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Abstract. Recent advancements in text-to-speech (TTS) technology
have revolutionised automatic speech recognition (ASR) data augmen-
tation in low-resource settings. In particular, only a few public datasets
are available for dysarthric ASR (DASR) and text-to-dysarthric-speech
(TTDS) models have addressed data sparsity limitations by increasing
training data samples and diversity. In this context, Grad-TTS (G-TTS)
has been shown to synthesise speech with accurate dysarthric speech
characteristics beneficial for DASR data augmentation; likewise, Matcha-
TTS (M-TTS) has recently improved on typical speech synthesis base-
lines.

Recent studies commonly focus on data augmentation (i.e. reference data
combined with additional synthetic data). This work analyses Whisper
DASR model adaptation performance using reference data and G-TTS
& M-TTS generated data, and shows that comparable performance can
be achieved using synthesised data only relative to reference data. Ad-
ditionally, despite growing work on dysarthric data augmentation, the
validation of typical TTS metrics for synthetic dysarthric data, and
the development of TTDS metrics requires further research. Results of
this work show that gold standard metrics for typical TTS and current
dysarthric speech assessment metrics lack sensitivity to predict DASR
performance and hence a phoneme posteriorgram (PPG) distance based
on the Jensen-Shannon divergence (JS) as a metric for dysarthric speech
synthesis is introduced, showing correlation with downstream word error
rate (WER) scores.

Keywords: Dysarthric speech recognition - Text-to-speech synthesis -
Dysarthric TTS metrics.

1 Introduction

Dysarthria is a type of motor speech disorder (MSD) that reflects abnormalities
in motor movements required for speech production [7]. The psychosocial impact



2 WZ Leung et al.

and restrictions on functioning and participation are well documented [5,50], and
dysarthric ASR (DASR) has an important role in augmentative and alternative
communication (AAC) devices and home control systems [16,11]. Although auto-
matic speech recognition (ASR) systems achieved impressive performance with
large-scale typical speech datasets, DASR performance is constrained by lim-
ited public availability of dysarthric data [3] and high inter- and intra-speaker
variability inherent in dysarthric speech [38]. Challenges in data collection in-
clude recruitment and retention of participants with neurological conditions [33]
and fatigue associated with MSDs [13], limiting collection of representative data
and volume of data collected per target speaker. The TORGO database [37] is
widely used in DASR studies, containing approx. 6 hours of acoustic data for 8
dysarthric speakers [18] - far less than typical speech datasets.

To improve ASR performance for low-resource dysarthric speech, studies have
implemented various model adaptation methods [43,15,49], feature representa-
tions [1,17], and data selection methods [48]. Data augmentation techniques have
been applied to increase training data, enhance diversity and mitigate over-
fitting [27,41], e.g. by vocal tract length perturbation (VTLP) [23], speed per-
turbation [10], or generative adversarial network (GAN)-based TTS [22]. Recent
approaches aim to synthesise speech with accurate dysarthric speech characteris-
tics (e.g. articulatory imprecision or voice quality [21]), and studies on dysarthric
speech synthesis and DASR have focused on data augmentation (DAug), i.e. ref-
erence data in combination with additional ratios of synthetic data [27]. Re-
cently, [41] leveraged a dysarthria level coefficient FastSpeech2 model to gen-
erate speech with accurate dysarthric features, showing improved word error
rate (WER) when trained with additional synthetic data. Further, diffusion
probabilistic modelling (DPM) is setting new standards across multiple domains
and continuous-valued data generation tasks [6,31], and Grad-TTS (G-TTS) [35]
trained on dysarthric data has been shown to synthesise speech with accurate
dysarthric speech characteristics being beneficial for DASR DAug [27].

As the quality of synthetic dysarthric samples has improved, it is of inter-
est to research DASR performance using only text-to-dysarthric-speech (TTDS)
synthesised data and the potential of generating unseen speaker data to address
e.g. an inter-variance gap. If out-of-domain speakers are generated, reference
speaker data will not be available. Hence, this work is the first step towards
this goal and explores diffusion probabilistic modelling TTDS synthesis and the
utility of DASR model adaptation using purely synthetic data. Recent studies
commonly focus on DAug, and this work addresses whether comparable perfor-
mance can be achieved by using purely synthetic data only. The analysis shows
comparable performance can be achieved for Whisper DASR model adaptation
(Contribution 1 of this work): (i) using only TTDS synthesised data relative
to reference data, and (ii) an equivalent volume of synthetic data can achieve
comparable performance to reference data combined with additional synthetic
data (i.e. DAug).

