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ABSTRACT

Deep Reinforcement Learning (RL) has the potential to revolution-

ize the automation of complex sequential decision-making prob-

lems. Although it has been successfully applied to a wide range of

tasks, deployment to real-world settings remains challenging and is

often limited. One of the main reasons for this is the lack of safety

guarantees for conventional RL algorithms, especially in situations

that substantially differ from the learning environment. In such sit-

uations, state-of-the-art systems will fail silently, producing action

sequences without signalizing any uncertainty regarding the cur-

rent input. Recent works have suggested Out-of-Distribution (OOD)

detection as an additional reliability measure when deploying RL

in the real world. How these mechanisms benefit the safety of the

entire system, however, is not yet fully understood. In this work,

we study how OOD detection contributes to the safety of RL sys-

tems by describing the challenges involved with detecting unknown

situations. We derive several definitions for unknown events and

explore potential avenues for a successful safety argumentation,

building on recent work for safety assurance of Machine Learning

components. In a series of experiments, we compare different OOD

detectors and show how difficult it is to distinguish harmless from

potentially unsafe OOD events in practice, and how standard eval-

uation schemes can lead to deceptive conclusions, depending on

which definition of unknown is applied.
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1 MOTIVATION

Deep Reinforcement Learning (RL), the combination of Deep Learn-

ing and Reinforcement Learning, is an approach to end-to-end learn-

ing of sequential decision-making agents via trial and error, where

key components (e.g., value-function, policy, world-model) are mod-

eled via deep neural networks. RL has been successfully applied to

a series of high dimensional problems, such as dexterous manipula-

tion of robots [31], autonomous navigation of stratospheric balloons

[5] and closed-loop blood glucose control [19]. However, plain RL

algorithms are built in a way that they return an output, no matter

which inputs they receive. This results in a plethora of safety con-

cerns that need to be addressed when deploying RL in real-world

applications. In real-world applications, we have to assume that the

agent may encounter entirely novel situations. Such samples can

cause learning-based components to produce completely irrational

outputs. Algorithms purely intended for decision-making will not

łnoticež unknown situations but over-confidently predict control

outputs nonetheless. This was shown to be especially problematic

for Deep Neural Networks (DNN)[34]. In safety-critical applica-

tions, this necessitates the use of a safety-monitor, that prevents

unsafe behavior caused by unknown inputs.

But what can be considered as unknown input? Certainly, the

safety-monitor should not intervene if the environment changes

only slightly, and the policy can still accomplish the task as before.

Also, whether unsafe behavior can be attributed to unknown inputs

and not to other insufficiencies is not trivial. And, what exactly can

be considered as unsafe behavior? Existing work has tackled these

questions in a relatively isolatedmanner either from a pureMachine

Learning (ML) or Safety perspective. For example, [22, 36] study

Out-of-Distribution (OOD)-detection for RL agents. While these

methods have been shown to be capable of detecting perturbations

in the environment of RL agents, their impact on overall safety has

not yet been studied. Vice versa, works such as [32] studied the

Safety of Decision-Making in Autonomous Systems, but did not

include situations outside the Operational Domain Model (ODM).

In this work, we approach the problem of safety for RL agents in

light of unknown situations. Our goal is neither to provide a novel

methodology for Out-of-Distribution (OOD)-detection in RL nor

a formal method for verifying safety. Instead, this paper aims to

combine two different perspectives on the problem (safety and ML),

that have so far only been considered in isolation. To the best of our

knowledge, there does not exist any work that examines the safety

aspects of OOD-detection mechanisms in the context of RL. The
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main goal of this paper is, therefore, to provide a bridge between

the safety and the ML world.

We do this by outlining and structuring existing work from the

safety assurance and RL literature related to the problem (Section

3). We then analyze OOD-Detection from a safety perspective and

place it within an established safety context (Section 4). Since there

is currently no clear definition of OOD events in RL, we explore

several possible approaches for this (Section 5). In a series of exper-

iments we then illustrate the relationship between the definition

of unknown, choice of detector and choice of safety metric and their

impact on safety. In particular, we show how difficult it is to dis-

tinguish harmless and potentially harmful OOD events in practice,

and how standard evaluation schemes can lead to deceptive con-

clusions, depending on which definition of unknown 1 is applied

(Section 6).

2 PRELIMINARIES AND ASSUMPTIONS

We consider RL agents as decision-making systems that sequentially

interact with their environment by taking actions. This is formalized

as a discrete-time Markov Decision Process (MDP) [6], captured via

the tuple M := (S,A, 𝑟 , 𝑓 , 𝜇0). S denotes the state space, A the

action space, and 𝑟 : S×A ↦→ R the reward function. 𝑓 : S×A ↦→

S is the transition function which describes the system dynamics

and 𝜇0 : S ↦→ [0, 1] is the starting state distribution. At each time-

step the agent observes the current state 𝑠𝑡 ∈ S, takes an action

𝑎𝑡 ∈ A and transitions to the next state 𝑠𝑡+1 ∈ S according to the

dynamics function 𝑓 . In non-deterministic settings, 𝑓 underlies a

random process with a probability distribution 𝑃 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 ). The

RL objective is to maximize the expected return

maximize
𝜋

𝐽𝑅𝐿 (𝜋) = E𝜏∼𝜋

[

∞
∑︁

𝑘=0

𝛾𝑘𝑟 (𝑠𝑘 , 𝑎𝑘 )

]

(1)

along the trajectories 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . ) produced under policy

𝜋 : S → A with discount factor 𝛾 ∈ (0, 1). The shortcut 𝜏 ∼ 𝜋

describes trajectories generated under policy 𝜋 .

