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A B S T R A C T

Integrating renewable energy resources (RES) into the energy market through a virtual power plant (VPP) 
framework is an effective strategy for reducing carbon emissions while enhancing system efficiency, reliability, 
and cost-effectiveness. However, RES-based power generation is inherently uncertain due to weather variability, 
making it crucial to incorporate uncertainty modelling. Additionally, carbon emissions can serve as a revenue 
source through carbon reduction policies such as carbon taxes and cap-and-trade schemes. An alternative 
approach to carbon reduction is the uplift payment scheme, which promotes a more carbon-efficient energy 
market (EM). This study introduces a novel bidding model within a VPP environment that leverages Extreme 
Gradient Boosting algorithm (XGBoost) algorithm to predict RES generation, addressing uncertainty through 
advanced forecasting techniques. The associated prediction risks are quantified using the Conditional Value at 
Risk (CVaR) method. Furthermore, the proposed bidding model is integrated with the carbon market, incorpo-
rating various carbon reduction policies to determine carbon credit prices dynamically. In addition to this, the 
proposed model is also optimized with a very new meta-heuristic algorithm called White Shark Optimizer (WSO) 
Algorithm to check the possibility of convergence of the model. A comprehensive comparative analysis is con-
ducted to evaluate the performance of the proposed approach. The model’s effectiveness is demonstrated 
through case studies, illustrating its potential to optimize bidding strategies while mitigating risks associated 
with RES uncertainty and carbon pricing fluctuations. By integrating advanced forecasting methods, risk 
assessment, and carbon market mechanisms, this work contributes to the development of a more sustainable, 
reliable, and economically viable energy market.

1. Introduction

The burning of fossil fuels in conventional power plants is a major 
contributor to carbon emissions, posing a significant challenge that must 
be addressed for a sustainable climate. In the era of renewable energy, 
the conventional grid meets rising energy demands by integrating power 
generated from renewable energy sources (RES). As a result, aggregating 
RES within the existing energy market has gained the attention of pol-
icymakers. These geographically dispersed RES units not only generate 
electricity for their own use but can also sell surplus energy to the grid, 
creating revenue opportunities. Incorporating RES into the electricity 

exchange market enhances both the efficiency of renewable energy 
systems and the reliability of the energy market.

The concept of a Virtual Power Plant (VPP) represents a virtual 
marketplace where all RES units aggregate and participate in the energy 
market as a single entity. Each small, distributed generation unit func-
tions collectively to optimize energy distribution and market partici-
pation. The idea of VPPs was introduced to make use of several 
individual facilities to achieve a better goal (Seven et al., 2022). While 
researchers have proposed various definitions of VPPs, a standardized 
definition remains to be established. According to the European project 
FENIX (The Virtual Power Plant Concept from an Economic Perspective, 
2008), a VPP is defined as a group of diverse distributed energy 
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resources (DERs) that collectively form a unified operational profile 
while considering network effects on aggregated output. VPPs incor-
porate multiple technologies, function across multiple locations, and can 
operate in isolated networks (Nadeem et al., 2019). RES units in VPPs 
can include electric vehicles, solar photovoltaic systems, wind farms, 
microturbines, battery storage systems, controllable loads, micro-CHP 
units, and fuel cells—most of which produce little to no carbon emis-
sions. The general layout of VPP system is presented in Fig. 1. Expanding 
the use of these generation units is a key strategy for reducing green-
house gas emissions and addressing global climate challenges. The 
following are some of the key features of VPP: 

• Enhanced integration of RES within a VPP framework significantly 
decreases the reliance on fossil fuels in conventional generation 
units, thereby mitigating greenhouse gas emissions and contributing 
to improved environmental sustainability.

• The incorporation of VPP components into the existing power 
infrastructure promotes enhanced grid security, economic operation, 
and long-term sustainability of the energy system.

• VPPs contribute to increased system lifecycle, operational efficiency, 
and reliability through coordinated control and optimal dispatch of 
DERs.

• Beyond their role in electricity market participation, DERs within a 
VPP also deliver ancillary services, including ramping support, fre-
quency regulation, and real-time balancing of generation and load, 
thereby reinforcing grid stability and operational resilience.

However, renewable energy generation is inherently intermittent 
due to its dependence on weather conditions. When integrated into the 
energy market, an effective bidding strategy is essential to counter the 
variability of RES generation. This uncertainty can be managed using 
forecasting algorithms to predict power generation before bidding, 
coupled with risk analysis. To further promote carbon reduction, various 

Nomenclature

Variables
Φ Set of the VPP units
Pb,pv,t,/ Pb,wt,t Bidding quantity of PV, and WT at time t respectively.
Pf,pv,t, / Pf,wt,t Forecasted power of PV and WT at time t respectively.
Ppv,max,t,/Pwt,max,t Maximum power output of PV and WT at time t 

respectively.
ρc Carbon market revenue in VPP
Cmt Operational cost of Micro turbine (MT)
Cesd Operational cost of energy storage device
Cc Operational cost of carbon market
δb,t Price of EM
δc,bid Bidding Price of carbon credit in EM
δc,bid(r) Modified carbon credit bid price with the reduction rate α
δ̂c Maximum (capped) carbon credit price corresponding to 

the set emissions cap
δ̂c,uplift Modified carbon credit bid price with uplift payment 

scheme
δup,t/ δdn,t Ramp up and down price of the VPP units
Rramp Revenue of VPP from ramp up and down
Pup,i,t/Pdn,i,t Bidding capacity of the market for ramp up and down at 

time t respectively.
ρem Revenue of VPP
Pb,ev,t,/Pb,bat,t Bidding quantity of EV, and battery at time t 

respectively.
Pb,mt,t,/Pb,cpp,t Bidding quantity of MT and CPP at time t 

respectively.
Ppv,min,t,/Pwt,min,t Minimum power output of PV and WT at time t 

respectively.
SW Social Welfare of the EM
Ccpp Operational cost of Conventional power plant
η Penalty coefficient
Pdis,bat,t/Pchar,bat,t Charging and discharging power of battery at time 

t respectively.
Pdis,ev,t/Pchar,ev,t Charging and discharging power of electric vehicle 

at time t respectively.
δc,bat/δc,ev Battery and electric vehicle charging and discharging 

price
λpv Penalty for Solar Photovoltaic (PV) generation
λwt Penalty for Wind Turbine (WT) generation
ηchar/ηdis Charging and discharging efficiency of energy storage 

devices
Sbat,t /Sev,t Current status State of Charge of battery and electric 

vehicle respectively.
Sbat,t,min /Sbat,t,max Maximum and minimum SOC of the electric 

vehicle
Sev,t,min /Sev,t,max Maximum and minimum SOC of the battery 

electric vehicle

Fig. 1. General layout for VPP system.
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policies such as carbon taxes and cap-and-trade schemes have been 
introduced in the carbon trading market.

This work proposes a bidding model for a VPP system that in-
corporates forecasted RES power generation to enhance market partic-
ipation while integrating the energy and carbon markets. Additionally, 
it examines the pricing of carbon credits within the framework of carbon 
reduction policies, aiming to maximize the overall profitability of the 
system while contributing to sustainability efforts.

1.1. Related works

The unpredictable nature of atmospheric conditions makes accu-
rately forecasting solar PV and wind turbine output challenging. Solar 
power output is influenced by various weather parameters, including air 
temperature, cloud cover, wind speed, and wind direction. A forecasting 
algorithm using a support vector machine was proposed in Shi et al. 
(2011), incorporating weather classification and grid-connected solar 
PV system implementation. The study utilized four weather models 
cloudy, rainy, foggy, and sunny achieving an average mean relative 
error (MRE) of 8.64 % and an average root mean square error (RMSE) of 
10.5 %. In Sáez et al. (2015), a fuzzy prediction model was applied to 
account for RES uncertainty and load prediction, demonstrating better 
accuracy than linear regression models with MAE (mean absolute error) 
of 1.27 KW with fuzzy model and 1.72 KW with linear regression model. 
The fuzzy model in Akhtar et al. (2021) successfully predicted monthly 
wind power across Indian cities with an average RMSE of 1.12 %. Wind 
power generation for day-ahead scheduling and real-time applications 
was forecasted using artificial neural networks (ANN) in Liu et al. 
(2015), with a mean absolute percentage error (MAPE) of 17.38 %. A 
48-h ahead multi-stage wind power forecasting model integrated ANN 
with SVM, achieving normalized MAE between 9 % and 20 % across 25 
wind power plants (Buhan and Çadırcı, 2015).

In Wang et al. (2019), wind power forecasting was refined using a 
heteroscedastic spline regression model (HSRM) and a robust spline 
regression model (RSRM), with RSRM providing the most accurate re-
sults. Multi-to-multi mapping techniques were applied in Yan et al. 
(2018) using an ensemble stacked de-noising autoencoder (e-SDAE), 
yielding a normalized RMSE of 9.60%. Adaptive learning algorithms 
were employed in Wang et al. (2018) for solar power forecasting, 
resulting in a MAPE of 13.68% and an RMSE of 16.95%. Short-term solar 
power forecasting with battery storage was explored in Ando et al. 
(2021), achieving a MAPE of 17.54%. Meanwhile, Liu et al. (2021)
compared day-ahead solar power forecasts using neural networks with 
LSTM and MLP models over various timeframes, with an average RMSE 
of 7.30%. Comprehensive reviews of solar power forecasting method-
ologies were presented in hendouzi and Bourouhou (2020) and a study 
for a specific location is given in El Robrini (2025). Paper (Andrade and 
Bessa, 2017) evaluated solar and wind power forecasting using numer-
ical weather prediction (NWP) data with Gradient Boosting Trees (GBT), 
achieving MAE values of 6.20% and 6.15% and RMSE values of 9.82% 
and 8.76% for solar and wind forecasting, respectively. ANN-based 
methods demonstrated superior accuracy and lower error rates 
compared to other forecasting models. Recent research showed other 
approaches may perform better than ANNs (Dhananjay Rao et al., 2024).

