
This is a repository copy of Automatic visual verification of layout failures in responsively 
designed web pages.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/230100/

Version: Accepted Version

Proceedings Paper:
Althomali, I., Kapfhammer, G.M. and McMinn, P. orcid.org/0000-0001-9137-7433 (2019) 
Automatic visual verification of layout failures in responsively designed web pages. In: 
Proceedings of 2019 12th IEEE Conference on Software Testing, Validation and 
Verification (ICST). 2019 12th IEEE Conference on Software Testing, Validation and 
Verification (ICST), 22-27 Apr 2019, Xi'an, China. Institute of Electrical and Electronics 
Engineers (IEEE) , pp. 183-193. ISBN 9781728117379 

https://doi.org/10.1109/icst.2019.00027

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Automatic Visual Verification of Layout Failures in

Responsively Designed Web Pages

Ibrahim Althomali

University of Sheffield, UK

Gregory M. Kapfhammer

Allegheny College, USA

Phil McMinn

University of Sheffield, UK

Abstract—Responsively designed web pages adjust their layout
according to the viewport width of the device in use. Although
tools exist to help developers test the layout of a responsive
web page, they often rely on humans to flag problems. Yet,
the considerable number of web-enabled devices with unique
viewport widths makes this manual process both time-consuming
and error-prone. Capable of detecting some common responsive
layout failures, the REDECHECK tool partially automates this
process. Since REDECHECK focuses on a web page’s document
object model (DOM), some of the issues it finds are not observable
by humans. This paper presents a tool, called VISER, that renders
a REDECHECK-reported layout issue in a browser, adjusting the
opacity of certain elements and checking for a visible difference.
Unless VISER classifies an issue as a human-observable layout
failure, a web developer can ignore it. This paper’s experiments
reveal the benefit of using VISER to support automated visual
verification of layout failures in responsively designed web pages.
VISER automatically classified all of the 117 layout failures that
REDECHECK reported for 20 web pages, each of which had
to be manually analyzed in a prior study. VISER’s automated
manipulation of element opacity also highlighted manual classifi-
cation’s subjectivity: it categorized 28 issues differently to manual
analysis, including three correctly reclassified as false positives.

I. INTRODUCTION

Given the variety of web-enabled devices, including phones,

tablets, laptops, and desktops, web developers can no longer

maintain a single “mobile version” of a web site alongside

a standard desktop version [1]. Instead, web developers must

fully accommodate the wide variety of devices used to view

their sites. Responsive Web Design (RWD) is a design and

implementation paradigm enabling developers to build web

pages that provide an equivalent user experience across dif-

ferent devices [2]. RWD enables a web page to dynamically

adapt its layout by “responding” to the viewport width of the

browser running on a device. Rather than requiring users to

pan around or zoom on a web page, a properly responsively

designed page only requires a user to vertically scroll [3].

Even though RWD helps to address the challenges of deal-

ing with different viewport widths, it can introduce new types

of presentational layout failures, referred to as “responsive

layout failures” (RLFs) [4]. As the viewport width changes,

web page elements can start to overlap one another, protrude

from their containing elements, or disappear off the edge of

the viewable portion of the page. At best, this makes for a

poor presentation of the page, leading to lost credibility [5]

and decreased user loyalty [6]; at worst it can lead to critical

parts of the web application being inaccessible or unusable [7].

In addition to the “Responsive Design Mode” in the de-

veloper tools of web browsers like Firefox and Chrome, other

tools exist to help developers test their responsive designs. For

instance, viewport resizers (e.g., [8]–[10]) automatically resize

browsers to common viewport widths used by web-enabled

devices, conveniently allowing developers to see how their

content is rendered. However, all of these tools still require

a human to manually identify problems on the page.

The REDECHECK tool [11] helps a developer to identify

several key types of RLFs, such as web page elements that

are separated at one viewport width but then appear to collide

with one another at a narrower viewport size. However,

REDECHECK’s analysis is limited to the document object

model (DOM) of the page — a data structure which, among

other things, stores the dimensions of each HTML element

and how it is laid out on a page [12]. As a result, many

of the issues that REDECHECK detects may not actually be

observable in practice. For example, while the bounding boxes

of two elements may overlap on a page, their backgrounds may

be transparent and their respective content non-overlapping.

Human verification of many reported layout issues can be a

time consuming, inconsistent, and error-prone task. The devel-

oper must first decode the report produced by REDECHECK,

recreate the environment by starting the same web browser,

navigate to the page, set the same viewport size, scroll to

the graphical element in question, and visually inspect the

potential failure. Each layout failure reported by REDECHECK

has a viewport range: the minimum viewport width at which

the issue starts to occur and the maximum viewport width at

which it is still present. Since REDECHECK is DOM-based,

it is possible for a failure to be observable in some parts of

this range and non-observable in others. This means that it

is important for the humans who verify a layout failure to

identify and inspect the appropriate viewport width(s).

This paper presents “VISER” (VISual verifiER), a visual

verification tool that automatically filters the DOM-based

issues raised by REDECHECK. By adjusting the opacity of the

elements involved in a potential layout failure and analyzing

the difference in the pixels making up those elements, VISER

can quickly detect the human-observable visual changes. Be-

cause it automatically filters out the non-observable issues,

only presenting the observable ones to a developer, VISER

makes the failure verification process fast and repeatable.

We performed an empirical evaluation of VISER on 20

web pages previously used to evaluate REDECHECK. In that



Viewport Size 966 px

(a) No Collision

Viewport Size 934 px

(b) Non-Observable Collision

Viewport Size 933 px

(c) Observable Collision

Fig. 1: Three snapshots of a real-world web page that capture a correct layout, in (a), and two distinct collision responsive

layout failures, in (b) and (c), as reported by REDECHECK and correctly classified by VISER without human intervention.

previous study, the responsive layout failures had to be verified

manually. That is, humans had to classify each failure report

produced by REDECHECK, consisting of a set of HTML ele-

ments for one or more viewport ranges, as belonging to one of

three categories: true positives (TPs), false positives (FPs), and

“non-observable issues” (NOIs). In this paper’s study, VISER

automatically classified all 117 responsive layout failures.

Using VISER also surfaced some of the subjectivity in man-

ually classifying layout issues: 28 failures were categorized

differently by VISER, including three that were reclassified as

false positives. Furthermore, VISER categorized a significant

number of these RLFs differently depending on the point

in the viewport range chosen to inspect them. This finding

highlights the importance on the viewport point chosen to

inspect failures: If humans inspect the layout failure manually,

they must inspect multiple viewports to ensure the failure’s

correct classification, a task that is fully automated by VISER.

The contributions of this paper are therefore as follows:

1) A new technique, implemented in a tool called VISER,

that automates a previously manual approach to verify-

ing responsive layout failures reported by REDECHECK.

2) An empirical evaluation that compares the automated

results produced by VISER to those arising from a

previously published manual analysis, finding that:

a) VISER accurately classifies the potential responsive

layout failures identified by REDECHECK, auto-

matically classifying all 117 from prior work.

b) VISER can automate the manual analysis and elim-

inate its subjectivity: compared to humans, VISER

categorized 28 failures differently, including three

that were ultimately reclassified as false positives.

c) VISER is fast to run, requiring no more than a few

seconds to complete all of its automated analyses.