Finally, despite growing work on dysarthric data augmentation, research on
metrics to evaluate the quality of synthesised dysarthric speech samples for
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DASR is limited and typical speech synthesis metrics may not capture variation
in dysarthric speech production, e.g. articulation [7]. Recent studies have fo-
cused on the synthesis of accurate dysarthric features by analysing (i) subjective
metrics, e.g. ratings by clinicians on dysarthric features [27,46] and non-clinical
listeners on naturalness [39] & similarity to dysarthric targets [41] and (ii) ob-
jective metrics, e.g. pitch contour [20] and intelligibility metrics [46] to show
similarity or distance between reference and synthesised signals. Alternatively,
studies have assessed TTDS quality by reporting on downstream DASR WER
performance without evaluation metrics for generated samples [47,21]. However,
here the final goal is to synthesise training data for improved DASR. Therefore,
a reliable metric that correlates to DASR downstream performance will inform
e.g. TTDS model & data selection for a target speaker, which is desirable to save
time and computational resource in DASR system development. Furthermore,
metrics designed for dysarthric speech are limited in number and validation.
The pathological short-time objective intelligibility (P-STOI)/ pathological ex-
tended STOI (P-ESTOI) metrics [19] were originally designed to measure speech
intelligibility for dysarthric speech signals, and studies have subsequently used
the metrics for TTDS evaluation and shown correlation to rated severity in
reference and synthetic samples [46]. However, overall dysarthria severity and
communication-relevant parameters such as intelligibility [24] do not necessarily
reflect that dysarthric pathomechanisms underlying e.g. intelligibility impair-
ment are captured, and these measures have not yet been validated as metrics
to predict downstream DASR performance. Therefore, in this work (Contribu-
tion 2): (i) synthesis metrics for TTDS data and downstream DASR performance
are evaluated, (ii) a PPG distance metric is introduced as a measure of pronun-
ciation distance for generated dysarthric speech to capture similarity in articu-
lation® and (iii) correlation analysis shows that current metrics lack sensitivity
to predict DASR performance for synthetic dysarthric data, and that a lower
PPG distance is associated with lower WER scores.

2 Experimental Setup

The TORGO dysarthric speech database [37] as data source is briefly described

in Section 2.1. Section 2.2 introduces the TTDS models, including training meth-

ods and model evaluation. Section 2.3 introduces Whisper and DASR model

adaptation, and adaptation experiments. Finally, the evaluation metrics for TTDS
and DASR, and correlation analysis for metrics and downstream DASR perfor-

mance are introduced in Section 2.4.

2.1 The TORGO Dysarthric Speech Dataset

The TORGO database contains approx. 15 hours of acoustic data [37], far
less than usually used for ASR model training. Data in the TORGO dataset

3 A PPQG is a time-varying categorical distribution over speech units (e.g. phonemes)
[14] and recent work has demonstrated interpretable pronunciation distance [4].
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was gathered from 8 dysarthric speakers with a diagnosis of cerebral palsy
or amyotrophic lateral sclerosis (denoted as TORGO dysarthric (TD)), and 7
age-gender-matched control speakers (denoted as TORGO control (TC)). Non-
speech utterances and utterances with no transcription were discarded [15], and
utterances with direct instruction were corrected (e.g. [‘Lead’ as in ‘T will lead
you’] to [‘Lead’]) [27]. Manual listening was conducted to determine audio length
filtering, identifying samples that are too short to contain speech (< 0.4 seconds),
and samples that incorrectly contain multiple utterances (> 60 seconds). The
dysarthric speakers in TORGO were assessed by a speech and language ther-
apist (SLT) using the Frenchay Dysarthria assessment (FDA) [8]. The severity
ratings are: severe for speakers FO1, M01, M02 & MO04, moderate-severe for
speaker M05, moderate for speaker F03, and mild for speakers F04 & MO03 [37].
‘F’ and ‘M’ denote gender, and the numeral denotes the participant number in
the dataset.