Throughout this work we make the following assumptions:

• A1: Markov Condition Unless otherwise specified, we as-

sume that each state includes information about all aspects

of the past agentśenvironment interaction that have an in-

fluence on the future.

• A2: Full observability Unless otherwise specified, we as-

sume that the agent directly observes the underlying state

of the environment

• A3: Determinism We only consider deterministic MDPs.

A1 and A2 are often justifiable, even if not all environment pa-

rameters are included in an observation - if all non-observable

environment parameters are constant, they can be inferred from

interaction. However, if the environment is subject to some pertur-

bation, this is not the case anymore, and the environment becomes

partially observable.

We assume the following training paradigm. An RL agent is

initially trained in a training environment, where the goal is to

minimize unsafe interactions while maximizing reward. We do not

address the problem of safe exploration, so the agent can explore

1Throughout this work wewill use the terms novel, unknown and OOD interchangeably
for situations that have not occurred during the training of the agent.

łunsafelyž during this stage. This may be achieved through end-to-

end learning, but also with the help of additional safety mechanisms.

Once an acceptable level of performance (both in terms of rewards

and safety) is achieved, the policy parameters are frozen and the

agent is deployed within the deployment environment.

Although the training environment should resemble the deploy-

ment environment as closely as possible, conditions can still occur

in the deployment environment that were not experienced during

training, i.e. unknown events. These unknown inputs can cause

the agent to exhibit unsafe behaviour. The subject of this work is

to study methods that aim to detect and intercept such unknown

events, s.t. safety violations are mitigated. It is important to note

that, if a situation is unknown, this does not follow that it will lead

to a harmful decision. Without further assumptions, this causality

cannot be established.

3 RELATEDWORK

At an abstract level, safety can be defined as the absence of unrea-

sonable risk of harm. Risk, in turn, represents the product of the

probability of a harmful event and its severity. In this paper, we

focus on risk caused by insufficiencies in the function (RL agent),

i.e. even in the absence of hardware defects or systematic design

errors, the function is insufficient to fulfill its safety requirements.

There is a vast body of work from the field of safety engineering,

that addresses safety assurance for ML components via system

architectures, processes and design principles. In the field of RL,

safety is most often addressed directly via methods that impact

measurable safety metrics (e.g. safety monitors, optimization crite-

ria, risk-aware exploration) [20]. Although the overall objective in

these two fields is the same, there exist significant differences in

the assumptions, problem definitions and evaluation strategies that

are applied. In the following, we will briefly summarize the main

lines of work and highlight existing gaps in both fields.

3.1 Safety Assurance Perspective

Traditional safety assurance approaches are based on a design time

risk assessment using worst-case assumptions. For instance, ISO

26262 defines conditions for being acceptably safe with respect to

functional safety. These conditions are necessary to ensure reliable

and fault tolerant implementation of a system with respect to ran-

dom hardware and systematic failures. However, this standard does

not translate well to Deep Learning (DL) methods, since verification

techniques such as white-box code coverage do not apply to DNN.

As a response, several works have studied the extension of ISO

26262 to ML applications. For instance [33] analyzes the impacts

that the use of ML has on the ISO 26262 safety lifecycle and gives

recommendations on how to adapt the standard accordingly. The

authors propose to expand the definition of hazards or the use of

fault detection tools that explicitly address the ML lifecycle.

In [12], the authors argue that the main challenge for using

ML in highly complex domains is arguing for an adequately low

level of residual risk associated with functional insufficiencies (not

functional errors) and exemplify the construction of an assurance

argument for DNN classification & localization.

ISO 21448 (SOTIF) is an extension to ISO 26262 that also in-

corporates the concept of acceptable residual risk with respect to
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acceptance criteria allocated to each safety goal of the system. This

standard also includes the concept of unknown unknowns, i.e., input

conditions that were not considered during design time but can

potentially lead to harmful behavior. The standard operates on an

abstract level, however. What acceptance criteria can look like for

specific ML methods and how to successfully uncover unknown

unknowns is only vaguely discussed.

This is addressed in [11], where a causal model is introduced,

intended to aid the effective safety assurance for ML-based appli-

cations. Here, the SOTIF condition for an ML system is expressed

via specific acceptance criteria and predefined assumptions on the

inputs to the ML model.

The impact of uncertainties in the assurance process is further

explored in [13]. Causes of uncertainty are identified in in the

safety assurance of ML models with a systematic analysis of the

types of asserted context, asserted evidence and asserted inference.

The authors also support the position, that design time measures

alone are not sufficient and need to be supplemented by convincing

operation time measures. This fact is also an integral part of SOTIF,

which emphasizes the need for continuous assurance.

The goal of continuous assurance is to continuously reduce

uncertainties in the assurance argument to an acceptable level. This

is motivated by the fact that assurance at design time can only be

partial and runtime information is required to update the safety

argumentation in an ongoing manner. [18] introduces through-life

safety assurance as continuous process. [14] builds on this idea and

proposes a method to dynamically create assurance case patterns.

[4] applies the idea of continuous assurance to the dynamic safety

assurance for autonomous driving applications.

Finally, there is also work that focuses on the connection be-

tween ML and safety assurance. [35] gives an overview of the cur-

rent SOTA in safety assurance for ML with a focus on DNNs. This

overview is structured along the phases recommended by ISO 26262

(1- req. engineering, 2- development, 3- verification, 4- validation).

