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Abstract—Automated grading allows for the scalable assess-
ment of large programming courses, often using test cases to
determine the correctness of students’ programs. However, test
suites can vary in multiple ways, such as quality, size, and
coverage. In this paper, we investigate how much test suites
with varying properties can impact generated grades, and how
these properties cause this impact. We conduct a study on
artificial faulty programs that simulate students’ programming
mistakes and test suites generated from manually written tests.
We find that these test suites generate greatly varying grades,
with the standard deviation of grades for each fault typically
representing ∼84% of the grades not apportioned to the fault.
We show that different properties of test suites can influence the
grades that they produce, with coverage typically making the
greatest effect, and mutation score and the potentially redundant
repeated coverage of lines also having a significant impact. We
offer suggestions based on our findings to assist tutors with
building grading test suites that assess students’ code in a fair
and consistent manner. These suggestions include ensuring that
test suites have 100% coverage, avoiding unnecessarily recovering
lines, and checking test suites using real or artificial faults.

I. INTRODUCTION

Automated grading sees widespread use in software engi-

neering education, both in traditional courses and massive

open online courses (MOOCs), as it allows tutors to assess

programs written by growing numbers of students without

demanding more time, as would be the case for manual

assessment [1]–[3]. This is especially important in large courses,

where assessment would be otherwise impossible. Automated

grading also benefits students, by providing them with near

instantaneous feedback for formative assessment tasks, even

when outside of the conventional teaching context. A common

approach to grade programs automatically is to run automated

test suites to check the correctness of students’ code, and then

to calculate a grade based on the fraction of tests that passed [3].

However, such grades may be inaccurate with respect to a task’s

learning objectives, as test suites constructed by tutors may be

deficient in detecting students’ errors [4].

Consider the example program in Figure 1a, which is

supposed to calculate the absolute value of its input, but

erroneously returns a wrong value for negative inputs. If the

grade is calculated as the percentage of the tests passing in the

JUnit test suite shown in Figure 1b, the resulting grade will

be 100% because the erroneous code is not covered at all. In

contrast, the test suite in Figure 1c will result in a grade of 0%

since only the erroneous code is covered. A more complete

assessment would result from Figure 1d, where one test covers

int abs(int x) {

if(x > 0) {

return x;

} else {

return x; // Incorrect: should be -x

}

}

(a) Example program containing a mistake.

@Test void test1() {

assertEquals(42, abs(42));

}

(b) Resulting grade: 100%.

@Test void test1() {

assertEquals(42, abs(-42));

}

(c) Resulting grade: 0%.

@Test void test1() {

assertEquals(42, abs(42));

}

@Test void test2() {

assertEquals(42, abs(-42));

}

(d) Resulting grade: 50%.

@Test void test1() {

assertEquals(42, abs(42));

}

@Test void test2() {

assertEquals(42, abs(-42));

}

@Test void test3() {

assertEquals(0, abs(0));

}

(e) Resulting grade: 66.7%.

@Test void test1() {

assertEquals(42, abs(42));

}

@Test void test2() {

assertEquals(42, abs(-42));

}

@Test void test3() {

assertEquals(10, abs(-10));

}

(f) Resulting grade: 33.3%.

@Test void test1() {

abs(42);

}

@Test void test2() {

abs(-42);

}

@Test void test3() {

abs(0);

}

(g) Resulting grade: 100%.

Fig. 1: Example of the grading behaviour of different JUnit

test suites on a single faulty method.

the correct branch of the if-condition, and one test covers the

erroneous case, resulting in a grade of 50%, suggesting that

coverage is a prerequisite for a fair grading test suite.

However, even when all code is covered, grades may vary

based on additional tests: Consider Figure 1e and Figure 1f;

both achieve 100% code coverage, but nevertheless the resulting

grades vary substantially, with one test suite resulting in a grade

of 66.7% while the other results in only 33.3%, due to their tests

covering some statements more than others. Finally, consider

Figure 1g: Although the test suite contains three tests and

achieves 100% code coverage, the tests are of low quality and

omit the important assertions, thus resulting in an overall grade

of 100% as they cannot detect any erroneous implementations.

Such quality issues in grading test suites may result in cases

where a student’s solution is less influential on their grade than

the nature of the test suite itself.