To reduce carbon emissions, carbon tax and cap-and-trade programs 
are widely implemented. A carbon tax imposes fees based on the market 
value of carbon-emitting fuels, while cap-and-trade allows companies to 
buy or sell carbon credits based on government-imposed emission limits. 
The concept of carbon pricing was introduced by Glomsrod et al. (1992)
and its economic impact was analysed in Metcalf and Weisbach (2009). 
The cap-and-trade mechanism was pioneered by Stavins (2008) and 
Paltsev et al. (2008), with emission cap allowances and regulatory fac-
tors examined in Hahn and Stavins (2011). He et al. (2012) compared 
the two schemes across multiple dimensions to highlight their advan-
tages. Alternative carbon reduction strategies that do not disrupt energy 
market dispatch have been explored in Hogan and Ring (2003) and 

Gribik et al. (2007). Paper (Zhang et al., 2022a, 2022b) analysed the 
impact of these schemes on power grid efficiency and strategic dispatch, 
while (Shin et al., 2021) addressed their role in minimizing energy 
market side payments. A combined bidding model and uplift payment 
strategy were proposed to minimize overall system costs.

As the majority of DER units in VPPs are weather-sensitive, an 
effective energy management system (EMS) is essential. The EMS 
manages power scheduling and dispatch before and after market bids 
are received (Latif et al., 2021). A day-ahead and real-time market 
bidding model was proposed in Baringo and Baringo (2017), focusing on 
price volatility and wind power uncertainty. Risk-constrained stochastic 
programming for revenue-maximizing VPP bidding was explored in 
Vahedipour-Dahraie et al. (2021); Afzali et al. (2020); Liang et al. 
(2019). Paper (Mashhour and Moghaddas-Tafreshi, 2011) introduced a 
rotating reserve market with a day-ahead bidding mechanism, while 
(Dabbagh and Sheikh-El-Eslami, 2016; Baringo and Baringo, 2017), and 
(Wang, 2018) incorporated spinning reserve markets. Reliability-based 
VPP bidding was analyzed in Pourghaderi et al. (2022). Paper (Chen 
et al., 2021) proposed a frequency regulation strategy involving solar 
PV, battery storage, and wind farms, using the Nash Harsanyi Bargaining 
solution for optimization. A bi-level optimization model for day-ahead 
and balancing markets was presented in Zhao et al. (2016), aiming to 
reduce costs and control inelastic demand. Fuzzy optimization was 
employed in Al-Awami et al. (2017) to examine demand response stra-
tegies like load curtailment and shifting for profit maximization. While 
most studies focused on single VPP units, (Wang et al., 2016) introduced 
a multi-VPP concept for unified energy management, using a 
game-based interactive dispatch model. A bi-level distributed robust 
optimization approach was used in Song and Jing (2023) to determine 
optimal bidding strategies under VPP uncertainty. Paper (Singh et al., 
2022) was the first to explore energy market coordination with the 
carbon market, presenting a VPP-based energy management and bid-
ding strategy under cap-and-trade schemes. This analysis underscores 
the need to integrate RES-based power generation into the energy 
market to meet growing demand while ensuring optimal bidding and 
dispatch strategies with minimal carbon emissions. The study (Peng 
et al., 2023) proposes a tiered carbon trading-based economic dispatch 
strategy for VPPs, integrating emission pricing into operational 
decision-making. While innovative in carbon market modelling, the 
paper lacks comprehensive treatment of uncertainty and real-time 
market dynamics. The authors introduce a low-carbon scheduling 
model that incorporates carbon emission flow and demand response, 
improving environmental and economic coordination (Wang et al., 
2024). The work proposed in Ding et al. (2022) addresses optimal VPP 
operation by incorporating carbon trading mechanisms into the 
market-based scheduling framework. While practical, the work relies on 
deterministic modelling and does not explore adaptive or intelligent 
bidding strategies under uncertainty. The study (Zhang and Liu, 2023) 
presents a dispatching model for VPPs integrated with carbon capture 
systems and dual trading mechanisms: green certificates and carbon 
credits. It offers a comprehensive framework, but the complexity of 
modelling multiple market layers is not addressed in optimization terms. 
The paper (Guo et al., 2025) develops an optimal VPP scheduling model 
combining carbon trading and green certificate markets, aiming to 
maximize environmental and economic benefits. Despite strong policy 
integration, the solution methodology could benefit from advanced 
metaheuristics for better performance under dynamic conditions.

Traditional optimization techniques typically produce effective 
optimization with the global optimal solution, when applied to simple 
engineering issues, problems of moderate complexity, or other diffi-
culties. Despite of that, Meta heuristic methods are now becoming the 
choice for engineering optimization problems. These methods are nature 
inspired algorithms able to optimize the problem and provides the 
global best solution (Singh et al., 2021), for example: genetic algorithm 
which is evolutionary based algorithm, article swarm optimization 
which is mimics the behaviour of bird swarm for finding the global best 
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solutions and many more methods. The paper (Ul Ain Binte Wasif Ali 
et al., 2022) proposes an Improved Multilevel Optimization (MLBO) 
framework for smart energy management in VPPs, leveraging a hybrid 
GA and local search. While the hierarchical structure enhances coordi-
nation, the method suffers from slow convergence and computational 
overhead in large-scale bidding scenarios. The study presented in 
Yuvaraj et al. (2025) proposes a robust 3-phase bidding strategy using a 
hybrid IGWO-PSO algorithm, significantly enhancing resilience and 
profitability in smart microgrids. Despite its strong performance, the 
model involves high algorithmic complexity and requires extensive 
parameter tuning, which may limit real-time applicability. Paper (Liu 
et al., 2023) introduces an Improved Whale Optimization Algorithm 
(IWOA) with levy flight and elite learning for optimizing microgrid 
operations. While it improves exploration capabilities, the method re-
mains sensitive to control parameters and may experience stagnation in 
complex, high-dimensional VPP bidding problems. The authors develop 
a three-stage coordinated approach to enhance operational efficiency 
and reliability of VPPs through deterministic control (Amissah et al., 
2024). Although effective in structured scenarios, the absence of meta-
heuristic optimization limits its flexibility and performance under 
market and renewable uncertainties.

A new algorithm White Shark Algorithm (WSA), which copies the 
behaviour of white shark that forages in the deep ocean in order to 
successfully survive, is getting attention in these optimization problems 
(Braik et al., 2022). WSA is expected to come out with greater options 
than the ones that are now available. Since the two key components of 
any meta-heuristic’s success are exploration and exploitation, WSA 
successfully designs them to maintain a healthy balance between the 
two. The study presented in Fathy and Alanazi (2023), explored the WSA 
technique to optimize error in performance of the design parameters of 
fuel cell and successfully optimizes evaluation metric within small 
range. With the uncertainty condition of RES, the author in Farhat et al. 
(2024) proposes a modified WSO algorithm for optimal power flow for 
modified IEEE- 30 and IEEE-57 bus systems incorporated with solar and 
wind energy systems. The application of WSO is not only in power sector 
but the study presented in Ravishankar et al. (2023) explores the in the 
field of Unmanned Aerial Vehicles (UAVs) clustering. By modifying the 
clustering process to maximize communication and interaction inside 
the network, the approach demonstrates dynamic features. Therefore, 
this work proposes a very novel white shark algorithm for optimizing the 
revenue for a day ahead market bidding strategy of proposed VPP sys-
tem integrated with carbon market.

Existing literature is largely focused on isolated aspects of fore-
casting, carbon policies, and bidding strategies. Papers (Sáez et al., 
2015; Akhtar et al., 2021; Liu et al., 2015) and (Wang et al., 2019, 2018; 
Yan et al., 2018) primarily address solar and wind power forecasting, 
while (Shi et al., 2011; Buhan and Çadırcı, 2015; Ando et al., 2021), and 
(Liu et al., 2021) integrate RES forecasting with the energy market, but 
without carbon market considerations. The models like SVM, fuzzy 
logic, ANN, autoencoders, and gradient boosting have been applied for 
forecasting solar and wind power. These models have shown varying 
degrees of accuracy, but challenges remain in handling the highly sto-
chastic behaviour of RES, especially for short-term and day-ahead op-
erations. Papers (Glomsrod et al., 1992; Metcalf and Weisbach, 2009; 
Stavins, 2008; Paltsev et al., 2008; Hahn and Stavins, 2011; He et al., 
2012; Hogan and Ring, 2003; Gribik et al., 2007) discuss carbon taxation 
schemes but do not link them to energy market operations. The review 
highlights carbon pricing strategies such as carbon tax and 
cap-and-trade and their influence on energy markets. While some 
studies have attempted to integrate carbon trading into VPP operations, 
the coordination with market dispatch, uncertainty management, and 
strategic bidding is still underexplored. Studies on VPP bidding strate-
gies (Shin et al., 2021; Latif et al., 2021; Baringo and Baringo, 2017; 
Vahedipour-Dahraie et al., 2021; Afzali et al., 2020; Liang et al., 2019; 
Mashhour and Moghaddas-Tafreshi, 2011; Dabbagh and 
Sheikh-El-Eslami, 2016; Wang, 2018; Pourghaderi et al., 2022; Chen 

et al., 2021; Zhao et al., 2016; Al-Awami et al., 2017; Wang et al., 2016) 
analyse day-ahead, real-time, and reserve markets. Energy management 
and market participation strategies of VPPs have been developed using 
methods like stochastic programming, robust optimization, and bi-level 
models (Song and Jing, 2023; Singh et al., 2022; Peng et al., 2023; Wang 
et al., 2024; Ding et al., 2022; Zhang and Liu, 2023; Guo et al., 2025). 
While early works address reliability, frequency regulation, and risk 
constraints, integration with carbon trading has been only partially 
addressed. Moreover, the use of metaheuristics (e.g., GA, PSO, IWOA) 
shows promise in enhancing optimization, but suffer from issues like 
algorithmic complexity, stagnation, or poor scalability. Finally studies 
(Singh et al., 2021; Ul Ain Binte Wasif Ali et al., 2022; Yuvaraj et al., 
2025; Liu et al., 2023; Amissah et al., 2024; Braik et al., 2022; Fathy and 
Alanazi, 2023; Farhat et al., 2024; Ravishankar et al., 2023) give an 
insight of WSO algorithm in different research aspects. Recently, the 
White Shark Algorithm (WSA) has emerged as a promising meta-
heuristic that balances exploration and exploitation efficiently. Though 
WSA has shown success in power systems and UAV applications, its 
application in VPP bidding under uncertainty with carbon trading 
mechanisms is novel and yet to be fully explored. From this compre-
hensive review the identified research gap can be stated as: 

1. There is inadequate integration of carbon trading mechanisms in 
VPP bidding strategies, especially under real-time and day-ahead 
market uncertainties.