II. BACKGROUND

The presentational layer of a web application consists of a

series of web pages, which are rendered by a web browser

on the basis of several resources. A developer first creates a

Hypertext Markup Language (HTML) document, that specifies

the basic display structure of a page. An HTML document

consists of a series of HTML elements that describe text,

images, multimedia, forms, scripts, and other content [12].

Developers associate Cascading Style Sheets (CSS) with an

HTML document to specify how a browser should graphically

style the HTML elements when rendering the page. Rules

in the CSS can style the size and position of elements and

can control, for instance, whether the text within them should

be rendered in bold face or italic [13]. A browser parses

the elements in an HTML document, along with the CSS

rules, to form the Document Object Model (DOM) of the

web page. The DOM is a tree data structure that represents

the page’s visual presentation [12]. A developer can query

or modify the page’s DOM (and consequently, its visual

appearance) through the creation and use of scripts run by the

browser. An HTML element’s properties, such as its width or

height, can be assessed by specifying an eXtensible Markup

Language (XML) path expression, known as its XPath. The

final arrangement of HTML elements on a web page, as

rendered by the web browser, is referred to as its layout.

After overviewing the principles of responsive web design,

the remainder of this section first explains how testing tools

like REDECHECK automatically detect responsive layout fail-

ures. It then surfaces the challenges associated with triaging

non-observable issues, thereby setting the stage for VISER.

A. Responsive Web Design

The responsive web design paradigm [2] incorporates the

concepts of fluid grids, flexible media, and media queries,

each of which support the web page design strategies for

accommodating a range of viewport sizes. Often supported

by frameworks such as Bootstrap [14] and Foundation [15],

these concepts are implemented using HTML and CSS.

Fluid grids allow HTML elements to be arranged in layouts

that smoothly adjust according to the width of the view-

port, while flexible media refer to images or video con-

tent that stretches or shrinks in size depending on available



Web Page

Wide Viewport

(a) Correct Layout

Web Page

Narrow Viewport

(b) Element Collision Failure

Web Page

(c) Correct Layout

Web Page

(d) Element Protrusion Failure

Web Page

(e) Correct Layout

Web Page

(f) Viewport Protrusion Failure

Fig. 2: Three examples of the types of RLFs reported by

REDECHECK and automatically classified by VISER. The left-

hand side of this figure furnishes a responsively designed

web page with a correct layout. The right-hand side depicts a

situation in which a responsive layout failure manifests itself.

screen space. Finally, media queries allow developers to

activate specific CSS rules depending on the user’s device

or browser. For example, any CSS rules contained within

the media query @media(max-width:767px) would be en-

abled if a user’s device had a narrow screen width, while

@media(min-width:1200px) would trigger CSS rules when

the page is viewed on the wide-screen of a desktop computer.

B. Testing to Detect Responsive Layout Failures

Even with the RWD paradigm, web developers may intro-

duce a wide variety of presentation failures [16], including

responsive layout failures (RLFs) [4], for example the one

shown in Figure 1. At a viewport width of 966 pixels (part

(a)), no problems are apparent. Yet, the space between the third

oval and the elements to the right of it becomes constricted at

a viewport width of 934 pixels (part (b)). At a viewport width

of 933 pixels (part (c)), the third oval element wraps to the

next line, partially overlaying the content above it.

One technique, implemented into the REDECHECK tool [4],

detects some of the common RLFs in responsively designed

web pages. Element Collision failures occur in responsive

design where the display space is sufficient to accommodate

two HTML elements (Figure 2(a)), yet as the viewport be-

comes narrower, space between the elements tightens until

they start to overlap one another (Figure 2(b)). Along with

causing unsightly presentational effects, this can lead to a loss

of functionality if important links and/or buttons are obscured.

Element Protrusion failures occur when HTML elements

“pop” out of their containers due to reduced display space.

At a wide viewport width (Figure 2(c)), the available display

space allows for the element to be rendered correctly within

its container. However, as display space becomes smaller, the

container starts to shrink. The containing element reaches its

minimum size, which may be constrained by the text rendered

within it. Eventually, the containing element protrudes out

of its container (Figure 2(d)). Viewport Protrusion is similar

to element protrusion, except that an HTML element has

protruded out of the viewport itself — that is, it has extended

out of the body HTML element of the page (Figure 2(e)–(f)).

C. The REDECHECK Tool for Testing Responsive Web Pages

The REDECHECK (REsponsive DEsign CHECKer, pro-

nounced “Ready Check”) tool detects these RLFs by extracting

a Responsive Layout Graph (RLG) of a web page [11]. An

RLG is a model of the responsive layout behavior of a web

page [17]. It represents, at different viewport widths, both the

relative alignment of HTML elements with respect to one

another (e.g., “above”, “below”, “contained”, and “within”)

and which HTML elements are (and are not) set to be visible

at each width. When constructing an RLG, REDECHECK col-

lates information by driving a desktop browser and rendering

a web page at different viewport widths in a specified range.

This viewport range typically starts with a narrow width, 320

pixels, akin to a mobile phone; extending to a more spacious

width of 1400 pixels, a viewport width corresponding to a

browser open on a desktop computer. REDECHECK extracts

the DOM of the web page rendered at each width and uses it

to find the relative alignment of HTML elements.

REDECHECK uses the RLG to find potential layout failures,

such as those involving element collisions, by checking for

pairs of elements that were not overlapping at a particular

viewport width, but then overlap at a narrower width [4].

Intuitively, REDECHECK uses the layout at wider viewports

to cross-check narrower widths. If pairs of elements were

not overlapping or protruding at a particular viewport width

but then do so as the viewport narrows, an RLF is likely to

have manifested. This type of checking across viewport widths

makes REDECHECK less likely to report false negatives than if

a developer was to use, for example, the Fighting Layout Bugs

tool [18] that reports anomalies at single viewport widths.

When REDECHECK finds an RLF it produces a report that

states (a) the failure type (e.g., element collision or element

protrusion); (b) the viewport range of the RLF (i.e., the

minimum and maximum viewport width for which the RLF

was evident) and finally (c) the XPaths of the HTML elements

involved [11]. The next subsection summarizes results from

prior studies of REDECHECK, pointing out that, even though

the tool improves the testing process, it may highlight certain

layout issues that, in practice, developers do not focus on first.

D. Non-Observables Issues and the REDECHECK Tool

In a prior empirical study, REDECHECK found RLFs in 16

of 26 web pages studied, and 33 distinct RLFs in total [4].

However, since REDECHECK is based on the DOM, an

abstract representation of a web page, one particular problem

inherent in its technique is distinguishing issues that are



(a) No Collision (b) Non-Observable Collision (c) Observable Collision (d) Layered View of Collision

Fig. 3: Wireframes of two HTML elements, in light and dark gray, with a white border that is the same color as the background

of the page (part (a)). Parts (b) and (c) respectively depict elements with a non-observable collision and an observable collision.

