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ABSTRACT

The theoretical framework for analyzing wave and oscillatory behavior in the structured solar corona using slab geometry, where space is
filled with uniform low-b plasma, is considered as one of the prominent models for a number of magnetic structures. Numerous observations
from the initial findings of the Transition Region and Coronal Explorer satellite to the most recent ones are successfully explained by adopt-
ing this model. To formulate the oscillatory characteristics of magnetohydrodynamic (MHD) waves, most studies have the concept of trapped
surface and body waves. In this study, we formulate the dispersion relation for leaky fast sausage and kink mode waves to investigate the
wave period, damping time, Q-factor, and coronal magneto-seismological characteristics for the non-ideal MHD model by considering a
parametric scan of the width and length of the loop. A key aspect of our approach is incorporating viscosity as a damping mechanism, which
directly affects the imaginary part of the complex frequency, leading to comparatively more wave damping. In our study, we focus on how
viscosity alters the characteristics of leaky fast sausage and kink MHD waves within the low-b regime. The behavior of leaky fast MHD waves
is analyzed under the consideration of long (ka < 1) and short wavelength (ka > 1) approximation of the wave as: (i) For long wavelength
limit, the periods of both fast leaky sausage and kink mode waves are influenced solely by the loop width and remain independent of the loop
length. However, for the case of short wavelength limit, the period of sausage and kink modes depends on both the loop width and the loop
length. (ii) Second, we have studied the impact of non-ideal term (i.e., viscosity) on the damping of these leaky fast MHD waves. The addition
of viscosity in the ideal plasma model leads to stronger damping of fast leaky sausage and kink mode waves for both long and short wave-
length limits.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0263251

I. INTRODUCTION

The study of wave propagation in solar and space plasmas is a
fundamental aspect of plasma dynamics. On the one hand, waves play
a crucial role in transporting energy across different layers of the solar
atmosphere and dissipating this energy in the surrounding region in
the form of heat (Einaudi et al., 1993; Erd�elyi and Ballai, 2007; Arregui,
2015, Li et al., 2020; and Kolotkov et al., 2020). However, on the other
hand, as waves travel through the plasma, they carry with them infor-
mation about the characteristics of the medium in which they propa-
gate. This latter aspect makes the seismological application of these
waves a powerful tool for revealing physical parameters that are

otherwise challenging to measure directly, such as magnetic field
strengths in the tenuous corona, the magnitude of various transport
coefficients, and the intrinsic self-organization of the plasma (Antia,
1986; Gough et al., 1996; Gizon and Birch, 2005; Andries et al., 2009;
De Moortel and Nakariakov, 2012; Mathioudakis et al., 2013; and
Arregui et al., 2018). Through this solar magneto-seismological (SMS)
approach, researchers can gain insights into the otherwise hidden
properties of the solar and space plasma environments.

Coronal loop oscillations interpreted as magnetohydrodynamic
(MHD) fast kink mode have garnered significant interest since their
direct observational detection with the Transition Region and Coronal
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Explorer (TRACE) (Aschwanden et al., 1999, 2002; Schrijver et al.,
2002) and thereafter by a number of ground-based observations [e.g.,
the Dunn Solar Telescope (DST), Swedish Solar Telescope (SST),
Coronal Multi-channel Polarimeter (CoMP), Goode Solar Telescope
(GST), and GREGOR Solar Telescope (GST), as well as space-based
missions including the Hinode, Solar Dynamics Observatory (SDO),
Interface Region Imaging Spectrograph (IRIS), Solar Orbiter (SolO),
and Parker Solar Probe (PSP)]. The theoretical formulation of loop
oscillations in leaky mode is already well-developed and initiated, e.g.
(Spruit, 1982; Edwin and Roberts, 1983; Cally, 1986; Allcock and
Erd�elyi, 2017, and Ofman and Wang, 2022), with the latest review by
Erd�elyi and Zs�amberger (2024) and the observation of fast leaky sau-
sage mode waves was reported by Morton et al. (2012) in the chromo-
spheric region at a dimensionless wavenumber of approximately
ka� 0.086 0.03, as shown in their Fig. 4 (also see their supplementary
material for more details). Although such waves have not yet been
observed in the corona, its existence may not be ruled out and any
future observations with high-cadence, space-based instruments may
make this possible (Zhong et al., 2023).

The magnetohydrodynamic (MHD) modes in the structured
region may be classified into two main categories (trapped and leaky),
depending on the consideration of whether wave energy leakage is
allowed away from the structure or not. In the magnetic structure,
trapped and leaky mode waves follow the inequality condition of
(a21 > 0) and (a21 < 0), where the so-called effective wavenumber a21
depends upon the magnitude ofx2. More details about this will be dis-
cussed in Sec. II. Apart from these categorizations, transverse fast
MHD waves in a structured region are further classified into kink and
sausage mode waves. Sausage modes involve symmetric radial pertur-
bation, where both boundaries of the slab move in phase toward or
away from the axis, leading to periodic expansions and contractions of
the structure. In contrast, kink modes exhibit asymmetric lateral dis-
placements, where the entire structure oscillates side-to-side with
boundaries moving out of phase (Roberts, 2019).

In regard to the trapped fast MHD kink mode, there are various
studies that address the transverse oscillations of kink waves and the
transfer of energy from transverse to azimuthal directions, leading to
damping through the process of mode coupling (e.g., Pascoe et al.,
2015; De Moortel et al., 2016; Howson et al., 2020; and Nakariakov
et al., 2021). The transverse oscillations of trapped modes in slab
geometry were studied and modeled by considering ideal and straight
symmetric slab with sharp boundaries (Edwin and Roberts, 1982;
Gordon and Hollweg, 1983; Terradas et al., 2005; and Brady et al.,
2006), the straight symmetric slab with smooth boundaries (e.g.,
Edwin and Roberts, 1988; Hornsey et al., 2014; Lopin and Nagorny,
2015; and Yu et al., 2015), the curved magnetic slab (e.g., Verwichte
et al., 2006; Díaz et al., 2006; and Lopin, 2022), the straight asymmetric
slab with sharp boundaries (e.g., Allcock and Erd�elyi, 2017; Chen et al.,
2022) and further extended and followed by Porter et al. (1994) and
Pandey et al. (2022a, 2022b) for unstructured and structured atmo-
sphere in the non-ideal plasma. However, for the leaky mode case, spe-
cifically, Cally (1986) and later Cally (2003) pointed out that certain
solutions of the dispersion relation, known as principal fast leaky
modes (PFLK), can decay rapidly. These modes are of interest because
they may model the observed damping of transversal loop oscillations.
The aforementioned studies primarily address propagating waves;
however, our focus here is exclusively on standing mode waves,

determining the frequency (x) by assuming a real and fixed value of k
prescribed by the value of loop length. Detailed explanation
about standing waves and their boundary conditions is mentioned in
Sec. II A.

