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Path-integral spin dynamics with exchange and external field
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In this work, we propose a path-integral-inspired formalism for computing the quantum thermal expectation
values of spin systems subject to magnetic fields that can be time dependent and can accommodate the presence
of Heisenberg exchange interactions between the spins. This is done by deriving an effective magnetic field
from the quantum partition function of the system to use in classical atomistic spin dynamics simulations and
generalizes the formalism presented in our previous work [Phys. Rev. Res. 5, 043075 (2023)]. In special cases
where the effective field can be computed exactly, we compare our results with exact/numerical diagonalization
methods for both ferromagnetic and antiferromagnetic coupling. We show that our method works well across a
large temperature range and can reproduce quantum expectation values for antiferromagnetic coupling, which is
usually not possible with classical models.
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I. INTRODUCTION

Path integrals have been a rich source of inspiration ever
since Feynman proposed them as an alternative approach to
solving and interpreting quantum mechanical problems [1].
Even in recent years, numerical methods based on Feynman’s
path-integral formalism have continued to be developed and
have proven to be particularly efficient, as, for example, in
the field of path-integral molecular dynamics [2–4]. Beyond
the standard position and conjugate momentum description of
quantum mechanics, a path integral for spin systems was also
written long ago and has already been thoroughly investigated
[5–7]. These efforts show how constraints can be taken into
account in the path-integral formalism. In previous work, we
established a framework, inspired by path-integral molecular
dynamics methods, specifically designed for spin systems.
We studied the case of a single spin, coupled to a constant
external field, through the Zeeman interaction [8]. Within this
framework, we derived an effective classical Hamiltonian that
captured the quantum fluctuations—as well as the thermal
fluctuations, upon coupling it to a thermal bath. Using a sys-
tematic double expansion of the partition function in powers
of 1/spin and h̄ × spin, we computed approximate spin ex-
pectation values through numerical stochastic atomistic spin
dynamics simulations, which we compared to exact quan-
tum thermal expectation values. In this work, we extend the
formalism in two ways: (i) introducing interactions between
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spins on different sites through an isotropic Heisenberg ex-
change Hamiltonian, and (ii) allowing the Zeeman interaction
of a field in a general direction to couple the spin system
to a potentially time-dependent external magnetic field. Both
of these extensions introduce additional complexities arising
from the noncommutativity of the spin operators because of
the curvature of the group manifold, on the one hand, and
quantum effects, on the other hand. This intricate interplay
between classical–geometric–and quantum effects is what we
aim to incorporate in our effective Hamiltonian for the clas-
sical spin system, upon taking into account the complexity of
the exchange interaction.

Our work has its natural place in the context of semiclassi-
cal approaches to the treatment of quantum problems through
the mapping of quantum problems to stochastic classical ap-
proximations, which dates back at least as far as 1968 [9–11].
In this context, several attempts have been made to describe
quantum systems in purely classical terms, in equilibrium
with a bath of quantum fluctuations, described by stochastic
noise, which could also encompass e.g., experimental limita-
tions for measurements of initial conditions. The most famous
example is Nelson’s stochastic mechanics [12]. Today, we
know that, in the general case, an exact equivalence between
quantum mechanics and stochastic classical mechanics is
more subtle. However, in the field of open quantum systems,
depending on how the quantum properties of a system become
apparent when studying it using external probes and how this
system is coupled to bath degrees of freedom, approximate
solutions of the quantum system can be produced that can
provide insight [13]. It is for this reason that we believe that,
at the scale of atomistic spin dynamics simulations, where one
can consistently describe thermal fluctuations in a stochastic
fashion, it should be possible to approximate the system of
spins, thus also describing quantum fluctuations, using a com-
mon stochastic approach, although the baths are distinct. In
fact, as already mentioned, we have realized this construction
for a single quantum spin in a constant magnetic field, in
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previous work [8]; taking into account a uniaxial anisotropy
represented by an additional quadratic term in the Hamilto-
nian was done in Ref. [14]. Essentially, we are performing a
systematic expansion in powers of Planck’s constant and in
powers of temperature, and retaining only the leading term in
inverse powers of the spin and matching between the partition
function on the one hand and the stochastic equation on the
other.

The outline of the paper is as follows. In Sec. II, we
begin by recalling results from the exact diagonalization for
a system of two quantum spins s = 1/2 coupled through an
exchange interaction, in the presence of an external field and
in equilibrium with a thermal bath. These results are already
well known but are essential both to provide a specific refer-
ence in our conventions for the expectation values, in order
to compare to our atomistic model, as well as a guideline for
computing the overlap between the spin coherent states and
the diagonalized spin basis in Sec. IV C. The general method,
which in theory is applicable for any principal quantum spin
number s as well as for systems of more than two spins (for
example, chains, 2D lattice, 3D lattice) is briefly described in
Appendix B. Using these results, we produce exact thermal
expectation values for a system of two spins, with s = 1/2, as
a reference to compare to the results in Sec. IV. This approach,
however, does not scale up in a useful way as the Hilbert
space size grows quickly with s and number of spin sites N , as
dim = (2s + 1)N . Moreover, solving the eigenvalue problem
becomes even less practical when the spectrum becomes de-
generate (which is the case for a chain of spins with s = 1
already). In Sec. III, we therefore present a procedure for
obtaining the expression of an effective classical field, that
can be used within the framework of stochastic atomistic spin
dynamics simulations based on our earlier work [8,14]—but
being able to handle a more complex Hamiltonian for the
initial quantum system as a result of the interaction between
sites. We have named this method path-integral spin dynamics
(PISD), as it is inspired from path-integral methods in molec-
ular dynamics and here applied in the context of atomistic
spin dynamics simulations. This procedure does “scale up”
in a useful way, as it does not require diagonalizing the full
(2s + 1)2N Hamiltonian operator as a prerequisite. It is an
approximation, but provides an expression for the effective
field where the spin number s only appears as a parameter
rather than an altogether different expression. In Sec. IV, we
compute approximate thermal expectation values, using the
path-integral atomistic spin dynamics model of Sec. III, which
we compare to special cases that are exactly solvable, using
the results of exact diagonalization from Sec. II.

