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ABSTRACT

Metrics such as accuracy, precision, recall, F1 score, etc. are gen-

erally used to assess the performance of machine learning (ML)

models. From a safety perspective, relying on such single point

estimates to evaluate safety requirements is problematic since they

only provide a partial and indirect evaluation of the true safety risk

associated with the model and its potential errors. In order to obtain

a better understanding of the performance insufficiencies in the

model, factors that could influence the quantitative evaluation of

safety requirements such as test sample size, dataset size and model

calibration need to be taken into account. In safety assurance, argu-

ments typically combine complementary and diverse evidence to

strengthen confidence in the safety claims. In this paper, we make

a first step towards a more formal treatment of uncertainty in ML

metrics by proposing a framework based on Subjective Logic that al-

lows for modelling the relationship between primary and secondary

pieces of evidence and the quantification of resulting uncertainty.

Based on experiments, we show that single point estimates for

common ML metrics tend to overestimate model performance and

that a probabilistic treatment using the proposed framework can

help to evaluate the probable bounds of the actual performance.

CCS CONCEPTS

· Theory of computation → Machine learning theory; Auto-

mated reasoning; · Software and its engineering → Software

safety; ·Mathematics of computing→ Probability and statistics.
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1 INTRODUCTION

Machine learning (ML) is increasingly being employed in safety-

critical applications, e.g. for deep learning-based perception in the
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Figure 1: Dimensions of uncertainty impacting the safety

assurance of ML

context of autonomous driving. As a consequence, being able to

argue the safety of ML-based functions is crucially important. This

is also reflected in the growing body of literature concerned with

safe and trustworthy AI [20]. Research can be essentially split into

two camps: (1) the ML community which aims to propose concrete

metrics and techniques to assess the quality of an ML model, e.g.

performance metrics, robustness scores, verification approaches,

or explainability techniques, and (2) the safety community which

traditionally aims to understand causal relationships between faults,

errors and failures [1] of different system components in order to

provide an argument that the risk of safety-related failures of the

system is acceptably low. From a conceptual perspective, the work

done in the ML community can be seen as providing evidence in

the form of either clearly measurable quantitative metrics or more

qualitative insights into the underlying ML model which can then

be used to support the overall safety assurance argument.

In a recent paper, the problem of ML safety assurance has been

addressed from the perspective of uncertainty [5] and it has been

argued that safety assurance requires the identification, and (if

possible) reduction, of various manifestations of uncertainty. To

this end, uncertainty is classified into three layers (see Figure 1):

model, data, and input space & task. According to this conceptual

model, any statement about the performance of amodel is critically

dependent upon the quality of the data used to train and test the

model; any statement about the validity of the data is, in turn,

conditional upon the representativeness of the specification, i.e. the

formalised description of the input space and task. For example,

assume a neural network-based perception model achieves 99%

classification accuracy for the detection of pedestrians against a set

of benchmark test data. Even if system-level measures are in place to

mitigate the residual 1% of errors, the measurement of classification

accuracymay be an insufficient basis for safety argumentation since

it depends on (1) further aspects of the model such as its calibration
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quality and (2) the integrity and validity of training and testing data

which, in turn, depends on (3) a sufficiently good understanding of

the operational context and task to be solved. If any one or all of

(1)ś(3) are lacking, the actual accuracy of the model with respect to

its intended functionality may vary from the measured accuracy.

In order to be convincing, an overall safety argument must there-

fore provide a holistic perspective, include sufficiently many pieces

of evidence for all three layers. In general, a safety argument will

be based on a range of both quantitative and qualitative pieces

of evidence and associated argument structures. The challenge is

to combine those pieces of evidence into an overall assessment

of risk that reflects the combined uncertainty associated with the

evidences. Our work aims to address this problem and presents

an idea for a formal approach to evidence combination and uncer-

tainty quantification within and across the layers mentioned above

in a safety argument using Subjective Logic (SL) [14], a formalism

combining probabilistic logic with the concepts of uncertainty and

subjectivity. In particular, we make the following contributions:

(1) We describe how commonly used quantitative metrics on

different layers of the uncertainty model shown in Figure 1

can be formulated as opinions in the framework of Subjective

Logic (Section 3) from which Beta probability distribution

functions can be derived that capture the base uncertainty

associated with the measurement.

(2) We describe how uncertainty propagation within and across

the layers of the uncertainty model can be modelled and

quantified using the notion of transitive trust chains (Section

4). By incorporating additional knowledge on higher layers,

overconfidence in a metric on a lower layer can be detected

and previously łhiddenž uncertainty can be identified.

(3) We illustrate the approach using a realistic and safety-critical

example in the area of ML-based classification for traffic sign

recognition. We show how uncertainty in the measured true

positive rate (= recall) can be revealed by combining it with

other pieces of evidence (Section 5).

2 BACKGROUND AND RELATEDWORK

2.1 Assurance uncertainty

Burton et al. [4] express the task of assuring the safety of ML

(according to SOTIF1) in terms of demonstrating the fulfillment of

a safety contract based on the following definition.

