for the

VoiceBank-DEMAND testset file p232_005.wav; clean



Figure 1. (Magnitude) spectrogram comparison for differing values of α.

reference S and noisy audio X (top two panels) as well as

enhanced signals Ŝ for different α in (2) are shown. With

the exception of α = 0, all models successfully remove the

distortion tone present in the first 2 seconds of the input

noisy signal at approx. 500 Hz, and generally do enhance the

noisy input such that it resembles the clean reference.

As the value of α decreases however, a distortion in the

first half second of the audio becomes more prominent. This

distortion is interesting for a number of reasons. It does not

resemble the noise in this region in the noisy input signal and

occurs consistently in appearance spectrally and in audible

sound across all audio enhanced by the models, indicating

that it can be best characterised as a hallucination of the

enhancement model(s). This hallucination is most prominent

in the model where α = 0; other than the hallucination the

outputs of this model consist of seemingly meaningless content

which does not resemble the noisy input signal at all. Given

that the hallucination appears more strongly as the influence

of the quality predictor-based loss term (3) increases, it is

likely caused by the speech enhancement system learning to

trick DB(·). The consistent form of the distortion can also be

explained as follows; during the training of DB , it learned to

assign a high-quality rating for input audio which contained a

sound like this hallucination. Then during the training of the

SE models, the SE models learn to exploit this quirk of the

training of DB by introducing the hallucination in order to

minimise the loss function. The consistent temporal position

of the hallucination can be explained by the short non-speech

region at the start of the audio file which is often present across

all audio in the VoiceBank-DEMAND and similar datasets.

The presence of this hallucination is likely the cause of the

decrease in performance in terms of intrusive signal processing

metrics in Table II while the non-intrusive neural SQ metrics

change less uniformly; the intrusive metrics all involve a direct

comparison with the reference audio which explicitly penalise

the presence of the hallucination. The hallucination has a

speech-like characteristic which is possibly the reason that the

SQ predictor models reward its presence.

V. EXPERIMENT 2 - LISTENING TEST

In order to better understand the performance of the trained

SE models and the human perception of the hallucination

distortion, a small listening test experiment was carried out.

A. Setup

Noisy audio files from the VoiceBank-DEMAND testset and

audio enhanced by enhancement models with α values of 0,

0.1, 0.5 and 0.9 were randomly selected for a total of 15 files

(3 files from each of the 4 α values plus the noisy signal).

The ITU-T P.835 [28] methodology was used, inspired by

[11]. 16 participants sequentially rated each file in terms of

the naturalness of the speech signal, the intrusiveness of the

background noise distortion and overall quality on 5 point

Likert scales (i.e SIG, BAK and OVRL), for a total of 48
ratings per audio file. The listening test audio is available

online2.

B. Results

The results of the listening test are shown in Table III. In

terms of signal quality SIG, the noisy input audio scores the

highest; this is in line with the MOS results reported in [11]

and results in Table II. For BAK and OVRL, the listening-test

results follow those of the metrics in Table II with the model

for α = 1.0 being the best performing.

Interestingly, α = 0.1 significantly outperforms α = 0.5 in

all aspects in the listening tests, outperforming even α = 0.9
which showed the best performance in Table II in terms

of SIG. The low BAK and OVRL scores of for α = 0.5
and 0.1 suggest that the hallucination is perceptible, but that

the listeners considered it as an aspect of the background

rather than a distortion in the speech signal itself. This is

important when considering the disconnect between intrusive

2https://leto19.github.io/nisqa_se_demo.html



Table III
LISTENING TEST RESULTS

Best performance denoted in bold. Unprocessed data denoted in italic.
SIG BAK OVRL

α MEAN STD MEAN STD MEAN STD

noisy 4.54 0.65 2.92 0.82 3.67 0.88

1.0 4.50 0.62 4.67 0.66 4.42 0.74
0.9 4.31 0.72 4.54 0.65 4.25 0.73
0.5 4.06 0.86 3.58 1.03 3.63 0.96
0.1 4.35 0.70 3.83 0.69 3.94 0.81

metric scores and human perception MOS. An intrusive metric

like PESQ is directly comparative such that deviation in the

test signal from the oracle reference signal always results in

a lower output score. On the other hand, human MOS is

indirectly comparative; the score is informed wholly by the

listener’s preconceived notion of speech quality, which varies

not only between individuals but also unconsciously over time

during the listening test. Likewise, non-intrusive SQ predictors

are also indirectly comparative, with the output score informed

by the training data. This is exemplified clearly by comparing

the Composite measure CSIG score of noisy audio in Table II

with the analogous DNSMOS SIG score in the same table and

the real MOS SIG average in Table III. The noisy signals are

generally dissimilar to the clean references, meaning that the

intrusive CSIG score suffers but this does not in reality mean

that the human perception (or a predictor of human perception)

of the speech distortion suffers drastically.

VI. CONCLUSION

SE models which are optimised using non-intrusive neural

SQ predictors are shown to produce hallucinatory artefacts in

output audio. These hallucinations do not represent meaningful

content but are learned by the SE system in order to optimise

the audio towards maximising the score awarded by the SQ

predictor. Intrusive metrics like PESQ are sensitive to these

hallucinations, and they are shown to generally be perceptible

in human listening tests.
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