II. EXACT RESULTS FOR TWO SPINS

The simplest, nontrivial, example involves two spins, Ŝ
(1)

(|s(1), m(1)〉, where m(1) ∈ �−s(1), s(1)�) and Ŝ
(2)

(|s(2), m(2)〉,
where m(2) ∈ �−s(2); s(2)�), coupled by an isotropic Heisen-
berg exchange interaction and in an external magnetic field B
along the z direction. The Hamiltonian is

Ĥ = − J

h̄2 Ŝ
(1) · Ŝ

(2) − gμB

h̄
Bz

(
Ŝ(1)

z + Ŝ(2)
z

)
, (1)

FIG. 1. Expectation value 〈Ŝz〉 defined in (3) for two spins with
s = 1

2 as a function of temperature. Exact result for J = gμBBz, B =
(0, 0, 1) T.

with μB the Bohr magneton and g is the gyromagnetic ratio.
The standard procedure for diagonalizing this two-spin system
and obtaining an equivalent single-spin system with total spin
Ŝ and basis |S, M〉 can be found in Appendix A. Using the
diagonalized representation we can compute thermal expec-
tation values (or zero-temperature real-time dynamics, upon
analytically continuing to real time, though we shall focus on
the case of two baths, with which the spins are in equilibrium)
from the partition function

Z = Tr e−βĤ =
∑
S,M

〈S, M| e−βĤ |S, M〉 , (2)

from which we obtain the expression for the thermal expec-
tation values, for instance, the average z component of spin
Ŝz ≡ 1

2 (Ŝ(1)
z + Ŝ(2)

z ),

〈Ŝz〉 = 1

2

∑
S,M 〈S, M| (Ŝ(1)

z + Ŝ(2)
z

)
e−βĤ |S, M〉∑

S,M 〈S, M| e−βĤ |S, M〉 . (3)

Simple exponentiation of the diagonal elements of (A3)
leads to

〈Ŝz〉 = h̄

2

eβgμBBz − e−βgμBBz

e−βJ + 1 + e−βgμBBz + eβgμBBz
. (4)

The results for an electron-like particle with g =
2.00231930436256, β = 1/(kBT ), kB = 1.380649 ×
10−23 J K−1, and μB = 9.2740100783 × 10−24 J T−1 are
shown in Fig. 1. Here we see the decaying ferromagnetic
order as the temperature increases. The inflection point
is caused by the present case of a two-level system (spin
s = 1/2); the thermal spin fluctuations must overcome an
initial energy barrier before the alignment with the external
field can be destabilized.

Scaling this approach, of rewriting the system in its equiv-
alent single-spin incarnation, up to large numbers of spins
and larger spin quantization numbers, encounters two key
obstacles. The first is that this diagonalization only works
for a field that is along a constant direction that we can pick
as the quantization axis, which means this is not the way to
proceed for a more general field dependence. The second is
that even though the Hamiltonian remains Hermitian regard-
less of the system size or the value of the spin, this approach
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quickly becomes impractical. For higher values of the spin,
the eigenspectrum displays degeneracies, and the diagonal-
ization becomes much more difficult, to the point of becoming
impractical. Finding the eigenvalues of a matrix of size N × N
amounts to finding the roots of a polynomial of order N , which
is only exactly/analytically possible for N � 4, unless the
polynomial can be factorized. Moreover, having degenerate
eigenvalues means that eigenvectors must be hand-picked to
ensure that they are orthogonal. So to proceed with our long-
term goal of representing thousands of spins, we prefer for
every quantum spin to be mapped to a classical equivalent
magnetic moment for our enhanced atomistic spin dynamics
model and use these exact results as an exact comparison for
small systems only.

III. CONSTRUCTING THE EFFECTIVE
FIELD FOR PISD SIMULATIONS

Our starting point remains the Hamiltonian for two spins
Ŝ

(1)
and Ŝ

(2)
, coupled by isotropic Heisenberg exchange with

exchange constant J , although now with a magnetic field B,
in a general direction

Ĥ = − J

h̄2 Ŝ
(1) · Ŝ

(2) − gμB

h̄
B · (Ŝ

(1) + Ŝ
(2)

). (5)

We build the partition function in the coherent spin states basis

Z =
∫ 2∏

i=1

dμ(z(i) ) 〈z(1)z(2)| e−βĤ |z(1)z(2)〉 , (6)

where, assuming that s(1) = s(2) = s (two spin sites can have
different values of s, and while it does not prevent applying the
following procedure, it makes the intermediate combinatorial
steps more difficult to resolve analytically), the integration
measure is given by

dμ(z(i) ) = 2s + 1

π

dz(i)