In order to understand how test suites influence the resulting



grades, and thus how they can impact fairness and consistency

of grades and the quality of feedback, we empirically study

the effects of grading test suites on grades. First, we aim to

understand whether the effect of grade variation illustrated by

the example in Figure 1 can occur in practice:

RQ1: How much do grades vary with different test suites?

Our experiment on a set of Java classes using large numbers

of sampled test suites suggest that grades for individual errors

can vary significantly, with a standard deviation proportional

to ∼84% of the mean grades lost for each fault. Considering

this result, we aim to better understand what properties of test

suites are influential for the variation in grades:

RQ2: Which properties of test suites impact grades?

Besides the obvious factors of coverage and general test

quality (measured using the mutation score), we note that

the redundancy of coverage is a further influential factor in

grades calculated with automated tests.

We use these findings to suggest strategies that tutors can

use to ensure consistency in their grading test suites.

II. RESEARCH METHODOLOGY

A. Experiment Procedure

To answer the research questions, we require (1) program-

ming assignments; (2) multiple erroneous implementations of

these assignments; and (3) test suites with different properties

to study their influence on the resulting grade. To analyse

these properties in a statistically meaningful way, we used a

simulated scenario, where we use real Java classes, but artificial

faulty versions (mutants, Section II-C), and sample test suites

from a larger pool of JUnit tests (Section II-D), in order to

gather a large number of datapoints.

Given the test suites and mutants, we assume a simple

grading scenario: The grade for a solution is determined by

executing all tests, and calculating the percentage of executed

tests that passed [3]. We execute each test on every mutant

for each subject, as well as the subject class itself, and store

the results. We use JaCoCo [5] to gather coverage information

for every test execution, allowing us to store which lines are

covered and uncovered by each test for every mutant.

a) RQ1: In order to measure the influence of different

test suites on grades, we investigate the range of grades. Given

a large sample of test suites, it is inevitable that there will be

the odd test suite consisting of only failing tests (resulting in

a grade of 0%) or of only passing tests (resulting in a grade

of 100%) for each mutant. Consequently, we would expect the

overall range to be 100% for most mutants. Therefore, instead

of the range we look at the standard deviation per mutant.

b) RQ2: In order to measure the influence of different

test suite properties on the resulting grade, we perform linear

regression on every run of each subject class. Prior to running

the linear regression, we normalise the grade and observed

properties to allow for the comparison of β coefficients.

By collecting the results of tests that are present in each

test suite for each mutant, we are able to construct test suite

TABLE I: Subject classes from the Code Defenders dataset [6].

Subject LoC Mutants Tests Source Project

ByteVector 154 462 746 Objectweb ASM
CharRange 87 247 896 Commons Lang
Complex 103 294 373 Math4J
IntHashMap 148 343 861 Commons Lang
Lift 53 73 412 (Custom)
Option 260 829 806 Commons CLI
Rational 114 249 675 Dittrich Java Intro
SparseIntArray 161 616 651 Android
XmlElement 221 288 671 Inspirento

results for every mutant, including the number of passing /

failing tests, plus line coverage data. These observations allow

us to derive several properties for every pair of mutants and

test suites. We compute the generated grade as:

Grade =
n(P )

n(T )
,

where P = passing tests in the suite, and

T = all tests in the suite.

We use test adequacy metrics of line coverage and mutation

score to capture the quality of test suites:

Coverage =
n(C)

n(L)
,

where C = lines covered by the suite, and

L = total lines.

Mutation Score =
n(D)

n(M)
,

where D = other mutants detected by the suite, and

M = other mutants.

Additionally, in order to examine the effect of multiple tests

covering the same lines, we define a recoverage metric that

captures the average number of times each line is recovered:

Recoverage =

∑
l∈C(f(l)− 1)

n(T ) · n(L)
,

where f(l) = Number of tests in the suite that cover l

It is possible for other test suite metrics to be considered

in future work, such as the number of assertions and lines of

code in each test suite.

B. Subject Programs

As a source of example programs and tests, we used nine

Java classes contained in a dataset originating from experiments

with Code Defenders [7], an educational testing game (Table I).

Code Defenders is a mutation testing game where users compete

to write faulty mutant variants of a particular program and unit

tests to detect these mutants, and has been shown to support

the crowdsourcing of mutation testing by Rojas et al. [7], as

well as the teaching of software testing techniques by Fraser

et al [6]. The subject classes are taken from real open-source

Java projects, with the exception of Lift, which was written

as a simple introduction to Code Defenders [6]. Importantly



TABLE II: Functional mutation operators that we use in this

experiment.