∀𝑖 ∈ 𝐼 .𝐴(𝑖) ⇒ 𝐺 (𝑖, 𝑀 (𝑖)) (1)

Where, for all inputs 𝑖 that fulfil the set of assumptions 𝐴 on

the operating domain and system context, the output of model𝑀

must fulfill a set of conditions defined by guarantees 𝐺 . Absolute

perfection is neither achievable nor required to achieve a tolerable

level of residual risk according to an acceptance criterion (𝐴𝐶),

therefore safety is defined in terms of a probability of success for a

given distribution of inputs in the operational design domain (ODD),

as reflected by the following equation:

∑

𝑖∈𝐼 ,𝐴(𝑖)∧𝐺 (𝑖,𝑀 (𝑖)) IP𝑂𝐷𝐷 (𝑖)
∑

𝑖∈𝐼 ,𝐴(𝑖) IP𝑂𝐷𝐷 (𝑖)
≥ 𝐴𝐶 (2)

1ISO 21448 łRoad vehicles - Safety of the intended functionality (SOTIF)ž

where IP𝑂𝐷𝐷 : 𝐼 → [0, 1] is the input probability distribution

function of the ODD that assigns every input 𝑖 ∈ 𝐼 with a probability

value, with the condition that
∑

𝑖∈𝐼 IP𝑂𝐷𝐷 (𝑖) = 1. For realistic

systems, the guarantees 𝐺 (e.g. avoidance of hazardous system

actions) cannot be directly evaluated through observations of the

model outputs during development. Instead, measurable properties

𝑃 of𝑀 (e.g. accuracy, precision, recall, robustness, calibrated error

rate) are evaluated for a finite number of samples 𝑗 of 𝐼 (e.g. our test

dataset). The safety assurance problem can thus be refined from

Equation 2 as follows:

#{ 𝑗 ∈ 𝐼 : 𝐴( 𝑗) ∧ 𝑃 ( 𝑗, 𝑀 ( 𝑗))}

#{ 𝑗 ∈ 𝐼 : 𝐴( 𝑗)}
≈

∑

𝑖∈𝐼 ,𝐴(𝑖)∧𝐺 (𝑖,𝑀 (𝑖)) IP𝑂𝐷𝐷 (𝑖)
∑

𝑖∈𝐼 ,𝐴(𝑖) IP𝑂𝐷𝐷 (𝑖)

(3)

The left-hand side of the equation represents the estimated fail-

ure rate calculated using directly measurable properties, and the

right-hand side represents the actual failure rate that occurs during

operation. Assurance uncertainty manifests itself as a lack of knowl-

edge of the difference between the two failure rates, as expressed

by the ‘≈’ approximately equal relation. The quantification of the

difference between the estimated and actual safety (or inversely,

risk) is referred to as assurance confidence estimation.

2.2 Assurance confidence estimation

Assurance confidence estimation aims to reduce the uncertainties

associated with the safety argument and work in this area can be

classified into qualitative and quantitative approaches [8]. Qualita-

tive approaches aim to decrease uncertainty by strengthening the

argument itself, e.g. through additional confidence-specific claims,

sub-claims, and evidences; quantitative approaches use uncertainty

quantification techniques such as frequentist or Bayesian probabili-

ties or Dempster-Shafer belief functions to quantify and aggregate

uncertainty in order to come up with an overall confidence score.

We focus here on quantitative approaches that operate on hierar-

chical safety arguments, i.e. tree-like structures where a top-level

safety claim is recursively subdivided into sub-claims, often repre-

sented using the Goal Structuring Notation (GSN) [21].

Goodenough et al. [10] present an approach to safety confidence

quantification based on the idea of eliminative induction and pro-

vide an overall confidence score through the use of an adapted form

of Baconian probability. In this approach, defeaters represent state-

ments that cast doubt on the validity of claims. Eliminating those

defeaters one by one then contributes to successively strengthening

the overall claim. The confidence in a claim C is then defined as the

ratio of the number of eliminated defeaters to the overall number of

defeaters specific to C. E.g., given five defeaters, three of which have

been eliminated successfully, the resulting confidence in C is 3/5. It

is important to note that this does not mean that the confidence is

3/5 = 60%. As a consequence, the resulting value does not represent

an absolute mass of confidence and cannot be combined with other

directly measured metrics, but can be used as a relative value of

the strength of argument.

An approach based on Dempster-Shafer theory (DST) [24] was

presented by Ayoub et al. [2]. The authors emphasise the avoidance

of confirmation bias which is particularly problematic when only

supporting evidence is taken into account. Therefore, they do not
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just focus on the assessment of overall sufficiency of a given safety

argument, but also on the assessment of insufficiency. The approach

consists of two steps: (1) assessment of sufficiency and insufficiency

for each part of an assurance argument and assignment of degrees

of belief; and (2) aggregation of degrees of belief of subordinate

claims into an overall confidence measure using Dempster’s rule

of combination. Wang et al. [25] propose an approach that sub-

divides confidence into trustworthiness of individual claims and

appropriateness of inference rules and uses DST to calculate an over-

all confidence score. Trustworthiness in a claim 𝐶 is represented

as a triple (𝑚(𝐶),𝑚(𝐶),𝑚(𝐶,𝐶)) comprising belief, disbelief, and

uncertainty in 𝐶 . Appropriateness influences the propagation of

trustworthiness from sub-claims to the top claim and is defined

as a tuple comprising contribution weights for each sub-claim, the

cooperative contribution of sub-claims and the overall reliability of

sources of information or the completeness of premises. Technically,

the overall reliability is represented as a discount factor in DST.