[27] provides an overview of practical methods for AI Safety. The

authors identify several categories of insufficiencies and outline

current research aiming at their detection, quantification, or miti-

gation. In [8] an architecture is introduced, in which a functional

monitor is connected upstream of the actual ML component. This

monitor decides whether the ML model takes control or whether

a safe fallback policy is used. Using this architecture, the authors

claim, ML components do not need to be certified, only the fault

recovery system has to be. The design of the functional monitor

itself is however left for future work. Importantly, none of these

works address RL settings.

Notably, ISO PAS 8800 is currently under development, which

aims to apply SOTIF principles to ML-based systems more generally.

3.2 Reinforcement Learning Perspective

In the field of RL, safety ismostly approached not via verifiable archi-

tectures and processes, but rather via methods that directly impact

some empirically measurable safety metric, e.g. safety constraints.

[10] categorizes safety claims into 3 layers. Let 𝑐𝑛 (𝑠𝑘 , 𝑎𝑘 ) ∈ R
𝑛𝑐 be

a set of safety constraints representing the system’s safety require-

ments, the levels are defined as:

• Level I: there is no guarantee that the controller is able to

adhere to the constraints but safety is encouraged via an

additional term and constraint threshold 𝑑 𝑗 :

𝐽𝑐 = E

[

𝑁−1
∑︁

𝑘=0

𝑐𝑘 (𝑠𝑘 , 𝑎𝑘 )

]

≤ 𝑑 𝑗 , (2)

• Safety Level II defines controllers that are able to achieve

constraint satisfaction with probability 𝑝 ∈ (0, 1):

Pr
(

𝑐𝑘 (𝑠𝑘 , 𝑎𝑘 ) ≤ 𝑑 𝑗
)

≥ 𝑝, (3)

where Pr(·) is a probability function.

• Safety Level III states that the controller must guarantee

constraint satisfaction:

𝑐𝑘 (𝑠𝑘 , 𝑎𝑘 ) ≤ 𝑑 𝑗 (4)

for all time steps 𝑘 ∈ 0, ..., 𝑁 .

Methods from control theory can handle levels II and III relatively

well by relying on existing models for the system dynamics. For

instance, [7] integrated a Lyapunov stability-analysis criterion into

the learning algorithm, to safely expand the Region of Attraction

and provide strong safety guarantees. However, these approaches

only work in relatively low-dimensional problems.

Most RL methods are therefore focused on level I safety, since

obtaining strong guarantees is difficult in complex domains that

require data-driven approaches. RL with level I safety can for in-

stance be achieved with reward shaping [21], constrained policy

optimization [1] or safety critics [37]. Another line of work aims

to compensate for unsafe control actions via shielding or control-

barrier functions [2, 16]. However, all these works follow a relatively

narrow closed-world assumption, i.e. the resulting algorithm and

its safety-relevant metrics are evaluated in the training environ-

ment. This does not resonate with most real world use cases, where

environment variables can change after training. While task per-

formance can often be compromised, it is imperative to ensure the

system’s safety, even under changed environmental conditions. For

instance, an autonomous vehicle is allowed to slow down when

facing an unknown situation but it should never crash.

Some works have discussed the use of OOD detectors as an

additional additional reliability measure when deploying RL in

the real world [22, 23, 30, 36]. However, the focus on safety in

these works is very limited and to which extent OOD detection

aids overall safety assurance arguments is not discussed. The same

applies to OOD-Detection in other domains [15, 26, 29, 38].

In summary, research from the safety assurance community tra-

ditionally focused on formal guarantees and functional safety, for

instance via introspective verification techniques. Most of these

techniques however do not translate to DNN based systems. More

recently, a lot of effort has been put into system architectures,

processes and design principles that can be used to construct con-

vincing safety arguments for ML systems. In the field of RL, most

work has gone into level I safety, i.e. high autonomy but low safety.

Stronger safety guarantees are currently only achievable in low

dimensional environments. Furthermore, evaluation takes place

almost exclusively in the training environment, impeding the possi-

bilities of transfer to real world settings. OOD detection is a promis-

ing approach that in theory can allow for higher levels of autonomy

while respecting safety more rigorously by taking over the safety
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responsibility from the RL agent. However, which implications

OOD-detectors have towards the safety of the resulting system

and how they support safety argumentation, is not yet explored.

In this work we attempt to fill this gap by analyzing how concepts

from the field of safety can be translated to the the field of RL and

OOD-detection.

4 SAFETY CONTEXT

The motivation behind using OOD detection for RL Agents is to

ensure safety in open-context settings, where the occurrence of

unknown events cannot be eliminated. In the previous section we

showed that open-context settings require a holistic safety frame-

work like SOTIF, which goes beyond Design-Time-Measures. SOTIF

not only introduces the concept of unknown unknowns as scenarios

that have not occurred during training, but also emphasises the

necessity of dealing with such inputs, via Operation-Time-Measure

(OTM). OOD-Detection is an instantiation of an OTM, that aims to

intercept unknown inputs that can potentially cause the RL agent

to produce harmful outputs. Hence, OOD detection ensures that the

RL agent acts in scenarios comparable to training. Consequently,

we can reason about safety over all possible scenarios within a

given operating domain, including unknown harmful scenarios.

Overall, this defines the context and scope for OOD detection in

RL applications. See Figure 1 left.