Operator Description

Logic Flow Error Move contents of a conditional statement’s
block to outside the block [8].

Incomplete
Implementation

Remove all statements in the same scope after
a particular point.

String
Misspelling

Change or transpose characters in a string [8].

Statement
Deletion

Delete a statement [8], [9].

Incorrect Values Replace a numeric or boolean value with
another value of its type (e.g. 1 to −1), or
replace a string with an empty string [8], [9].

Incorrect
Calculation

Replace an arithmetic operator (+, -, *,
etc.) [8], [9].

Logical Op.
Replacement

Replace a logical operator (|, &, etc.) [9].

Conditional Op.
Replacement

Replace a conditional operator (||, &&,
etc.) [9].

Relational Op.
Replacement

Replace a relational operator (==, <, etc.) [9].

Shift Operator
Replacement

Replace a shift operator (<<, >>, etc.) [9].

for our setting, each of the Java classes comes with a large

number of student-written test cases, which we use as a source

for grading test suites.

The original dataset includes three additional subject classes,

which we excluded from the experiment for one of two reasons.

We did not use CaseInsensitiveString as some of

its AST nodes are incorrectly represented by the JavaParser

library, preventing our mutation tool from generating mutants

that require the manipulation of a subject’s AST.1 We also

excluded Document and Options (distinct to Option),

due to incompatibilities with our execution tool.

Each subject class in the dataset includes a set of human-

written tests from a series of human studies and classroom

trials used in the evaluation of Code Defenders. Some of these

tests fail when executed on the original subject class. These

tests are invalid, so we removed them from the dataset prior

to running the experiment.

C. Grading Candidate Implementations

For this experiment, we use mutation analysis techniques

to generate a set of faulty variants for each subject class.

In mutation analysis, artificial defects are generated by sys-

tematically applying operators that represent different classes

of faults. Each resulting mutant differs from the original

program by exactly one change. Table II shows the mutation

operators that we implemented and used for this experiment.

Figure 3 shows some of the faults generated by these operators.

Since we aim to investigate how test suites affect automated

grading, we implemented some of the mutation operators that

1We used JavaParser 3.7.0 in our mutation tool, https://mvnrepository.com/
artifact/com.github.javaparser/javaparser-core/3.7.0

we proposed in our previous work as a means to simulate

novice programming mistakes [8]. We only used operators

which affected the functionality of a class without preventing

compilation, since uncompilable mutants would fail on all tests,

only generating grades of 0%, which would skew our results.

As such, we disabled the Incorrect Classname and Missing

Syntax Elements operators. When implementing our mutation

tool, we found that some of our mutation operators subsumed

others, for example, Misspellings in Strings often results in

Incorrect Filenames, and Incorrect Values can result in Exceeds

Range. We only implemented the subsuming operators. We

redefined our Incomplete Implementation operator as removing

both a statement and all statements that follow it, to better

simulate partially completed solutions. We have retained the

original functionality of Incomplete Implementation, denoted

by Statement Deletion, as implemented by Major [9], [10].

Some of our other mutation operators are equivalent to

those already implemented by other tools, for example, several

operator replacement mutation operators are implemented in

Major. In these cases our mutation tool executes Major with the

appropriate parameters. For the remaining mutation operators,

we used one of two approaches in our tool. For operators that

involve simple replacements, such as String Misspelling, we

locate a line where a change can be made, then apply a string

modification to the line. Other operators are more complex,

such as Logic Flow Error and Incomplete Implementation,

since they require knowledge of the context in which they can

be applied. We implemented these operators by manipulating

Java’s Abstract Syntax Tree (AST) using JavaParser [11]. For

example, to apply the Incomplete Implementation operator to a

given node (such as a statement), our mutation tool removes the

node’s succeeding sibling nodes. With the exception of these

AST based mutation operators, each operator only modifies a

single line of the original program.

Some of the mutation operators can result in non-compilable

mutants. For example, our implementation of the Incomplete Im-

plementation operator can remove a method’s return statement,

where the method’s declaration requires a value to be returned.

Therefore, we ran the Java compiler on every generated mutant,

then deleted mutants which failed to compile.