Various Bayesian approaches to quantify the confidence in safety

arguments have been presented. Guo et al. [11] are among the ones

to introduce the idea of using a Bayesian Belief Network (BBN) for

safety assessment. They conclude that most of the problems re-

lated to applying safety standards are due to uncertainty in the

assessment. Therefore they suggest the use of a BBN as a first at-

tempt to combine expert knowledge with evidence. Denney et al.

[7] combine safety arguments formulated using GSN with confi-

dence assessments using BBNs. To this end, the authors first define

sources of uncertainty (e.g. aleatory ones such as uncertainty in

sensor values or epistemic ones such as uncertainty with respect to

implementation correctness) in the GSN tree. Each source of uncer-

tainty is then associated with a leaf node in the BBN and quantified

as a discrete prior probability distribution over five confidence

states (very low, low, medium, high, very high). Each confidence

state maps to an interval in the range [0,1]. This mapping allows

for the integration of both quantitative and qualitative confidence

data. Higher-level probabilities (i.e. those of non-leaf nodes in the

BBN) are obtained by exploiting the conditional independence of

lower-level probabilities and computing the joint probability distri-

bution. The authors of [7] emphasize that quantifying confidence

and selecting an appropriate prior distribution is problematic in

the presence of merely subjective judgment. Due to its ability to

incorporate both quantitative knowledge (in the form of evidence)

and qualitative knowledge (in the form of a fine-grained mapping

of likelihood and confidence levels to opinion triangles [14]), we be-

lieve that Subjective Logic provides a more appropriate framework

for the purpose of assurance confidence modelling.

2.3 Representing uncertainty in binary metrics

In this paper, we are concerned with uncertainty associated with

typical binary ML-related quality metrics. This does not imply that

the underlying model is itself performing a binary task (e.g. binary

classification or regression). Even in the case of a multiclass prob-

lem, quality metrics used as evidence in a safety argument are often

still binary. Performance metrics such as accuracy, precision, recall

as well as other metrics about model calibration, data coverage,

etc. are often calculated as ratios between the number of successes

(evidence in favor of the claim) and failures (evidence against the

claim) and thus provide a probabilistic result over a binary domain,

expressed as a percentage. Given a success probability 𝑝 , the num-

ber 𝑘 of successes in 𝑛 trials is therefore binomially distributed

according to the following formula:

Bin(𝑛, 𝑘, 𝑝) =

(

𝑛

𝑘

)

𝑝𝑘 (1 − 𝑝)𝑛−𝑘 (4)

In an inductive setting, 𝑝 is generally unknown, so we are inter-

ested in the opposite problem: given 𝑟 successes and 𝑠 failures, what

is the actual probability 𝑝 of success? To this end, we can employ

the Beta distribution. Let 𝛼 = 𝑟 + 1 and 𝛽 = 𝑠 + 1. The probability

density function of the probability of success can then be defined

as follows:

Beta(𝑥 ;𝛼, 𝛽) =
𝑥𝛼−1 (1 − 𝑥)𝛽−1

𝐵(𝛼, 𝛽)
(5)

where 𝐵(𝛼, 𝛽) =

Γ (𝛼+𝛽)
Γ (𝛼)+Γ (𝛽)

and Γ(𝑛) = (𝑛 − 1)! is the gamma

function that helps to ensure that the probability density function

integrates to 1 over its defined range [0, 1]. The Beta distribution

can thus be used to represent uncertainty in the probability of

success of a single, specific binary measurement. Things get more

complicated when multiple measurements need to be combined.

Subjective logic described in the next section offers a convenient

solution to this problem.

2.4 Subjective Logic (SL)

Subjective Logic (SL) [14] is a framework for artificial reasoning

with uncertain beliefs. It combines ideas from probabilistic logic

and evidence theory, in particular Dempster-Shafer theory (DST),

and aims to address some of the well-known issues with the latter

approach [26]. DST ś mostly its combination operator ś has often

been criticised as producing counterintuitive results in certain sit-

uations of belief fusion [23]. However, as argued by Jùsang [18],

this originates in the failure of correctly interpreting the nature

of situations to be modelled. He argues that the DST combination

operator is actually a method for fusing belief constraints and also

produces intuitively correct results in that case. In order to allow for

a more nuanced treatment of different types of belief combination

and fusion situations, SL provides not just one but a wide range of

operators with different semantics as described further below.

The atomic building blocks of SL are subjective opinions (or be-

liefs) and SL offers a wide range of combination operators that allow

for algebraic reasoning. Some of the combination operators can

be mapped to their binary logical equivalents (e.g. AND, OR, XOR,

Modus Ponens, or Modus Tollens), some of them go beyond the

capabilities of binary logic (e.g. belief fusion and trust transitivity).

Due to the variety of operators, SL is particularly well-suited for

the representation of trust networks [6, 15].

Subjective opinions in SL express beliefs about the truth of propo-

sitions under degrees of uncertainty. Opinions can be binomial (i.e.,

referring to a binary target frame 𝑋 = {𝑥, 𝑥}), multinomial (i.e.,

referring to a target frame 𝑋 of cardinality > 2 with singleton ele-

ments only), or hypernomial (i.e., referring to a target frame 𝑋 of
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cardinality > 2 with elements 𝑥 ∈ R(𝑋 )2). We restrict the focus to

binomial opinions in this paper.