The physical relevance and the possible role of the fast leaky
MHD modes in coronal loop oscillations remain a topic of active
debate within the scientific community (Cally, 2006; Ruderman and
Roberts, 2006, Goedbloed et al., 2023; and Ebrahimi, 2024). This ongo-
ing discussion highlights the complexity of interpreting these oscilla-
tions and the need for further research to fully understand the
underlined mechanisms. Understanding the dynamical behavior of the
solar corona has depended heavily on the study of leaky mode magne-
tohydrodynamic (MHD) waves in slab geometry. Leaky modes, also
known as pseudo-modes or quasi-normal modes, are characterized by
their complex frequencies and pertain to a tendency to dissipate energy
away from the region of interest. From the energy point of view, this
technique of dissipation of energy is important across the structure.
Although leaky modes have been well-documented, their involvement
in the eigenvalue problem (EVP) has not received much attention.

Recently, Goedbloed et al. (2023) identified three key defects in
the standard leaky mode model and proposed solutions to address
them. First, discontinuous coefficients in the differential equation,
caused by a jump in Alfv�en velocity, lead to abrupt changes in the
radial wavefunction. To resolve this, they suggested a smoothing pro-
cedure to ensure continuity at the boundary. Second, the assumption
of “outgoing waves only” beyond a certain point is physically unjusti-
fied. Instead, they proposed maintaining boundary continuity, allow-
ing both incoming and outgoing waves for a more accurate
representation of wave propagation. Finally, leaky mode solutions
exhibit exponential growth at infinity, leading to unphysical energy
outflows. They argued that refining the differential equation and
excluding such solutions ensure physically meaningful wave behavior.
Additionally, a more recent study by Ebrahimi (2024) investigated
how both trapped and leaky sausage waves display distinct behaviors
influenced by the plasma-beta (b), density ratio, and inhomogeneity
parameter.

The defects identified by Goedbloed et al. (2023) in the standard
leaky mode model are valid, and their corresponding solutions provide
crucial insights for improving the model. However, one could adopt a
step radial density profile to study leaky mode waves, a concept that is
similar to the quantum potential well problem, and also the concept of
the antenna theory that radiates energy outside the structure in terms
of electromagnetic waves as a result of conversion of guided mode to
free space waves. The potential well represents a region, where the
Schr€odinger wave function is trapped, due to the existence of bound-
aries defined by potential energy barriers. Depending on the strength
of the barrier, whether it is infinite or finite, the wavefunction behavior
varies significantly. If the strength of barrier at the boundaries of the
well is infinite, the particle associated wavefunction remains almost
confined within the structure of the potential well and shows evanes-
cent behavior outside this structure. However, when the strength of
the potentials at the boundaries is finite, quantum tunneling/leakage
occurs. Therefore, the wavefunction of the wave does not vanish
abruptly at the well’s boundaries. Instead, the wave shows a propagat-
ing behavior outside the structure (Shao et al., 1994; Martín-Palma,
2020). This tunneling effect, associated with resonant states, where the
wave is temporarily bound but can eventually leak out, is similar to the
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behavior of leaky modes in other physical systems, where confined
energy gradually escapes. In principle one can say that this concept is
analogous to the behavior of leaky modes in MHD systems. Moreover,
the Schr€odinger equation that governs the quantum potential well
exhibits a similar form of differential equations as represented herein
by the governing MHD wave. Thus, the solution of our differential
equation (9) is analogous to the quantum approach, and it describes a
wave confined or leaking out within a structure is constrained by
boundary conditions. This principle of wave dynamics is applied to
different domains, whether it is tunneling in quantum mechanics or
energy leakage in MHD waves (Sakurai et al., 1986; Griffiths, 1995;
and Zettili, 2001). In addition to the above, a similar phenomenon is
also observed in antennas, where classical electromagnetic waves are
confined within the patch and then leak into the surrounding space

(Monticone and Alu, 2015; Zheng et al., 2023; Tofani and Fuscaldo,
2020; andMenon et al., 2023).

In the context of wave leakage, models often exhibit exponential
growth of solutions at infinity when the source is continuous and pre-
scribed by driving frequency. However, in our study, we consider an
eigenvalue problem (EVP), wherein wavenumber k is prescribed as per
the chosen loop length and the evolution of the wavefunction is moni-
tored w.r.t time. This type of input, together with viscosity, leads to
damping of waves in the time domain. In other words, one may state
that we solve our dispersion relation for estimating the complex fre-
quency by prescribing the wave number k fixed and real valued.

Moreover, researchers have also studied extensively on leaky
mode waves for the case of ideal plasma. However, for non-ideal
plasma (that includes viscosity, magnetic diffusivity, and thermal

FIG. 4. Variation of period (s) (a) for different length of the loop as a function of magnetic field (G) at
q0
qe
¼ 25; and as a function of density contrast q0

qe
at B0 ¼ Be ¼ 20 G by

keeping the value of radius fixed (i.e., a ¼ 0:157mm) and (b) for different radius of the loop as a function of magnetic field (G) at q0
qe
¼ 25; and as a function of density contrast

q0
qe
at B0 ¼ Be ¼ 20 G by keeping length of the loop fixed (i.e., k ¼ 10�9 cm�1) of leaky fundamental sausage and first overtone kink mode waves at T0 ¼ Te ¼ 106 K, for a

different aspect ratio (a=L) of the loop to maintain dimensionless wavenumber, ka < 1.
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conductivity, as dissipative processes) is still remaining. For non-ideal
plasma conditions, in recent study Pandey et al. (2022b) analytically
examined the effects of viscosity into coronal heating problem through
their dispersion relation in a slab model without considering longitudi-
nal perturbations. This study was concerned to the fast trapped mode
MHD waves with periods between a second (longer than the ion colli-
sion time of about 0.15 s, estimated from Eq. (20) of Kumar and
Pandey (2024) to 10 s that are referred to as high-frequency MHD
waves, as observed by a number of authors (Williams et al., 2001;
Allian and Jain, 2021; and Shrivastav et al., 2024). In contrast to
trapped modes, leaky modes leak from the structure and exhibit out-
wardly propagating fast magnetoacoustic waves. This process is akin to
the propagation of electromagnetic waves from a guided structure into
free space in antenna theory (Monticone and Alu, 2015; Zheng et al.,
2023; Tofani and Fuscaldo, 2020; and Menon et al., 2023). Thus, taking
into account the effect of viscosity, this work here is aimed to broaden
our knowledge of MHD waves in non-ideal plasmas, particularly con-
cerning the leaky modes. In what follows, we focus on the strength of
damping of leaky fast MHD waves with coronal magneto-
seismological applications. For the non-ideal plasma model, the value
of Q-factor (it determines the number of oscillations before the wave
damps into the considering region and defined by ratio of damping
time to the wave period) shows stronger damping as compared to the
ideal plasma and emphasizes that it depends on the choice of the den-
sity contrast ratio and magnetic field strength.