2.2 Text-to-Dysarthric Speech (TTDS) Synthesis Models

The Grad-TTS (G-TTS) and Matcha-TTS (M-TTS) models are selected for
TTDS synthesis in this work. G-TTS trained on dysarthric data has been shown
to generate samples with accurate dysarthric speech characteristics that are ben-
eficial for DASR [27], and M-TTS shows improved objective and subjective per-
formance relative to DPM TTS baselines [30]. In G-TTS, mel spectrograms are
generated with a score-based decoder (defined by a probability flow ordinary
differential equation (ODE) [42]) from monotonic alignment search-aligned en-
coder outputs [35]. M-TTS [30] introduces innovation to non-autoregressive T'T'S
with optimal-transport conditional flow-matching [29] to learn ODEs that sam-
ple from a data distribution. A HiFi-GAN [26] vocoder (trained on the LibriTTS
dataset [51])* is used to transform mel spectrograms generated by TTS models
into audio waveforms.

The models are trained from scratch using TORGO data to create Grad-
TTDS (G-TTDS)® and Matcha-TTDS (M-TTDS)® models, respectively. As both
models require training and validation data for a given speaker in order to train
a speaker embedding, data splits as in [27] were created for TTDS model training
by pairing array and microphone recordings (of the same utterance), and then
randomly splitting utterances into train, validation, and test splits in an 80%,
10%, and 10% ratio per speaker, respectively. TTDS models are evaluated on
only the test split, and metrics are calculated between the reference TORGO
dysarthric (TD) data and equivalent TTDS synthesised data (i.e. generated using
the equivalent text label and corresponding speaker embedding). The transcripts

4 HiFIGAN LibriTTS 16kHz vocoder: https://huggingface.co/speechbrain/
tts-hifigan-libritts-16kHz.

® G-TTS training code adapted from https://github.com/WingZLeung/TTDS.

5 M-TTS training code adapted from https://github.com/shivammehta25/
Matcha-TTS. Code & audio samples available at https://github.com/WingZLeung/
M-TTDS.


https://huggingface.co/speechbrain/tts-hifigan-libritts-16kHz
https://huggingface.co/speechbrain/tts-hifigan-libritts-16kHz
https://github.com/WingZLeung/TTDS
https://github.com/shivammehta25/Matcha-TTS.
https://github.com/shivammehta25/Matcha-TTS.
https://github.com/WingZLeung/M-TTDS
https://github.com/WingZLeung/M-TTDS
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for all data splits are input to the trained TTDS models to synthesise a complete
TD dataset for DASR model adaptation.

2.3 Whisper DASR Model Adaptation

The TORGO data (cf. Section 2.1) and synthesised data (cf. Section 2.2) are
used to finetune 3 Whisper [36] ASR multilingual models” with encoder-decoder
Transformer architecture, originally trained weakly supervised on 680k hours of
typical speech. The Whisper-medium (WM) model has 24 encoder and decoder
layers and 769M parameters, the Whisper-large (WL) model has 32 encoder and
decoder layers and 1550M parameters and the Whisper-large-v2 (WL2) model
is trained for 2.5x more epochs with SpecAugment [34] and added regularisation
[36]. The Whisper models are fine-tuned using labelled data. Parameters in the
feature encoder (2x conv.), model encoder and decoder layers are not frozen.
The leave-one-speaker-out (LOSO) evaluation methodology is used for DASR
model adaptation to be consistent with [9] (and subsequent work, e.g. [15,49]) to
create speaker-independent models. Hyperparameters for learning rate, warm-
up, epochs, and batch size are optimised during model adaptation via grid
search with the best checkpoint selected by the lowest validation WER. To
investigate the performance of the DASR model adaptation using purely syn-
thetic data relative to reference data, 2 experiments are conducted. For Ex-
periment 1, DASR model adaptation performance using either reference data,
or G-TTDS or M-TTDS synthesised data is compared. As recent studies com-
monly focus on data augmentation (DAug) (i.e. reference dysarthric data in
combination with TTDS data) to increase training data and enhance sample di-
versity, for Experiment 2, DAug (1:1 ratio reference:synthetic data) is compared
to an equivalent number of G-TTDS and M-TTDS combined samples (1:1 ratio
G-TTDS:M-TTDS data, i.e. same proportion) to compare an equivalent volume
of synthetic data with sample diversity from 2 TTDS models. Studies commonly
use both the TORGO dysarthric and control data for DASR model adaptation.
To reduce computation, only dysarthric data is used for DASR in this study.