Definition 2.1 (Binomial opinion). Let 𝑋 = {𝑥, 𝑥} be a binary

domain. A binomial opinion about the truth of 𝑋 is a tuple 𝜔𝑋 =

(𝑏, 𝑑,𝑢, 𝑎) where

• 𝑏 (belief): the belief mass in support of 𝑥 being true

• 𝑑 (disbelief): the belief mass in support of 𝑥 being false

• 𝑢 (uncertainty): the uncommitted belief mass

• 𝑎 (base rate): the a priori probability in the absence of com-

mitted belief mass (often set to 0.5 for binary domains).

The components have to satisfy 𝑏, 𝑑,𝑢, 𝑎 ∈ [0, 1] and 𝑏 + 𝑑 + 𝑢 = 1.

From evidence to opinions: Given a binary domain 𝑋 = {𝑥, 𝑥}, let

𝑟 denote the number of observations supporting 𝑥 and let 𝑠 denote

the number of observations supporting its negation, i.e., 𝑥 . Let

further 𝑎 = 0.5 be the default base rate and𝑊 = 2 a non-informative

prior weight3. The belief, disbelief, and uncertainty values can then

be calculated as follows:

𝑏𝑋 =

𝑟

𝑟 + 𝑠 +𝑊
(6)

𝑑𝑋 =

𝑠

𝑟 + 𝑠 +𝑊
(7)

𝑢𝑋 =

𝑊

𝑟 + 𝑠 +𝑊
(8)

From opinions to Beta distributions and vice versa: Each binomial

opinion corresponds with a Beta probability density function (PDF).

The 𝛼 and 𝛽 parameters of the Beta distribution (see Equation 5)

can be derived from the base rate 𝑎, the observation evidence 𝑟 and

𝑠 , and the non-informative prior weight𝑊 as follows [16]:

𝛼 = 𝑟 + 𝑎𝑊 , 𝛽 = 𝑠 + (1 − 𝑎)𝑊 (9)

The expectation value 𝐸 (𝑋 ) of the Beta PDF can then be calcu-

lated as follows:

𝐸 (𝑋 ) =
𝛼

𝛼 + 𝛽
=

𝑟 + 𝑎𝑊

𝑟 + 𝑠 +𝑊
(10)

Combining opinions: SL provides a wide range of combination

operators [14], including, e.g, addition, subtraction, conjunction, dis-

junction, negation, multi-source belief fusion, deduction, abduction,

Bayesian reasoning, and trust discounting and is thus significantly

more versatile than DST. Combining opinions provides an elegant

and intuitive way to combine the underlying Beta distributions, a

direct manipulation of which would be significantly more complex.

In this paper, we are primarily interested in trust discounting, a type

of belief combination that tends to increase uncertainty.

In SL, various trust discounting operators have been proposed,

among them uncertainty favouring trust transitivity (UFTT) [13],

opposite belief favouring (OBF) [17], base rate sensitive discounting

2R(𝑋 ) denotes the reduced powerset of 𝑋 , i.e., the set of all subsets excluding the
empty set ∅ and the full set 𝑋 .
3The non-informative prior weight ensures that when evidence begins to accumulate,
uncertainty decreases accordingly.𝑊 is typically set to the same value as the cardinality
of the domain (2 in our binary case), thus artificially adding one łsuccessž and one
łfailurež. Higher values are equally possible but that would mean that more evidence
is required for uncertainty to decrease.𝑊 = 2 is thus chosen to maintain a balance
between belief, disbelief, and uncertainty in a way that is not overly sensitive to small
amounts of evidence [13, 19]. Ultimately, the choice of𝑊 is application-specific

(BRSD) [17], and probability-sensitive discounting (PSD) [14]. OBF

and BRSD take into account the beliefs that an agent has about the

trustworthiness of other agents. As such, they are particularly suit-

able for modelling human trust and therefore not directly relevant

for this work. Similar to BRSD, PSD takes into account the base rate

for the calculation of belief and disbelief which is also not relevant

here. As a consequence, we focus on UFTT in this paper.

Definition 2.2 (Trust discounting). Let 𝜔𝐴
𝑋
= (𝑏𝑋 , 𝑑𝑋 , 𝑢𝑋 , 𝑎𝑋 )

be an opinion that agent 𝐴 holds about a domain of interest 𝑋 =

{𝑥, 𝑥}. Further, let𝜔𝐵
𝐴
= (𝑏𝐴, 𝑑𝐴, 𝑢𝐴, 𝑎𝐴) be an opinion that agent 𝐵

holds about the trustworthiness of agent 𝐴. We can now calculate

a combined opinion 𝜔𝐵;𝐴
𝑋

that discounts agent 𝐴’s opinion about 𝑥

by agent 𝐵’s opinion about agent 𝐴’s trustworthiness as follows:

𝑏𝐵;𝐴
𝑋

= 𝑏𝐵𝐴𝑏
𝐴
𝑋 (11)

𝑑𝐵;𝐴
𝑋

= 𝑏𝐵𝐴𝑑
𝐴
𝑋 (12)

𝑢𝐵;𝐴
𝑋

= 𝑑𝐵𝐴 + 𝑢𝐵𝐴 + 𝑏𝐵𝐴𝑢
𝐴
𝑋 (13)

𝑎𝐵;𝐴
𝑋

= 𝑎𝐴𝑋 (14)

By using the symbol ‘⊗’ to designate the trust discounting opera-

tor, we define 𝜔𝐵;𝐴
𝑋

≡ 𝑤𝐵
𝐴
⊗𝑤𝐴

𝑋
. The effect of trust discounting in a

transitive chain is that uncertainty increases at the expense of belief

and disbelief. The operator is associative but not commutative [13].