II. THE EQUILIBRIUM MAGNETIC SLAB

In this study, we consider a two-dimensional (2D), static, equilib-
rium plasma divided into two regions along the x-direction. The equi-
librium configuration is depicted in Fig. 1. The central region, referred
to as the “slab,” has a width of 2a in the x-direction and a finite length
L in the z-direction. There is no variation in the y-direction @

@y ¼ 0. An
equilibrium magnetic field is present, given by B ¼ B0êz , where,

B xð Þ ¼ B0 if jxj � x0
B xð Þ ¼ Be if jxj > x0;

(1)

where B0 andBe are constants.
The equilibrium kinetic plasma pressure, temperature, and den-

sity are denoted by pi, Ti, and qi, respectively, with i ¼ 0 indicating
the slab region and i ¼ e representing the external region. For simplic-
ity, gravitational effects are neglected throughout this analysis.

A. The boundary conditions

Boundary conditions are applied at the interfaces x ¼ 6a and at
the slab endpoints z ¼ 0; L, where line-tying conditions are imposed.
To ensure equilibrium stability, the total pressure balance (pT ) must be
maintained across the interface at x ¼ 6a,

p0 þ
B2
0

2l0
¼ pe þ

B2
e

2l0
¼ pT ; (2)

where l0 represents the permeability of free space. The sound speed,

denoted as ci, is given by ci ¼
ffiffiffiffi

cpi
qi

q

for i ¼ o; e, where c is the adiabatic

index. This index is assumed to be constant across the entire system
under the assumption of uniform plasma composition. The line-tying
assumption enforces specific boundary conditions at z ¼ 0; L: the
x-component of the velocity perturbation vx is zero. Furthermore, the

total pressure perturbation pT , defined as the sum of the kinetic plasma
pressure perturbation, is also required to be zero at z ¼ 0; L.
Mathematically, these boundary conditions are expressed as

vx z ¼ 0ð Þ ¼ vx z ¼ Lð Þ ¼ 0; pT z ¼ 0ð Þ ¼ pT z ¼ Lð Þ ¼ 0: (3)

III. GENERAL DISPERSION RELATION

Wave phenomenon (whether propagation or standing one) is
commonly studied through its governing dispersion relation, which
establishes the relationship between wave frequency and wavenumber,
incorporating characteristic speeds and medium-specific parameters.
In a structured region, initially, solutions to the governing equations
are derived for the plasma regions on both sides of an interface. The
dispersion relation is subsequently determined by applying the bound-
ary condition on total pressure and the normal component of velocity,
precisely at the boundary interface.

To derive the general dispersion relation, we have considered a
comprehensive set of governing MHD equations for coronal loop
plasma conditions, incorporating viscosity as a damping mechanism,
which may be written as

@q

@t
þ $ � ðqvÞ ¼ 0; (4)

q
Dv

Dt
¼ �$pþ

ð$� BÞ � B

4p
� $ � II; (5)

@B

@t
¼ $� ð$� BÞ; (6)

Dp

Dt
þ cp ð$ � VÞ ¼ ðc� 1Þ ðQVis � QradÞ: (7)

Here, B, q, V, p, and c are the magnetic field, total mass density, veloc-
ity, pressure, and ratio of specific heats, respectively. The viscosity ten-
sor in Eq. (5), viscous heating, radiative cooling in Eq. (7), and

FIG. 1. A schematic diagram of the structured coronal plasma.
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convective derivatives are represented by
Q

, Qvis, Qrad; and D
Dt
;

respectively.
The above equations are valid where viscous heating due to wave

perturbation is balanced the radiative losses of the considered region.
The expression for viscous heating in covariant form is written as per
Eq. (10) of Hollweg (1986)

Qvis ¼ 3l0 B�2 B � B � rV �
r:V

3

� �2

; (8)

where all the symbols have their usual meanings.
If B is in z-direction, then, the detailed expansion of Eq. (8) corre-

sponds to the second order term of viscous wave heating that is
expressed in cartesian coordinate with the compressive viscosity coeffi-
cient, l0, as Porter et al. (1994) and Roberts (2019)

Qvis ¼
l0
3

@Vx

@x
þ
@Vy

@y
� 2

@Vz

@z

� �2

: (9)

For optically thin plasma, the radiation loss rate can be approximated
as described by Bray et al. (1991) and Porter et al. (1994),

Qrad ffi 10�18:66 n2

T1=2
ffi 1028:9

q2

T1=2
ergscm�3s�1; (10)

where all the symbols have their usual meanings.
In this study, our main aim is to determine the dispersive charac-

teristics of the viscous MHD waves. Viscosity depends on the viscous
stress or the rate of strain tensor, and this relationship is altered with the
variation of a magnetic field. In the absence of a magnetic field, the rate
of strain tensor is associated with one independent coefficient of viscos-
ity (compressive viscosity, i.e., l0). However, in strong magnetic fields,
the relationship between the strain tensor becomes more complex due
to significant differences in momentum transfer perpendicular and par-
allel to the magnetic field. This complexity necessitates the use of five
distinct viscosity coefficients (l1; l2; l3; l4; l5). Out of these five vis-
cosity coefficients, compressive viscosity l0 is greater by a factor of
ðXi siÞ

2 as compared to shear viscosity (l0 � l1; l2; l3; l4; l5) in
the case of a strong magnetic field. Thus, we can neglect the effect of
shear viscosity from the current study. For a detailed study about the
viscosity components, authors urge to see original work of Braginskii
and Leontovich (1965) and followed by Porter et al. (1994), Ofman
et al. (1994), Erd�elyi and Goossens (1995, 1996), Pandey et al. (2022b),
Russell (2023), and Yu (2023).

To solve the set of Eqs. (4)–(7) in the context of the solar corona,
we choose a slab model over the cylindrical one. This is because both
geometries show similar dispersive characteristics when the aspect
ratio satisfies ka > 1 (or a=L > 0:3), which is typical for short coronal
loops where high-frequency waves (a few to tens of seconds) are
observed. Differences appear mainly when ka 	 1, relevant to long
loops with wave periods of 100–500 s. Since we focus on high-
frequency waves in shorter loops, the choice of geometry becomes less
critical. Recent observations (e.g., Morton et al., 2012; Zhong et al.,
2023) support the presence of such waves, particularly for leaky sau-
sage modes. Additionally, decoupling transverse and longitudinal per-
turbations is easier in slab geometry, especially for line-of-sight
observations like CoMP (Tomczyk et al., 2007). In cylindrical geome-
try, this decoupling is mainly limited to sausage modes (m¼ 0). The
slab geometry is also mathematically simpler and allows better control

over variations in specific directions. Additionally, extended loops or
open field regions with tadpole-like structures are more accurately rep-
resented using cartesian coordinates (Verwichte et al., 2005). Taking
advantage of the versatility offered by the rectangular slab model and
employing Braginskii’s (Braginskii and Leontovich, 1965) viscous
plasma approach, we applied perturbation theory to the linearize the
set of MHD equations around a static state of plasma in order to
develop the analytical dispersion relation for MHD waves in slab
geometry, such that

p0 ¼ p0 xð Þ; q0 ¼ q0 xð Þ;

d

dx
p0 þ

B2
0

8p

� �

¼ 0:
(11)

It is evident that Qvis is of second order wave heating term and it is to
be noted that to maintain the above equilibrium condition, we replace
Qrad with �2Qrad in energy equation (7), where 2 is the small amplitude
wave perturbation parameter. This approach aligns with the methodol-
ogy used by Porter et al. (1994). Since Qvis is also a second-order term,
it follows the same argument and can be neglected in the linear regime.