Finally, part (d) shows how VISER manipulates opacity to perform automatic visual detection of the responsive layout failure.

observable in practice from those that are not. Figure 3

highlights this problem, depicting two HTML elements in light

and dark gray, with a white border that is the same color as

the background of the web page, as shown in part (a). Parts

(b) and (c) reveal non-observable and observable collisions,

respectively. In part (b), the two elements are technically

colliding, but a person testing this web page is unlikely to see

this as a problem because only the borders of the elements are

overlapping — and they are the same color as the background.

Figure 3(c) shows how an observable issue arises as a result

of the dark gray element’s content becoming obscured by

that of the light gray one. As it does not take into account

visual details beyond the size and co-ordinates of the elements

concerned, REDECHECK cannot distinguish between the two

scenarios in part (b) and (c) and thus reports them both.

While the non-observable issues exemplified by part (b) of

both Figures 1 and 3 may be of interest to testers — they are

latent issues that could manifest in visible RLFs in different

contexts — they are unlikely to be a high-priority compared

to the actual visual defect in part (c) of these figures. Yet,

REDECHECK offers no way to distinguish non-observable

issues from true positives, thereby limiting its effectiveness.

VISER, introduced in the next section, solves this problem.

III. AUTOMATIC VISUAL VERIFICATION OF FAILURES

Figure 4 outlines VISER’s approach to automatic visual

verification of NOIs, comparing it with the series of manual

steps that are otherwise required. After a developer runs RE-

DECHECK on a web page, it reports the RLFs that it detects, if

any. Each report states the RLF type (e.g., element protrusion),

the range of viewport widths for which the RLF was deemed

to occur (in the form of a lower and an upper bound), and

the XPaths of the HTML elements involved. If VISER is not

used, the developer must manually decide what do with these

reports. This involves loading up the web page; setting the

viewport width of their browser to one within the reported

range; manually identifying the elements and scrolling to the

failure if necessary; and finally deciding if the RLF is a true

positive, false positive, or an NOI. VISER automates these

steps. The web page explorer component opens the browser,

sets the viewport width and locates the faulty elements. It first

crosschecks REDECHECK’s result by examining the DOM in

the DOM Filter step, reporting any RLFs believed to be false

positives after inspecting the DOM. The final classification is

automatically performed by the image analyzer component.

The image analysis involves the investigation of specific

regions of a web page, which we refer to as areas of concern

(AOCs). An AOC bounds a rectangle pertaining to the ele-

ments involved in a layout failure where its graphical presence

is suspected to have inadvertently overwritten other graphics or

content on the page, or to have been written to the page out of

position. The aim of the image analysis is to determine if this

is the case (i.e., the RLF produces visible, observable effects).

For example, if the misplaced element has no content and is

transparent, the RLF will not be detectable by a human and

thus a failure report produced by REDECHECK will be of little

concern to developers. After describing how VISER identifies

AOCs for different types of RLF, the remainder of this section

details the image analysis process and RLF classification.

A. Identifying Areas of Concern (AOCs)

Figure 5 summarizes the ways in which two HTML ele-

ments can be arranged spatially with respect to one another.

The two elements are depicted by dark gray and light gray

boxes, respectively. The figure identifies three particular sce-

narios: “Contained”, where one element resides inside the

bounds of another; “Overlapped”, where the two elements

share some, but not all, of the same display space; and finally

“Separated”, where the two elements are set completely apart

from one another. The figure then shows how AOCs are

determined for each type of RLF with respect to each scenario.

For element collision, the AOC is the portion of the secondary

(light gray) element that is contained within the first (A in

the fully contained scenario, or B in the overlapped scenario).

For element protrusion, there are two potential AOCs. The

first is the overlapped portion (B), if it exists; and the second

the non-overlapping portion (C in the overlapped scenario, D

in the separated scenario). The two portions are treated as

separate AOCs to simplify the image analysis, which needs

to take into account the fact that the foreground element is

overlaid on different background elements. The same is true

for viewport protrusion, except for that, in this case, the dark

gray background element corresponds to the body element of

the web page — the basic container for all web page elements.



V
IS

E
R

web page

R
E

D
E

C
H

E
C

K

===

RLFs Manual

Approach

Access

Web page

Set

Viewport

Scroll to

Failure

Classify

Failure

Automated

Approach

Web page

Explorer
DOM Filter

Image

Analyzer

===
Automatically

Classified

===
Manually

Classified

Fig. 4: The high-level architecture of the VISER tool for the automatic visual verification of layout failures. Along with the

external input sources, this figure also shows a manual approach to verification and classification that requires a human expert.

B. Verifying Presentation Failures

Once an AOC has been identified by the method detailed in

the last subsection, image analysis tries to determine whether

or not the HTML elements involved in the RLF — which

are often stacked on top of one another — render different

content in the same space or out of position. The approach

works to “reveal” the different layers of the AOC by removing

the HTML elements concerned from the top level down to the

background, systematically removing each element involved in

the failure. (As an example, Figure 3(d) shows the stacking of

elements involved in an element collision and the different

“layers” that are involved.) A snapshot image is taken of

the AOC at each layer. The layers are then compared for

differences. If there are any, then VISER classifies the RLF

as being visible (i.e., it is a true positive). If there are no

differences, then the RLF is categorized as non-observable.

Our technique accesses different graphical layers in the

display space by manipulating the opacity CSS property of

HTML elements, thus making it and its descendants invisible.

We decided to use opacity, as opposed to removing elements

completely, because removing elements can impact the layout

of the remaining HTML elements on the page [13], thus

potentially interfering with the classification. By instead ma-

nipulating the element’s opacity, the element is still “there” as

far as the layout is concerned, but the elements stacked below

it are revealed for the purposes of taking a snapshot. This

method also has the advantage of being browser-independent.

A technical inconvenience arises when the AOC is larger

than the portion of the web page currently viewable, due to

the viewport size corresponding to the RLF, a situation that

is common with viewport protrusion failures. Since the page’s

responsive design is likely to dictate that the failure no longer

occurs, in general the viewport size cannot be increased to

bring these elements back into view for snapshotting. In this

scenario, VISER horizontally scrolls the page, taking snapshots

of individual portions of the page and “sewing” the AOC

together as necessary. Regrettably, it is not always possible

to scroll and bring protruding elements into view. In these

circumstances, VISER performs a “best effort” approximation

of the AOC by altering the margins of the offending elements

to negative values, thereby trying to move them into view.

Algorithm 1 furnishes the top-level algorithm for VISER.

This part of VISER finds the initial AOC to analyze, identified

as in Figure 5. The image analysis is then performed by

one or both of Algorithms 2 and 3, depending on the layout

Layout scenario

A

Contained

B C

Overlapped

D

Separated

Element Collision A B -

Element Protrusion - B, C D

Viewport Protrusion - B, C D

Fig. 5: Identifying “areas of concern” (AOCs) for different

RLFs and layout scenarios involving two distinct HTML

elements, as depicted by the light gray and dark gray boxes.

scenario. If one element contains the other, as with the

contained scenario of Figure 5, or part of the other, as with the

overlapped scenario, control passes to Algorithm 2. Depending

on the scenario, the AOC is A or B, as shown by Figure 5.