3 MODELLING ML METRICS IN SL

In order to assess the performance of an ML model, the quality of a

data set, or the completeness and appropriateness of a specification,

a wide range of both quantitative and qualitative metrics have been

proposed. In order to incorporate the outcome of these metrics

as evidence into a safety argument, it is important to represent

them in a formal and uniform way. SL represents a framework that

allows for the formulation and combination of both quantitative

and qualitative insights. In this work, we limit our attention to

quantitative metrics.

As described in Section 2.4, there are essentially two ways to

construct an opinion in SL. We can either set the belief, disbelief,

and uncertainty masses directly, if appropriate information is avail-

able. Or we can derive these masses from information about the

underlying evidence (see Equations 6ś8). Several of the basic ML

performance metrics such as accuracy, precision, recall, F1 score,

specificity, etc. are based on the confusion matrix by considering

true positive (TP), true negative (TN), false positive (FP), and false neg-

ative (FN) results and can thus be directly translated into opinions

using the latter approach. Hacker and Seewig [12] have recently

proposed an error detection approach for DNNs that allows for the

calculation of scores in the [0,1] range for typical SOTIF4-related

insufficiencies such as data completeness, data quality, model in-

terpretability, model correctness, model robustness, and model un-

certainty representation, which can also be turned into opinions

in a similar way. However, also metrics aiming at other aspects of

the model, e.g. the Brier score [3] for model calibration and data

coverage metrics follow a similar scheme. Modelling the outcome of

such metrics as opinions in SL is straightforward, as we illustrate in

4ISO 21448: łRoad vehicles - Safety of the intended functionality (SOTIF)ž
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the following paragraphs. It is important to note that our choice of

metrics is by no means complete and a realistic network of metrics

would have to be significantly more comprehensive.

Recall: Recall (also known as true positive rate) is a well-known

metric that assesses the prediction performance of a classification

model and is calculated as 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ). Due to its specific fo-

cus on false negatives, recall is particularly relevant from a safety

perspective. In order to formalise a recall measurement as a bino-

mial opinion, we can consider 𝑟 = 𝑇𝑃 as positive evidence and

𝑠 = 𝑇𝑃 + 𝐹𝑁 as negative evidence and use Equations 6ś8 to form

opinion 𝜔𝑟𝑒𝑐 = (𝑏𝑟𝑒𝑐 , 𝑑𝑟𝑒𝑐 , 𝑢𝑟𝑒𝑐 ) as follows:

𝑏𝑟𝑒𝑐 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁 +𝑊
(15)

𝑑𝑟𝑒𝑐 =

𝐹𝑁

𝑇𝑃 + 𝐹𝑁 +𝑊
(16)

𝑢𝑟𝑒𝑐 = 1 − 𝑏𝑟𝑒𝑐 − 𝑑𝑟𝑒𝑐 (17)

Note that the recall metric does not take into account true neg-

atives and false positives. This effectively reduces the amount of

overall evidence and increases the influence of the non-informative

prior weight𝑊 , resulting in higher uncertainty. Additional metrics

derived from the confusion matrix such as accuracy, precision, or

the F1 score can be formalised in a similar way.

Brier score: The Brier Score [3] quantifies the calibration of a

model by measuring the mean squared difference between the

predicted probabilities and the actual outcomes. It ranges from 0

to 1, with lower scores indicating better calibration. For binary

measurements, it is calculated as follows:

𝐵𝑆 =

1

𝑁

𝑁
∑︁

𝑖=1

(𝑓𝑖 − 𝑜𝑖 )
2 (18)

where 𝑁 is the number of samples, 𝑓𝑖 is the predicted probability

of the positive class for sample 𝑖 , and 𝑜𝑖 is the actual outcome (0 or

1) for sample 𝑖 . Intuitively, the Brier score quantifies the calibration

error of a model and therefore the disbelief in the model being

correctly calibrated. One straightforward option to turn this calcu-

lation into an opinion would thus be to use the Brier score directly

as the disbelief mass and the inverse of the Brier score as the belief

mass. This would result in an opinion 𝜔𝐵𝑆 = (1 − 𝐵𝑆, 𝐵𝑆, 0). How-

ever, this approach does not reflect the uncertainty associated with

the amount of evidence used for the calculation. A better alterna-

tive would thus be to ‘break up’ the Brier score formula and define

the disbelief in the model accuracy as the sum of squared errors,

divided by the total amount of evidence plus the non-informative

prior weight, resulting in the following opinion components:

𝑏𝐵𝑆 = 1 − 𝑑𝐵𝑆 − 𝑢𝐵𝑆 (19)

𝑑𝐵𝑆 =

∑𝑁
𝑖=1 (𝑓𝑖 − 𝑜𝑖 )

2

𝑁 +𝑊
(20)