We have examined perturbations of the form f ðxÞ expðikzÞ
expð�ixtÞ. Here, k represents the wavenumber and x represents the
frequency. By applying this perturbation, we linearized Eqs. (4)–(7) by
assuming a low b-plasma condition, wherein plasma pressure is
neglected relative to magnetic pressure. Under this assumption, the
plasma fluctuations are restricted to be perpendicular to the back-
ground magnetic field (assumed to be directed along the z axis).
Therefore, the perturbations in the z-direction are significantly smaller
when compared to transverse components, i.e., V1z 	 V1x andV1y ,
throughout the analysis, allowing us to neglect V1z (Porter et al., 1994;
Wang, 2011; and Wang et al., 2021) and this process has led us to
derive the following differential equation (Pandey et al., 2022b),

d2V1x

dx2
� a2iV1x ¼ 0; (12)

where a2i ¼
bi
ai

and corresponding to ai ¼ c2Ai �
il0x
3qi

, and

bi ¼ �x2 þ c2Aik
2. Here, i corresponds to either 0 and e, representing

region 2 or region 1 of the structured region, respectively. According

to the notation after Eq. (12) for a2i and Fig. 1, the sign of a22 defines
the body or surface mode structure inside the slab, whereas the sign of

a21 defines the trapped or leaky modes.
Now let us illustrate the solutions of Eq. (12) for a slab model, as

shown in Fig. 1, of half-width “a”. We isolate region 1 as jxj > a, and
region 2 as jxj < a with interface at jxj ¼ a. We consider density in
each region to be constant, such that q0

qe
> 1.

The corresponding solution of the above equation in different
regions can be written as (Porter et al., 1994; Pandey et al., 2022b;
Allcock and Erd�elyi, 2017; Allcock et al., 2019; and Erd�elyi and
Zs�amberger, 2024)

V1x ¼ c1 exp �a1 x � að Þð Þ for x > a

V1x ¼ c2 exp þa1 x þ að Þð Þ for x < �a

V1x ¼ c3 cosh a2 xð Þ þ c4 sinh a2 xð Þ for jxj < a;

(13)

where a2i ¼
c2Aik

2�x2

c2
Ai
�

il0x

3qi

, and k is the wavenumber, and its further details is

mentioned in Eq. (15).
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We separate these solutions into sausage and kink modes accord-
ing to whether c3 or c4 equals to zero.

As we know, the general solution for a wave propagating in the
z-direction in the slab is written as

Fðx; z; tÞ ¼ f ðxÞ exp iðkz � xtÞ; (14)

where f ðxÞ describes the amplitude of wave, k represents the wave-
number of the wave along the magnetic field (z-direction), x repre-
sents the frequency of the wave, Fðx; z; tÞ refers to velocity (v) and
total pressure (pT ) fluctuations.

For simplicity, we focus on the transverse variation of perturbed
quantities w.r.t. z- coordinate variables because it is directly affected by
the line-tying condition.

To satisfy the boundary conditions at the foot-points, we impose

Fðz ¼ 0Þ ¼ 0; and Fðz ¼ LÞ ¼ 0;

which leads to the quantization of wavenumber k, described as below.
The most general solution for a standing wave in the z-direction

is given by

FðzÞ ¼ A sinðkzÞ þ B cosðkzÞ;

where A and B are constants, and k is the longitudinal wavenumber.
Apply Boundary Conditions at z ¼ 0,

Fð0Þ ¼ A sinðk:0Þ þ B cosðk:0Þ:

Since F 0ð Þ ¼ 0, this implies

B ¼ 0

Thus, the solution simplifies to

FðzÞ ¼ A sinðkzÞ;

Apply Boundary Condition at z ¼ L

FðLÞ ¼ A sinðkLÞ:

Since F Lð Þ ¼ 0, we must have

sinðkLÞ ¼ 0:

This condition is satisfied if

kL ¼ np; n ¼ 1; 2; 3;……; (15)

where n is the mode number, representing the number of half-
wavelengths along the loop.

Thus, the wavenumber k is quantized as

FðzÞ ¼ A sin
npz

L

� �

; (16)

where n determines the standing wave mode:
n ¼ 1 (Fundamental Mode): One half-wavelength fits along the

loop length L.
n ¼ 2 (First Overtone): Two half-wavelengths fit along L.
Higher modes ðn ¼ 3; 4;…:Þ correspond to additional nodes

and antinodes along the loop.
Including the time-dependent part, the full wave solution

becomes

Fðx; z; tÞ ¼ f ðxÞ sin
npz

L

� �

expð�ixtÞ: (17)

The frequency x is related to the wavenumber k through the
dispersion relation of the specific wave mode (e.g., kink or sausage
mode).

To satisfy the line-tying condition given below,

vx z ¼ 0ð Þ ¼ vx z ¼ Lð Þ ¼ 0; pT z ¼ 0ð Þ ¼ pT z ¼ Lð Þ ¼ 0;

We assume

vx ¼ v̂x xð Þe�ixt sin kz; pT ¼ p̂T xð Þe�ixt sin kz:

When the line-tying boundary conditions are imposed, meaning
vxðz ¼ 0Þ ¼ vxðz ¼ LÞ ¼ 0; we obtain a condition on k

k ¼
np

L
; n 2 Zþ;

where n ¼ 1; 2; …: positive integer.
After applying the boundary condition for the total

pressure (pT x ¼ �að Þ ¼ pT x ¼ það Þ) and velocity (vx x ¼ �að Þ
¼ vx x ¼ það Þ) across the interface xj j ¼ a, we obtain this dispersion
relation for sausage and kink mode waves, respectively,

a1 tanh a2 að Þ þ a2 ¼ 0 (18)

and

a1 coth a2 að Þ þ a2 ¼ 0;

or

tanh a2 að Þ ¼
�a2

a1
; and coth a2 að Þ ¼

�a2

a1
; (19)

where a2i ¼
c2Aik

2�x2

c2
Ai
�

il0x

3qi

.

This dispersion relation is identical to Pandey et al. (2022b).
Interested readers are encouraged to read the original paper for a thor-
ough, step-by-step derivation of the dispersion relation, that dispersion
relation corresponds to the trapped mode (a22 < 0; a21 > 0). Since, in
this paper, we are interested in the leaky mode that requires the differ-
ent boundary condition (a22 < 0; a21 < 0). Therefore, the above disper-
sion relation is now modified using the different values of a2i in
Pandey et al. (2022b),

tan a2 að Þ ¼
�a2

a1
; and cot a2 að Þ ¼

�a2

a1
; (20)

where a2i ¼ �
x2�c2Aik

2

c2
Ai
�

il0x

3qi

, and, the symbols have their usual meanings.