(1 + |z(i)|2)2 , (7)

and the spin coherent states are defined as

|z(1)z(2)〉

≡ (1 + |z(1)|2)−s

(1 + |z(2)|2)s

2s∑
p,p′=0

(
2s
p

) 1
2
(

2s
p′

) 1
2

z(1)pz(2)p′ |p, p′〉,

(8)

with {z(1), z(2)} ∈ C2 and where we also defined

|p1, p2〉 ≡ |s1, s1 − p1; s2, s2 − p2〉. (9)

To recover the classical limit (we emphasize that this is
mainly for reference, and the aim of the current work is to
go beyond this), one simply neglects all noncommuting terms
that arise in the Hamiltonian (5), i.e.,〈

Ŝ(i)l
x Ŝ(i)m

y Ŝ(i)n
z

〉 ≈ 〈
Ŝ(i)

x

〉l 〈
Ŝ(i)

y

〉m 〈
Ŝ(i)

z

〉n
, (10)

where we have defined

〈Â〉 ≡ 〈z(1)z(2)| Â |z(1)z(2)〉 . (11)

The reason this is the classical limit is that it does correspond
to taking h̄s → 0. Recalling [8]

Ŝ(i)
− |pi, p j〉 = h̄

√
(2s − pi )(pi + 1) |pi + 1, p j〉,

Ŝ(i)
+ |pi, p j〉 = h̄

√
pi(2s − pi + 1) |pi − 1, p j〉,

Ŝ(i)
z |pi, p j〉 = h̄(s − pi ) |pi, p j〉, (12)

as well as

Ŝ(i)
x = Ŝ(i)

+ + Ŝ(i)
−

2
,

Ŝ(i)
y = Ŝ(i)

+ − Ŝ(i)
−

2i
, (13)

and then using the stereographic projection that provides a
z(i) → n(i) mapping⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n(i)
x = z(i) + z̄(i)

1 + |z(i)|2

n(i)
y = −i

z(i) − z̄(i)

1 + |z(i)|2

n(i)
z = 1 − |z(i)|2

1 + |z(i)|2

, (14)

where n(i) are unit vectors, we can map the initial quantum
problem in terms of states and operators, to a classical model
of two interacting spin vectors. This yields the partition func-
tion

Zclassical =
∫ 2∏

i=1

dν(n(i) )e−βHclassical , (15)

with the usual classical Heisenberg Hamiltonian

Hclassical = −Js2n(1) · n(2) − gμBsB · (n(1) + n(2) ), (16)

and the integration measure restricts the integral to all states
on the Bloch sphere for each individual spin

dν(n(i) ) = 2s + 1

4π
δ(1 − n(i)2

)d3n(i), (17)

where δ(x) is the Dirac delta function ensuring that the inte-
gration is performed on the Bloch sphere, n2 = 1.

To go beyond the classical limit, we obtain an N th order
approximate value for the partition function of our system by
expanding the operator exponential from the partition function
(6) as a series in the matrix elements (this is by no means a
trivial feat and more details on reasonable convergence can be
found in Appendix D)

〈z(1)z(2)| e−βĤ |z(1)z(2)〉

≈ 1 +
N∑

k=1

(−1)kβk

k!
〈z(1)z(2)| Ĥk |z(1)z(2)〉

≡ 1 + F [β, N]. (18)

All required matrix elements, up to third order, for compu-
tation along with the relevant commutation relations can be
found in Appendix C. Higher orders can be computed symbol-
ically using the python software compendium provided [15].
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Now we aim to write the integrand of the partition function
(6) as a unique exponential, that will allow us to identify the
effective Hamiltonian. To this end, we rewrite (18) as

1 + F [β, N] = eln (1+F [β,N]). (19)

At this stage, there are two ways of proceeding. The first is
to define the effective Hamiltonian directly from this expres-
sion. If the expansion is taken to high enough order, or there
is an exact expression for the matrix elements, i.e., a closed
expression for the sum (18), for N = ∞, as was the case in our
previous work for a single spin [14], the effective Hamiltonian
is

Heff[N, {z(i), z̄(i)}] ≡ − 1

β
ln (1 + F [β, N]). (20)

The second approach is to compute an expression (for a
given order N) for the effective Hamiltonian by performing
a Taylor series expansion of the exponent of (19) for β → 0,
which results in a high-temperature approximation.

ln (1 + F [β, N]) ≈
N∑

k=1

(−1)k+1

k
F [β, N]k, (21)

which always yields an expression that can be factorized over
β, such that we can define

Hhigh-T
eff [N, {z(i), z̄(i)}] ≡ − 1

β

N∑
k=1

(−1)k+1

k
F [β, N]k . (22)

A sample computation up to third order is presented in
Appendix C.

Using the mapping (14), we thus obtain an expression in
terms of the two spin coherent state unit vectors n(i),

Heff[N, {z(i), z̄(i)}] ⇒ Heff[N, {n(i)}]. (23)

From this, we deduce the effective field for use in our atom-
istic spin dynamics simulation by using the usual expression
[16] for the effective field

B(k)
eff [N] ≡ − 1

μs
∇n(k)Heff[N, {n(i)}], (24)

where μs = gμBs.
We do not provide expressions for the effective Hamilto-

nians and fields explicitly in this paper as they are much too
long to be displayed. They are, however, readily obtainable
by computation and printing out, using the Python software
package in the compendium [15].