Algorithm 2 takes the two HTML elements involved (i.e.,

the dark gray and light gray elements of Figure 5) and de-

creases their opacity to 0%, ensuring they are transparent using

MAKETRANSPARENT. Three snapshots are then taken, first of

the background (where both elements are transparent), which

is saved in imgNoElemets . Then, restoring back (i.e., the dark

gray element) to its original opacity level (using the RESTORE

procedure) a further snapshot, imgBack , is taken. Finally,

the foreground element is restored, and another snapshot is

taken of the AOC and saved to imgFront . These three images

are then compared in line 9 of the algorithm. If there are

differences, and the failure type is an element collision, then

the RLF is deemed to be visible, and the algorithm returns a

true positive (TP), else the verdict is a non-observable issue

(NOI). If there are differences for the other two failure types

(i.e., element protrusion and viewport protrusion), then the

AOC, when separated from the background element, must be

analyzed to see if the content has spilled outside its containing

element. In this case, control passes to Algorithm 3, with the

AOC now known to be C, as per Figure 5.

In the separated scenario, Algorithm 3 may also be invoked

directly from Algorithm 1, with the AOC being identified

as D, as per Figure 5. The algorithm proceeds in a similar

fashion to that of Algorithm 2, except there are only two

layers to consider — that with the foreground element (i.e.,

the light gray element of Figure 5) present, and that where it

is transparent. The two snapshots are compared. If the images

are different, then the algorithm returns a true positive (i.e., the



Algorithm 1 Top-Level VISER Algorithm

INPUT: Two HTML elements, back and front , and the failure type, ft .

OUTPUT: TP if the RLF is deemed observable, NOI if it is not.

1: procedure VISER(back , front, ft)

2: scenario ← GETSCENARIO(back , front)
3: if scenario = contained then

4: AOC ← GETCONTAINEDAOC(back , front) ⊲ AOC = A (Figure 5)

5: return CONTAINEDAOCIMAGEANALYSIS(back , front, ft,AOC )

6: if scenario = overlapped then

7: AOC ← GETCONTAINEDAOC(back , front) ⊲ AOC = B (Figure 5)

8: return CONTAINEDAOCIMAGEANALYSIS(back , front, ft,AOC )

9: if scenario = separated then

10: AOC ← GETDETACHEDAOC(back , front) ⊲ AOC = D (Figure 5)

11: return DETACHEDAOCIMAGEANALYSIS(front,AOC )

Algorithm 2 Image Analysis for Contained AOCs

INPUT: Two HTML elements, back and front , the failure type, ft , the AOC AOC .

OUTPUT: TP if the RLF is deemed observable, NOI if it is not.

1: procedure CONTAINEDAOCIMAGEANALYSIS(back , front, ft,AOC )

2: back ← MAKETRANSPARENT(back)
3: front ← MAKETRANSPARENT(front)
4: imgNoElements ← SNAPSHOT(AOC )
5: back ← RESTORE(back)
6: imgBack ← SNAPSHOT(AOC )
7: front ← RESTORE(front)
8: imgFront ← SNAPSHOT(AOC )
9: if imgNoElements 6= imgBack ∧ imgNoElements 6= imgFront then

10: if ft = element collision then

11: return TP

12: if ft = element protrusion ∨ ft = viewport protrusion then

13: AOC ← GETDETACHEDAOC(back , front) ⊲ AOC =C (Figure 5)

14: return DETACHEDAOCIMAGEANALYSIS(front,AOC )

15: return NOI

RLF is deemed to be visible), else the non-difference between

the layers means that the RLF is non-observable.

As stated in Section II, REDECHECK reports, for each RLF,

a viewport range that is the narrowest to the widest viewport

width for which the RLF is manifested at the DOM level. Since

VISER has a choice of the viewport at which it can visually

inspect the RLF, we made this a configurable parameter of the

tool. The default is to look at the narrowest viewport width

(i.e., the “low end” of the range) since RLFs are more likely

to be noticeable at screen sizes with tighter layout constraints

than at wider viewports that are less constrained for space.

IV. EMPIRICAL EVALUATION

To investigate the effectiveness and efficiency of VISER,

we ran it with the web pages used in the previous evaluation

of REDECHECK [4], for which the RLFs that REDECHECK

identified were classified manually by Walsh et al. Therefore,

we adopt the manual classification performed in that study as a

baseline to which we compare VISER. The experimental eval-

uation focuses on answering these three research questions:

RQ1: Can the technique automatically distinguish non-

observable issues from true positives and how does it

compare to manual classification? In this research question,

we compare VISER to the results of the manual classification,

using VISER’s default setting of performing the image analysis

at the narrowest viewport width reported for each RLF.

RQ2: Within the viewport range of a presentation failure,

what is the point of inspection that has the best chance

Algorithm 3 Image Analysis for Detached AOCs

INPUT: An HTML element, front , and the AOC AOC .

OUTPUT: TP if the RLF is deemed observable, NOI if it is not.

1: procedure DETACHEDAOCIMAGEANALYSIS(front,AOC )

2: front ← MAKETRANSPARENT(front)
3: imgNoElement ← SNAPSHOT(AOC )
4: front ← RESTORE(front)
5: imgFront ← SNAPSHOT(AOC )
6: if imgNoElement 6= imgFront then

7: return TP

8: return NOI

of revealing a true positive? In this research question,

we determine if it is best to perform image analysis at the

narrowest viewport width for the RLF. We compare VISER to

the results of the manual classification process for three points

in the RLF’s viewport range: the minimum, or narrowest (as

per RQ1), the middle of the range, and the maximum width.

RQ3: How long does the technique take to verify a presen-

tation failure? In this research question, we investigate how

efficient VISER is to run, assessing if it is a practical addition

to REDECHECK for a developer’s RWD testing toolset.

A. Experimental Subjects

We selected the subjects from the pool of web pages

used to evaluate REDECHECK’s effectiveness at detecting

common RLF types [4]. REDECHECK is designed to check

more types of RLF that cannot result in NOIs. While the

original REDECHECK study involved 26 pages, not all of them

involved the types of RLF on which this paper focuses; i.e.,

element collision, element protrusion, and viewport protrusion.

We therefore limited our empirical comparison to the 20 web

pages that concerned only these potentially NOI-involving

RLF types. Furthermore, we could not re-use the StumbleUpon

subject. We found that the tool previously used to download

all of this subject’s resources (see [4] for details) did not work

correctly. Since the web page was no longer available in its

original form, we could not reconstruct the subject’s archive

and thus, despite the fact that the original study reported this

subject as involving an element collision failure, we had to

exclude it. This gave us a total of 117 RLFs, originally reported

by REDECHECK, for use in our evaluation of VISER.

B. Experimental Methodology

To evaluate VISER, we attempted to match the execution en-

vironment, as closely as is possible, to the setup for the original

REDECHECK experiments, thereby avoiding discrepancies in

the results that might be due to differences in the experimental

setup between the two evaluations. We therefore ran VISER

on an iMac with 8GB of RAM, running OS version 10.13

and using Firefox browser version 46. As with REDECHECK,

VISER uses Selenium WebDriver [19] to interact with the web

browser to render web pages and visually verify the failures.

VISER also rendered the web pages in a browser window

without scrollbars and at fixed viewport height of 1000 pixels.