However, how to develop effective OOD measures and how to

structure a convincing safety argument for these measures is not

yet answered. We propose the following process, when deploying

OOD detection for RL in open context scenarios:

Operational design domain (ODD) Definition Initially, the

ODD needs to be specified, which is fundamental for understanding

a system and its limitations. The ODD is necessary not only for

OOD-Detection but also other safety arguments and informs any

downstream assertions.

Understanding of potential Unknowns Next, an understanding

of potentially unknown events needs to be established. This does

not mean to define specific events, that can potentially occur (which

is by definition not possible). Instead, the goal is to explore how

unknown events can manifest in the given task and environment.

This is a necessary step because unlike classification tasks, where

OOD can simply be defined via classes that are absent during train-

ing, there is no clear definition of OOD for RL settings. Since there

is no existing work describing how this can be accomplished, we

provide several approaches for this in Section 5.

Specification of OOD Detector Given the specification of un-

known events, it is possible to design and implement a specific

OOD-Detector, targeted at the respective types of unknown events.

Threshold selection Depending on the selected detector, a thresh-

old value can be set, discriminating ID and OOD samples. Depend-

ing on the application and safety requirements, this value can be

set either permissive or restrictive.

Fallback Policy Finally, it is required to find a suitable fallback

policy that takes over control once the OOD-Detector is triggered.

In some applications, this can be a simple no-op (no-operation), in

others more sophisticated policies might be necessary.

These steps are justified and evaluated as part of the safety as-

surance argument, which provides the rationale and evidence used

to substantiate the direct assertion of system safety. See Figure 1-

middle for an overview. However, as established by [25], the safety

argument on its own may not be sufficiently convincing, given the

complexity of the task, system and/or environment and needs to be

complemented by a confidence argument, which in turn justifies

the sufficiency of confidence in the safety argument itself. This

confidence argument can address the following perspectives:

(1) Asserted context: confidence in the validity of context in-

formation.

(2) Asserted solution: confidence in the validity and integrity

of evidence.

(3) Asserted inference: confidence in the appropriateness of

the deductive logic of the argument.

When translated to the purpose of OOD detection in Reinforce-

ment Learning, these parts attach to the assurance argument at

three distinct places (see Figure 1-right):

(1) Do we understand the context of unknown situations that

can occur? This requires a definition of the system bound-

aries (ODD) and an understanding of potential unknowns.

Together these two steps inform the confidence in the as-

serted context.

(2) Do we have convincing (in terms of validity and integrity)

evidence that our solution is capable of uncovering OOD

inputs? The OODDetector is derived from the understanding

of unknown and consequently, the detector can uncover only

certain types of unknowns. The confidence in the asserted

evidence is therefore deduced by these two factors.

(3) Can we infer the fulfillment of higher-level goals? I.e. can the

OOD detector in combination with a suitable fallback policy

reduce the overall failure rate? The interplay between se-

lected threshold (i.e. when the OOD detector gets triggered)

and fallback-policy lead to the desired higher-level goal of

mitigating safety violations. The confidence in inferring this

consequence is grounded in these two components.

All these points need to be addressed carefully to establish a suffi-

cient level of confidence in the safety argument itself.

5 DEFINITION OF UNKNOWN IN SEQUENTIAL
DECISION MAKING PROBLEMS

As outlined in the previous section, a fundamental but missing

component in safety assurance for RL is a common understanding

of what is considered as unknown in sequential decision-making

problems. In contrast to classification problems, there is no set of

known classes that can be tested against. Instead, the goal is to

find an optimal policy, by interacting with a training environment.

Whether during testing/deployment the learned policy is presented

with inputs it is not capable of dealing with, is a subtle question.

Even the evaluation is intricate since there is usually no ground

truth of the expected output for a given input (such as class labels

in the classification settings). This makes defining what a trained

system should or should not know much more difficult. In addition,

not only one but also a sequence of inputs can be relevant to the

current state of the system.
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Figure 1: Safety-Context: OOD Detection is an OTMwithin the Safety-Life-cycle of continuous assurance frameworks (left). The

process of designing OOD-Detectors constitutes several steps (middle). Each of these steps can additionaly inform a confidence

argument (right)

This chapter attempts to specify the unknown in sequential deci-

sion making-problems. Before we present different perspectives on

the problem we first discuss potential causes of the unknown.

5.1 Causes of the unknown

We discern three fundamentally different causes of the unknown.

1) Changes in the environment. Unknown situations can be

a result of changes in the environment that occur after training.

For instance, this can be because some aspects of the problem were

not included during training or because there are external factors

influencing the environment.

2) Lack of exploration. Another cause can be a lack of explo-

ration during training. That means the agent only encounters a

fraction, i.e. local region, of the state-space during training and does

not sufficiently explore other parts of the environment. Therefore,

from the agents perspective, inputs can be unknown, even if the

environment has not changed at all. This includes events that have

a very low frequency of occurrence.

3) Insufficient Learning. Also, from the agents/models per-

spective, events can be unknown as a result of insufficient learning

during training, a lack of model capacity or catastrophic forgetting.

Causes 2) & 3) can be considered as known unknowns at the time

of training since they could potentially be unveiled in the training

environment. 1) on the other hand is an unknown unknown. In this

work we will focus on 1).

5.2 A conservative definition of unknown
(train=test)

The most conservative view is to consider all conditions as un-

known, that were not directly encountered during training. This

can either be in terms of individual states, transitions ({𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1}-

tuples) or even entire episodes. This is a very limiting view on the

problem of course, as it does not allow any generalization beyond

the training data. From a safety perspective, however, this is per-

haps the most appealing interpretation. It allows to make strict

guarantees on the behavior of the agent since it is already known

from training.