Now that we have constructed the effective Hamiltonian
for the atomistic simulations, we shall use it to compute ap-
proximate thermal expectation values in the case of an exactly
diagonalizable system of two spins, for a constant magnetic
field along the quantization axis, and compare results to the
exact quantum results.

IV. PATH-INTEGRAL SPIN DYNAMICS RESULTS

In this section, we begin by recalling essential aspects
of atomistic modeling and how to compute thermodynamic
averages from the spin dynamics trajectories in Sec. IV A, to
compare to the expectation values in Sec. II. We then present
results for two distinct cases:

(i) In Sec. IV B, we compute the effective field up to a
given order for the exponential series (18), the most general
case where this series cannot be computed exactly. This is
for generic values of s or for a varying field that cannot be
taken to coincide with the quantization axis. Here, we also in-
troduce a better method for expanding the exponential series,
by expanding around the classical limit of our system. This
yields more accurate results than the direct series expansion,
at a given approximation order for the exponential series.

(ii) In Sec. IV C, we take advantage of the closed form
of the exponential series for fixed values of s, when the field
direction and quantization axis coincide, and obtain the ef-
fective field exactly by computing the overlap between the
diagonalized spin basis and the spin coherent states basis for
fixed selected values of s. This yields results valid for the
whole temperature range.

A. Constructing the stochastic atomistic simulation

Once an expression for the effective field has been derived
[e.g., (24) for the high-temperature field from the Taylor ex-
pansion method], we proceed in the usual fashion [16] for
atomistic spin dynamics simulations by computing dynamical
trajectories using the Landau-Lifshitz-Gilbert equation

ṅ(i) = − γ

1 + α2

(
n(i) × B(i)

eff + αn(i) × (
n(i) × B(i)

eff

))
, (25)

where γ = gμB/h̄ is the gyromagnetic ratio and α is the
dimensionless Gilbert damping parameter. We introduce a
stochastic field for the thermal fluctuations in the system η,
defined by its first two moments〈

η(i)
μ (t )

〉 = 0,

〈
η(i)

μ (t )η( j)
ν (t ′)

〉 = 2αδi jδμνδ(t − t ′)
βμsγ

,
(26)

where μ and ν stand for the Cartesian components of the
stochastic field η. The stochastic field is then added to the
effective field derived in (24)

B(k)
eff [N] → B(k)

eff [N] + η. (27)

We compute thermal averages after an initial relaxation period
of 5 ns, averaging over Nt time samples and Ns independent
realizations of the noise and with a system of N spins,

〈Ŝz〉 = C 〈nz〉 ≡C
1

N

1

NS

1

Nt

N∑
i=1

NS∑
j=1

Nt∑
k=1

n(i)
j,z(tk ), (28)

where C is a normalization constant to ensure the atomistic
results, which are averages from the unit vector n(i), are
comparable to the spin expectation value that depends on
the spin number s. For simulations of the classical limit, we
simply have C = h̄s, for all other approximations, this factor
becomes C = h̄(s + 1). This is related to the classical limit
approximating s(s + 1) ≈ s2. For a more detailed discussion
of this issue, see the Appendix of Ref. [8]. We integrate the
equations of motion numerically using a symplectic algorithm
preserving the structure of the phase space [17].

At this stage, one can use the code in the compendium
[15] to produce results for the high-temperature expansion
method, as has been done in previous work [8,14]. In practice,
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FIG. 2. Expectation value 〈Ŝz〉 for spin s = 2 as a function of
temperature with J = gμBBz and α = 0.5, B = (0, 0, 1) T. Atomistic
results for classical limit (purple dashed line) and second- (orange
dashed line) and third- (yellow dashed line) order quantum correc-
tions from exact field as difference to classical limit, compared to
quantum results (red solid line) from exact diagonalization method.

however, this approximation scheme tends to not scale very
well with increasing exchange strength (see Appendix D for
a discussion of this issue), especially at low temperatures.
There are, however, two simple tricks that can improve this:
(a) making an educated guess at what the appropriate classical
limit of our quantum system is and evaluating the effective
field as a difference from this limit, or (b) not using the high-
temperature Taylor series for the effective field, thus yielding
an exact expression for the field, to the given order N of the
expansion (20).

B. Exact field as difference series from classical limit

We take two steps to improve the quality of the results and
their scaling with both the temperature and the Heisenberg
exchange interaction J (or whichever the dominant energetic
term is in the Hamiltonian).

Firstly, the Hamiltonian from the Taylor series that we use
to express the effective Hamiltonian is pedagogically useful,
as it makes the relation to the classical limit more obvious
and provides simpler, polynomial expressions (22) for the
effective Hamiltonian/field, but it is not essential. It actually
makes results worse. Indeed, when taking the series for the
exponential operator, we are simply using the definition of
the exponential of the operator, whilst postulating that this
series converges (we emphasize again that this is not obvious
as discussed in Appendix D). This means that taking higher
order terms into account enhances convergence toward the
correct solution at all temperatures, even if practically, higher
temperature are easier to capture as they make the argument
of the exponential smaller. In taking the Taylor series of the
logarithm expression, however, we explicitly impose that the
results are only valid at high temperatures, and there is no
requirement to do this, so we will see what happens if we skip
this step. This is what we call quantum exact field in Figs. 2–4.
In the case where the exponential series is exactly computable
as in Figs. 3 and 4, the field expression is a closed expression
and the field is genuinely exact, whereas it is only exact up to
the given order in the exponential series for Fig. 2.