Prior to running our data analysis on each subject, we identify

mutants that are potentially equivalent to the original subject

class by checking if no tests in the entire set fail on them.

We remove all observed executions for these mutants. While

these mutants may not be truly equivalent, they will always

have a generated grade of 100%, and as such different test

suites would not generate varying grades for them. For the

same reason, we also remove mutants which cause every test

to fail, and therefore only receive grades of 0%.

D. Grading Test Suites

For 30 repetitions of each subject, we constructed a set of

test suites by randomly sampling tests from the entire group

of human written tests available for it. If a suite is generated

that already exists for a run of the experiment, it is discarded

and another is generated in its place.



To ensure variation in coverage, recoverage, and mutation

score, we generated test suites with 10, 20, 40, 60, 80, and 100

tests. This is necessary to control for the possible relationship

between suite size and both mutation score and coverage [12].

For the same reason we do not include size as a factor of the

linear regression; suite size would likely have a strong degree

of covariance with the other factors, which would introduce

a significant challenge in identifying the relative impact of

individual test suite properties. We generated 1000 suites per

repetition of the experiment for each subject, split across each

of the six sizes, rounded up (167 suites per size).

E. Threats to Validity

The mutants that we generated only introduce one change

each. As such, they will not entirely reflect students’ solutions

which may contain multiple mistakes. It is possible that for

real students’ solutions and real grading test suites, the changes

to grades may be even greater than what we observe. As such,

repeating this experiment with higher-order mutants or real

student solutions may provide an even greater insight into how

different test suite properties affect grades.

The tests that we use from the Code Defenders dataset may

not reflect those written by a tutor. However, they are still tests

that are capable of detecting faults in software, and can be

used to construct different test suites with varying properties.

The number of mutants generated by each operator varies.

As such, our analysis may be skewed by the instances of

more common mutation operator classes, which will generally

represent smaller faults. However, where a fault appears in a

program is what truly impacts its severity. For example, if a

small arithmetic change causes a program to attempt to read

outside of an array’s range in a class’ constructor, more tests

may fail than if the contents of several methods were removed.

While there is evidence that artificial faults are a suitable

substitute for real faults in determining test suite effective-

ness [13], it is possible that this may not hold for students’

faults, presenting a construct threat. In future work, we will

conduct a study using real student faults to verify that mutants

are an effective substitute for them.

It is possible that the mutation operators could generate

multiple mutants that are functionally identical to one another.

This may skew the data towards these duplicated mutants.

There are no automated approaches that reliably identify such

duplicates, and it is infeasible to manually check for duplication

across so many mutants.

III. RESULTS

A. RQ1: To what extent do different test suites generate varying

grades?

Figure 2a shows the distribution of grades generated by

each suite for every mutant across all 30 repetitions. Figure 2b

shows the standard deviation of grades generated by all test

suites across the 30 repetitions on a per mutant basis. We find

that there is a spread of grades generated for each mutant,

despite mutants typically only being a few percentage points

TABLE III: Summary of variance inflation factors (VIFs) for

each property across all linear models.

Coverage Recoverage Mutation Score

Median 1.60 1.43 1.09
Std. Dev. 0.53 0.48 0.40
Max. 4.09 3.07 3.81

short of perfect grade due to their often minute changes to the

correct program.

The distributions of generated grades and mutants’ standard

deviations vary between our observed subject classes. This

suggests that the nature of a class itself affects how potential

test suites perform on faulty variants. We also note that there

is a range of standard deviations across the set of mutants,

indicating that some mutants are more prone to a change in

grade due to the selected test suite than others. This may be

due to how detectable a mutant is with respect to the whole

set of available tests. If a mutant is detected by fewer tests

it is less likely that a detecting test will be used in a test

suite, so the mutant will be more likely to receive a high

grade. Additionally, a rare, detecting test would more often

be outnumbered by non-detecting tests, so even if it is used,

it would have a limited impact on the grade. This especially

appears to be the case for Option, which when compared to

the other subject classes has a very high median grade and

low median standard deviation of grades for each mutant.

Across all runs and all subjects, the mean grade is ∼96.5%,

and the mean standard deviation per mutant is ∼2.94%. As each

mutant “loses” ∼3.5% of the maximum grade, this standard

deviation accounts for a very significant amount of the possible

range of grades; the standard deviation represents ∼84% of

the lost grades. This indicates a very strong impact on the

inconsistency of grading for single mistakes across different

possible test suites. Different test suites are likely to generate

varying grades for the same fault. This effect is more prevalent

for smaller test suites; for Lift, suites with 10 tests typically

have a standard deviation of ∼9.5% grades for single mutants,

while suites with 100 tests have a standard deviation of ∼2.6%.