5.3 Similarity based definitions of unknown

To enable generalization beyond training, it is necessary to stretch

the interpretation of known scenarios to situations that are similar

to those encountered during training. This shifts the question to

what is considered an appropriate measure of similarity between

situations. Let a situation be defined as an indefinite sequence of

states and actions. The simplest way to quantify the similarity

between situations is via measures over single states.

S1: Single states Let 𝑠 and 𝑠 ′ be two single state vectors. The

most basic measure of similarity between states is via a distance

metric 𝑑 : S × S → R in the state-vector space, such as the p-norm:

𝑠𝑖𝑚(𝑠, 𝑠 ′) := −𝑑 (𝑠, 𝑠 ′) := − || 𝑠 − 𝑠 ′ | |𝑝 , (5)

where | | 𝑠−𝑠 ′ | |𝑝=
(

∑𝑀
𝑖=1 | 𝑠𝑖 − 𝑠 ′𝑖 |

𝑝
)

1
𝑝

and𝑀 is the dimensionality

of the state-space. Other measures such as the Cosine- or Jaccard-

similarity apply equally. See Figure 2-left for a visualization.

S2: Trajectories S1 extends to trajectories (or episodes) as

𝑠𝑖𝑚(𝜏, 𝜏 ′) :=

𝑇
∑︁

𝑡

−𝑑 (𝜏𝑡 , 𝜏
′
𝑡 ) . (6)

with two trajectories of the form 𝜏 = ((𝑠, 𝑎)0, (𝑠, 𝑎)1, . . . (𝑠, 𝑎)𝑛, ).

While this definition already allows for some generalization, it does

not capture any semantic information. It also doesn’t scale well

with the dimensionality of the problem space, especially if time is

considered. For a visualization, see figure 2. The right-hand side

pink trajectory lies further away from the training data, but has

the same shape. The other pink trajectory is closer to the training

data and would thus be considered more similar, although it has an

entirely different shape. Evidently, this notion of similarity quickly

reaches its boundaries and does not translate to high-dimensional

problems.

S3. Process/distribution To tackle the curse of dimensionality,

the training distribution can be modeled explicitly, i.e., the MDPM

1573



SAC’24, April 8 –April 12, 2024, Avila, Spain T. Haider et al.

Figure 2: Visualization of states visited during training (blue)

and deployment (pink). On the left, time is not considered

and the states are spread out along their two dimensions.

On the right, time is considered and the states form a se-

quence/trajectory. The light blue shading indicates a small

similarity margin in the vector space (e.g. euclidean norm).

that creates the training distribution. If the MDP can be described

by a simple function, for instance, a Gaussian distribution, the

similarity of the currently observed MDP to the training MDP can

be measured via the density of the observed samples under the

training distribution:

𝑠𝑖𝑚(M, 𝑠 ′) := 𝑝
(

𝑠 ′ | 𝜇M , ΣM

)

(7)

or via the KL divergence of training and deployment distribution

𝑠𝑖𝑚(M,M ′) := 𝐷𝐾𝐿
(

M | M ′) . (8)

However, MDPs are usually more complex than a simple function.

[23] suggest that all components of the MDP can be subject to some

change, (S,A, 𝑟 , 𝑓 , 𝜇0), and can thus also be measured. Though,

approximating all these aspects solely via interaction is typically

intractable. A surrogate for this is modeling the training MDP with

a universal function approximator 𝑓𝜃 , such as a neural net as in

[22]. We can then compare predictions to observed states:

𝑠𝑖𝑚(M,M ′) := −𝑑
(

𝑓𝜃 (𝑠
′
𝑡 , 𝑎

′
𝑡 ), 𝑠

′
𝑡+1

)

. (9)

S4: Context If some parameters of an environment change (e.g.

friction parameters of a robot), technically, the MDP has changed

(M𝑡𝑟𝑎𝑖𝑛 ≠ M𝑑𝑒𝑝𝑙𝑜𝑦 ). Although, the fundamental process is still the

same. Such changes can be isolated into a context variable𝐶 , which

contains certain properties of an MDP. This can be modeled via a

Contextual-MDP [24] as (C,S,A,M(𝑐)), whereM(𝑐) is a function

mapping a context 𝑐 ∈ C to an MDP M(𝑐) = (S,A, 𝑟𝑐 , 𝑓 𝑐 , 𝜇𝑐0).

S5: Semantic similarity While the context can be interpreted

as a means of isolating domain information, it does not specifically

capture semantics. Semantic information refers to łmeaning", rather

than just correlation. For instance, if the inputs are images, the

semantics could be object classes, rather than pure pixel values.

However, this is highly task specific. To the best of our knowledge,

there is no universal method to measure semantic similarity.

S6: Reward/value function Another formulation for measur-

ing the similarity between training and deployment situations is

via the reward/value functions. The assumption is that two states

are similar if their (discounted) future reward is similar. However,

the reward signal is usually not accessible during deployment.

S7: The task Similarity can also be focused on the task itself.

For instance, if the task is for a robot arm to pick up boxes or to

throw boxes, the encountered states are totally different, although

Figure 3: Exemplary use-case: FetchPickAndPlace - environ-

ment [17]. The goal for the robot is to pick up a square box

from a table andmove it to a desired goal location (red point).

the environment has not changed. The reward function in a way

also captures this - it reinforces certain behavior.

All these perspectives are an attempt to improve our under-

standing of the problem. This is by no means an exhaustive list.