FIG. 3. Expectation value 〈Ŝz〉 for two spins with (a) s = 1
2 and

(b) s = 2, as a function of temperature. Atomistic simulation result
(orange dots) from exact effective field (31) vs exact result for J =
gμBBz, B = (0, 0, 1) T (solid-red line).

The second step is that we know that, at least for high
enough temperatures, the classical limit (when properly nor-
malized) yields qualitatively correct results, so it makes sense
to rewrite matrix elements as

〈z| e−βĤ |z〉 = e−βHclassical 〈z| e−β(Ĥ−Hclassical ) |z〉

≈ e−βHclassical

(
1 − β 〈z| Ĥ − Hclassical |z〉

+ β2

2
〈z| (Ĥ − Hclassical )

2 |z〉 + . . .

)
, (29)

and evaluate the effective Hamiltonian from this expression
instead. For a discussion on the convergence of this approach,
see Appendix D.

The results for two spins with s = 2 are given in Fig. 2 with
an integration time step of 5 × 10−6 ns, Ns = 5 realizations
and an average time of 10 ns (after 5 ns equilibration time).
The order of correction is the number of terms in the Taylor
expansion of (29). Here, we can see that this approach yields
promising results. The first correction (orange-dashed curve)
already coincides with the quantum solution around T = 4 K
and the second correction (yellow-dashed curve) for T = 1 K.
We will now briefly discuss a method to evaluate these thermal
expectation values more accurately by explicitly imposing,
as is used for computing the exact quantum expectation val-
ues, that the field is constant and chosen to be aligned with
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FIG. 4. Expectation value 〈Ŝz〉 for two antiferromagnetically
coupled spins with (a) s = 1

2 and (b) s = 1, as a function of temper-
ature. Atomistic simulation result (orange dots) from exact effective
field (31) vs exact result for J = −2gμBBz, B = (0, 0, 1) T (solid-red
line).

the quantization axis. This will enable us to derive an exact
expression for the effective Hamiltonian, and hence should
provide results, valid over the whole temperature range.

C. Effective Hamiltonian for the exactly solvable case

In the case of two spins interacting via an isotropic Heisen-
berg Hamiltonian with addition of a Zeeman term, under the
restriction that the magnetic field and the quantization axis
coincide (1), we have seen that the Hamiltonian is readily
diagonalizable (of course, in principle, it is diagonalizable for
any value of spin s, despite the procedure becoming more and
more cumbersome with increasing dimension of the Hilbert
space). This has some more practical use for us, namely that
we can rewrite the integrand of the partition function (6) as

〈z(1)z(2)| e−βĤ |z(1)z(2)〉
= 〈z(1)z(2)| e−βĤ

∑
S,M

|S, M〉 〈S, M|z(1)z(2)〉

=
∑
S,M

e−βλS,M | 〈S, M|z(1)z(2)〉 |2, (30)

where λS,M are the eigenvalues of H in the |S, M〉 basis.
Using this, one can obtain an exact expression for the effective

Hamiltonian as

Heff = − 1

β
ln

⎛
⎝∑

S,M

e−βλS,M | 〈S, M|z(1)z(2)〉 |2
⎞
⎠. (31)

The results are displayed in Fig. 3 with an integration time
step of 5 × 10−6 ns for panel (a) and 4 × 10−6 ns for panel (b),
Ns = 5 realizations and an average time of 10 ns (after 5 ns
equilibration time). Here, we can indeed see that in this case
the whole temperature range is accurately sampled, with the
caveat that one requires a constant direction of the magnetic
field. In practice, this method is useful for computing most
equilibrium thermodynamics quantities such as the Curie tem-
perature, for large spin systems where the applied field can be
safely assumed to be constant.

Of particular note is that our method is readily extended
to the case of antiferromagnetic coupling with no additional
difficulty and provides the correct quantum expectation value,
as can be seen in Fig. 4, with an integration time step of
7 × 10−7 ns, Ns = 5 realizations for panel (a) and Ns = 10 re-
alizations for panel (b) and an average time of 10 ns (after 5 ns
equilibration time). Whereas obtaining results for quantum
expectation values for antiferromagnetic systems is famously
tricky as a result of a family of problems often collectively
referred to as “the sign problem”, in the context of quantum
Monte Carlo method, for example, where antiferromagnetic
systems can lead to negative probability issues [18]. Figure 4
also gives a clear demonstration of the qualitative differ-
ence in the quantum expectation values for antiferromagnets
compared to classical models. In the purely classical case
(purple-dotted curve, with only thermal fluctuations), the two
spins will try to anti-align in the plane normal to the applied
field, slightly canting toward the applied field, with decreasing
alignment as thermal fluctuations increase. This configuration
does not exist for the two quantum spins with s = 1/2. The
ground state for the quantum system is a combination of
|↑↓〉 and |↓↑〉 states, for which once an initial energy barrier
is overcome, increasing thermal fluctuations will be biased
to favor spin flips to align with the external field, until the
exchange coupling is overcome, and then we are back to the
thermal decay of the alignment of the spins with the external
field. This is perfectly reproduced by the effective classical
stochastic model (orange-dotted curve).