Furthermore, we have found that excluding the viscosity term
from Eq. (20) results in the same dispersion relation as referred in

Roberts (2019) and Terradas et al. (2005), with the value of a2i modi-

fied, for an ideal plasma in the following form:where a2i ¼ �
x2�c2Aik

2

c2
Ai

,

and, again, symbols have their usual meanings.
The dispersion relation (20) is transcendental in nature, which

can be solved by numerical techniques. We solve the above said disper-
sion relation for xðkÞ, wherein we assume a fixed value of k and deter-
mine x, corresponding to solutions for standing waves. We calculate
the period and damping time from the estimated value of x. In this
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study, we used the fsolve function in MATLAB to solve systems of
non-linear algebraic equations. It employs various numerical techni-
ques, primarily the trust-region-dogleg, trust-region-reflective, and
Levenberg–Marquardt algorithms (Marquardt, 1963; Powell, 1968;
Mor�e, 1977; and Mor�e et al., 1980). These advanced methods build
upon the Newton–Raphson algorithm, enhancing its capabilities to
handle a wider range of problems more effectively. To compare our
dispersion relation with that of Terradas et al. (2005) (where we solved
the dispersion relation (20) for complex frequency by specifying the
wavenumber k real and fixed which represents a fixed loop length).
Thus, we plotted the phase velocity as a function of the dimensionless
wavenumber ka as shown in Figs. 2(a) and 2(b) and found that it is
consistent with Figs. 1(a) and 1(b) of Terradas et al. (2005), where the
density contrast is set to 3. The expression xc ¼ kvAe, illustrated by
the dotted line in Fig. 1(a), donates the cutoff frequency. Modes below
xc are classifing as trapped modes, while those above xc are classifing
as leaky modes.

Unlike Terradas et al. (2005), who did not include non-ideal
components in their dispersion relation, we incorporated viscosity in
our analysis. Despite of this addition, our phase velocity plot remains
similar to that of Terradas et al. (2005). This is due to the fact that vis-
cosity does not influence the real part of complex frequency, while it
alters the imaginary part of the frequency. Hence, the real part, which
determines phase velocity, remains unaffected. Figure 2(a) shows the
real part of the frequency, xr , for the fundamental fast sausage mode
and the first kink harmonic. These modes behave as leaky waves when
the loop is thin (a=L < 1Þ. The frequency curves reach the cutoff fre-
quency xc and then split into two branches, as the loop thickness
increases with keeping the loop length fixed. This happens near the
point where the trapped mode meets the cutoff. One of these branches
smoothly connects to the trapped mode, showing a clear link between
leaky and trapped solutions. However, the second branch has xi ¼ 0,
and its eigenfunction grows exponentially with distance from the slab
with a non-oscillatory spatial behavior. For this, an initial value analy-
sis is required to verify whether eigenfunction is causal (physical) or
not. In such an analysis, such an eigenfunction can appear multiplied
by a moving step function representing an outgoing wave front, which
is entirely physical.

Figure 2(b) shows the imaginary part of the frequency, xi, for the
first three leaky modes. For both the fundamental sausage mode and
the first kink harmonic, as expected, xi becomes smaller and tends to
zero as a=L becomes closer to the bifurcation point, where the mode
becomes trapped. There is also another solution with a purely imagi-
nary frequency [shown by the solid line in Fig. 2(b)], but since it also
grows with distance from the loop, it is not physically meaningful
either.

Furthermore, Fig. 3 presents the phase velocity as a function of
dimensionless wavenumber ka from our dispersion relation for the
leaky region, using a density contrast of 25, because the loops with a
density contrast of q0

qe

 20 exhibit the damping time up to three peri-

ods (Farahani et al., 2014). Consequently, the fast sausage and kink
mode could be detected for several periods in these high-density con-
trast loops. The plot clearly shows that the fundamental mode and the
first overtone occur when the value of dimensionless wavenumber ka
is less than 1 (i.e., ka < 1) for both leaky sausage and kink mode
waves. Next, when we consider the higher values of dimensionless
wavenumber ka, we find higher harmonics that are very challenging to

detect. Thus, the wavenumber is a crucial factor in deciding the exis-
tence of the leaky waves in plasma, either as fundamental or its first
overtone for a given value of density contrast. The phase velocity is
only affected when there is change in the real part of the frequency. In
this case, it is noted that viscosity only influences the imaginary part
(xi). Therefore, it does not alter the phase velocity. The phase velocity
remains the same for both ideal and non-ideal MHD cases, as a result.

IV. RESULT AND DISCUSSION

Fast MHD leaky mode waves in coronal loops are an intriguing
aspect of the solar physics, providing insights into the dynamical pro-
cesses of the solar corona. These waves are characterized by their abil-
ity to transport energy across different regions of the solar atmosphere
and dissipate it into the surrounding regions. Leaky mode waves, also
known as pseudo-modes or quasi-normal modes, are defined by their
complex frequencies even in ideal plasma consideration with the

FIG. 2. The plot of dimensionless (a) real frequency and (b) imaginary frequency vs
a=L at T0 ¼ Te ¼ 106K; q0

qe
¼ 3; B0 ¼ Be ¼ 20G; k ¼ 10�8cm�1. Dashed dot-

ted line represents the kink mode and solid line corresponds to sausage mode. xc

is the cutoff frequency.
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imaginary part indicating energy dissipation. They differ from trapped
modes, which have only real frequencies and do not lose energy as
they propagate. Leaky modes include both sausage and kink modes,
each with distinct oscillatory properties. The behavior of leaky mode
waves is heavily influenced by the magnetic field strength and the
geometry of the coronal loops. Moreover, the factors such as loop
length, width, and density contrast play crucial roles in determining
wave periods and damping times.

A. Dependence of wave period on loop width and loop

length for both long wavelength (ka<1) and short

wavelength (ka>1) approximation

The fast sausage and kink modes exhibit distinctive behaviors
with regard to the wave period, damping time, Q-factor, etc., with the
variations of magnetic field strength and density contrast, depending
on whether ka < 1 or ka > 1.

B. Case I: For the long wavelength limit (i.e., ka<1)

We present the period profile using our dispersion relation,
employing the same parameters and aspect ratio as mentioned in
Terradas et al. (2005) for ka < 1 with a density contrast of 25. Figure 4
shows the periods of fast leaky sausage (fundamental mode) and kink
waves (first overtone, as the fundamental mode is cut off in the trapped
region) varying with magnetic field strength and density contrast.
Adjusting loop width alters the period, while changes in loop length
have minimal effect, consistent with Cally (1986) and Roberts (2019).
The period decreases with increasing magnetic field strength and
increases with higher density contrast, aligning with Roberts (2019, Eq.
5.144). This approach aids solar magneto-seismology, particularly in
identifying high-frequency MHD waves (1–10 s periods; Williams
et al., 2001; Allian and Jain, 2021; and Shrivastav et al., 2024). For
example, a 4-second period for the fundamental sausage mode
[Fig. 4(b)] requires a �35G magnetic field and a density contrast of
�7, making this method a valuable tool for coronal diagnostic through
wave analysis.