2.4 Evaluation Metrics for TTDS and DASR

Despite growing interest in dysarthric data augmentation, research on validating
typical speech TTS metrics for dysarthric speech, and the development of metrics
designed for TTDS is limited. Therefore, gold standard typical speech metrics
as well as metrics for dysarthric speech assessment are investigated. The metrics
are computed to evaluate TTDS models (cf. Section 2.2), and the performance
of DASR systems are measured by WER. To evaluate the utility of metrics
for TTDS data to indicate downstream DASR performance, correlation analysis
between metrics and DASR system WER performance is conducted. The metrics
used in this work are briefly described below:

" Whisper finetune code adapted from https://github.com/vasistalodagala/
whisper-finetune.


https://github.com/vasistalodagala/whisper-finetune
https://github.com/vasistalodagala/whisper-finetune
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MCD: The mel cepstral distortion (MCD) is defined as the Euclidian dis-
tance between a reference mel spectrum and time aligned synthesised spectrum,
and is computed by alignment with dynamic time warping (DTW) [25]. The
MCD has been shown to have correlation to subjective listening test results in
TTS [2] and TTDS [27] model performance.

L-fo: Log fo root mean square error (RMSE) refers to the logarithmic
fundamental frequency (fo) contour RMSE of a reference signal compared to
the respective logarithmic fy contour of a synthesised signal [45]. DTW is com-
puted for alignment, and the metric calculation is based only on voiced frames
of the speech signal.

P-STOI/P-ESTOI: The pathological short-time objective intelligibility
(P-STOI) /pathological extended STOI (P-ESTOI) metrics [19] are designed to
measure speech intelligibility (secondary to motor speech production deficits), by
quantifying distortion in time-frequency structure between control and dysarthric
speech signals [19]. Studies have shown correlation to dysarthria severity in ref-
erence and synthetic samples [46]. The short-time correlation or spectral correla-
tion between one-third octave band representations of reference and time-aligned
test signal yields the P-STOI and P-ESTOI metrics, respectively. As in [19], oc-
tave band representation alignment is achieved by DTW (using the Euclidean
distance as the cost function).

PPG-D: The phoneme posteriorgram (PPG) is a time-varying categorical
distribution over acoustic speech units, e.g. phonemes [14], and studies have
shown effective application to downstream dysarthric speech tasks, including
voice conversion [52] and classification [12]. The High-fidelity Neural (H-FN)
PPG model [4] has been shown to encode interpretable pronunciation distance,
and therefore a metric using PPGs to measure pronunciation error for generated
dysarthric speech is investigated. Inference is performed using the H-FN PPG
model® to output PPGs of dimension (phonemes, frames). The Jensen-Shannon
divergence (JS) [28]

L(P,Q) = H(aP + (1 -a)Q) —aH(P) - (1 - a)H(Q) (1)

is calculated between a reference posteriorgram PPG(P) and DTW time-aligned
test posteriorgram PPG(Q) to compute the PPG distance (PPG-D). In (1), a,
0 < a < 1 weights the two PPG probability distributions over M frames of
P = (p1,..,pm) and Q = (qu, .., qur), respectively, and H(P) = =X M p;log p;
is Shannon’s entropy [40].

WER: ASR transcripts are pre-processed with Whisper’s English text nor-
malizer? before word error rate (WER) is calculated between processed hypoth-
esis and reference (ground-truth) transcripts. Both, (i) overall (Ovl.) and (ii)
average (Avg.) WER scores are calculated [27] by (i) computing the WER scores
for transcripts across all speakers and (ii) average WER scores of single-speaker
WERSs or average severity group WERs.