𝑢𝐵𝑆 =

𝑊

𝑁 +𝑊
(21)

Daytime morning day evening night

Haze/fog no yes

Street condition dry wet icy snow broken

Sky cloudy clear no

Rain no yes

Reflection on road no yes

Shadow on road no yes

Table 1: Example ODD specification (adapted from [9])

Dataset coverage: Ensuring good dataset coverage with respect

to the underlying specification of the input space (often referred

to as operational design domain (ODD) in automotive applications)

that the ML model is supposed to operate in is critically important

to ensure the safety of the resulting system. ODD specifications are

often given as a range of dimensions, each with its specific aspects

as shown in Table 1. One way to ensure coverage is to employ

combinatorial testing [9]. Here, 𝑡-wise combinations of aspects (=

equivalence classes) across dimensions are constructed and a cover-

age metric can be obtained. As noted by [9], the approach can also

be used to rate an existing dataset w.r.t. its coverage of an abstract

specification. It is easy to see how such a metric can be turned into

an opinion, similar to the other metrics above. Let 𝑁 be the total

number of combinations and let 𝐶 the number of covered cases.

The opinion components can then be defined as follows:

𝑏𝐷𝐶 =

𝐶

𝑁 +𝑊
(22)

𝑑𝐷𝐶 = 1 − 𝑑𝐷𝐶 − 𝑢𝐷𝐶 (23)

𝑢𝐷𝐶 =

𝑊

𝑁 +𝑊
(24)

It is debatable whether the non-informative prior weight 𝑊

should be included in that case. If there is a fair amount of certainty

regarding the choice of dimensions and aspects,𝑊 may be omitted.

This has to be decided based on the nature of the specific use case5.

Numeric examples of some of the calculations above will be given

as part of the example analysis in Section 5. In the next section, we

discuss how measurement results formulated as opinions can be

combined in order to study uncertainty propagation.

4 COMBINING ML METRICS IN SL

ML performance metrics such as the ones described in the previous

are generally used independently to assess different aspects of

a trained model. Good results for these metrics are expected to

increase trust in the capabilities of the model. However, as described

in Section 1, the quality of a model is always dependent upon the

quality of the data it has been trained and tested on which, in turn,

is dependent upon the quality of the specification of the input space

and task. The metrics described in the previous sections can thus

be associated with different layers of the uncertainty hierarchy

shown in Figure 1. As a consequence, the confidence in an asserted

‘primary’ evidence on themodel layer is a function of the confidence

in certain further, ‘secondary’ evidences on the model, data, and

5A subdivision of the overall ODD into 𝜇ODDs as suggested by Koopman et al. [22]
might be helpful here.
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input space levels and cannot be obtained in isolation. The purpose

of this section is to illustrate how Subjective Logic can be used

to combine different opinions to model and quantify uncertainty

propagation across different metrics.

Let 𝜔𝐴
𝑟𝑒𝑐 be a binomial opinion that a hypothetical agent 𝐴 (for

notation purposes) formed about the recall of binary classifica-

tion model 𝑀 . Furthermore, let 𝜔𝐵
𝑏𝑠

be a binomial opinion that a

hypothetical agent 𝐵 formed about the calibration of𝑀 . A badly cal-

ibrated classification model can impact all values derived from the

confusion matrix. Bad calibration may result in misclassifications,

leading to incorrect counts of true positives and false negatives

in the confusion matrix, and may thus bias recall. 𝐵’s knowledge

about the calibration of 𝑀 can be intuitively understood as the

level of trust that 𝐵 has in 𝐴’s opinion. By combining 𝐴’s and

𝐵’s measurements appropriately using the trust discounting op-

erator introduced in Section 2.4, we can thus formulate a refined

opinion that represent 𝐴’s recall measurement discounted by 𝐵’s

opinion about the model calibration according to Equations 12ś14

as 𝜔𝐵;𝐴
𝑟𝑒𝑐 = 𝜔𝐵

𝑏𝑠
⊗ 𝜔𝐴

𝑟𝑒𝑐 . This new opinion provides a more refined

view on the original recall measurement since it incorporates not

just the uncertainty resulting from the recall measurement itself but

also the uncertainty associated with the Brier score measurement

as well as the influence of the latter on the former. This aspect is

illustrated in more detail using a concrete example in Section 5.

The process does not have to stop here and opinion 𝜔𝐵;𝐴
𝑟𝑒𝑐 can

be further discounted by knowledge about factors on the same or

higher layers, resulting in arbitrarily complex transitive trust chains

across multiple layers in Figure 1. This allows for the modelling

of uncertainty propagation and the calculation of overall residual

uncertainty in an flexible manner, as exemplified in the next section.

5 APPLICATION TO TRAFFIC SIGN
CLASSIFICATION

We will now illustrate the concepts introduced in the previous two

sections using a realistic safety-critical example and demonstrate

the modelling of uncertainty propagation of a performance mea-

surement across the layers in Figure 1. To this end, we consider the

problem of ML-based Traffic Sign Recognition (TSR) as an example

function whose failure may have safety-relevant consequences and

therefore requires safety assurance. We assume that the TSR is used

as part of a highway pilot function that is enabled to automati-

cally control the vehicle under certain conditions on a highway

and should adjust its driving strategy based on prompts it receives

from roadside traffic signs. We are particularly concerned with the

recognition of construction site signs so that the Highway Pilot can

be deactivated and control passed back to the driver. We therefore

aim to ensure that as few construction signs as possible are missed.