C. Case II: Short wavelength limit (i.e., ka>1)

However, for ka > 1, as shown in Fig. 5, the periods of fast leaky
sausage (second overtone at ka ¼ 1:57) and kink waves (third over-
tone at ka ¼ 1:57) depend on both the loop width and length, which
is similar to the pattern of Fig. 4. These results are consistent with
Roberts (2019, Eqs. 5.124 and 5.135), emphasizing the role of magnetic
field, density contrast, and loop geometry in coronal plasma dynamics.
Like case I, the case II also holds significance for coronal magneto-
seismology. So far, our analysis concerning the fast leaky MHD waves
was based on without considering the effect of viscosity. Now, in
Sec. IVD, we are analyzing the effect of viscosity on the characteristics
of fast leaky modes.

D. Effect of viscosity on the fast leaky sausage and kink

mode for the case of ka<1 and ka>1

We have investigated the effect of viscosity on the fast leaky fun-
damental sausage and first overtone kink mode waves (the higher har-
monics have not been taken into consideration since there is no such
observation so far) for both long (ka < 1) and short (ka > 1) wave-
length limits as calculated in Figs. 4 and 5. In the case of leaky modes,
the frequency (x ¼ xr � ixi) consists of real and imaginary compo-
nents, for both ideal and non-ideal plasma. The imaginary component
is responsible for wave damping. It is noted that the viscosity term
modifies the imaginary part of the complex frequency significantly,
thus affecting wave damping. To demonstrate this, we have plotted the
damping time profile as a function of the magnetic field in Figs. 6(a)
and 6(b) for the fast leaky fundamental sausage and first overtone kink
mode waves for the different values of aspect ratio (a=L) of the loops.
When the loop width is decreased while keeping the loop length con-
stant, or vice versa, the ratio of a/L decreases, resulting in a thinner and
longer loop that exhibits stronger damping compared to a wider and
shorter loop. Damping time profile decreases with increasing magnetic
field as shown in Figs. 6(a) and 6(b) for both ideal and non-ideal
plasma. The quantitative percentage variation in damping time due to
viscosity for fast sausage and kink mode waves, in both the short- and
long-wavelength regimes, illustrated in Figs. 6(c) and 6(d), is calculated
using Eq. (21). Specifically, for the leaky sausage mode in Fig. 6(c), the
long-wavelength limit exhibits approximately 14% greater damping
w.r.t ideal plasma at lower value of magnetic field strengths, which
gradually decreases to about 2% as the magnetic field increases. In the
short-wavelength regime, this variation is more pronounced, reaching
up to 64% at lower magnetic fields and similarly reducing to around
20% at higher values of magnetic field strength. For the fast leaky kink
mode shown in Fig. 6(d), the damping time in the long-wavelength
regime varies from roughly 37% to 5% as the magnetic field increases
from 5G to 35G. In the short-wavelength regime, the variation ranges
from approximately 47% to 12% over the same range of magnetic field
strength.

In all cases, the influence of viscosity on damping time decreases
with increasing magnetic field strength. These findings suggest that
long-wavelength leaky waves contribute more significantly to both
coronal heating and magneto-seismology than their short-wavelength
counterparts. Understanding this distinction is crucial for determining
which wave modes are more efficient in dissipating energy in the solar
corona and for enhancing the diagnostic capability of coronal mag-
neto-seismology.

FIG. 3. The normalized phase velocity as a function of dimensionless wavenumber
ka at T0 ¼ Te ¼ 106K; q0

qe
¼ 25; B0 ¼ Be ¼ 20G; k ¼ 10�8cm�1. Dashed hori-

zontal blue lines correspond to the exterior and interior Alfv�en’s speeds.
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Ds ¼
sideal � snon�ideal:

sideal

� �

� 100; (21)

where Ds is variation in damping time, sideal is the damping time
for ideal plasma, and snon�ideal is the damping time for non-ideal
plasma.

Figures 7(a) and 7(b) show the variation of damping time as a
function of density contrast for the fundamental leaky sausage and first
overtone kink mode waves and considering the same aspect ratio (a/L)
as used in Fig. 6. It is clear from this figure that a thinner and longer
loop exhibits stronger damping as compared to wider and shorter loop
and that the damping time increases with higher density contrast.
Additionally, damping is more pronounced in non-ideal plasma com-
pared to ideal plasma. Figures 7(c) and 7(d) show the estimated
changes in damping time for leaky sausage and kink mode waves in

comparison with their values in an ideal plasma, for both long- and
short-wavelength limits.

For the fast leaky sausage mode [Fig. 7(c)], in the long-
wavelength regime, the damping time in the non-ideal plasma is about
3%–4% lower than in the ideal case as the density contrast increases
from 5 to 25, indicating enhanced damping. In the short-wavelength
regime, this difference becomes more significant, ranging from
approximately 9%–32% over the same range of density contrast.
Similarly, for the leaky kink mode [Fig. 7(d)], both the long- and
short-wavelength regimes show greater damping in the presence of vis-
cosity. Initially, the damping is around 10% higher than in the ideal
case and increases up to about 12% in the long-wavelength limit and
18% in the short-wavelength limit as the density contrast rises from 5
to 25. Like the sausage mode, the damping effect becomes more prom-
inent with higher density contrasts. These results demonstrate that

FIG. 5. Variation of period (s) (a) for different length of the loop as a function of magnetic field (G) at
q0
qe
¼ 25; and as a function of density contrast q0

qe
at B0 ¼ Be ¼ 20 G by

keeping the value of radius fixed (i.e., a ¼ 15:7mm) and (b) for different radius of the loop as a function of magnetic field (G) at q0
qe
¼ 25; and as a function of density contrast

q0
qe
at B0 ¼ Be ¼ 20 G by keeping length of the loop fixed (i.e., k ¼ 10�9 cm�1) of leaky second overtone sausage and third overtone kink mode waves at T0 ¼ Te ¼ 106 K,

for a different aspect ratio (a=L) of the loop to maintain dimensionless wavenumber, ka > 1.
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viscosity has a stronger impact on wave damping at higher density
contrasts for both the sausage and kink modes, respectively. A specific
mix of physical characteristics is needed to achieve better damping, as
shown in Figs. 6 and 7. Specifically, a smaller density contrast and a
thin and long loop with a higher magnetic field strength are essential
for optimizing the damping effect.

The Q-factor determines the number of oscillations before the
wave damp into the considering region and is defined by ratio of
damping time to the wave period. The higher value of Q-factor (i.e.,
� 1) reflects the weak damping while lower value (� 1) of it corre-
sponds to strong damping (Nakariakov and Verwichte, 2005; Pandey
and Dwivedi, 2006; Pascoe et al., 2012; Nistic�o et al., 2013; and
Ruderman and Goossens, 2014). The strength of damping of leaky
fundamental sausage and first overtone kink mode (as shown in

Figs. 4 and 5) waves in coronal loops, particularly those with step-
function radial density profiles, is profoundly influenced by the mag-
netic field strength, as illustrated in Fig. 8. We have already shown in
Fig. 6 that thin and longer loop where waves propagate shows stronger
damping, thereby decreasing the Q-factor compared to wider and
shorter loops and as we increase the value of magnetic field, the value
of Q-factor is also increases for the non-ideal case and constant
throughout for the case of ideal plasma. After incorporating the viscos-
ity as a dissipative term, we found comparatively stronger damping as
compared to the ideal plasma case and has lesser Q-factor value.