To answer RQ1, we ran VISER on each of the 117 RLFs to

reach an automatic classification. VISER was configured to use



the minimum viewport width reported for the range of each

RLF concerned. We then checked whether VISER agreed with

the manual categorization of the RLF as decided in the original

study by Walsh et al. [4]: true positive (TPs, an observable

failure), non-observable issue (NOI), or false positive (FP, no

failure). FPs are failures reported by REDECHECK that do

not exhibit an issue visually in the design of the web page

or in its internal DOM representation. We then calculated the

percentage agreement of VISER with the previous manual clas-

sification, investigating any differences in the categorization.

To answer RQ2, we followed the same methodology as

RQ1, but ran VISER using additional inspection points: the

middle of the range reported for the RLF by REDECHECK

and the maximum point (i.e., the upper bound) of the range.

While running this experiment, VISER led us to the discovery

of a defect in REDECHECK. For 35 viewport protrusion

RLFs, REDECHECK incorrectly reported the upper bound of

the viewport range for the failure. Rather than rendering a

page at each possible viewport width to construct the RLG,

REDECHECK normally samples the entire range by rendering

the page at intervals, performing a binary search between the

last two sampled points to identify the precise viewport widths

at which the relative alignment of two HTML elements, or

the visibility of an individual element, changed. Since the

RLF is a false positive, the incorrectly reported upper bound

had a knock-on effect on the result of VISER. We found that

we could get REDECHECK to produce the correct results by

changing its interval size to 1. After reconfiguration, we re-ran

REDECHECK for the pages involving these particular RLFs.

To answer RQ3, we ran VISER for every RLF, examining

each one at the lower bound of the range reported by RE-

DECHECK, and recorded the time taken for VISER to run in

each instance. We repeated this 30 times for each RLF to

obtain a reliable estimate of the running time of VISER and to

minimize chance effects that might be caused by, for example,

the underlying operating system hosting the experiments.

C. Threats to Validity

The validity of this paper’s experiments hinges on accu-

rately matching the previously published manual classification

with the classifications automatically produced by VISER.

Since the manual results from the experimental evaluation

of REDECHECK [4] did not include the XPath of offend-

ing elements, the failures were manually matched using the

snapshots available. These snapshots, combined with the type

of failure, range, and name of the web page enabled us to

confidently perform the matching. The second threat to validity

is a defective implementation of the VISER tool. To control

this threat, we configured VISER to keep a record of all the

images used to evaluate each failure. Furthermore, VISER

also maintained a record of the coordinates of each offending

element. We consulted these records during the examination

of all mismatched classifications, thereby helping us to ensure

that the prototype operated correctly. To further establish a

confidence in the correctness of VISER, we regularly per-

formed additional manual and automated testing. Finally, to

support the replication of this paper’s experiments, we have

made the VISER prototype and its documentation publicly

available at https://github.com/redecheck/viser.

D. Experimental Results

RQ1: Table I furnishes the results from running VISER

on the outputs of REDECHECK and their agreement with

the manual classification performed by Walsh et al. [4]. For

completeness, Table II gives the full, broken down set of

manually-classified results from the original Walsh et al. study.

For this research question, we focus on the results from

the “Minimum” segment of Table I. The results show that

VISER had an 87.2% overall agreement with the manual

classification. The table breaks this result down by RLF type.

The “Agreement with manual” section shows the ratio of

failures for VISER and manual classification, resulting in

the reported percentages. The second number is the manual

classification total (drawn from the totals in Table II), while the

first is the number of those failures that were categorized in the

same manner by VISER. At 93.5%, the best level of agreement

between manual and VISER is for element collision failures.

Table I shows that there were 15 instances where VISER’s

classification of an RLF did not agree with the manual

outcome. We discuss these 15 instances in three different

categories: subjective, obscured, and misclassified RLFs.

Seven RLFs fall into the subjective category. While these

RLFs have a visual impact, the difference is so small they are

almost imperceptible to humans. Two of these cases involved

changes to two pixels, yielding no real observable visual

difference. While these RLFs are technically TPs, and were

classified as such by VISER, the manual analysis subjectively

categorized them as NOIs. Future work needs to take these

small differences into account when analyzing RLFs.

A further two RLFs were obscured, which occurred with the

ConsumerReports subject. Two RLFs are TPs, and were classi-

fied manually as such, yet VISER reported them as NOIs. This

was because REDECHECK did not report the most specific

elements involved in the failure. While VISER’s analysis was

correct for the elements it was given by REDECHECK, there

was a noticeable visual effect detectable by humans. Since

the manual analysis was not limited to the study of only the

HTML elements reported by REDECHECK, the effect of the

RLF was easily spotted as a TP. This difference is really a

bug in REDECHECK, rather than a problem with VISER.

Three viewport protrusion RLFs were misclassified by

VISER for a variety of reasons. One viewport protrusion failure

with PDF-Escape was classified by VISER as an NOI but was

manually classified as a TP. This is due to the overflow

property of the protruding element being set as hidden. The

protruding content could therefore not be “seen” by VISER.

Future work needs to modify VISER so that it manipulates

the overflow property or tracks missing content from one

viewport width to another. A further viewport protrusion

involved an element that could not be correctly snapshotted

by VISER due to the inherent technical limitations involved

in reaching off-screen elements by scrolling or manipulating



Minimum Middle Maximum

Element Collision Element Protrusion Viewport Protrusion Element Collision Element Protrusion Viewport Protrusion Element Collision Element Protrusion Viewport Protrusion

TP NOI FP TP NOI FP TP NOI FP TP NOI FP TP NOI FP TP NOI FP TP NOI FP TP NOI FP TP NOI FP
3-Minute-Journal - 1 - - 2 - 8 - - - 1 - - 2 - 6 2 - - 1 - - 2 - - 7 1

AirBnb - 1 - - 1 3 1 3 - - 1 - - 1 3 2 2 - - 1 - - 1 3 2 2 -
BugMeNot - - - 1 3 - 1 1 - - - - 1 3 - 1 1 - - - - 1 3 - 1 1 -

CloudConvert 1 - - - - - - - - 1 - - - - - - - - 1 - - - - - - - -
Consumer-Reports 1 6 - 1 3 - 9 3 - - 7 - 1 3 - 9 3 - - 7 - 1 3 - 8 4 -
Covered-Calendar - - - - - - - 3 - - - - - - - - 3 - - - - - - - - 3 -

Days-Old - - - - - - - 1 - - - - - - - - 1 - - - - - - - - 1 -
Dictation - - - - - - - 1 - - - - - - - - 1 - - - - - - - - 1 -
Duolingo 1 - - - - - 2 2 - 1 - - - - - 2 2 - 1 - - - - - 2 2 -

Honey - - - - 8 - - 2 - - - - - 8 - - 2 - - - - - 8 - - 2 -
HotelWifiTest - - - - - - - 1 - - - - - - - - 1 - - - - - - - - 1 -

Mailinator - 1 - - - - - - - - 1 - - - - - - - - 1 - - - - - - -
MidwayMeetup 1 - - - 1 - - 1 - 1 - - - 1 - 1 - - 1 - - - 1 - - 1 -