Nonetheless, it can serve as a starting point when designing OOD

detectors and eventually structure a safety case for RL agents. De-

pending on the perspective, OOD detectors have to operate on

certain abstraction layers of the problem, which in turn means

that they can only detect certain types of anomalies. It therefore

requires careful consideration on which notion to operate on, when

designing and testing OOD detectors.

6 EXPERIMENTS

In this section, we translate the above findings into a practical

example. Our goal is to illustrate the relationship between the

specification of unknown, the design of OOD Detectors and the

choice of a fallback Policy

For this, we evaluate three concrete OOD-Detectors in an ex-

emplary use case: the pick-and-place task from the gymnasium

robotics test suite [17]. Consider a multi-joint 7-DoF robot arm,

with a two-fingered parallel gripper attached to its end-effector.

The task for the robot is to pick up a box from a table using its

gripper and move it to a desired goal location (see Figure 3). The

initial location of the box and the goal are randomized over a 2-

D/3-D space respectively. The observation consists of kinematic

information of the box and the gripper, as well as the goal location

(S ∈ R25). An action represents the Cartesian displacement of the

robot’s end effector (A ∈ R4).

In a closed-world setting, a policy can be trained via a state of

the art RL algorithm2, that succeeds at this task around 99% of the

time. Closed-world means, that the parameters during training are

exactly the same as during deployment. Hence, only the goal- and

box location change at the beginning of each episode, while all

other parameters, such as box mass, friction of the robot joints, etc.

stay exactly the same.

Training Initially, the RL policy is trained until convergence in

the training environment (the original pick-and-place environment

from [17]). After that, we freeze the policy parameters and generate

100 episodes from the training environment as training data for the

OOD-Detectors.

Test Data For exemplary testing we construct a series of OOD

scenarios. These are variations of the original training environment,

with one of the following semantic perturbations:

2We use TQC [28] with HER [3] and train for 3M steps with sparse rewards.
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Reward Success Fail Critical

ID Env -6.96 99 1 0

Big Box -48.52 14 86 52

Heavy Box -19.41 82 18 30

Sphere -34.03 56 44 36

Box Position -20.20 89 11 12

Moving Box -47.02 44 56 68

Table 1: High level experiment statistics for 100 episodes in

each environment. Reward is the average cumulative reward

over episodes. Success, Fail and Critical are absolute counts.

• Big Box: the size of the Box is increased (2x in each dimen-

sion).

• Heavy Box: the weight of the Box is increased (20x).

• Sphere: The box is replaced with a sphere.

• Box Position: The box is initialized at extreme {𝑥,𝑦}- posi-

tions, close to the edges of the table.

• Moving Box: The box moves with a constant velocity in

y-direction (0.25𝑚𝑠−1).

We then generate 100 episodes from each disturbed environment by

applying the (static) RL policy. This constitutes 5 different test sets

(1 for each disturbed environment). On strict terms, these perturba-

tions turn into known unknowns as soon as they are defined. For

the purpose of this evaluation, we argue it is reasonable to consider

them as exemplary unknown unknowns. All these perturbations

were not considered during training and can thus be regarded as un-

known events. As mentioned above, evaluation on truly unknown

unknowns is otherwise not possible.

High-level results On a high level, we are interested in both

performance and safety metrics. As performance relevant metric

we consider the number of times the policy succeeds/fails to move

the box to the goal as well as the cumulative reward (-1 for each

time step the block hasn’t reached its final target position, and 0 if

the block is in the final target position). As safety critical metric we

consider all episodes, in which the box drops to the floor or the table

from more than 10cm of height. The resulting high-level statistics

are summarized in Table 1. In the unmodified ID environment, the

policy succeeds to move the box to the goal location in 99 of the

100 episodes. It fails once, but without a safety-critical event. This

is entirely different in OOD cases, where the critical rate gets as

high as 68%.

OOD Detectors We evaluate three different types of OOD

detectors. These detectors directly derive from the first three defi-

nitions of unknown from Section 5.3:

• S-KNN: measures similarity via L2-norm of single states at

each time-step (builds on S1):

𝑠𝑖𝑚(𝑠𝑡 , 𝑠
′
𝑡 ) := − || 𝑠𝑡 − 𝑠 ′𝑡 | |2

• LSTM: measures similarity via the sequential n-step predic-

tion error (builds on S2):

𝑠𝑖𝑚
(

𝑠𝑡 :𝑡+𝑛, 𝑠
′
𝑡 :𝑡+𝑛

)

:= − || 𝑓𝜃 (𝑠𝑡 , ℎ𝑡−1) − 𝑠 ′𝑡 :𝑡+𝑛 | |2

• PEDM[22]: measures similarity via approximation of the

MDPs at each timestep (builds on S3):

𝑠𝑖𝑚(M𝑡 ,M
′
𝑡 ) := − || 𝑓𝜃 (𝑠𝑡 , 𝑎𝑡 ) − 𝑠 ′𝑡+1 | |2 .

ID and OOD labels are assigned at each timestep as:

𝑦 =

{

ID, if 𝑠𝑖𝑚(·) < 𝜗

𝑂𝑂𝐷, otherwise
(10)

where 𝜗 is a threshold score. The KNN detector uses the training

data as an index for comparison during inference. LSTM and PEDM

are fitted on the training data until convergence.