Figures 8(a) and 8(b) depicts how the Q-factor for the leaky fast
MHD waves varies with loop width for both ideal and non-ideal plas-
mas. Notably, a decrease in loop width is associated with a lower Q-
factor, suggesting that the wave is more effectively damped with

FIG. 6. Variation of damping time (s) as a function of magnetic field (G) for both long (ka < 1 or a
L
< 0:3) and short for (ka > 1 or a

L
> 0:3) wavelength limits for (a) fundamen-

tal sausage, (b) first overtone kink mode waves, (c) difference in damping time for sausage, and (d) difference in damping time for kink at T0 ¼ Te ¼ 106 K,
q0
qe
¼ 25; k ¼ 10�8 cm�1, for different values of aspect ratio (a=L).
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respect to time. In this situation, the wave releases more energy into
the surrounding area. Longer and narrower loops display stronger
damping than shorter and broader loops, as demonstrated by both
ideal and non-ideal cases. To emphasize the results more clearly, we
have included plots showing the variation in the value of Q-factor cal-
culated using Eq. (22), illustrating how much it changes in non-ideal
plasma compared to the ideal case for both short- and long-
wavelength limits, as shown in Figs. 8(c) and 8(d). For sausage modes,
in the short-wavelength limit, the Q-factor is about 15% to 3% lower
as the magnetic field increases from 5 to 35G. In the long-wavelength
limit, the Q-factor decreases more significantly, ranging from about
65% to 22% lower over the same magnetic field range. For kink modes,
the Q-factor reduces by approximately 37% to 7% in the long-
wavelength regime and by about 47% to 12% in the short-wavelength

regime, as the magnetic field increases from 5 to 35G, compared to the
ideal plasma case. These results highlight how viscosity affects wave
quality effectively in both long and short-wavelength regimes,

DQ ¼
Qideal � Qnon�ideal

Qideal

� �

� 100; (22)

where DQ is variation in damping time, Qideal is the damping time for
ideal plasma, andQnon�ideal is the damping time for non-ideal plasma.

In Fig. 9, we illustrate the Q-factor of transverse leaky fast MHD
waves with varying density contrast in coronal loops, while maintain-
ing a constant magnetic field. In this figure, we have considered the
leaky fundamental sausage and first overtone kink mode waves for
plotting it with density contrast, because the higher harmonics modes

FIG. 7. Variation of damping time (s) as a function of density contrast q0=qe for both long (ka < 1 or a
L
< 0:3) and short for (ka > 1 or a

L
> 0:3) wavelength limits for (a) funda-

mental sausage, (b) first overtone kink mode waves, (c) difference in damping time for sausage, and (d) difference in damping time for kink at
T0 ¼ Te ¼ 106K; B0 ¼ Be ¼ 20G; k ¼ 10�8cm�1, for different values of aspect ratio (a=L),
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(second and third order) are difficult to detect, and there is no observa-
tional support regarding their existence neither for leaky nor for the
trapped modes. This depiction mirrors the trend observed in Fig. 8,
where a decrease in loop width corresponds to a lower Q-factor across
both ideal and non-ideal conditions and shows an increasing behavior
with the density contrast. We have shown the behavior of Q-factor as
a function of both magnetic field strength and density contrast. It
underscores that narrower and larger coronal loops show stronger
damping than those with wider and shorter loops. Additionally, in
Figs. 9(c) and 9(d)—similar to Figs. 8(c) and 8(d)—the percentage
change in the relative value of Q-factor for fast sausage mode waves is
about 4%–5% with the increase in density contrast from 5 to 25 in the
long-wavelength limit and varies from 9% to 32% with the same

density contrast regime in the short-wavelength limit. For fast leaky
kink modes, the percentage change in the relative value of the Q-factor
is around 12%–13% with a similar density contrast regime for the long
wavelength limits and varies from 11% to 18% with same density con-
trast regime for short wavelength limits. This indicates that both wave-
length limits analysis of leaky fast MHD waves contribute to coronal
heating and magneto-seismology applications. However, the long-
wavelength limit shows stronger damping as compared to short wave-
length limit, suggesting long wavelength limit plays a more significant
role compared to the short-wavelength approximation.

Plasma viscosity inherently depends on plasma temperature, as
shown in Eq. (23). To illustrate this relationship and its effect on wave
damping, Tables I and II present the characteristic values of damping

FIG. 8. Variation of Q-factor (i.e., s=P) as a function of magnetic field (G) for both long (ka < 1 or a
L
< 0:3) and short for (ka > 1 or a

L
> 0:3) wavelength limits for the (a) fun-

damental sausage, (b) first overtone kink modes, (c) Q-factor difference for sausage, and (d) Q-factor difference for kink at T0 ¼ Te ¼ 106K; q0
qe
¼ 25; k ¼ 10�8cm�1, for dif-

ferent values of aspect ratio (a=L).
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FIG. 9. Variation of Q-factor (i.e., s=P) as a function of density contrast q0=qe for both long (ka < 1 or a
L
< 0:3) and short for (ka > 1 or a

L
> 0:3) wavelength limits for the (a)

fundamental sausage, (b) first overtone kink modes, (c) Q-factor difference for sausage, and (d) Q-factor difference for kink at T0 ¼ Te ¼ 106K;

B0 ¼ Be ¼ 20G; k ¼ 10�8cm�1, for different values of the aspect ratio (a=L).

TABLE I. Characteristic values of damping time and Q-factor for leaky sausage mode waves for both long and short wavelength limit.

Temperature
(MK)

Viscosity
(gcm�1 s�1)

Damping time (s) for long
wavelength

limit (a/L¼ 0.05)

Q-factor for long
wavelength

limit (a/L¼ 0.05)

Damping time (s) for short
wavelength

limit (a/L¼ 0.5)

Q-factor for short
wavelength

limit (a/L¼ 0.5)

1 0.1 0.980 601 1.363 412 31.282 35 22.16

2 0.56 0.832 185 1.150 277 � � � � � �

4 3.2 0.454 401 0.602 023 � � � � � �

6 8.81 0.241 345 0.273 973 � � � � � �

8 18.1 � � � � � � � � � � � �

10 31.6 � � � � � � � � � � � �
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time and quality factor (Q-factor) across a range of viscosities, for both
long- and short-wavelength limits of leaky sausage and kink mode
waves, respectively. The viscosity is

l ¼ 10�16 T5=2 gcm�1s�1: (23)

It is clear from Table I, as the plasma temperature increases, viscosity
is also going to increase. This increase in viscosity leads to a reduction
in both damping time and Q-factor, indicating that wave energy dissi-
pates more rapidly for both the long and short wavelength limit. For
leaky sausage mode waves in the long-wavelength limit, a cutoff occurs
at a viscosity of approximately 18:1 gcm�1s�1; corresponding to a
temperature of 8MK. In the short-wavelength limit, valid values of
damping time and Q-factor are obtained only at 1MK; higher temper-
atures lead to cutoffs, as the solutions fall outside the interested region.