Pdf-Escape - - - - 6 - 3 1 - - - - - 6 - 2 2 - - - - - 6 - 2 2 -
Pepfeed 4 3 - - 2 - 1 1 - 4 3 - - 2 - - 2 - 4 3 - - 2 - - 2 -

Pocket - 2 - - 3 - - - - - 2 - - 3 - - - - - 2 - - 3 - - - -
TopDocumentary - 7 - - 4 - - - - - 7 - - 4 - - - - - 7 - - 4 - - - -

UserSearch - 1 - - - - - - - - 1 - - - - - - - - 1 - - - - - - -
WhatShouldIReadNext - - - - - - - 2 - - - - - - - - 2 - - - - - - - - 2 -

WillMyPhoneWork 1 - - - 1 - - - - 1 - - - 1 - - - - 1 - - - 1 - - - -

Total 9 22 - 2 34 3 25 22 - 8 23 - 2 34 3 23 24 - 8 23 - 2 34 3 15 31 1
Agreement with manual 7/7 22/24 - 1/3 32/36 - 21/24 19/23 - 7/7 23/24 - 1/3 32/36 - 17/24 17/23 - 7/7 23/24 - 1/3 32/36 - 10/24 18/23 -

Agreement per failure type 93.5% 84.6% 85.1% 96.8% 84.6% 72.3% 96.8% 84.6% 59.6%

Agreement per inspection point 87.2% 82.9% 77.8%

TABLE I: The results from using VISER at three inspection points. The columns labeled “Minimum”, “Middle”, and

“Maximum” show the results after VISER inspected the respective points of the reported failure range. In this table “TP”,

“NOI”, and “FP” respectively denote a true positive, non-observable issue, and false positive, as explained in Section IV-B.

The “Element Collision”, “Element Protrusion”, and “Viewport Protrusion” columns correspond to the RLF types of Figure 2.

Manual

Element Collision Element Protrusion Viewport Protrusion

TP NOI FP TP NOI FP TP NOI FP
3-Minute-Journal - 1 - - 2 - 8 - -

AirBnb - 1 - - 4 - - 4 -
BugMeNot - - - 1 3 - 2 - -

CloudConvert 1 - - - - - - - -
Consumer-Reports - 7 - 1 3 - 9 3 -
Covered-Calendar - - - - - - - 3 -

Days-Old - - - - - - - 1 -
Dictation - - - - - - - 1 -
Duolingo - 1 - - - - 2 2 -

Honey - - - - 8 - - 2 -
HotelWifiTest - - - - - - 1 - -

Mailinator - 1 - - - - - - -
MidwayMeetup 1 - - - 1 - - 1 -

Pdf-Escape - - - 1 5 - 1 3 -
Pepfeed 4 3 - - 2 - 1 1 -

Pocket - 2 - - 3 - - - -
TopDocumentary - 7 - - 4 - - - -

UserSearch - 1 - - - - - - -
WhatShouldIReadNext - - - - - - - 2 -

WillMyPhoneWork 1 - - - 1 - - - -

Total 7 24 - 3 36 - 24 23 -

TABLE II: The manual classification of RLFs from a prior

study [4]. See Table I for a full description of the columns.

the margin property. As such, VISER labelled it as an NOI,

when it is, in fact, a TP. A final viewport protrusion involved

content overflowing out of the viewport that was classified by

the VISER algorithm as an NOI, although the manual analysis

correctly categorized it as a TP. In this case, a human had to

scroll horizontally to read the overflowing content, which did

not line up correctly with elements in the page’s banner.

The final three element protrusion RLFs were misclassified

by REDECHECK. VISER found that these were FPs, since

there was no protrusion at the DOM level. The manual analysis

reported these as NOIs, since there was no visual impact. We

judge the root cause of this to be a bug in REDECHECK’s

collection of DOM information when constructing the RLG.

Conclusion for RQ1: VISER demonstrates high agreement

(87.2%) with manual classification when set to study the

minimum point of the viewport range reported for each RLF.

RQ2: Table I shows the results from when VISER was set

to inspect the minimum and maximum point of the viewport

range for each REDECHECK-reported RLF. The results show

that VISER’s classification can vary, depending on the chosen

inspection point. VISER is more likely to agree with manual

inspection at an RLF’s minimum viewport width. Compared to

an agreement of 87.2% at the minimum width, the agreement

for the middle and maximum point of the range drops to 82.9%

and 77.8%, respectively. We next investigate the reason for the

classification differences at each of these inspection points.

The “Middle” Inspection Point. Overall, there are six RLFs

for which VISER’s classification did not agree with the manual

analysis at the middle of the viewport range, for which there

was agreement at the minimum. Each RLF was a viewport

protrusion; we next discuss these on a case-by-case basis.

For two RLFs, the visibility of the failure varied depending

on the viewport width chosen from the range reported by

REDECHECK. Thus, the change in classification reported by

VISER was correct. These RLFs involve the PDF-Escape and

PepFeed subjects. The manual classification for these two

RLFs is a true positive, which is accurate at the minimum

viewport that REDECHECK reports. However, as space ex-

pands, both RLFs become non-observable in the middle of

the range. Thus, the manual analysis judgement does not hold

for the entire range reported for each RLF, being correct at the

minimum viewport width reported for the RLF, but incorrectly

classified at the wider viewport widths. Importantly, VISER

can automatically detect the differences in observability.

The other four RLFs involved subjective differences and

a misclassification on the part of VISER. For two RLFs,

involving the Airbnb and MidwayMeetup subjects respectively,

VISER coincidently agreed with the manual classification at

the minimum viewport range reported, classifying the RLFs

as NOIs. In both cases, VISER failed to move an element into

view at the minimum width. Thereafter, VISER successfully

snapshots the offending protrusion by altering their margin

property, thus reporting the RLFs at TPs. While VISER is

technically correct, the overspill is small and can be easily

overlooked by a human. Therefore, we categorize these differ-

ences as subjective. The final two RLFs involve the 3-Minute

Journal subject. Both VISER and the manual analysis agree



1

2

3

Element Collision Element Protrusion Viewport Protrusion

Failure Type

R
u

n
ti

m
e 

(S
ec

o
n

d
s)

Fig. 6: VISER’s execution time across all of the 117 presen-

tation failures and 30 trials and for the three layout failure

types. In these plots the bottom and top whiskers show the

minimum and maximum data values excluding outliers, while

the box itself represents the inter-quartile range, the middle

line represents the median value, and the circles are outliers.

that the RLF is a TP at the minimum viewport width. However,

VISER categorizes them as NOIs at the middle of the range. In

this case, content overflows the viewport, which the tool does

not properly detect, leading to a misclassification by VISER.

The “Maximum” Inspection Point. There were seven RLFs for

which VISER’s classification matched the manual classification

at the minimum and middle inspection point, but not at the

reported maximum viewport width. Again, each RLF was a

viewport protrusion. In each case, the visibility of the RLF

objectively changes, becoming an NOI. Similar to the first

two differences identified for the middle inspection point, the

manual analysis for these RLFs is a single judgement for

the entire range. Hence, it does not take into account the

change from visible to non-observable from narrower to wider

viewport widths. Six of these RLFs are with the 3-Minute

Journal subject, the last RLF is from ConsumerReports.

Another notable result at the maximum point of inspection is

an FP classification of a viewport failure for 3-Minute Journal.