V. CONCLUSIONS

In this work, we expanded the scope of our previous model
for simulating quantum spin systems using atomistic spin dy-
namics and an enhanced effective field that captures thermal
and quantum fluctuations. Whereas previously, our model was
limited to a single spin interacting with an external field [8], or
with a uniaxial, quadratic anisotropy term [14], here we have
expanded it to include isotropic Heisenberg exchange and the
magnetic field does not need to coincide with the quantization
axis. This would be relevant for a time-dependent magnetic
field, for example, though this remains to be spelled out,
since the current formalism only applies to computing static
expectation values in the presence of quantum and thermal
fluctuations at equilibrium.
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As before, we begin by expressing the quantum thermal
partition function in the spin coherent states basis so as to pro-
vide a continuous, integral definition. At this stage, we need
to approximate the matrix elements in the partition function
(unless an exact expression is computable). This we do by
recalling the series definition of the operator exponential. In
essence, this expansion is required to capture noncommuta-
tivity caused by the curved geometry of the spin phase space
and the quantum fluctuations described respectively by the 1/s
and h̄s expansions in the introduction. The accuracy of this
expansion depends on the scale of the dominant energetic term
in the quantum Hamiltonian being either βgμB‖B‖ or βJ . We
have presented a method where the effective Hamiltonian is
computed as a difference to the classical limit that provides a
better approximation scheme than the direct expansion from
Ref. [8]. We then use the stereographic projection to map
the two spins to their corresponding unit spin coherent state
vector. At this stage, we can use the effective field as we
would in any other standard atomistic spin dynamics simu-
lation. In the special case where the field is constant and can
hence be chosen along the quantization axis of the system,
we have seen that it is possible to provide a method valid
for the whole temperature range. Moreover, we have shown
that this also holds for antiferromagnetic systems, for which
even the most successful methods for computing expectation
values of quantum systems, such as quantum Monte Carlo, are
often faced with the so-called “sign-problem” [18]. While the
expressions for the effective fields are impractical to include
in this document, they are readily available to be printed out
using the software compendium [15].

At this stage, what needs to be investigated is expand-
ing this method to systems of more than two spins. Indeed,
whereas this mapping from our initial quantum spin system to
a stochastic atomistic spin dynamics simulation can be done
exactly in this case, provided that the external field is aligned
with the quantization axis, this is no longer the case for N
spin systems, or more precisely, an exact mapping from a
quantum system with nearest neighbor interaction only would
require all-to-all interactions from the effective model, which
would very quickly become impractical. However, insights
from open quantum systems and density matrix renormaliza-
tion group (DMRG) methods [19], however, seem to indicate
that there are approximations that can be consistently made,
especially for “mildly”-entangled systems, as the requirement
for these all-to-all interactions to be taken into account is
essentially a marker of how entangled a system is. At this
stage, we envision as a first approximation to neglect interac-
tions between more than two sites and readily generalise the
procedure provided in the current work.

This is why in future work we will investigate the effects
of our approach for larger atomistic simulations, coupling it
to more elaborate thermostatting techniques, which are also
built on solid quantum-mechanical grounds [20–22], as well
as investigating systems that display frustration.
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APPENDIX A: EXACT DIAGONALIZATION
FOR TWO-SPINS

It is possible to recast the two-spin system define by (1),
as an equivalent single-spin system, defined by a state vector
|S, M〉, where S ∈ �|s(1) − s(2)|, s(1) + s(2)� and M ∈ �−S, S�),
using the Clebsch-Gordan coefficients [23]. In terms of the
resulting total spin Ŝ = Ŝ

(1) + Ŝ
(2)

, the Hamiltonian becomes

Ĥ = − J

2h̄2 (Ŝ
2 − s(1)(s(1) + 1) − s(2)(s(2) + 1)) − gμBBz

h̄
Ŝz.

(A1)

If we take the example of s = 1/2, this amounts
to a change of basis from |1/2,±1/2; 1/2,±1/2〉 ≡
{|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉} represented as

〈↑↑| 〈↑↓| 〈↓↑| 〈↓↓|⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−gμBBz − J

4
0 0 0

0
J

4
−J

2
0

0 −J

2

J

4
0

0 0 0 gμBBz − J

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

|↑↑〉

|↑↓〉

|↓↑〉

|↓↓〉

(A2)

to the new basis |S, M〉 ≡ { 1√
2
(|↑↓〉 − |↓↑〉), |↓↓〉 ,

1√
2
(|↑↓〉 + |↓↑〉), |↑↑〉} ≡ {|0, 0〉 , |1,−1〉 |1, 0〉 |1, 1〉},

which is represented by

〈0, 0| 〈1,−1| 〈1, 0| 〈1, 1|⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3J

4
0 0 0

0 gμBBz − J

4
0 0

0 0 −J

4
0

0 0 0 −gμBBz − J

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

|0, 0〉
|1,−1〉
|1, 0〉
|1, 1〉 .

(A3)
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As this is a diagonal matrix, the quantum problem has been
solved.