We trained a deep neural network on the German Traffic Sign

Recognition Benchmark (GTSRB) dataset6. The training set con-

tains 51,840 images, subdivided into 43 classes. Class 25 represents

construction signs and contains 1,500 samples. The test dataset con-

tains 12,629 images, 480 of which belong to the class of construction

signs. We trained a ResNet model of depth 18 on the dataset with 38

epochs, a drop rate of 0.3, Adam optimiser, an initial learning rate

6https://benchmark.ini.rub.de/index.html

of 0.001, scheduler step size of 20, and scheduler decay rate of 0.5.

The model achieves an overall test accuracy of 98% and, specifically

for the construction sign class, 97% precision and 98% recall.

From a safety perspective, recall is a particularly crucial met-

ric as its inverse expresses the fraction of misclassifications. Since

missing a construction sign may lead to a hazardous situation, both

a high recall rate and a high level of confidence in the recall rate

are essential for safety. As for the first point, 98% is a good value

but certainly not sufficient. However, the focus of this paper is on

the second point, i.e. on the question how much this value can be

trusted. To this end, we need to factor in the hidden influencing

factors. In reality, there are many of such influencing factors asso-

ciated with the three layers mentioned above. For simplicity, we

restrict the focus in the following analysis to the following aspects:

(1) The calibration of the model (→ Model layer in Figure 1).

(2) The amount of evidence used for classification (→ relation-

ship between Model and Data layer).

(3) The coverage of the dataset w.r.t. the specification (→ rela-

tionship between Data and Input space layer).

We will now address these different points and examine how

they affect the overall uncertainty in the accuracy metric.

Step 1: Modelling recall as an opinion: We start by forming an opin-

ion about the recall measurement by incorporating the evidence as

described in Equations 15ś17. An analysis of the confusion matrix

of our model yields the following results:

• Num. of true positives (TP): 470

• Num. of false positives (FP): 10

• Num. of true negatives (TN): 12,149

• Num. of false negatives (FN): 10

Given that information, we apply Equations 15ś17 and calculate

the following opinion (we omit the base rate of 0.5 from the opinion

since it will not be relevant for the analysis). Note that we again

introduce a hypothetical observer agent 𝐴 for notation purposes.

𝜔𝐴
𝑟𝑒𝑐 = (0.975, 0.021, 0.004) (25)

We see that the belief mass 𝑏𝐴𝑟𝑒𝑐 = 0.975 is slightly lower than the

original recall value of 0.98 and the initial uncertainty is set to 0.004.

This is due to the influence of the non-informative prior weight

𝑊 = 2 in Equations 6 and 7 and reflects uncertainty resulting from

the comparatively small amount of evidence of 480 data points

for the construction sign class. We have thus already implicitly

addressed point 2 (amount of evidence) in the list above: had the

amount of evidence been larger, the resulting uncertainty would

have been smaller. A visualisation of the Beta distribution associated

with 𝜔𝐴
𝑟𝑒𝑐 is shown in Figure 2 (a). The 95% confidence interval

ranges from 0.956 to 0.991. From a safety perspective, it might thus

be advisable to assume a more conservative value of 95.6% for our

recall metric instead of 98%.

Step 2: Including model calibration: As the next step, we address

the quality of the confidence that the model has in its own predic-

tions using the Brier Score described in Section 3 and discount the

opinion formed above appropriately. Since we have a multi-class

classification problem but only focus on the class of construction

signs, we need to make sure we only sum up the squared errors

in classifications of images that belong to our focus class (TP and
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Figure 2: Beta PDF of the recall opinion for the traffic sign classification example (a) and Beta PDF of recall discounted by

model calibration (b) including confidence interval (shaded area) and expectation value (vertical dotted line).
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Figure 3: Sensitivity analysis for dataset coverage: upper

bound, mean, and lower bound of the 95% confidence in-

terval of the resulting Beta distributions.

FN) and ignore FP and TN resulting from the classification of non-

construction sign images. This is important in our case since only

the errors in TP and FN will impact the recall score. The resulting

measured Brier score for class 25 is 0.004, indicating fairly good cal-

ibration. Following Equations 19ś21, we model the disbelief mass

𝑑𝑏𝑠 as the sum of squared errors of TP and FN classifications which

amounts to 2.148 for our focus class of construction signs and the

belief mass as 1−𝑑𝑏𝑠 . The uncertainty mass is calculated by dividing

the prior weight𝑊 = 2 by the sum of all construction sign input

images (= 480) plus𝑊 . The resulting opinion 𝜔𝐵
𝑏𝑠

is shown below:

𝜔𝐵
𝑏𝑠

= (0.995, 0.004, 0.0002) (26)

Using the trust discounting operator, we can now calculate a

discounted opinion𝑤𝐵;𝐴
𝑟𝑒𝑐 that expresses agent 𝐵’s view on𝐴’s recall

measurement, taking into account its own opinion about model

calibration:

𝜔𝐵;𝐴
𝑟𝑒𝑐 = 𝜔𝐵

𝑏𝑠
⊗ 𝜔𝐴

𝑟𝑒𝑐 = (0.971, 0.021, 0.01) (27)

The resulting Beta PDF is shown in Figure 2 (b). We see that cali-

bration errors have introduced an additional amount of uncertainty

into the discounted recall measurement and the confidence inter-

val now ranges from 0.94 to 0.994. Our safety-aware conservative

estimate of the actual recall should thus be further reduced to 94%.