2. Limited use of advanced metaheuristics that can adaptively handle 
non-linear, high-dimensional VPP optimization problems under 
carbon and energy market coupling.

3. Lack of models combining forecasting uncertainties (of RES and 
market prices), carbon cost dynamics, and multi-market participa-
tion in a unified optimization framework.

4. Insufficient exploration of WSA or modified WSA in energy markets 
despite its potential for better convergence and global optimality in 
complex optimization problems.

Hence the novelty of this work is to develop a day-ahead bidding 
strategy for a VPP integrated with the carbon market, leveraging the 
White Shark Optimization (WSO) algorithm to maximize revenue while 
accounting for renewable energy uncertainty, market price volatility, 
social welfare and emission cost constraints.

1.2. Contribution

The electricity market is responsible for 40 % of global carbon 
emissions, highlighting the need to integrate renewable energy sources 
with the carbon market to minimize fossil fuel dependence. This paper 
introduces a bidding model that facilitates RES participation in the en-
ergy market through carbon trading. A carbon reduction strategy is 
implemented via an uplift payment scheme, ensuring an efficient 
dispatch mechanism for the grid. Key contributions include designing a 
bidding framework for RES, optimizing market participation, and pro-
posing a cost-effective dispatch strategy that enhances sustainability 
while maintaining market stability. The primary contributions of this 
paper are as follows: 

1. Forecasting of RES: This work proposes solar and wind power fore-
casting using the Extreme Gradient Boosting (XGBoost) algorithm. 
Since the forecasted value of these RES has been considered for bid 
submission, there will be a risk in participation in EM. Analysis of 
that risk was calculated using the CVaR method.

2. Carbon tax and uplift payment scheme: Carbon market incorporation 
with EM is the main contribution of this work, which has been done 
by calculating carbon credit bidding price by carbon tax and uplift 
payment schemes (details are in section II). These values have been 
considered for bid submission and carbon market revenue 
calculation.
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3. Bidding model: A day-ahead market with a carbon reduction policy is 
represented with the aim of maximizing the total revenue of the 
existing EM. In this model, all components of the work have been 
integrated. The details of the system components have been 
described in section IV.

4. WSO Algorithm: The nature inspired algorithm named, White Shark 
Optimizer (WSO) algorithm has been proposed for same bidding 
model for finding best optimized revenue.

The rest of the paper is organized as follows: Section II represents the 
elementary idea of various carbon reduction policies such as Carbon tax, 
Cap-and-trade scheme, and Uplift payment scheme. The solar and wind 
power forecasting model is presented in section III, and problem 
formulation is given in section IV. The proposed WSA algorithm and 
flowchart for bidding model is presented in section V which is followed 
by case study in section VI, where the capability of proposed model has 
been investigated with detailed discussion on results. And finally, a 
conclusion has been presented in section VII.

2. Carbon reduction strategies

2.1. Carbon tax

The carbon tax policy is a fundamental strategy aimed at reducing 
and eventually eliminating the use of fossil fuels, which are major 
contributors to greenhouse gas emissions. The combustion of fossil fuels 
releases carbon dioxide and other harmful gases into the atmosphere, 
destabilizing the environment and accelerating climate change. By 
imposing a carbon tax, governments and regulatory bodies can create a 
financial incentive for industries to adopt cleaner energy alternatives.

A carbon tax is levied on each ton of GHG emissions produced by 
industries, power plants, and other major emitters. Since this tax is 
categorized under pollution taxes, it not only discourages excessive 
emissions but also generates significant revenue that can be redirected 
towards renewable energy initiatives, green infrastructure development, 
or climate adaptation strategies. Many countries, regions, and local 
governments worldwide have integrated carbon taxes or similar fees 
into their environmental policies. The tax is often applied directly to 
carbon-containing fuels like coal, oil, and natural gas, ensuring that 
carbon-intensive energy sources bear a higher cost.

2.1.1. Integration with Independent System Operator (ISO)
In power systems, the Independent System Operator (ISO) plays a 

crucial role in balancing supply and demand while ensuring grid sta-
bility. By integrating the carbon tax policy into ISO operations, the 
system can optimize energy dispatch strategies based on predefined 
carbon reduction targets. This integration involves the following key 
steps: 

1. Emission-Based Dispatch Profile: The ISO modifies the energy 
dispatch schedule to prioritize low-carbon and renewable energy 
sources. This adjustment aligns with the targeted reduction in 
emissions.

2. Carbon Credit Pricing Adjustment: The price of carbon credits is 
recalculated based on the desired reduction in emissions. This 
adjusted price helps maintain a balance between economic efficiency 
and environmental sustainability.

The recalculated carbon credit price incorporates the carbon reduc-
tion target (α%) and is determined using the following equation: 

α = 1−
δc,bid(r)
δc,bid

(1) 

The carbon reduction rate (α) represents the proportion by which 
carbon credit prices are adjusted to align with emission reduction tar-
gets. A higher reduction target results in a larger decrease in the 

modified carbon credit bid price (δc,bid(r)). This pricing strategy encour-
ages energy producers to adopt low-carbon technologies and promotes 
cleaner energy generation.

The integration of carbon tax policies with ISO dispatch strategies 
presents a powerful solution to mitigate carbon emissions while main-
taining energy market efficiency. By adjusting carbon credit prices based 
on reduction targets, this approach creates a financial incentive for 
cleaner energy investments and encourages industries to transition to-
ward low-carbon technologies.

2.2. Cap-trade market

The cap-and-trade system is a market-driven approach to reducing 
greenhouse gas emissions by setting an upper limit (cap) on total 
emissions while allowing companies to trade carbon credits. This 
method provides both incentives for emission reduction and flexibility 
for industries in managing their carbon footprint. Cap-and-Trade 
Mechanism can be stated as follows: 

• Under this system, each company is allotted a cap on the maximum 
amount of carbon emissions it can produce.

• Companies that emit less than their allocated cap can sell their sur-
plus carbon credits to other firms.

• Companies that exceed their cap must buy additional carbon credits 
from the market to comply with regulations.

• The market determines the price of carbon credits, promoting cost- 
effective emissions reduction strategies.

• Since there is a fixed cap on total emissions, the price of carbon 
credits naturally stabilizes within a certain range.

Unlike a carbon tax, which sets a fixed price on emissions but allows 
uncertain reductions, cap-and-trade ensures a clear emissions reduction 
target but allows market forces to determine the price of carbon credits.

Let, PCO2 is the total permit for CO2 emission and P̂ is the set cap for 
the emission such that PCO2 ≤ P̂. This will target to achieve α % carbon 
emission reduction. The cap on the carbon credit price is given in Eq. (2). 
δ̂c = (1− α)δc,bid (2) 

δc,bid(r) ≤ δ̂c (3) 
Eq. (2) provides the cap on carbon credit prices is reduced in pro-

portion to the target emission reduction (α). And Eq. (3), adjusted car-
bon credit price in the market cannot exceed the capped price, ensuring 
that carbon costs remain within the limit imposed by emission targets. 
This scheme provides high certainty in future emission reductions 
(because emissions are capped).

The cap-and-trade system is a flexible and market-driven approach 
that guarantees emissions reduction by capping total emissions, while 
allowing the carbon credit price to fluctuate based on market demand. 
Compared to a carbon tax, it provides certainty in emissions control but 
introduces uncertainty in pricing. When well-implemented, cap-and- 
trade can drive innovation, encourage cost-effective carbon reduction 
strategies, and create economic opportunities in the carbon market.

2.3. Uplift payment

ISO can first define the uniform pricing for the generation units and 
then support any dispatch profile for the bidding quantity Pbid. At that 
pricing, the generating units aim to make the most profit feasible. 
However, the equilibrium solution might not be supported by this uni-
form price, in which case an uplift payment becomes necessary. Suppose 
an ISO have n numbers of units for its dispatch with some dispatch 
profile having load demand PL = [pi, Ɐi ϵ n]. For the individual profit 
maximization each unit in the system may have power generations p1, 
p2,…., pn, with their own power limits: pi(min) ≤ pi ≤ pi(max). But this 
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solution may not support the overall profit maximization of the system, 
i.e. the equilibrium solution. For that the payment should be uplifted 
and so, the distinction between the energy profits realized at the sug-
gested solution and the profits indicated by the suggested price is known 
as the uplift payment. The actual energy profit is the optimal results of 
profit maximization. So, for lowest generation cost in the submission of 
bid in the energy market and to achieve α % carbon emission reduction, 
the cap on the carbon credit price and the value of bid price for carbon 
credit is given by Eqs. (3) and (4) respectively. 
δ̂c,uplift = (1− α)δc,bid (4) 

Key Advantages of the Uplift Payment Scheme can be summarized as 
follows: 

• Greater Flexibility: Unlike cap-and-trade, which has a fixed emission 
cap, uplift payments allow for dynamic dispatch adjustments.