The evaluation procedure for the detectors is not trivial. Funda-

mentally we take two different approaches to this: 1) Evaluation

via ability of detecting disturbances and 2) Evaluation via detection

of safety-critical events. Both are described in the following. 3

6.1 Evaluation via detection of disturbance

The evaluation via the detection of disturbances is based on eval-

uation procedures found in the ML literature. That is, we assume

access to high-level information about the presence of disturbances

in a given episode and label data accordingly - all steps from the

ID environment are labeled as ID and all steps from the OOD envi-

ronments as OOD. This results in a balanced test set for each dis-

turbance. This allows us to compute theoretical evaluation metrics

such as the AUROC (area under the receiver operator character-

istic), AP (average precision), or FPR95 (false positive rate at 95

% recall). These are the most prevalent metrics for measuring the

performance of binary classifiers in the ML literature. The results

are summarized in Table 2.

All detectors achieve relatively high scores in Big Box, Sphere, and

Moving Box. For Heavy Box and Box-Position, the scores are visibly

lower. For the former, PEDM is marginally better while for the

latter, the KNN is superior. The reason for this lies in the principles

the detectors operate on. 𝑆-KNN only considers single states so it

does not incorporate any dynamics. It can however detect more

extreme single states. PEDM on the other hand only operates on the

dynamics of the environment. These are still somewhat predictable,

even if the initial position has a small offset. The change in the box

mass on the other hand results in unpredictable dynamics, which in

turn leads to better detections with PEDM. Overall, and according

to these metrics, the detectors present comparable performance.

Implications on safety are, however, difficult to derive from these

metrics alone. To understand this, the perspective needs to be

shifted to safety-critical events.

6.2 Evaluation via safety-critical events

The basic objective of an OOD-detector is to trigger before a safety-

critical event. Otherwise, intervention is not possible. To evaluate

this property, we measure the time between detection and occur-

rence of safety-critical events as buffer time 𝑡𝑏 . Let 𝑡𝑐 be the time-

step at which a safety-critical event occurs, and 𝑡𝑑 the time-step at

which a detector infers an OOD label. The buffer time is defined as:

𝑡𝑏 = 𝑡𝑐 − 𝑡𝑑 (11)

To evaluate the detectors in this manner, we also need to specify a

fixed threshold on the detector score which discriminates between

ID and OOD samples (see eq. (10)). Since we consider OOD events as

unknown unknown, we do not have access to any OOD data during

3The environment test suite as well as the code for all experiments is available at
https://github.com/FraunhoferIKS/safety-ood-rl.
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AUROC AP FPR95

S-KNN LSTM PEDM S-KNN LSTM PEDM S-KNN LSTM PEDM

Big Box 0.99 0.99 0.99 0.99 0.98 0.99 0.04 0.04 0.04

Heavy Box 0.76 0.77 0.78 0.80 0.79 0.81 0.86 0.76 0.87

Sphere 0.97 0.98 0.98 0.98 0.97 0.98 0.23 0.14 0.08

Box Position 0.83 0.73 0.77 0.86 0.75 0.77 0.76 0.87 0.73

Moving Box 0.95 0.98 0.98 0.97 0.97 0.98 0.28 0.11 0.07

Avg. 0.90 0.89 0.90 0.92 0.89 0.91 0.43 0.39 0.36

Table 2: Evaluation metrics via detection of disturbance. AUROC, AP and FPR95 are calculated based on step-wise labels

from 100 episodes for each environment. All steps from the ID environment are labeled ID, all steps from the perturbed

environments as OOD, disregarding safety-critical events or performance loss.

Figure 4: Evaluation via safety-critical events. x-axis: Safety buffer (time between OOD detection and safety-critical event).

y-axis: percentage of timesteps where the detector raised an alert x timesteps before the critical event (blue bars). If the alert

is raised after the critical event, it counts as not detected (n.d., orange bar). The more this distribution concentrates on the

right-hand side, the better.

training. This means we cannot use OOD data for thresholding the

detectors. Therefore, we also generate a validation set from the ID

environment and threshold the detectors with the TPR-𝛽 method,

such that the 99𝑡ℎ percentile of the validation data is classified as

ID - a common choice in the ML literature [9].

The results of this procedure are visualized in Figure 4. An analy-

sis of the results leads to slightly different conclusions, compared to

the previous section. For instance, KNN and LSTM are comparable

with PEDM in Sphere, considering AUROC scores from above. Ana-

lyzing detection times, however, LSTM and KNN infer an OOD label

often only after the safety-critical event (orange bar), essentially

defeating the purpose of an online safety monitor. In Box Position,

on the other hand, KNN is most effective, inferring OOD labels

with significantly larger 𝑡𝑏 .

6.3 Evaluation via time-critical labels

The time between OOD detections and actual safety-critical events

is an important measure. But, how much buffer time 𝑡𝑏 is required,

s.t. safety-critical events can be prevented via intervention?
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critical event prevention possible avg. req. buffer

Big Box 52 51 12.64

Heavy Box 30 30 18.86

Sphere 36 32 16.34

Box Position 12 11 9.90

Moving Box 68 27 20.22

Table 3: Theoretically required time before failure. Num-

ber of episodes with a critical event and amount of critical

events that could have been prevented if a fallback policy

is activated early enough. The avg. required buffer time is

the average time before a safety-critical event after which

a violation becomes inevitable, even when following a safe

fallback policy.