Step 3: Including data coverage: Incorporating data coverage

works in the same way as the integration of calibration just de-

scribed. We assume a hypothetical agent 𝐶 that performs a data

coverage measurement as described in the end of Section 3, result-

ing in an opinion 𝜔𝐶
𝐷𝐶

. This opinion can then be used to further

discount the previously computed opinion 𝜔𝐵;𝐴
𝑟𝑒𝑐 as follows:

𝜔𝐶 ;𝐵;𝐴
𝑟𝑒𝑐 = 𝜔𝐶

𝐷𝐶 ⊗ 𝜔𝐵;𝐴
𝑟𝑒𝑐 (28)

In order to illustrate how data coverage further impacts the

previously computed opinion 𝜔𝐵;𝐴
𝑟𝑒𝑐 , we do not assume a single

measurement for data coverage like we did in the previous two

steps but instead perform a sensitivity analysis and investigate the

relationship between different values for data coverage and the size

of the confidence interval of the resulting final opinion 𝜔𝐶 ;𝐵;𝐴
𝑟𝑒𝑐 . We

start with an (unrealistically) high assumed data coverage value of

0.99999 and reduce it down by several orders of magnitude to 0.9

and inspect how the upper bound, mean, and lower bound values of

the 95% confidence intervals vary. The results are shown in Figure

3. The x axis shows the data coverage loss, i.e. the inverse of data

coverage, the y axis shows the respective probability value. We can

see that the narrowest confidence interval ranges from 0.94 to 1.0

for (unrealistically) high levels of data coverage but widens quickly,

even for large data coverage values of ≥ 99%.

Summary: The resulting opinion 𝜔𝐶 ;𝐵;𝐴
𝑟𝑒𝑐 represents a combined

measurement that quantifies the uncertainty of our primary recall

metric by taking into account aspects of model calibration and data

coverage. For each of the measurements, the influence of sample

size is also considered. The example illustrates that the initially

measured recall value of 98% is subject to a significant uncertainty

margin that needs to be taken into account when viewing the per-

ception capabilities of the underlying ML model from a holistic

safety perspective. Incorporating knowledge about secondary as-

pects such as sample size, model calibration, and data coverage

into the original recall measurement reveals that, from a safety

perspective, a much more conservative value of at most 94% should

be used to estimate the actual performance of the model.

6 DISCUSSION AND CONCLUSIONS

In the ML community, performance metrics such as accuracy, pre-

cision, or recall are generally used as primary evidence to assess the

quality of a model. However, from a safety perspective, such point

estimates are only partially meaningful since their trustworthiness

depends on other secondary factors such as sample size, the calibra-

tion of the model, the quality of the dataset, or the appropriateness

of the specification of the operational domain. In order to obtain

confidence in any piece of primary evidence, further arguments
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about secondary aspects of model, dataset, or specification quality

and completeness are thus required.

In this paper, we proposed a formal framework based on Sub-

jective Logic (SL) that aims to quantify the uncertainty associated

with primary evidence by combining them with other, secondary,

pieces of evidence into an overall assessment of risk represented

as a probability distribution with clearly measurable properties

such as variance, standard distribution, or confidence interval. We

illustrate the approach by modelling the relationship between a

commonly used base metric (recall) and additional properties about

sample size, model calibration, and dataset coverage and show how

they impact the uncertainty in our primary evidence. Our experi-

ments show that, from a safety perspective, single point estimates

for base metrics such as recall draw an overly optimistic picture of

model performance that changes to the worse if other aspects of

the model such as sample size, calibration, or dataset coverage are

taken into account. As a consequence, from a safety perspective,

significantly more conservative estimates should be assumed.

Our work aims to be a starting point towards a more formal

treatment of uncertainty in the safety assurance of ML and, as

such, is necessarily preliminary and incomplete. While we focussed

on less than a handful of commonly used types of quantitative

evidence, a more thorough investigation of relevant metrics and

their relationship is required. Second, we aim to study how other

types of evidence that cannot be easily described as ratios can be

effectively turned into opinions in SL. Even more challenging, many

important types of evidence (e.g. in the context of explainability)

are purely qualitative in nature; whilst SL generally supports the

integration of qualitative insights [14], this problem requires further

investigation. Third, we just focussed on modelling relationships

between metrics by means of trust discounting, i.e. relationships

that tend to increase uncertainty. However, it is also possible to

combine a base metric with a secondary piece of evidence that

helps to strengthen the former, i.e. to reduce uncertainty in it. An

example could be to complement an accuracy measurement 𝑎 with

further insights about the robustness of the model which may be

used to łargue awayž some of the residual uncertainty in 𝑎. SL

provides useful fusion operators for such situations and we aim to

investigate this direction further as part of our future work. And

finally, while the resulting probability distributions represent a

quantification of ‘subjective trust’ according to the semantics of the

trust discounting operator, further (empirical) analyses are required

to assess how well they capture the actual statistical uncertainty of

the underlying primary evidence.
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