• Fair Compensation: Ensures that power producers receive fair 
compensation without excessive carbon credit price fluctuations.

• More Social Welfare Benefits: By reducing unnecessary costs and 
stabilizing prices, this scheme promotes energy affordability.

• Robust against Market Manipulation: Unlike cap-and-trade, uplift 
payments prevent strategic price increases by market participants.

Table 1 provides the status of above mentioned 3 carbon reduction 
techniques with various criteria. Since both uplift payments and cap- 
and-trade start with a cap on emissions, they ensure controlled emis-
sions. However, the uplift payment scheme is more predictable and 
robust, making it a preferable choice for carbon pricing and energy 
dispatch.

2.4. VPP Integration with Carbon trading market (CTM)

The CTM is a market-based mechanism that allows entities to buy 
and sell carbon credits, which represent a reduction or removal of GHG 
emissions. Integrating VPPs with CTMs creates opportunities for cleaner 
energy production, optimized grid operations, and financial incentives 
for reducing carbon footprints (Li et al., 2024; Huang et al., 2022). VPPs 
play a crucial role in reducing carbon emissions by enabling a shift from 
fossil-fuel-based power generation to renewable energy sources. Their 
integration with CTMs allows: 

• Carbon Credit Generation: VPPs can earn carbon credits by reducing 
emissions through renewable energy production and demand-side 
management.

• Real-Time Emission Tracking: VPPs use advanced data analytics and 
AI to track energy generation and consumption patterns, ensuring 
accurate reporting for carbon trading.

• Grid Decarbonization: By facilitating the integration of distributed 
renewable energy, VPPs help reduce reliance on carbon-intensive 
power plants.

The integration of VPPs with CTMs involves several mechanisms: 
Carbon credit mechanism (Li et al., 2024), Blockchain-based smart 
contracts mechanism (Hussain and Farooq, 2019) and as demand 
response participation (Latif et al., 2020). VPP operators must comply 
with carbon trading standards to certify emission reductions. The ben-
efits of integrating VPP with CTM can be summarized as: 

• Financial Incentives: VPP operators and participants (households, 
businesses) can generate additional revenue by selling carbon 
credits.

• Grid Stability: Reduced reliance on fossil fuel plants lowers grid 
congestion and enhances reliability.

• Regulatory Compliance: Industries with emission reduction targets 
can meet their obligations by purchasing VPP-generated carbon 
credits.

• Increased Renewable Energy Adoption: Encourages investments in 
distributed renewables by making them more profitable.

Despite its potential, VPP integration with CTMs faces challenges 
such as: Lack of standardized global carbon trading regulations. VPP 
participation requires accurate emissions tracking, which may be com-
plex for smaller operators. There is also lack of technology infrastructure 
which will insure interoperability between VPP platforms and CTM 
registries. Future developments, such as AI-driven energy optimization 
and blockchain-based carbon credit systems, can further streamline VPP 
participation in carbon markets.

In this section various carbon reduction schemes have been discussed 
with their advantages and limitations. In this work carbon tax scheme 
and uplift payment scheme has been used for the further calculation of 
bidding price of carbon credit with the presented equations, which will 
participate in the EM. In the next section the forecasting of the RES units 
has been discussed.

3. Forecasting of the RES

Various researches in forecasting of renewable energy have been 
discussed in previous section and seen the accuracy of the models. With 
GBT forecasting model both solar and wind power with minimum MAE 
and RMSE. So, in this work, Extreme Gradient Boosting algorithm 
(XGBoost) (Phan et al., 2021) has been used for the forecasting model of 
the solar and wind power generation. An ensemble approach of pre-
dicting is the XGBoost Tree. Each tree improves characteristics that 
caused the prior tree to be incorrectly classified. In Fig. 2, the internal 
operations of XGBoost are depicted. It runs a primary model before 
identifying its flaws. Losses are used to illustrate the weakness, and as 

Table 1 
Comparing Uplift Payment, Cap-and-Trade, and Carbon Tax Schemes.

Criteria Uplift Payment 
Scheme

Cap-and-Trade 
Scheme Carbon Tax

Flexibility
Highly flexible, 
supports multiple 
dispatch profiles

Less flexible due to 
fixed emission cap

Moderate 
flexibility

Certainty in 
Emissions

Allows control over 
total emissions 
through price cap

Directly controls 
emissions with 
strict limits

Uncertain 
emission 
reduction

Certainty in 
Prices

Maintains a 
regulated price cap, 
minimizing 
volatility

Prices fluctuate 
based on market 
forces

Fixed price per 
ton of CO₂ 
emitted

Economic 
Impact

Reduces 
unnecessary costs 
and improves 
social welfare

Risk of price 
manipulation in 
carbon credit 
markets

Generates 
government 
revenue

Market 
Manipulation 
Risk

Low (due to 
regulated price cap 
and uplift 
payments)

High (as firms may 
artificially raise 
credit prices)

Low (directly 
imposed tax)

Fig. 2. Internal Process of XGBoost.
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new models are built to reduce losses, the process continues. The pro-
cedures mentioned below are followed for successfully implementation 
of XGBoost algorithm for energy forecasting: 

i. Data Collection
ii. Pre-processing of the raw data

iii. Split the data into training (80 %) and testing (20 %)
iv. Evaluating the model

K-fold cross validation is performed during training to evaluate the 
model’s effectiveness. After successful forecasting, the model result is 
usually validated by comparing it with the pre-existing testing data set.

The XGBoost model is an accumulative model. Considering N 
numbers of decision trees (f) the output (Y) is obtained using Eq. (5). 

Yi =
∑N

n=1
fn(xi) (5) 

Where the function of each Tree is denoted by f ϵ F, F. Eq. (6) gives the 
objective function of an additive θ if "l" is taken to be the loss function 
and "Ω" is the regularization term, 

Obj(θ) =
∑M

i=1
l(yi,Yi)+

∑N

n=1
Ω(fn) (6) 

The regularization term Ω(f)with hyper-parameterλ, can be 
expressed using Eq. (7).where, γ is pruning parameter, ω is vector of 
scores on leaves on the tree and T is the number of leaves. 

Ω(f) = γT+
1
2 λ

∑T

j=1
ω2

j (7) 

Every time a decision tree gets added, XGBoost picks up a new 
function. So, when it is learning tth step, the prediction is given by Eq. 
(8). 
Yt

i = Yt−1
i + ft(xi) (8) 

Using Eq. (8) in (6), the new objective function of XGBoost is ob-
tained by Eq. (9). 

Obj(θ)t =
∑n

i=1
l(yi,Yt−1

i + ft(xi)
)
+

∑t

m=1
Ω(fm) (9) 

3.1. Hyper-parameter optimization

A hyper-parameter is a factor whose value is used to control the 
learning process. A few distinct XGBoost hyper-parameters exist. 
Booster, Subsample, Learning Rate, and Regularization Parameters 
(Alpha and Lambda) are a few examples. All of the parameters selected 
for the suggested model are shown in Table 2. Exhaustive Grid Search 
(EGS) Method were used to adjust these parameters in order to obtain 
the best forecasting outcome. It does a thorough search of a manually 
chosen subset of this model’s hyper-parameter space. The model is then 

specified with the best parameter value. Fig. 3 shows the block diagram 
for wind power forecasting with XGBoost, and the same procedure will 
be used for the solar power forecasting. The variables considered for 
solar power forecasting are: Air Temperature, Azimuth, Cloud Opacity, 
DHI, DNI, EBH, GHI, and relative humidity. Wind power variables are: 
Cloud Cover, wind speed, humidity, and temperature, pressure, and 
wind gust.

The data set for solar and wind power for forecasting has been 
considered for the duration of 6.5 months and 14 months respectively 
from north eastern region of India. Data for solar power is in 15-minute 
durations and for wind power is 1-hour durations. The results with 
predicted power with actual power for solar and wind system have been 
given in Figs. 4 and 5 respectively.

3.2. Error calculation

The model’s performance has been evaluated by calculating the 
difference between the expected and actual values. Although other 
methods for calculating errors have been proposed to evaluate forecast 
performance, none of them are recognized as the industry standard. 
Three errors, as mentioned below, have been calculated using Eqs. (10)– 

(12). 

1. Mean Absolute Percentage Error (MAPE): MAPE measures the 
average absolute percentage difference between the actual and 
forecasted values.

2. Root Mean Square Error (RMSE): RMSE represents the square root of 
the average of the squared differences between actual and forecasted 
values.

3. Mean Absolute Error (MAE): MAE measures the average of the ab-
solute differences between actual and forecasted values.

Here, A and P are actual and predicted value of the output respec-
tively, 

MAPE =
1
n
∑n

i=1

|A − P|
A × 100% (10) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(A − P
2

)2
√√√√ × 100% (11) 

MAE =
1
n
∑n

i=1
|A−P| (12) 

The values of MAPE for solar and wind power forecasting are 6.83 %, 
and 12.96 % respectively. And RMSE for both are 13.61 % and 20.85 % 
respectively. The MAE values are 17.53 KW for Solar and 0.61 KW for 
Wind. In this section the forecasting model of solar and wind power has 
been presented using XGBoost algorithm. The forecasted values of both 
the powers have been considered in the bid application in the next 
section of the work.

4. Problem formulation

The critical problem in this work is presenting a bidding strategy 
within the VPP environment. The components of VPP are most impor-
tant because they will decide how they participate in the EM bidding and 
reduce carbon emissions. The proposed VPP system component is pre-
sented in Fig. 6 and the components are: a conventional power plant, 
solar PV units, wind power plants, electric vehicles, micro turbines, 
loads, and battery storage systems. Fig. 7 also illustrates the primary 
idea of the workflow of the proposed model, which starts from fore-
casting the RES units (section III).

The bid will be submitted to EM for all the components, as mentioned 
above, along with the carbon credit bid. The calculation of carbon credit 

Table 2 
Hyper-parameter optimization For PV And WT System.