8 H-FN PPG model: https://github.com/interactiveaudiolab/ppgs.
9 Whisper normalizer: https://github.com/openai/whisper/blob/main/whisper/
normalizers.


https://github.com/interactiveaudiolab/ppgs
https://github.com/openai/whisper/blob/main/whisper/normalizers
https://github.com/openai/whisper/blob/main/whisper/normalizers
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Correlation analysis: A Spearman’s rank-order correlation analysis is con-
ducted to assess the monotonic relationship between metrics and DASR per-
formance (i.e. WER) for non-parametric data. Intrusive metrics are calculated
between the reference TD data and equivalent TTDS synthesised data (i.e. gen-
erated using the equivalent text label and corresponding speaker embedding),
and correlated to the WER score for the given TD utterance. For the analy-
sis, transcripts that are common between all dysarthric speakers are selected to
allow comparison of metrics between equivalent transcripts.

3 Results

3.1 Text-to-Dysarthric-Speech Synthesis model evaluation

The G-TTDS and M-TTDS models are trained from scratch on the TD data.
Evaluation metrics are computed on the test set created for TTDS model training
(cf. Section 2.2). Table 1 shows the results of the objective intrusive metrics
(i.e. calculated between the reference TD data and equivalent TTDS synthesised
data).

Table 1. TTDS model evaluation.

MCD | L-f, | PSTOI 1 PESTOI 4 PPG-D |

G-TTDS 6.59 0.40 0.37 0.23 0.64
M-TTDS 7.47 0.38 0.40 0.26 0.56

The M-TTDS model achieves better scores for all metrics apart from MCD,
indicating that M-TTDS data is more similar in fy pitch contour and estimated
speech intelligibility to reference TORGO dysarthric data than G-TTDS data.
Informal listening tests by an SLT further showed that M-TTDS data is more
similar to reference data in dysarthria severity level and accuracy of dysarthric
speech characteristics. Thus, TTDS model evaluation indicates higher quality
synthesis and similarity to reference data for M-TTDS samples. The following
DASR model adaptation will investigate whether samples from a model with
higher evaluation metrics will have better downstream DASR, performance, and
analyse the correlation between metrics and WER performance.

3.2 Pre-trained Whisper Model Baseline Inference

The pretrained Whisper models (i.e. without any finetuning) are first used for
inference on the TD data, and synthesised data from the G-TTDS or M-TTDS
models to establish baseline performance for ASR systems trained on typical
data. Inference is performed on the whole TD dataset (and on the dataset gen-
erated by the TTDS models from TD transcripts). Table 2 shows the aver-
age (Avg.), overall (Ovl.) and per-severity-group WER for the pretrained Whis-
per models.
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Table 2. WER in % for the pretrained WM, WL and WL2 models on the TORGO
dysarthric (TD) data, and G-TTDS and M-TTDS synthesised data.

Model Data Severe M.-S. Mild Avg. Ovl

WM TD 115.90 152.40 20.27 84.60 77.97
WL TD 127.08 186.55 17.37 93.37 82.30
WL2 TD 96.21 93.80 20.79 67.63 63.01

WM  G-TTDS 157.17 235.89 70.20 134.40 128.90
WL G-TTDS 14897 172.20 66.43 120.92 116.74
WL2 G-TTDS 145.24 112.61 66.50 111.64 105.95

WM M-TTDS 115.50 40.07 38.90 77.35 75.34
WL  M-TTDS 96.63 56.66 38.63 69.88 68.68
WL2 M-TTDS 92.08 45.51 33.16 64.16 62.11

As expected, all ASR models show high WER on the TD data, in particular
for severe and moderate to severe (M.-S.) dysarthric speech, with relatively bet-
ter performance for the WL2 model. For G-TTDS data, all pre-trained Whisper
models show significantly higher average WER scores relative to the TD data,
and perform worse for all speakers. For M-TTDS data, all pre-trained Whis-
per models achieve better average WER performance relative to the TD data
(by 7.25%, 23.49% and 3.47% for the WM, WL, and WL2 models, respectively).
Comparing severity groups, the M-TTDS data leads to marginally better perfor-
mance for severe speakers, significantly better performance for M.-S. speakers,
and worse performance for mild speakers overall. Results in Table 2 are in
line with performance metrics in Table 1 as well as other work demonstrating
correlation between WER and speech intelligibility for dysarthric speech [44].