An investigation of the issue revealed that the protruding

element associated with the RLF had a single pixel difference

in width, based on the DOM coordinates as retrieved by the

VISER and REDECHECK, respectively. Since it illustrates the

challenge of automated testing for responsively designed web

pages, we will resolve this difference as part of future work.

Conclusion for RQ2: VISER is more likely to agree with

manual inspection at the minimum viewport width reported for

each RLF. The differences that are evident at wider inspection

points can be explained by three phenomena: (1) the fact that

a single verdict is produced for an RLF when its visibility may

change throughout the viewport range for which it is reported;

(2) the visibility/non-visibility of an RLF can be subjective

as the viewport width changes; and (3) a small number of

misclassified results by VISER, which should form the basis

of future work. Notably, the RLFs involved in the classification

differences were exclusively viewport protrusion failures.

RQ3: To analyze how long it takes to automatically verify a

responsive layout failure, the runtime of the VISER prototype

was recorded across 30 runs. Figure 6 gives a box plot that

visualizes the runtime of the tool when it verifies each type

of failure. Across all failure types and failures, the tool took

0.795 (median) / 0.91 (mean) seconds to automatically verify

an RLF. Importantly, the time to load the web page and resize

the browser were excluded from measurement as this cost

would be shared by any technique, whether manual, semi-

automated, or automated. All of these recorded times account

for the overhead of finding the offending elements, visually

verifying the failure, and writing all diagnostic images to disk.

Figure 6 reveals that the time to verify viewport protrusion

failures has a “longer tail”, resulting in a slightly higher

median runtime. This result is due to the extra work that VISER

does, for this type of RLF, to move elements into view or to

stitch together AOCs that are larger than the viewport.

Conclusion for RQ3: On average, VISER took under a second

to classify an RLF. Since manual analysis can take several

minutes, this means that using VISER is practical and efficient.

E. Discussion

Determining the observability or non-observability of a

presentation failure is not always self evident, making the final

decision subjective. Essentially, the task requires an observer

to recognize a change between what is visually expected and

what is visually apparent. These results show that a manual

approach introduces “exemptions” based on the severity of a

change. For instance, consider an element A that is overlapping

the coordinates of an element B, with n pixels of element

A overlapping n pixels of B. In this case, a human would

decide whether the n pixels of overlap are negligible and if

the overall aesthetics remain satisfactory. Both of these criteria

are not easily defined and remain, to a great extent, subjective.

Nevertheless, we aim to study them as part of future work. For

example, it may be useful to measure the number of changed

pixels, determine if a color change is visible to the human eye,

or introduce heuristics concerning the size of an AOC.

We also note that the previously published manual classi-

fication used in this experiment exhibits multiple concerns.

Analysis of the data showed that, in some cases, the manual

classification was not confined to the type of failure and the

XPaths reported. For instance, an element was reported as

protruding out of its ancestor element, which was an NOI, but

was manually classified as a TP because it was also protruding

out of the parent element. As such, a strong argument can

be made to reclassify a portion of the manual classification.

Although justifiable, we refrained from “tampering” with the

benchmark data so as to not introduce any potential bias.

Moreover, reclassification would not tackle the underlying

subjective nature that is inherent to manual classification.

Since all of the previous research that we investigated in the

area of testing web page presentation failures used the manual

visual verification approach to evaluate a prototype tool, the

accuracy and consistency of the manual approach will influ-

ence, positively or negatively, the research outcomes. Although

we did not investigate the output of other tools and other types

of web page presentation failures, the results make it clear that



there are benefits associated with the automated verification

and classification of web page presentation failures.

Using the CSS opacity property is one way to verify

presentation failures without making VISER browser depen-

dent. Another strategy is to manipulate the visibility

property. However, descendant HTML elements can override

the inheritance of this property, meaning that VISER would

have to traverse the DOM tree, potentially adding extra im-

plementation complexity and execution time overhead. On the

other hand, a limitation of manipulating the opacity property

emerges when the snapshot is taken before the element has

become fully transparent. Strangely, we discovered this to be

the case for one particular viewport protrusion RLF where an

input HTML element was only partially transparent when

snapshots of the AOC were taken. This result suggests that, if

this instance is not in fact an isolated case, VISER may need a

small time delay before a snapshot to overcome this problem.

A final limitation was evident when VISER could not move

into view an element involved in a viewport protrusion failure.

This result means that, in future work, we must develop

strategies to automatically classify RLFs in these scenarios.

V. RELATED WORK

While, to our knowledge, there has been no research on

the automatic visual verification of reported presentation fail-

ures in web pages, there is an extensive literature on web

testing. For instance, WEBDIFF [20], CROSST [21] CROSS-

CHECK [22], and X-PERT [23] are all cross-browser testing

tools that use the DOM and/or screenshots to detect variations

when a page is viewed on different browsers. Similarly,

tools such as WEBSEE [24] and FIERYEYE [25] use the

prior version of a page as an oracle to detect presentation

failures [24]. Unlike this paper, none of the aforementioned

tools manipulate HTML element opacity and, critically, they

all require a human to verify the detected presentation failures.

The initial version of the REDECHECK tool targeted regres-

sion issues by comparing the responsive layout of two versions

of a web page [17]. Walsh et al. subsequently presented the

version of REDECHECK that we used to automatically detect

the RLFs studied in this paper [4]. Like REDECHECK, the

VFDETECTOR tool also finds responsive layout failures, even

when they are triggered by human interaction [26]. While

both of these tools automatically detect different types of

responsive layout failures, a developer must still manually

inspect problems at multiple viewport widths to determine

whether or not they are visible to humans — this is the task

that VISER effectively handles in an automated fashion.

There are also several tools that support the verification of

the layout properties of a web page. For instance, CASSIUS

formalizes some of the semantics of CSS and supports auto-

mated reasoning about the behavior of CSS style sheets [27].

The VIZASSERT tool extends the formal model in CASSIUS,

further supporting the automated verification of a web page’s

accessible layout [28]. Finally, the CORNIPICKLE tool verifies

that a web page supports the layout properties specified by a

tester [29]. Unlike VISER, these tools all require some formal

specification of page layout. Moreover, while these tools focus

on automatically verifying layout properties, the presented tool

instead verifies layout failures reported by a testing tool.

Finally, there are many tools that support the design, im-

plementation, and testing of visual web pages. For instance,

SCRY is a reverse engineering tool that surfaces how changes

in the underlying source code will influence a page’s visual

appearance [30]. Moreover, the VISTA tool repairs the broken

tests that focus on a web page’s visual characteristics [31]

and MFIX repairs problems with the responsive nature of

a page [32]. Since all of these tools complement VISER’s

focus on automatically verifying the layout failures reported

by REDECHECK, together they form a suite of techniques can

improve the quality of responsively designed web pages.

VI. CONCLUSIONS AND FUTURE WORK

While responsive web design helps to simplify the devel-

opment of web front-ends for a wide variety of devices with

differing screen sizes, developers may still create presenta-

tional problems in web pages. Even though the REDECHECK

tool automatically checks a web page for responsive layout

failures, the manual task of verifying REDECHECK’s failure

reports is time consuming, imprecise, and error prone. As

such, this paper presented a new technique to automatically

verify and classify the element collision, element protrusion,

and viewport protrusion failures reported by REDECHECK.