TPR FPR

𝑆-KNN LSTM PEDM 𝑆-KNN LSTM PEDM

Big Box 0.83 0.94 0.98 1.00 0.98 0.98

Heavy Box 0.10 0.13 0.43 0.40 0.54 0.56

Sphere 0.58 0.69 0.81 0.97 0.97 0.98

Box Position 0.92 0.67 0.75 0.86 0.70 0.52

Moving Box 0.18 0.32 0.29 1.00 1.00 1.00

Avg. 0.52 0.55 0.65 0.85 0.84 0.81

Table 4: Evaluation using theoretically required time buffer

before safety-critical event as OOD label ground-truth.

To answer this question we repeat the experiments from above,

reconstructing the initial conditions of each episode exactly. For

each episode with a safety-critical event, we start at 𝑡𝑐 and work

our way backwards, intervening the 𝑅𝐿 policy at timestep 𝑡𝐼 ∈

{𝑡𝑐−1, 𝑡𝑐−2, ..., 𝑡0} with an intervention policy 𝜋𝐼 . This results in

trajectories 𝜏 := (𝜏0:𝐼 ∼ 𝜋𝑅𝐿, 𝜏𝐼 :𝑇 ∼ 𝜋𝐼 ). As a fallback policy, we

simply apply no-op (not moving any of the robot actuators). We do

this until we find a timestep 𝑡𝐼 from which onward applying the

fallback policy does not lead to a safety-critical event. The results

are summarized in Table 3. Notably, the buffer time required before

critical events is heavily dependent on the type of perturbation.

For each episode, we can now reevaluate the detectors with this

information, according to the following scheme. If the detector pro-

duces an OOD label before the last possible timestep to prevent a

given safety-critical event, this counts as a true positive. If the label

occurs too late or not at all, this counts as a false negative. True

negatives and false positives are calculated in the opposite way.

The resulting true-positive and false-positive rates are summarized

in Table 4. Comparing these numbers to the results from Section

6.1, it is apparent that considering both realistic thresholding and

the required safety buffer in the evaluation results in a much more

difficult task. Generally, the TPRs are relatively low but they also

vary drastically, depending on the type of disturbance. Some dis-

turbances are more difficult to detect in time than others. Given

that the observations the agent/detector receives only contains

kinematic information about the robot and the box, some distur-

bances only become apparent after some interaction of the robot

with the box, only when considering several consecutive timesteps

or when modeling system dynamics. This is prominent for Sphere

and Heavy Box, where PEDM has significantly higher TPR scores

than the other detectors since it is the only detector to consider

system dynamics. Single extreme states on the other hand such as

the Box Position are better detected with a simple KNN.

6.4 Confidence in the assurance argument

Coming back to the safety argumentation, there are a few observa-

tions we can make from these experiments.

1. It is important to understand what types of unknowns are

likely to occur in a given domain. This understanding is paramount

to the design of effective OOD-Detectors, as well as establishing

confidence in the Asserted Context.

2. It is important to measure the correct metrics for a given

task. Confidence in achieving the safety requirements can only be

established if there is a convincing argument that the collected

evidence is appropriate (Asserted Solution). Here, we only provide

an illustration of potential pitfalls. Future work shall explore how

to gather evidence for OOD Detectors in a way that helps when

constructing a convincing safety argumentation at design time and

with continuous assurance.

3. It is important to consider the fallback policy. After all, OOD

Detection is useless if there is no fallback mechanism that can keep

the system in a safe state. Confidence in the argumentation strategy

(Asserted Inference) depends on the above discussed metrics as well

as this fallback policy.

7 CONCLUSION & OUTLOOK

In this paper we showed that one of the main challenges for us-

ing RL in safety-critical real-world applications is arguing for the

safety of the intended functionality in light of unknown events.

This challenge already starts with understanding what constitutes

an unknown event. This paper is an attempt at finding such an

understanding, that is beneficial for both the safety and the ML

communities.

We showed that open-context settings such as real-world RL ap-

plications require continuous assurance, since classical verification

& validation approaches do not apply. We identified OOD detec-

tion as a key component in such frameworks that require OTM for

ensuring safety at runtime. When developing OOD detectors it’s

crucial to account for the ways novelties can emerge, impacting

detector effectiveness and safety claims. In this work, we presented

several different views that aid this process. Incorporating these

findings into a series of experiments, we analyzed the contribution

of OOD detection, leading to the following observations.

OOD detection is a small but no less important ingredient in the

safety assurance of RL systems. It can be used as an operation-time

measure intercepting inputs that could otherwise lead to hazardous

behavior of the RL agent. What OOD detection does not provide

is an accurate answer to whether the detected situations pose an

actual safety threat or not. In other words, it is an overly sensitive

but not very specific measure, prone to false positives. Whether

unknown states are potentially hazardous is highly task dependent

and requires further assumptions. If and how this causal relation-

ship can be established will be investigated in future work.

We also showed that the evaluation scheme itself plays an impor-

tant role when arguing about the effectiveness of OOD detectors in
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the context of RL. In order to do this, we have contrasted different

approaches from both the ML and safety perspectives. We have

found that a pure ML-perspective serves as a theoretical measure

to compare different detectors on an abstract level but provides

only limited insights about safety in downstream applications. It is

therefore important to also consider safety relevant metrics such

as the time between the occurrence of critical events and the actual

detection time. Future work can also explore further evaluation

schemes, considering more complicated or more realistic scenarios.

It is also important to note that in most cases, even a very good

OOD detector will not have 100% accuracy. In complex domains,

there will always be unknown inputs, the system cannot detect as

such. It is therefore necessary to embed the RL agent together with

the OOD detector into an adaptive architecture. This encompasses

continuous learning from both the training and the operation do-

main and updating the components continuously.
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