For leaky kink mode waves, a similar pattern is observed: increas-
ing temperature leads to decreasing damping time and Q-factor.
However, unlike the sausage mode, the kink mode yields one addi-
tional valid solution in both wavelength regimes. In this case, the cut-
offs occur at 10MK for the long-wavelength limit and 4MK for the
short-wavelength limit.

V. CONCLUSIONS

Our model of coronal loops is analogous to a rectangular mag-
netic waveguide, containing viscous plasma, thereby viscous wave
heating and radiative losses, and support the existence of the leaky fast
MHD modes. There are a number of studies on the existence of leaky
modes concerning the topic of patch antennas design and develop-
ments in the realms of electromagnetic radiation in free space (e.g.,
Monticone and Alu, 2015; Tofani and Fuscaldo, 2020; Zheng et al.,
2023; and Menon et al., 2023). Motivated with this idea of leaky
modes, in this work, we have studied the characterization of transverse
fast MHD leaky waves in coronal loops wherein radiation is taking
place away from the considered loop. The density contrast in the loop
is considered with step-function radial density profiles such as
q0
qe
¼ constant. We employed a low-b plasma with 1-D perturbation in

velocity ½V1x; 0; 0�, the perturbation in velocity is independent of the y-

variable @
@y ¼ 0

� �

, while perturbation in velocity along z-direction is

neglected due to low-b assumption (V1z 	 V1x andV1y) (Porter et al.,

1994; Wang, 2011; Wang et al., 2021; and Pandey et al., 2022b). This
simplification retains the essential physics of wave propagation in the
solar corona. Previous studies have shown that such structured regions
support both trapped (Edwin and Roberts, 1982) and leaky mode

waves (Terradas et al., 2005) in ideal plasmas. For non-ideal plasma,
study on trapped modes has been performed by Porter et al. (1994);
Pandey et al. (2022b) for rectangular geometry, but for the leaky mode,
a detailed examination is yet to be considered.

In what follows, we derived a general analytical dispersion rela-
tion for fast leaky MHD waves, where wave leakage is allowed from
the waveguide, which is different from the existing formulation of the
trapped mode waves in dissipative medium as reported previously by
Porter et al. (1994) and further followed by Pandey et al. (2022b)
within the slab geometry of coronal loops. We have calculated the
period and damping time for the fast leaky transverse sausage and
kink mode waves in the presence of dissipative term (i.e., viscosity).
For this, we have studied the characteristics of transverse leaky waves
in coronal loops, with the variation of magnetic field strength and den-
sity contrast under the assumption of long wavelength and short wave-
length approximation (i.e., ka < 1 and ka > 1). For ka < 1, the
period of fast leaky waves varies primarily with the loop width and
shows decreasing and increasing behavior with respect to the increase
value of magnetic field and density contrast respectively, as shown in
Fig. 4. Interestingly, changing the loop length in this regime does not
significantly affect the wave periods (Spruit, 1982; Cally, 1986).

However, in the case of ka > 1 (Fig. 5), the periods of fast leaky
sausage and kink mode waves are influenced by both the loop width
and length of the loop and shows the decreasing pattern with magnetic
field and increasing pattern with variation of density contrast (Spruit,
1982; Cally, 1986). In leaky mode, longer and narrower loops show
stronger damping in the case of ideal plasma. Furthermore, introduc-
ing viscosity as a dissipative term further complicates this picture. In
the presence of viscosity, waves exhibit even stronger damping as com-
pared to ideal plasma as shown in Figs. 6 and 7, particularly in longer
and narrower loops (ka < 1) than shorter and wider loops (ka > 1).
Additionally, we may state that the effect of viscosity on the percentage
change in the value of damping time of leaky modes is significant, as
shown in Figs. 7(c), 7(d), 8(c), and 8(d). Apart from this, the proposed
approach can also be used for the coronal magneto-seismological
applications. In our study, the calculated period could be explained by
specific loop lengths, particularly those around 1–10mm, commonly
observed in coronal bright points (CBPs) (Golub et al., 1977;
Hirzberger et al., 2008; and Mou et al., 2018). This range of loop sizes
provides a suitable framework for interpreting our results in both the
long and short wavelength limits. Particularly, in the case of the short
wavelength limit, period corresponding to the second and third over-
tones have yet to be observed. However, with advancements in

TABLE II. Characteristic values of damping time and Q-factor for leaky kink mode waves for both long and short wavelength limit.

Temperature
(MK)

Viscosity
(gcm�1 s�1)

Damping time (s)
for long wavelength
limit (a/L¼ 0.05)

Q-factor for long
wavelength

limit (a/L¼ 0.05)

Damping time (s) for
short wavelength
limit (a/L¼ 0.5)

Q-factor for short
wavelength

limit (a/L¼ 0.5)

1 0.1 0.799 582 2.223 51 12.804 38 10.83

2 0.56 0.503 147 1.389 684 6.894 821 5.83

4 3.2 0.165 736 0.424 135 � � � � � �

6 8.81 0.074 472 0.103 584 � � � � � �

8 18.1 0.019 321 0.023 345 � � � � � �

10 31.6 � � � � � � � � � � � �
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observational capabilities in the future, we anticipate that these higher
harmonics may be detected. Our theoretical model may be supplemen-
tary work for them.

Leaky modes may play a crucial role in loop dynamics and are
important from an energy perspective. The defects identified by
Goedbloed et al. (2023) in the standard leaky mode model are valid,
and their corresponding solutions provide crucial insights for improv-
ing the model when one is interested in its spatial evolution. We have
adopted a step density profile to study fast leaky mode waves, a con-
cept that similar to quantum potential wells approach, where a
Schr€odinger wave function is confined by potential energy barriers
when its strength is infinite. However, if the strength of boundaries is
finite, quantum tunneling effects allow the wavefunction to leak from
the structure in form of propagating wave. The method for finding the
solution for our differential equation (20) using step type density pro-
file is analogous to quantum approach, emphasizing the principles of
wave behavior across different domains (Sakurai et al., 1986; Griffiths,
1995; and Zettili, 2001). Additionally, exponential growth in solutions
at infinity is typically observed in models with continuous driver
source where frequency is specified and dispersion relation is solved
for complex waves number k. However, in this study, we solved the
dispersion relation for complex frequency by specified the wavenum-
ber k real and fixed. As a result, we are calculating damping time

( 1
Im xð Þ

), instead of damping length. Our analysis has been focused on

low-b plasma conditions, where the slow mode waves corresponding
to longitudinal perturbations do not significantly alter the results. In
this study, we did not take into account the influence of the kinetic
pressure (i.e., finite plasma-b), which determines the inclusion of slow
mode waves in the system, nor did we address the asymmetry of the
system. These factors may significantly affect the damping characteris-
tics of the waves. We intend to investigate these aspects in our future
research efforts.
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