APPENDIX B: GENERALIZATION FOR ANY SPIN s
AND FOR LARGER SYSTEMS

For general values of s, one first has to compute the com-
ponents of the spin operators given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Sx ) jl = [s(s+1)− j( j−1)]
1
2 δ jl+1

4s

+ [s(s+1)− j( j+1)]
1
2 δ jl−1

4s

(Sy) jl = [s(s+1)− j( j−1)]
1
2 δ jl+1

4is

− [s(s+1)− j( j+1)]
1
2 δ jl−1

4is
(Sz ) jl = jδ jl

, (B1)

where { j, l} ∈ {−s,−s + 1, . . . , s − 1, s}2. From these, one
then constructs the Hamiltonian as

Ĥ = −gμB

h̄
Bz

⊕
i

Ŝ(i)
z

− J

h̄2

∑
〈i j〉

(
Ŝ(i)

x

⊗
Ŝ( j)

x + Ŝ(i)
y

⊗
Ŝ( j)

y + Ŝ(i)
z

⊗
Ŝ( j)

z

)
,

(B2)

where 〈i j〉 stands for a sum over the nearest neighbor j for
every spin site i,

⊕
is the direct product, and

⊗
is the Kro-

necker product. The Hamiltonian (B2) constructed in such a
fashion is always real and symmetric, hence, in theory, always
diagonalizable, even in the case of a chain or array of spins of
principal number s > 1/2. In practice, however, finding such a
diagonalized matrix analytically quickly becomes intractable,
especially when the eigenspectrum becomes degenerate.

Nevertheless, using numerical diagonalization of matrices,
and with sufficient computational resources, one can achieve
exact results for larger Hilbert spaces, especially when taking
into account symmetry arguments [24–26]. A python software
package that provides exact diagonalization results (not nu-
merical diagonalization) for two spins for arbitrary spin s [15]
is made available alongside the atomistic spin dynamics code,
mainly to serve as a reference. In practice, this code has been
tested for s � 3 and higher values may take considerable time
to solve, or may never provide results. For larger spin, we
highly recommend numerical diagonalization instead, as well
as a more thorough symmetry analysis.

APPENDIX C: MATRIX ELEMENTS
AND COMMUTATION RELATIONS

We present here, for reference, the matrix elements of the
spin operators, in the basis of coherent states, highlighting
the double expansion in powers of h̄s ≡ s and 1/s and the
fundamental property that, to any fixed order, Lmax, in s the
moments 〈Sk1+ Sk2− Sk3

z 〉, with k1 + k2 + k3 = l � Lmax, are poly-
nomials in 1/s of order l − 1. We focus on the expressions
for the moments, 〈Sk1+ Sk2− Sk3

z 〉, with k1 + k2 + k3 = l � 3, that
were used in our calculations.

The matrix elements of Ŝ(i)
z to O(s) are given by

〈
Ŝ(i)

z

〉 = h̄s
1 − |z(i)|2
1 + |z(i)|2 = s

1 − |z(i)|2
1 + |z(i)|2 . (C1)

We note that it does not receive a correction to first order in
1/s, consistent with the property that the dependence on 1/s
for this moment is a constant; the nontrivial property is that the
moment can be consistently normalized, so that this constant
is equal to 1.

The matrix elements to O(s2) are given by

〈
Ŝ(i)2

z

〉 = s2

{(
1 − |z(i)|2
1 + |z(i)|2

)2

+ 2

s

|z(i)|2
(1 + |z(i)|2)2

}
, (C2)

〈Ŝ(i)2
+ 〉 = s2

(
4 − 2

s

)
z(i)2

(1 + |z(i)|2)2
, (C3)

〈Ŝ(i)2
− 〉 = s2

(
4 − 2

s

)
z̄(i)2

(1 + |z(i)|2)2
, (C4)

〈Ŝ(i)
+ Ŝ(i)

− 〉 = s2

(
2|z(i)|2 + 1

s

)
2

(1 + |z(i)|2)2
, (C5)

〈
Ŝ(i)

− Ŝ(i)
z

〉 = s2

(
1 − |z(i)|2 + 1

s
|z(i)|2

)
2z̄(i)

(1 + |z(i)|2)2
, (C6)

〈
Ŝ(i)

+ Ŝ(i)
z

〉 = s2

(
1 − |z(i)|2 − 1

s

)
2z(i)

(1 + |z(i)|2)2
. (C7)

The matrix elements to O(s3) are given by

〈
Ŝ(i)3

z

〉 = −h̄3 s(|z(i)|2 − 1)(s2(|z(i)|4 + 1) − 2((s − 3)s + 1)|z(i)|2)

(|z(i)|2 + 1)3 , (C8)

〈
Ŝ(i)

+ Ŝ(i)
− Ŝ(i)

z

〉 = h̄3 2s(−2(s − 1)s|z(i)|4 + (s(2s − 3) + 2)|z(i)|2 + s)

(|z(i)|2 + 1)3 , (C9)
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〈
Ŝ(i)

− Ŝ(i)
− Ŝ(i)

z

〉 = −h̄3 2s(2s − 1)z̄(i)2((s − 2)|z(i)|2 − s)

(|z(i)|2 + 1)3 , (C10)

〈
Ŝ(i)

+ Ŝ(i)
+ Ŝ(i)

z

〉 = −h̄3 2s(2s − 1)z(i)2(s|z(i)|2 − s + 2)

(|z(i)|2 + 1)3 , (C11)

〈
Ŝ(i)