3.3 Whisper DASR model adaptation performance

Experiment 1: DASR model adaptation using either reference or syn-
thetic data only Whisper models are adapted with a LOSO methodology using
either the speaker-specific TD training data, or the equivalent speaker-specific
training data synthesised by the G-TTDS or M-TTDS models. All models are
tested on the TD data (i.e. reference audio data) for the given target speaker.
Table 3 (top table, Experiment 1) shows the performance in WER for adapted
Whisper models. In general, model adaptation significantly improves perfor-
mance relative to the baselines reported in Table 2. Comparing adaptation with
real (TD) vs. synthesized data, G-TTDS data shows better WER performance
for the WM & WL2 models (by 3.55% & 14.42% average WER, respectively),
but a higher average WER for the WL model (by 7.45%) while M-TTDS shows
better WER performance for the WL & WL2 models (by 3.11% & 12.45% aver-
age WER, respectively), and higher WER for the WM model (by 5.12% average
WER). The best performing model overall is the M-TTDS WL model, which in
particular shows the best performance on severe speakers. Therefore, the best
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Table 3. WER in % for adapted Whisper Models. Experiment 1 and Experiment 2
results.

Experiment 1

Model Data Sev. M.-S. Mild Avg. Ovl.

WM TD 65.93 44.39 18.62 45.50 41.95
WL TD 43.78 21.11 15.39 30.30 28.83
WL2 TD 71.70 19.16 12.20 42.82 38.11
WM  G-TTDS 62.86 40.91 14.42 41.95 35.60
WL G-TTDS 59.59 29.55 11.35 37.75 30.36
WL2 G-TTDS 42.74 24.88 10.46 28.40 27.78
WM  M-TTDS 85.62 27.46 11.67 50.62 46.57
WL M-TTDS 41.08 24.18 9.67 27.19 25.34
WL2 M-TTDS 44.48 25.64 13.13 30.37 29.19

Experiment 2

Model Data Sev. M.-S. Mild Avg. Ovl.

WM  TD+G-TTDS 48.72 20.35 12.41 31.56 31.93
WL TD+G-TTDS 31.99 17.14 8.30 21.25 19.85
WL2 TD+G-TTDS 29.41 19.51 8.10 20.18 18.37
WM  TD-+M-TTDS 54.11 32.47 14.95 36.72 34.51
WL TD+M-TTDS 41.45 18.05 8.41 26.14 24.86
WL2 TD+M-TTDS 29.94 17.63 7.58 20.02 18.86
WM  G-TTDS+M-TTDS 48.87 35.96 15.97 34.92 30.39
WL G-TTDS+M-TTDS 32.96 22.51 9.92 23.02 21.82
WL2 G-TTDS+M-TTDS 35.06 24.04 10.87 24.61 21.54

performing WM, WL, & WL2 models only use TTDS data, and synthetic data
only outperformed reference data.

Notably, although the M-TTDS model shows the best evaluation metrics
(cf. Table 1), adaptation using M-TTDS data does not consistently achieve the
best WER performance, highlighting that (i) synthetic data that is more similar
to reference data is not necessarily better for DASR model adaptation and (ii)
higher quality and similarity to reference data as measured by current TTDS
model evaluation is not sufficient to inform downstream DASR performance.
To determine if metrics are able to provide an indication of downstream DASR
performance, Spearman’s correlation (p) is calculated between metrics and WER
performance.

Table 4 shows the Spearman’s correlation (p) between TTS metrics and WER
performance. There is a weak to moderate relationship between PPG-D and
WER for all models (P< 0.001), and a negligible to low correlation between
MCD, L-fy, P-STOI, P-ESTOI and WER. Comparing data, M-TTDS models
have higher PPG-D p values relative to G-TTDS models, but do not consistently
have higher WERs (Kendall’s Tau coefficient between PPG-D p and WER across
all models and data = 0.6). In summary, there is a trend between a higher
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Table 4. TTS metrics and WER correlation (Experiment 1). Values = Spearman’s
correlation (p).

Model Data | MCD L-fy PSTOI PESTOI|PPG-D
WM G-TTDS | 0.045 0.153 -0.035  0.014 | 0.441

WL G-TTDS | 0.035 0.095 -0.027 -0.019 0.284
WL2 G-TTDS | 0.009 0.065 -0.034 -0.002 0.252

WM  M-TTDS |-0.033 0.117 -0.001 0.048 0.497

WL M-TTDS | 0.023 0.079 -0.041 -0.010 0.360
0.004 0.099 -0.022 0.031 0.423

WL2 M-TTDS

PPG-D score and higher WER score across all models, which is not observed
for other metrics. Therefore, PPG-D can provide an indication of downstream
DASR performance as an evaluation metric for TTDS data, while current TTS
and dysarthric speech assessment metrics lack sensitivity.