Parameters Default 
Value

Updated for 
Solar

Updated for wind 
Turbine

Subsample 1 0.7 0.8
Cosample_bytree 1 0.7 0.6
Cosample_bylevel 1 0.8 0.7
Booster Gbtree Gbtree Gbtree
Learning rate 0.1 0.005 0.01
Max_depth 3 6 7
N_estimator 100 900 700
Reg_alpha 0 0.01 0.02
Reg_Lambda 1 3.0 9
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price has already been discussed in section II. In this section, the 
objective function of the proposed work is discussed, along with various 
constraints. The term "bidding model" refers to a system model offering a 
strategic approach to the EM to maximize its profit and lower the sys-
tem’s total cost. The schedule for the power generation in which the RES 
units will participate in EM can be submitted using the bidding model. 
The objective of the presented model is to maximize the total revenue, 
which is given by Eq. (13). 
max

∑
(ρem + ρc + SW –Cmt–Ccpp–Cesd − Cc–λpv–λwt) (13) 

ρem =
∑24

t=1
δb,t

( Pb,pv,t + Pb,wt,t +Pb,ev,t + Pb,bat,t + Pb,mt,t + Pb,cpp,t
)

+Rramp
(14) 

Rramp =
∑24

t=1
i ∈Φ

( δup,t ∗ Pup,i,t + δdn,t ∗ Pdn,i,t) (15) 

ρc =
∑24

t=1
δc

( Pb,pv,t + Pb,wt,t +Pb,ev,t + Pb,bat,t
) (16) 

Eqs. (14)–(16) shows revenue from the energy market and carbon 
market. For maximizing the revenue the ρem, ρc, and SW should be 
maximum and the operational cost Cmt , Ccpp,Cesd, andCc should have 
minimum value. When the forecasted value of the RES will differ from 
the bidding value so, penalty will be charged to both PV and WT unit.

With the carbon tax, cap-and-trade programs and uplift payment 
schemes, the cost of the carbon market will be calculated by modified 
carbon credit price, δc,bid(r) and is given by the Eq. (17). 

ρc =
∑24

t=1
δc,bid(r)

( Pb,pv,t + Pb,wt,t +Pb,ev,t + Pb,bat,t
) (17) 

The calculation of δc,bid(r) for all policies are already presented in the 
section II. The energy providers have to pay carbon tax depending on 
carbon emission, it will in the form of operating cost of the system and 
not contributes in the revenue generations. Whereas other two programs 
will contributes in the revenue generation depending on the cap of the 
emission given to the system and the equilibrium dispatch profile of the 
system respectively.

4.1. Constraints

4.1.1. RES constraints
The equations (18.a) to (18.f) represent the maximum and minimum 

power limits to the generating units with respect to solar and wind 

Fig. 3. Block diagram of Wind Power Forecasting using XGBoost.

Fig. 4. Solar power forecasting.
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power generation. The uncertainty in the forecasting has been restricted 
with the penalty factor η and penalty for both solar and wind units have 
been calculated by equation (19.a) and (19.b) respectively. The risk 
analysis in forecasting has been done by CVaR (Mashhour and 
Moghaddas-Tafreshi, 2011) method. The CVaR has been calculated for 
different β % of the confidence interval and is represented in Table 3. 

This interval level expresses the degree of certainty that provided con-
fidence interval for VaR will be exceeded by β%. Moreover, the confi-
dence interval shows the range in which the calculated VaR is likely to 
fall. As the β increases the risk in the prediction reduces. 
Pb,pv,t +Pup,pv,t ≤ Ppv,max,t (18.a) 

Fig. 5. Wind power Forecasting.

Fig. 6. System components of VPP System integrated with EM and CTM.

Fig. 7. Block Diagram for work flow of the presented Bidding model.
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Pb,pv,t +Pup,pv,t ≥ Ppv,min,t (18.b) 

Pb,pv,t ≥ Pdn,pv,t (18.c) 

Pb,wt,t +Pup,wt,t ≤ Pwt,max,t (18.d) 

Pb,wt,t +Pup,wt,t ≥ Pwt,min,t (18.e) 

Pb,wt,t ≥ Pdn,wt,t (18.f) 

λpv =
∑24

t=1
δb,tη

⃒⃒ Pb,pv,t –Pf ,pv,t
⃒⃒ (19.a) 

λwt =
∑24

t=1
δb,tη

⃒⃒ Pb,wt,t –Pf ,wt,t
⃒⃒ (19.b) 

4.1.2. Electric Vehicle and Battery constraints
Due to uncertain nature of the RES, energy storage devices play an 

important role in VPP. Storage devices have great marketability and in 
this work EV and battery have been taken for this purpose. The per-
formances EV and battery are characterized by its charging and dis-
charging capacity at time t. So, equations (20.a- 20.b) and (21.a-21.b) 
gives the constraints of power of battery and EV. SOC of both units need 
to constraints to prevent from over charging and discharging of units. 
Equation (20.d - 20.f) and (21.d - 21.f) limits the discharging power of 
both units by real-time SOC status of the units. The operational cost of 
these units in a day, Cbat and Cev can be calculated by equation (20.g) and 
(21.g) respectively. 
Pb,bat,t +Pup,bat,t ≤ Pdis,bat,t (20.a) 

Pdn,i,t − Pb,bat,t ≥ Pchar,bat,t (20.b) 

Pdis,bat,t ≤ Sbat,t (20.c) 

Sbat,t − Pdis,bat,t +Pchar,bat,t ≤ Sbat,t ,max ∗ Cbat,max (20.d) 

Sbat,t+1 = Sbat,t −
Pdis,bat,t

ηdis
+ ηchar ∗ Pchar,bat,t (20.e) 

Sbat,t,min ≤
Sbat,t
Cbat,max

≤ Sbat,t,max (20.f) 

Cbat =
∑24

t=1
δc,bat ∗ Pb,bat,t (20.g) 

Pb,ev,t + Pup,ev,t ≤ Pdis,ev,t (21.a) 

Pdn,ev,t − Pb,ev,t ≥ Pchar,ev,t (21.b) 

Pdis,ev,t ≤ Sev,t (21.c) 

Sev,t − Pdis,ev,t +Pchar,ev,t ≤ Sev,t ,max ∗ Cev,max (21.d) 

Sev,t+1 = Sev,t −
Pdis,ev,t

ηdis
+ ηchar ∗ Pchar,ev,t (21.e) 

Sev,t,min ≤
Sev,t
Cev,max

≤ Sev,t,max (21.f) 

Cev =
∑24

t=1
δc,ev ∗ Pb,ev,t (21.g) 

Cesd = Cbat + Cev (22) 

4.1.3. Micro Turbine operational constraints and CPP
When there is a greater demand for power than what can be pro-

duced through RES and ESD, Micro-turbines (MT) are crucial. The 
maximum and minimum power levels of MT limit for its production as 
shown in Eqs. (23) and (24) and operating cost of MT, Cmt can be 
calculated by Eq. (25) with unit operational cost of δc,mt. Eq. (26) is 
power limit constraints for conventional power plant units. 

Pb,mt,t +Pup,mt,t ≤ Pmax,mt (23) 

Pb,mt,t ≥ Pdn,mt,t (24) 

Cmt =
∑24

t=1
δc,mt ( Pb,mt,t +Pup,mt,t ) (25) 

Pmin,cpp ≤ Pb,cpp,t +Pup,cpp,t ≤ Pmax,cpp (26) 

4.1.4. Constraints of carbon market
The operational cost will be determined by the operation of MT, and 

the carbon bidding power Pc,mt,t will be the bidding power of PV and WT 
with power during up regulation and represented by Eq. (27). Eq. (28)
will be used for calculation of operational cost of carbon market. The 
carbon credit price δc will change for all three policies of the carbon 
reduction. The calculation of carbon credit price for bidding has already 
been discussed in section II. 
Pc,mt,t = Pb,pv,t + Pup,pv,t + Pb,wt,t Pup,wt,t (27) 

Cc = δc (Pb,mt,t + Pb,cpp,t + Pup,mt,t + Pup,cpp,t) (28) 

4.1.5. Calculation of social welfare (SW)
Consumer surplus (CS) represents the difference between the prices 

of goods which an individual wants to pay and the actual price which is 
paid for those goods. It actually represents the benefit of the consumers 
for consumption of the product. On the other hand, the difference be-
tween any product’s market price and its marginal price is represented 
by the producer surplus. The gap between the company’s revenue and its 
total variable costs is another way to describe this. So, Social Welfare is 
the sum of CS and PS of a market as given in Eq. (29) and (30). The SW 
maximization will provide the economic efficiency and hence maximi-
zation of CS and PS, as shown in Fig. 8 (Jeremy and Magnago, 2017), 
where area A1 represents CS and area A2 represents PS and SW is the 
area (A1 +A2) with δb,t,max and δb,t,min as maximum and minimum value 
of the bidding price. 
SW(q) = CS(q) +PS(q) (29) 

Table 3 
Risk measures.

Confidence Level CVaR
0.90 0.0402324
0.95 0.0403231
0.99 0.0411327

Fig. 8. Social Welfare for an energy market.
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CS(q)+PS(q) = 1
2 Pb,t (δb,t,max − δb,t,min) (30) 

4.1.6. Final constraints
Finally, the VPP must meet the total demand from consumer so, to 

satisfy that the total amount of energy bid Pb,t should be more than the 
load demand at time t, Pload,t and is given in Eq. (31). 
Pb,t ≥ Pload,t (31) 

5. Methodology

The White Shark Optimizer (WSO) is a nature-inspired meta-heu-
ristic algorithm that simulates the predatory behaviour of white sharks 
in the ocean. It is designed to solve complex optimization problems, 
particularly in fields like energy systems (Singh et al., 2021). The al-
gorithm is inspired by the hunting strategies of white sharks, which are 
apex predators known for their intelligent, strategic, and aggressive 
hunting techniques. White sharks rely on keen sensory systems, speed, 
and adaptive strategies to locate and capture prey this forms the bio-
logical basis of the WSO. WSO is easy to implement and adapt to various 
optimization problems. The some advantages of WSO can be summa-
rized as follows: 

• Exploration–Exploitation Balance: The encircling and hunting be-
haviours of sharks are simulated to provide a dynamic balance be-
tween exploration and exploitation, essential in avoiding local 
optima.