+ Ŝ(i)
z Ŝ(i)

z

〉 = h̄3 2sz(i)(s2|z(i)|4 + (−2(s − 2)s − 1)|z(i)|2 + (s − 1)2)

(|z(i)|2 + 1)3 , (C12)

〈
Ŝ(i)

− Ŝ(i)
z Ŝ(i)

z

〉 = h̄3 2sz̄(i)((s − 1)2|z(i)|4 + (−2(s − 2)s − 1)|z(i)|2 + s2)

(|z(i)|2 + 1)3 , (C13)

〈Ŝ(i)
+ Ŝ(i)

+ Ŝ(i)
− 〉 = h̄3 4s(2s − 1)z(i)(s|z(i)|2 + 1)

(|z(i)|2 + 1)3
, (C14)

〈Ŝ(i)
+ Ŝ(i)

− Ŝ(i)
− 〉 = h̄3 4s(2s − 1)z̄(i)(s|z(i)|2 + 1)

(|z(i)|2 + 1)3 , (C15)

and the transcription as s3P(2)(1/s) is not as illuminating,
although it is obvious from these expressions.

For the operators Ŝ(i)
± it is possible to show that there exists

a closed expression for their N − th order moments, for any
N, given by

〈Ŝ(i)N
+ 〉 = h̄N (2s)!

(2s − N )!

z(i)N

(1 + |z(i)|2)N
, (C16)

〈Ŝ(i)N
− 〉 = h̄N (2s)!

(2s − N )!

z̄(i)N

(1 + |z(i)|2)N
. (C17)

These can also be recast in the form (h̄s)N P(N−1)
± (1/s).

By using the commutation relations{[
Ŝ(i)

z , Ŝ(i)
±

] = ±h̄Ŝ(i)
±

[Ŝ(i)
+ , Ŝ(i)

− ] = 2h̄Ŝ(i)
z

, (C18)

the expressions for these moments, as well as the definition
(13), one can compute the approximation for the effective
Hamiltonian up to the third order. In fact, the provided Python
package does just this and can be used to print an expression
in LaTeX for all relevant matrix elements in terms of Ŝ(i)

x ,
Ŝ(i)

y , and Ŝ(i)
z in terms of the components of n(i), as well as

the effective Hamiltonian and corresponding field. By con-
struction, the code can also be used to generate these for any
quadratic Hamiltonian up to fifth order. However, it must be
kept in mind that going up to order higher than three requires
significant memory for the symbolic derivation of the effective
Hamiltonian, essential to the rest of this procedure. The more
complex the initial Hamiltonian, the more memory- and time-
consuming this procedure will be.

APPENDIX D: CONVERGENCE ANALYSIS

Expanding an exponential operator as a series is not trivial,
as one needs to ensure that this series definition converges, and
moreover that only a few terms are sufficient to approximate
it, if we wish to use this series as an efficient way of simulating
our quantum system, by sampling a classical Hamiltonian. A
safe way to verify this [27–30], is to check that

β‖Ĥ‖∞ � 1 (D1)

where ‖Ĥ‖∞ is the supremum norm that in our case, as the
Hamiltonian is diagonalizable in the case of the field being
constant and chosen along the quantization axis, can be un-
derstood as the largest eigenvalue for the operator Ĥ. If we
take the example of the exactly diagonalized result from (A3)
then, if we take, for example, J = gμBBz we require that∣∣∣∣ 3J

4kB

∣∣∣∣ =
∣∣∣∣3gμBBz

4kB

∣∣∣∣ � T, (D2)

specifically in our case this means that this method can
safely be expected to be convergent for temperatures such that
T � 1.01 K.

The issue with this approach is that the convergence will
depend quite sensitively on the value of the exchange constant
J, which for realistic materials can be much larger than the
applied field.

A more reasonable approach is to take as appropriate
measure the norm of the difference between the effec-
tive Hamiltonian and its classical limit so that, despite the

classical

cl
as
si
ca
l

FIG. 5. Estimate of the convergence criteria when taking the first
term in the exponential expansion (29) for the evaluation of the
effective Hamiltonian as a difference to the classical limit of the
quantum Hamiltonian, for spin s = 2 as a function of temperature,
with J = 100gμB and α = 0.5. The gray-dashed line indicates y = 1
below which this approach converges.
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influence of the relevant constants in the quantum Hamil-
tonian, these will also appear in the corresponding classical
limit, hence one can hope for a larger domain of convergence
and fewer orders of corrections required for a good degree of
approximation. At this point a good estimate for the conver-
gence of the exponential series will be

β‖(Ĥ − Hclassical )‖∞ � 1. (D3)

As a rough estimate, we use the difference between the highest
eigenvalue of the quantum Hamiltonian and the corresponding
value of the classical Hamiltonian at a given temperature.
Results are given in Fig. 5 for a much higher value of

J = 100gμBBz with Bz = 1 T that is the right order of mag-
nitude for standard ferromagnets.

In practice this means that the first correction of this
method should be sufficient to provide a reasonable approx-
imation starting from around T = 200 K. We would like to
emphasize here that a single-quantum spin (or rather a few,
if we include concepts such as entanglement) is much less
likely to behave classically than a collection of them. Indeed,
a larger system provides more routes for the quantum degrees
of freedom to interact with through fluctuation and dissipation
when in contact with a bath, and therefore can be expected to
be more readily approximated by a classical model.
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