Experiment 2: DASR model adaptation and data augmentation (DAug)
Whisper models are again adapted with a LOSO methodology to compare adap-

tation with (i) DAug and (ii) purely synthetic data. For (i): TD data is used in

combination with either G-TTDS or M-TTDS synthesised data (1:1 ratio) and

for (ii): combined G-TTDS+M-TTDS data (1:1 ratio) is used to compare adap-

tation with an equivalent number of samples (as (i)) with sample diversity from

both TTDS models. Table 3 (bottom table, Experiment 2) shows the perfor-

mance in WER for these adapted Whisper models.

In general, WER performance is improved further relative to only using TD,
G-TTDS or M-TTDS data independently (cf. Table 3, top). The TD+G-TTDS
data shows the best WM and WL model average WER performance, and mar-
ginally worse performance than TD+M-TTDS WL2 (by 0.16% average WER),
and achieves the best average WER scores for severe and moderate-severe speak-
ers. The G-TTDS+M-TTDS models show better WER performance than the
TD-+M-TTDS WM and WL models (by 1.8% & 3.12% average WER, respec-
tively). The WER performance for synthesised data only is comparable to DAug,
although TD+G-TTDS data achieve the best performance by marginal scores.

Table 5 shows the Spearman’s correlation (p) between TTS metrics and WER
performance for Experiment 2. The Spearman’s correlation (p) between metrics
and WER performance for Experiment 2 are similar to results for Experiment 1
- there is weak to moderate correlation between PPG-D and WER for all models
(P< 0.001), and negligible to low correlation observed for other metrics. There-
fore, PPG-D can also provide an indication of downstream DASR performance
for DAug, while other metrics lack sensitivity. Although TTDS model evaluation
shows that G-TTDS data is less similar to reference TD data (cf Section 3.1),
G-TTDS data shows the overall best performance for DAug. Studies have shown
that enhancing diversity with DAug is beneficial for pathological ASR [32], and
the G-TTDS data also has a higher range (R) and standard deviation (SD) of
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Table 5. TTS metrics and WER correlation (Experiment 2).

Model Data | MCD L-fo PSTOI PESTOI | PPG-D
WM TD+G-TTDS 0.055 0.111 -0.040  0.015 | 0.377
WL TD+G-TTDS 0.022 0.070 -0.022 -0.017 | 0.234
WL2  TD+G-TTDS 0.030 0.069 -0.041 -0.027 | 0.214
WM TD+M-TTDS -0.015 0.096 -0.027  0.025 | 0.495
WL TD+M-TTDS 0.028 0.057 -0.057 -0.031 | 0.285
WL2  TD+M-TTDS 0.049 0.055 -0.066 -0.041 | 0.284
WM G-TTDS+M-TTDS | 0.019 0.052 -0.041  0.001 | 0.279
WL G-TTDS+M-TTDS | 0.024 0.056 -0.025 -0.022 | 0.213
WL2  G-TTDS+M-TTDS | -0.003 0.067 -0.032 -0.018 | 0.229

PPG-D values relative to M-TTDS data, particularly for severe to M-S. speak-
ers (G-TTDS: Avg.=0.732, R=2.16, SD=0.32, M-TTDS: Avg.=0.645, R=1.92,
SD=0.28). Therefore, a degree of distance in similarity to reference data and
increased sample diversity seems to be beneficial for DAug.

4 Conclusion

This work shows that generative TTDS models can successfully create augmen-
tation data for DASR. In particular, that it is possible and even beneficial to
use synthetic data only (relative to using reference data) for Whisper model
adaptation, potentially due to a more diverse data distribution relative to small
datasets. Performance is improved further with DAug (i.e. reference data in
combination with additional synthetic data), and synthetic data only (i.e. an
equivalent volume of synthetic data from 2 TTDS models) has comparable per-
formance, indicating that more data with more diversity is important for data
augmentation when using reference or synthetic data. The analysis further high-
lights that most current TTS metrics lack sensitivity to predict DASR perfor-
mance, while a trend between PPG-D and WER score is shown.
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