• Fast Convergence: Adaptive behaviour ensures faster convergence to 
optimal or near-optimal solutions in less iteration.

• Robustness under Uncertainty: The stochastic search capabilities 
make WSO highly suitable for uncertainty-prone environments like 
VPP with RES and price volatility.

• Low Parameter Sensitivity: Fewer control parameters make WSO 
easier to tune and more stable across different problem instances.

WSO simulates a balance between exploration (searching new areas 
of the solution space) and exploitation (refining the current best solu-
tions). This algorithm able to converge efficiently and also can avoid 
local optima. The main behavioural patterns modelled in the algorithm 
include: 

1. Tracking and Detection: White sharks use their sensory organs to 
detect prey over long distances. In WSO, this behaviour is modelled 
to explore the solution space. This pattern comes as in the behaviour 
of shark which reflects that shark is moving towards the prey.

2. Encircling the Prey: Sharks circle their target before attacking. This is 
analogous to local search in the algorithm and the shark will move in 
direction of optimal prey.

3. Attacking Strategy: A white shark uses sudden bursts of speed to 
catch prey. In WSO, this corresponds to intensifying the search 
around promising solutions, i.e., sharks will update their position 
towards best location of the prey.

4. Dynamic Position Update: The position of each shark (candidate 
solution) is updated based on a mixture of exploration and exploi-
tation strategies. This step is analogous to the fish school behaviour.

5.1. Mathematical Model of WSO

The generalized mathematical model for WSO algorithm is proposed 
in this section. The flowchart for WSO with respect to proposed bidding 
model of VPP in day ahead market is presented in Fig. 9. Let: Xt

i
→ be the 

position vector of the ith white shark (candidate solution) at iteration t, 
X∗̅→ be the position of the best solution found so far, N be the number of 

white sharks, D be the dimensionality of the problem, and Tmax be the 
maximum number of iterations. 

1. Position Update – Core Behaviour: The position update Eq. (32)
simulates white shark behaviour like tracking, encircling, and 
attacking. This equation helps explore and exploit the solution space 
adaptively.

Xi
→t+1

= X∗̅→
+ A

�

∗ (Xt
i

→
− X∗̅→

) + C̅̅→∗ R→ (32) 

Where: 

• A→=a⋅ rand⋅ sign(r1−0.5) → controls the attraction or repulsion to-
ward the best solution,

• a → linearly decreases from 2 to 0 to balance exploration and 
exploitation,

• C→=2⋅rand → adds randomness (exploration), R→ → a random vector 
in the search space, and rand and r1 are uniformly distributed 
random numbers in [0, 1].

2. Hunting Mechanism (Exploitation Mode): If a solution is close to the 
prey (global best), the shark refines its movement, given by Eq. (33). 
This guides the algorithm to move closer to the best-known solution 
while avoiding premature convergence. 

Xi
→t+1

= Xt
i

→
− b ∗ (Xt

i
→

− X∗̅→
) + ρ (33) 

Where, b ϵ [0, 1] is a learning coefficient, and ρ is a small random 
number vector to intensify the search locally.

Fig. 9. WSO Flowchart for Bidding Model in VPP.
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3. Exploration Behaviour: To ensure global search and avoid local op-
tima, the algorithm occasionally performs a random movement as 
presented in Eq. (34)

Xi
→t+1

= Xt
i

→
+ randn(D) (34) 

Where, randn(D)generates a normally distributed vector of dimen-
sion D, This simulates random patrol behaviour of sharks in unex-
plored regions.

4. Adaptive Parameter Update: To improve convergence, some pa-
rameters adapt over time. This ensures that the search becomes more 
exploitative as iterations proceed. The exploration-to-exploitation 
factor a reduces over iterations given by Eq. (35): 

a = 2 . (1−
t

Tmax
) (35) 

5. Fitness Evaluation: Each shark’s position Xi
→ is evaluated using an 

objective function f(Xi
→
) this could be: either Minimization: minf(Xi

→
)

or Maximization maxf(Xi
→
).

6. case study

6.1. Case data

In this section, the proposed uplift payment policy in the bidding 
model is evaluated using actual day-ahead market load data. The DAM 
data has been collected from Indian energy exchange for a region in 
hourly format and adjusted to align with the power generation capacity 
of the proposed model. To assess the effectiveness of the uplift payment 
scheme, we compare it with the carbon tax policy. Four distinct cases are 
analysed: (1) integration of VPP units in the energy market without any 
carbon market considerations, (2) incorporation of a carbon market 
alongside the EM but without any specific carbon reduction policy, (3) 
implementation of a carbon tax as a carbon reduction policy in addition 
to the second case, and (4) application of the uplift payment scheme as 
an alternative carbon reduction policy. A summary of these cases is 
provided in Table 4.

The system components have been described in the previous section, 
and their respective parameters are detailed in Table 5. The battery 
storage system has a maximum charging capacity of 9 MW and a dis-
charging capacity of 10 MW, while electric vehicles (EVs) have a 
maximum charging power of 20 MW and a discharging capacity of 25 
MWh. The state of charge (SOC) for both the battery and EVs is main-
tained between 10 % and 90 %. The bidding analysis focuses on the day- 
ahead market, with load demand and electricity prices depicted in 
Figs. 10 and 11, respectively. The electricity price component and other 
financial components in this work is represented in an international 
standard currency “Euro (€)”. These data points serve as inputs for 
optimizing the objective function. The optimization problem is solved 
using the General Algebraic Modeling System (GAMS) with a Mixed- 
Integer Nonlinear Programming (MINLP) model and also a novel WSO 
algorithm has been utilized to investigate the proposed model. WSO 
algorithm has been solved in MATLAB environment. Additionally, the 
day-ahead solar and wind energy predictions are already presented in 

Section III to enhance the accuracy of the bidding strategy.
MAPE for solar and wind power forecasting are 6.83 % and 12.96 %. 

To restrict the error due to this, penalty has been given to both solar and 
wind power systems. The value of penalty factor for the analysis has 
been taken as 2 % for which a penalty of.30 € and 3.10 € has to be by 
solar and wind power forecasting respectively. A 2 % penalty was 
selected for the forecasting model to balance economic realistic (Zhang 
et al., 2022a, 2022b), forecasting accountability and enhances system 
robustness. In Kebriaei et al. (2011) author targeted incentive aligned 
with operational cost asymmetries encouraging forecasts that balance 
risk and cost. This value systematically penalizes large deviations, en-
courages high forecasting accuracy, and ensures system reliability 
without imposing overly punitive constraints on renewable generation 
forecasts.

Initially, the target carbon reduction percentage (α) is selected, and 
the corresponding bidding price for carbon credits is determined. A 
higher α value can impact the economic dispatch profile, leading to 
increased operating costs. Table 6 presents the typical carbon credit 
prices for various α values. In this study, a 20 % carbon reduction target 
is considered within the carbon tax and uplift payment scheme inte-
grated into the VPP bidding model. This value aligns with international 

Table 4 
Case descriptions.

Cases Description of the market and carbon policy considered
1 Only EM with VPP units without integration of carbon market
2 With carbon market but without any carbon reduction policy
3 EM aggregated with VPP units and carbon market having carbon tax as 

carbon emission reduction policy
4 EM aggregated with VPP units and carbon market Uplift payment as carbon 

emission reduction policy

Table 5 
Parameter of the Vpp Units.

Component Maximum Generation (MW) Minimum Generation (MW)
CPP 500 0
MT 15 0
Solar PV 220 0
Wind plant 250 0
Penalty factor 2 %

Fig. 10. Energy price in EM for DAM.

Fig. 11. Load demand for Day-ahead market.
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policy trajectories such as the IEA Net Zero Roadmap (IEA, 2021) and 
national emission reduction commitments. It also reflects a moderate 
carbon abatement scenario, as adopted in similar academic studies on 
carbon pricing and VPP dispatch (Peng et al., 2023; IPCC, Climate 
Change, 2022). From a technological standpoint, the proposed VPP 
system featuring high RES penetration and storage capability can 
feasibly achieve this target under optimal bidding strategies.

The operating cost of the carbon market with a 20 % carbon reduc-
tion is compared between the Carbon Tax policy and the Uplift Payment 
scheme for the CPP unit. Fig. 12 illustrates that the operating cost under 
the carbon tax scheme is consistently higher than that of the uplift 
payment scheme, supporting the proposed bidding strategy.

To achieve carbon reduction, power systems must transition toward 
RESs. In the analyzed system, the total load demand is met by all 
available generating units. For instance, at 15 h, the load demand rea-
ches 485 MW. Fig. 13 illustrates the variation in power generation 
across different carbon reduction targets at this demand level. As gen-
eration from CPP units decreases, RES contributions proportionally in-
crease to compensate for the reduced fossil fuel-based generation.

If the carbon reduction target reaches 100 %, service providers must 
fully transition to RESs as their primary generation source. In such a 
scenario, the bidding price for carbon credits becomes zero since carbon 
trading becomes irrelevant in a fully renewable-based energy market. 
This highlights the necessity of integrating RESs effectively into the 
energy market while maintaining a balanced and cost-efficient dispatch 
strategy. The proposed uplift payment scheme demonstrates a cost- 
effective approach to achieving carbon reduction goals while mini-
mizing the financial burden on market participants.