Implemented into a prototype tool called VISER, this auto-

mated technique adjusts the opacity of the HTML elements in

an area of concern, looking for visible differences.

Using the results from a previous manual classification

as a baseline, this paper’s experiments showed that VISER’s

automatically generated classification agrees with the manual

one 87.2% of the time. The results also demonstrate that

VISER is most likely to agree with a manual classification

when it analyzes a web page at the minimum point of the

failure range reported by REDECHECK. Since it takes less

than a second to verify a responsive layout failure, this paper’s

results suggest that VISER is superior to manual classification.

This paper focused on the automatic visual verification of

layout failures in responsively designed web pages. Since it

adopts Selenium [19], VISER also can be used to visually

verify the same failures under different, for instance, runtime

environments or browsers, thereby furnishing better support

for cross-browser testing with tools like CROSSCHECK [22].

Given its promising integrating with REDECHECK, we also

plan to integrate VISER with other tools for responsive web

testing, like VFDETECTOR [26]. As part of future work, we

also intend to improve VISER to resolve some of the limi-

tations highlighted by this paper’s experiments. For instance,

since VISER confirms a responsive layout failure even if it

only involves a few pixels, we plan to develop heuristics

for highlighting those differences most noticeable to humans.

Next, we plan to improve our prototype so that it appropriately

pauses before taking time-dependent screenshots of an AOC.

Finally, we will enhance VISER so that it better handles HTML

elements that are “hidden” during the image analysis process.



REFERENCES

[1] J. McMillen, “10 reasons your website needs to be mobile optimized.
http://blog.teamtreehouse.com/10-reasons-website-needs-mobile-
optimized.”

[2] E. Marcotte, Responsive Web Design. A Book Apart, 2014.
[3] “Creative bloq: Web design trends 2015-16: the long scroll

http://www.creativebloq.com/web-design/web-design-trends-2015-16-
long-scroll-81516343.”

[4] T. A. Walsh, G. M. Kapfhammer, and P. McMinn, “Automated layout
failure detection for responsive web pages without an explicit oracle,”
in Proceedings of the International Conference on Software Testing and

Analysis, 2017.
[5] D. Robins and J. Holmes, “Aesthetics and credibility in web site design,”

Information Processing & Management, vol. 44, no. 1, 2008.
[6] D. Cyr, M. Head, and A. Ivanov, “Design aesthetics leading to M-loyalty

in mobile commerce,” Information & Management, vol. 43, no. 8, 2006.
[7] W. Li, M. J. Harrold, and C. Görg, “Detecting user-visible failures

in AJAX web applications by analyzing users’ interaction behaviors,”
in Proceedings of the 25th International Conference on Automated

Software Engineering, 2010.
[8] “Responsinator,” https://www.responsinator.com/.
[9] “Responsive design checker,” http://responsivedesignchecker.com.

[10] “Viewport resizer,” http://lab.maltewassermann.com/viewport-resizer/.
[11] T. A. Walsh, G. M. Kapfhammer, and P. McMinn, “REDECHECK: An

automatic layout failure checking tool for responsively designed web
pages,” in Proceedings of the International Conference on Software

Testing and Analysis – Demonstration Papers, 2017.
[12] World Wide Web Consortium (W3C), “HTML 5.2,” 2017. [Online].

Available: https://www.w3.org/TR/html52/
[13] R. Connolly and R. Hoar, Fundamentals of Web Development. Pearson,

2017.
[14] “Bootstrap.” [Online]. Available: https://getbootstrap.com/
[15] “Foundation: Responsive front-end framework,”

http://foundation.zurb.com/.
[16] S. Mahajan and W. G. J. Halfond, “Finding HTML presentation fail-

ures using image comparison techniques,” in Proceedings of the 29th

International Conference on Automated Software Engineering, 2014.
[17] T. A. Walsh, P. McMinn, and G. M. Kapfhammer, “Automatic detection

of potential layout faults following changes to responsive web pages,”
in Proceedings of the 30th International Conference on Automated

Software Engineering, 2015.
[18] “Fighting layout bugs,” https://code.google.com/archive/p/fighting-

layout-bugs/.
[19] “Selenium: Web browser automation.” [Online]. Available: http:

//www.seleniumhq.org/

[20] S. R. Choudhary, H. Versee, and A. Orso, “WebDiff: Automated identi-
fication of cross-browser issues in web applications,” in Proceedings of

the 26th International Conference on Software Maintenance, 2010.
[21] A. Mesbah and M. R. Prasad, “Automated cross-browser compatibility

testing,” in Proceedings of the 33rd International Conference on Soft-

ware Engineering, 2011.
[22] S. R. Choudhary, M. R. Prasad, and A. Orso, “CrossCheck: Combining

crawling and differencing to better detect cross-browser incompatibilities
in web applications,” in Proceedings of the 5th International Conference

on Software Testing, Verification and Validation, 2012.
[23] S. Roy Choudhary, M. R. Prasad, and A. Orso, “X-PERT: Accurate iden-

tification of cross-browser issues in web applications,” in Proceedings

of the 35th International Conference on Software Engineering, 2013.
[24] S. Mahajan and W. G. J. Halfond, “Detection and localization of

HTML presentation failures using computer vision-based techniques,”
in Proceedings of the 8th International Conference on Software Testing,

Verification and Validation, 2015.
[25] S. Mahajan, B. Li, P. Behnamghader, and W. G. J. Halfond, “Using vi-

sual symptoms for debugging presentation failures in web applications,”
in Proceedings of the 10th International Conference on Software Testing,

Verification and Validation, 2016.
[26] Y. Ryou and S. Ryu, “Automatic detection of visibility faults by layout

changes in HTML5 web pages,” in Proceedings of the 11th Conference

on Software Testing, Validation and Verification, 2018.
[27] P. Panchekha and E. Torlak, “Automated reasoning for web page layout,”

in Proceedings of the International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, 2016.
[28] P. Panchekha, A. T. Geller, M. D. Ernst, Z. Tatlock, and S. Kamil,

“Verifying that web pages have accessible layout,” in Proceedings of

the 39th Conference on Programming Language Design and Implemen-

tation, 2018.
[29] S. Hallé, N. Bergeron, F. Guérin, G. Le Breton, and O. Beroual,

“Declarative layout constraints for testing web applications,” Journal

of Logical and Algebraic Methods in Programming, vol. 85, 2016.
[30] B. Burg, A. J. Ko, and M. D. Ernst, “Explaining visual changes in

web interfaces,” in Proceedings of the 28th Annual Symposium on User

Interface Software and Technology, 2015.
[31] A. Stocco, R. Yandrapally, and A. Mesbah, “Visual web test repair,”

in Proceedings of the 26th Joint Meeting of the European Software

Engineering Conference and the Symposium on the Foundations of

Software Engineering, 2018.
[32] S. Mahajan, N. Abolhassani, P. McMinn, and W. G. J. Halfond, “Auto-

mated repair of mobile friendly problems in web pages,” in Proceedings

of the 40th International Conference on Software Engineering, 2018.