6.2. Result analysis

6.2.1. Results from the RES forecasting model
Section III presents the XGBoost Algorithm, a RES forecasting model 

that forecasts power from solar and wind and is further integrated with 
the carbon market in a bidding model. The anticipated outcomes are 

already shown in the section indicated. The performance of the pre-
dicted outcome can be assessed by computing several error components, 
and the performance has been examined in this suggested model using 
the MAPE, MAE, and RSME evaluation metrics.

The performance comparison of various forecasting models, as 
summarized in the Table 7, highlights a diverse range of accuracy levels 
across studies. RMSE values varied widely, with the lowest observed in 
Akhtar et al. (2021) at 1.12 % for wind power prediction and the highest 
in Wang et al. (2018) at 16.95 % for solar power forecasting. The MAE 
values were reported in Sáez et al. (2015), showing improved accuracy 
using a fuzzy model (1.27 KW) over linear regression (1.72 KW), while 

Table 6 
Carbon bidding price with different carbon reduction target.

% Carbon reduction target (α) Bidding price for carbon credit (in (€)
10 17.36
20 15.43
30 13.50
40 11.57
50 9.64
60 7.72
70 5.78
80 3.89
90 1.93
100 0

Fig. 12. Comparison of the carbon credit price Cc.

Fig. 13. Variation of power generation from different units with percentage of 
carbon reduction.

Table 7 
Comparison of performance of various forecasting methods.

Ref. Algorithm RMSE MAE MAPE
(Shi et al., 

2011) SVM 10.5 % —
8.64 % 
(MRE)

(Sáez et al., 
2015)

Fuzzy Model and 
Linear Regression —

1.27 KW 
(Fuzzy), 1.72 
KW (Linear 
regression)

—

(Akhtar 
et al., 
2021)

Fuzzy Logic 1.12 % — —

(Liu et al., 
2015) ANN — — 17.38 %

(Buhan and 
Çadırcı, 
2015)

ANN and SVM (48- 
hour Wind 
Forecasting)

—
9–20 % (Norm. 
MAE) —

(Wang 
et al., 
2019)

Spline Regression 
Models — — —

(Yan et al., 
2018)

Ensemble Stacked 
Denoising 
Autoencoder (e- 
SDAE)

9.60 % 
(Norm.) — —

(Wang 
et al., 
2018)

Adaptive Learning 
Algorithm 16.95 % — 13.68 %

(Ando 
et al., 
2021)

Short term forecast .05 KW .03 KW 17.54 %

(Liu et al., 
2021) LSTM and MLP 7.30 % — —

(Andrade 
and 
Bessa, 
2017)

GBT and NWP
9.82 % 
(Solar), 
8.76 % 
(Wind)

6.20 % (Solar), 
6.15 % (Wind) —

This work XGBoost
13.61 %, 
(Solar) 
20.85 % 
(Wind)

17.53 KW 
(Solar) 
0.61 KW (Wind)

6.83 % 
(Solar) 
12.96 % 
(Wind)
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(Andrade and Bessa, 2017) demonstrated balanced accuracy for both 
solar and wind forecasts using gradient boosting trees (6.20 % and 
6.15 %, respectively). MAPE, a key metric for percentage-based error, 
ranged from 6.83 % for solar in the current work to 17.54 % in Ando 
et al. (2021). Notably, this work presented competitive forecasting 
performance, particularly for wind power, with a low MAE of 0.61 KW 
and a MAPE of 12.96 %, indicating its robustness in handling variability. 
Overall, ANN-based and hybrid models like ANN, SVM and ensemble 
SDAE achieved promising results, while the integration of adaptive and 
fuzzy learning methods also contributed to improved forecast accuracy.

6.2.2. Results from the bidding model
Case 1. Without Carbon market: When EM is only considered, the cal-
culations are simpler. There is no involvement of the carbon market, so 
there is no carbon credit price. The system’s total revenue has been 
given in Table 8 (Case 1). Other components of the objective function, 
such as the various operational costs, social welfare, and penalties for 
the considered RES, have been given in Table 8. The total revenue from 
the EM is 10,379.11 €.

Case 2. With Carbon market without any reduction policy: In this case, 
the carbon market has been considered, but no carbon reduction 
schemes have been considered. Only the base value of the carbon credit 
price has been considered for calculating revenue from CM. The system’s 
total revenue has been given in Table 8 (Case 2). The carbon credit value 
is 19.35 €, and the rest of the calculation for other operating costs and 
profits have been made with this value (for CM). The revenue from CM is 
742.99 €.

Case 3. With Carbon market and carbon tax policy: For the same con-
dition as in Case 1, with consideration of the carbon tax, various reve-
nues of the system have been given in the table. With 20 % of the carbon 
reduction target, the value of the bid price for the carbon credit with the 
carbon tax scheme is 15.44 €, as shown in Table 5. Since the tax has to be 
paid with a given rate of the governing body for the emission due to the 
CPP and MT, so the total revenue is approx. 9833.39 € (Table 8), which 
will be again deducted as EC. The quadratic cost function with the 
emission coefficient can calculate the emission cost of the generating 
units. EC calculation is beyond the scope of this work and will be taken 
for future work.

Case 4. With Carbon market and with Uplift payment policy: The uplift 
payment policy for the carbon bid price will be kept under the cap 
concerning the solution of the system with maximum profit solution. 
The cap is again 15.44 €, but the carbon credit price is not equal to this 
value as that of the carbon tax. The result of the objective function for 
the profits of the EM with the optimized carbon credit price has been 
presented in Table 8, and the system’s total revenue is 10,018.36 €.

The optimization results and various revenue streams from the sys-
tem have been summarized in Table 8 across all four cases. In this table 
the optimized value of best revenue found from WSA is also given which 
is 44,605.58€, which is best among all the case presented. As in this 

algorithm the aim is to optimize the maximum revenue so, the results is 
mentioned in total revenue and other components are not provided. This 
may be considered as the future research of this work to find optimized 
value of the entire component present in objective function. Since the 
base system parameters remain consistent, the revenues from other 
system components remain unchanged, except for carbon market reve-
nue and operating costs, which are detailed separately in Table 9.

In the proposed VPP system, the operating costs of MT and CPP units 
are relatively low. However, these units are not operated continuously 
over the 24-hour scheduling horizon. Instead, their operation is selec-
tively controlled by the EMS, which is responsible for optimally coor-
dinating the dispatch of various distributed energy resources to meet the 
system’s load demand. The EMS follows a prioritized dispatch strategy 
aimed at minimizing carbon emissions and operational costs. Under this 
strategy, the EMS first evaluates the availability of power from RES, such 
as solar PV and wind turbines, as well as from the ESDs, including bat-
tery storage systems. The goal is to meet the load demand as much as 
possible using these clean and low-emission resources. Only when the 
combined power from RES and ESD units is insufficient to meet the 
demand does the EMS consider activating the MT and CPP units. This 
hierarchical scheduling ensures that high-emission generation sources 
like MT and CPP units are utilized only as a last resort, thereby sup-
porting the overall objective of reducing the carbon footprint of the VPP 
system. Directly supplying power from CPP units without verifying the 
availability of cleaner sources contradicts the design philosophy of the 
proposed VPP. Such an approach would not only increase operational 
emissions but also undermine the environmental and economic effi-
ciency goals embedded within the EMS strategy.

From Table 8, it is evident that Case 1 yields the highest total revenue 
among all cases. However, among Cases 2–4, the uplift payment scheme 
generates the highest revenue, while the lowest revenue is observed in 
the scenario without a carbon reduction policy. The uplift payment 
scheme incorporates a fixed cap to optimize carbon credit value for 
maximum revenue. If the cap-and-trade policy were implemented with 
the same cap, it would also generate profits, though slightly lower than 
the uplift payment scheme, as the cap would be used for determining 
carbon credit prices in that model.

The total profit under the uplift payment scheme is 10,018.36€, 
which represents the complete profit for the energy service provider. 
Additionally, the carbon market revenue in this scenario amounts to 
391.65€, and approximately 26 carbon credits can be purchased under 
this policy. These findings demonstrate that an uplift payment scheme, 
when integrated with the energy market, offers greater operational 
flexibility, reduces carbon emissions, and maximizes system profit-
ability. This study primarily focuses on the carbon tax and uplift pay-
ment schemes; future research can extend the analysis to cap-and-trade 
schemes and further examine carbon emission reductions.

The Fig. 14 is a WSA Convergence Curve, a metaheuristic optimi-
zation algorithm inspired by the hunting behaviour of white sharks. The 
figure shows how the algorithm progresses in terms of optimizing the 
objective function—in this case, maximizing revenue for a VPP system. 
The blue curve represents the best revenue found so far at each iteration. 
At the start (iteration 1), the revenue is relatively low approx. €41,709. 
As the iterations progress, the algorithm quickly improves the solution, 
reaching near-optimal revenue approx. € 44,604 within the first 20–30 Table 8 

Comparison of different revenue in all cases.

Cases Case 1 Case 2 Case 3
Case 4
MINLP With WSA

Total Revenue 
(€) 10,379.11 9694.75 9833.39 10,018.36 44,605.58

Bidding revenue 
(€) 3764.24 3764.24 3764.24 3764.24 —

Carbon market 
revenue (€)

Not 
Included 742.99 592.47 391.65 —

Cc (€) Not 
Included 1427.35 1138.19 752.40 —

Table 9 
Various components of objective function.

Components Values in (€)
SW 6751.11
Ccpp 72.49
Cesd 42.71
Cmt 17.62
λpv 0.30
λwt 3.10
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iterations. After that, the curve flattens out; indicating convergence, i.e., 
meaning no significant improvement in the objective function is being 
found. From this convergence curve, this can be stated that, the WSA 
algorithm is effectively optimizing the revenue. It converges quickly (in 
fewer than 30 iterations), showing fast performance and stability. After 
convergence, the solution becomes stable, suggesting the algorithm has 
found a near-optimal or optimal bidding strategy for the VPP.

The comparative analysis reveals proposed WSO in bidding of VPP 
has been presented in Table 10 with some other metaheuristics algo-
rithm. The analysis shows that WSO outperforms other approaches in 
terms of convergence speed, uncertainty resilience, and ease of param-
eter tuning, making it highly suitable for dynamic VPP bidding envi-
ronments. While the MLBO method (Ul Ain Binte Wasif Ali et al., 2022) 
offers structured decision-making, it suffers from high computational 
burden. The IGWO-PSO hybrid (Yuvaraj et al., 2025) achieves strong 
performance but is complex and parameter-heavy. The improved WOA 
(Liu et al., 2023) enhances exploration but remains sensitive to tuning 
and may stagnate. The deterministic strategy (Amissah et al., 2024) 
ensures operational efficiency but lacks adaptability under uncertainty. 
Overall, WSO provides a well-balanced and computationally efficient 
solution, particularly in scenarios requiring fast and adaptive bidding 
decisions.

The problem proposed and investigated in this work is very impor-
tant for the coming energy market with VPP units. So, comparing 
various works in this area with the presented work is essential. In section 
I, a review of related work is given, and it has been found that very few 
works integrate EM with CM. RES units are participating in EM, making 
the system more efficient, reliable, and environmentally friendly. 
Table 11 compares the VPP benefit from this study with some of the 
work from section I.

In previous research works revenues in references Baringo and Bar-
ingo (2017) to Wang et al. (2016) range from €2453.56 to €9687.37 with 
the best revenue among these is from Vahedipour-Dahraie et al. (2021)
with €9687.37. These approaches likely used traditional or early 

metaheuristic optimization techniques or simpler models. The model 
proposed in this presented work with MINLP Model (solved in GAMS 
using BARON solver) achieves total revenue of €10,018.36, out-
performing all previous references. This shows that the model is 
well-constructed and better at capturing market dynamics and con-
straints. And also the approach to solve the model by WSA Algorithm in 
MATLAB results revenue of €44,605.58 higher than the next best result. 
This suggests that White Shark Algorithm approach is significantly more 
effective at finding near-optimal solutions in a complex, nonlinear 
problem space. The algorithm likely accounts for additional components 
such as carbon trading, forecasting errors, and social welfare, making it 
more comprehensive and realistic.

6.2.3. Impacts on carbon policy
The integration of carbon market mechanisms, such as carbon taxes, 

cap-and-trade systems or uplift payment scheme, into VPP bidding 
models represents a progressive step towards operational decisions with 
climate policy objectives. However, the effectiveness of such integration 
depends heavily on the feasibility of implementation, the broader policy 
implications, and the system-level trade-offs that emerge.

6.2.3.1. Policy feasibility. From a regulatory position, the feasibility of 
integrating carbon pricing into market-based bidding strategies hinges 
on the availability of reliable carbon accounting systems, robust market 
structures, and supportive policy frameworks. Current electricity mar-
kets in several countries are gradually maturing to support such hybrid 
bidding frameworks. The proposed model assumes accurate emission 
factors for conventional generating units and real-time or day-ahead 
carbon prices, which are increasingly becoming accessible through 
policy mandates. Nonetheless, regions without an established carbon 

Fig. 14. Convergence curve for WSA.

Table 10 
Comparison of wso with other metaheuristic algorithms.

Ref. Algorithm Bidding Strategy Uncertainty Handling Optimization Strengths Limitations
(Ul Ain Binte 

Wasif Ali 
et al., 2022)

Improved Multilevel 
Optimization (MLBO: GA 
and local search)

Bi-level coordinated VPP 
bidding

Price and RES 
uncertainty via 
probabilistic models

Good adaptability, structured decision 
hierarchy

Slow convergence, 
sensitivity to initial 
settings

(Yuvaraj et al., 
2025) Hybrid IGWO-PSO 3-stage dynamic bidding 

(DAM, RTM, reserves)
Scenario-based 
modelling of demand & 
RES

Improved convergence over PSO/ 
GWO; good resilience

Parameter-heavy; 
hybrid tuning 
complexity

(Liu et al., 2023) Improved WOA (IWOA)
Microgrid operation & 
economic dispatch, 
bidding integrated

Probabilistic modelling, 
demand/generation

Enhanced exploration using Levy 
flight and local search

Performance sensitive to 
control coefficients

(Amissah et al., 
2024)

Three-stage deterministic- 
coordinated control

Centralized bidding- 
coordination across VPP

Basic uncertainty 
modelling (load & 
generation profiles)

Enhanced operational efficiency, 
reliability

No metaheuristic used; 
limited global 
optimization

This work White Shark Optimizer 
(WSO)

Dynamic day-ahead 
market bidding

Stochastic modelling of 
RES and prices

Fast convergence, low tuning burden, 
exploration–exploitation balance

Relatively new; less 
benchmarked than GA/ 
PSO

Table 11 
Comparison of revenue from various Vpp model in published references.

References
Total 
Revenue (€) 
(Best 
Solution)

References
Total Revenue 
(€) (Best 
Solution)

(Baringo and Baringo, 
2017) 7858.50 (Zhao et al., 2016) 7078.19

(Vahedipour-Dahraie 
et al., 2021) 9687.37 (Al-Awami et al., 

2017) 2453.56
(Pourghaderi et al., 

2022) 2626.96 (Wang et al., 2016) 5324.23

(Chen et al., 2021) 7050.91

This work MINLP 
model solved in 
GAMS with BARON 
solver

10,018.36

This work with WSO 
algorithm in 
MATLAB

44,605.58
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pricing scheme may face significant infrastructural and technical 
barriers.

6.2.3.2. Policy implications. The inclusion of carbon cost in the bidding 
process changes the economic incentives for resource scheduling and 
dispatch. Units with high emission intensities, such as coal-based CPPs 
or microturbines, are economically penalized under higher carbon pri-
ces, thereby promoting the dispatch of cleaner or renewable sources 
such as wind, solar, and battery storage. This supports national and in-
ternational decarbonization goals. On the other side, this may increase 
electricity procurement costs, particularly in carbon-intensive regions, 
thereby affecting the competitiveness of conventional generation assets. 
Furthermore, incorporating carbon signals in the VPP bidding strategy 
strengthens the role of flexible assets such as EVs and energy storage 
systems. These units help the VPP adapt to both energy and carbon price 
fluctuations, enhancing economic resilience and environmental 
compliance.

6.2.3.3. System-level trade-offs. Several system-level trade-offs arise 
when environmental objectives are incorporated into economic opti-
mization models: 

• Economic and Environmental Goals: While carbon pricing drives 
emission reductions, it may reduce the total revenue for the VPP 
operator, especially in carbon-intensive portfolios. The model must 
thus aim to make balance between profit from system and environ-
mental compliance.

• Short-Term Costs and Long-Term Gains: Introducing carbon pricing 
can lead to higher short-term operational costs. However, it fosters 
long-term investments in low-carbon technologies and enhances 
system sustainability.

• Market Participation: Smaller or less efficient VPPs might be 
disproportionately affected by carbon costs, leading to potential 
market imbalances; therefore the policy mechanisms should be such 
as carbon revenue will maintain the balance and participation in 
market.

• Operational Complexity: Including carbon pricing adds another layer 
of complexity to market bidding, requiring more sophisticated 
forecasting and optimization frameworks.

Overall, the proposed bidding model highlights the importance of 
policy coordination and system design when introducing environmental 
signals into market operations. A well-calibrated carbon pricing mech-
anism, supported by transparent regulations and market readiness, can 
enhance both the efficiency and sustainability of VPP operations.

7. Conclusion

This paper proposes an effective carbon reduction policy integrated 
with the energy market, where renewable energy source units, aggre-
gated as a virtual power plant, actively participate in carbon reduction 
strategies. The uncertainty associated with photovoltaic and wind en-
ergy generation has been addressed using a forecasting algorithm 
combined with a penalty mechanism. The XGBoost algorithm, a method 
derived from artificial neural networks, has been employed for power 
prediction, offering improved accuracy. As a result, penalties for RES 
units due to forecasting errors have been significantly reduced. Addi-
tionally, the risk in forecasting has been analysed using the Conditional 
Value at Risk (CVaR) method, which provides a comprehensive assess-
ment of profit and loss for participating units based on predicted price 
fluctuations. This risk-based approach enhances the decision-making 
process for market participants, ensuring a more stable and predict-
able revenue stream. The energy market has been seamlessly integrated 
with the carbon market, incorporating specific carbon reduction targets 
through an uplift payment strategy in the bidding model. Three distinct 

carbon reduction policies have been examined, with bidding prices for 
carbon credits determined under both carbon tax and uplift payment 
schemes. A detailed analysis has demonstrated that the uplift payment 
scheme provides a more efficient carbon reduction mechanism, offering 
higher profitability and lower operational costs than the carbon tax 
approach.

Furthermore, considering various power constraints and bidding 
strategies, a comprehensive day-ahead energy market bidding model 
has been developed for the proposed system. The results indicate that 
the total revenue and carbon market earnings under the uplift payment 
scheme surpass those of the carbon tax model. Additionally, the overall 
operational cost of the carbon market is significantly reduced when 
using the uplift payment strategy, making it a more economically viable 
and environmentally sustainable solution. The MINLP approach is 
strong and shows competitive performance, validating model formula-
tion. The proposed WSA-based optimization model in MATLAB clearly 
well performs in terms of revenue generation. This demonstrates the 
superior performance, flexibility, and scalability of your method for 
real-world VPP bidding and carbon market integration. Future research 
can extend this study by incorporating real-time carbon emission data 
for further validation with some new meta-heuristic models. Addition-
ally, the proposed model can be applied to other energy market opera-
tions, including long-term market forecasting and multi-market 
coordination, to enhance the sustainability and efficiency of modern 
energy markets.
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