RQ1 Results: Grades can vary greatly across different test

suites, with a standard deviation that represents ∼84% of the

grades lost on average for each individual mutant.

B. RQ2: Which properties of test suites impact grades?

We performed multivariate linear regression on each of the 30

runs for every subject and test suite size, in order to determine

if the coverage, recoverage, and mutation score of test suites

have an impact on generated grades. Table IV shows the mean

results of the linear regressions across all 30 runs. We find

that all of the overall linear models are statistically significant,

with p-values of <0.001. However, models generated for some

subjects have a very low adjusted R2 (R2

adj), most notably

CharRange, Complex, and Option, suggesting that the

model fails to explain most of the variability in generated

grades across our observations. In these cases, differences in

grades are more likely to be due to the mutants themselves
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(a) All generated grades across all 30 repetitions. For ease of presentation, we removed the outliers.
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(b) Standard deviation of grades generated by all suites for each mutant across all 30 repetitions.

Fig. 2: Generated grade statistics of mutants for each subject class.

and how they interact with the tests for the subject class.

However, for some of the other subjects our models do explain

a significant variability in grades, especially for IntHashMap

and SparseIntArray, indicating that the observed test suite

properties do have a considerable impact on generated grades

for these subjects. As such, while the magnitude of the effect

varies between subject classes, observable test suite properties

can have an impact on grades generated by test suites.

Table IV also shows the standardised coefficients (β) and

significance values that each property has in our linear models.

Only 5 observed coefficients for the properties have a mean

significance of >0.05. We observe that the remaining property

coefficients typically achieve a high significance, with p<0.01

in most cases. This indicates that each of the properties has a

significant contribution to the linear models, and therefore has

some influence on the generated grades for our mutants.

Across all of our models, the properties have low variance

inflation factors (VIF), as shown in Table III. This indicates that

the properties each have a low degree of multicollinearity, and

that the impact of correlations between the properties on the

variance of their β coefficients is limited [14]. This allows us

to use the β coefficients to determine which factors contribute

the most to a model with a higher degree of reliability, thus

providing an estimate of the relative impact of each property

on generated grades.

On average across the models for each subject, we find that

the β coefficient of Coverage has the greatest magnitude (0.39),

followed by Mutation Score (−0.22) and Recoverage (0.2). As

such, Coverage generally influences grades the most, but the

other properties also have a significant impact.

The β coefficients for some properties change with different

test suite sizes. Across all subjects, as the test suite size

increases, so does the magnitude of the β coefficient for

Recoverage. This could be due to larger test suites being more

likely to recover both more and a greater variety of lines of

code, which would increase the likelihood of some mutants

being detected. Conversely, the magnitude of Mutation Score

decreases as the test suite size increases. This may be a result

of larger test suites being more likely to detect mutants than

smaller test suites. This is illustrated by Figures 2a and 2b,

where the median and upper quartile grades tend to be lower

for larger test suites, whilst the standard deviation of grades

for each mutant is also smaller. In these cases, grades are more

consistently lower with larger test suites since they have a

greater fault detection capability.

There is generally a fluctuation of magnitude for Coverage

as test suite size varies, perhaps due to different suite sizes

achieving different coverage levels. Small test suites may have

lower coverage, and very large suites may rarely have low

coverage. We also observe that Mutation Score usually has

a negative β coefficient, and where it is positive, it is very

close to zero. This suggests that test suites with a greater fault

detection capability will generally generate lower grades.

The overall mean β coefficients are not reflected for some

subjects. For example, Mutation Score tends to have a very low

impact on IntHashMap for larger test suites, and Coverage

has a low impact on Option. We examined individual mutants

for these subjects, and found that grades for individual mutants

did not change with respect to these respective properties. In the

case of IntHashMap, the low impact of mutation score may

be due to different mutants not exhibiting similar behaviour,

perhaps due to low method interdependency, the relatively high

number of conditional statements, and a low average of mutants

per line (∼2.3). For Option we found that the subject uses

classwide variables extensively, so any mutants in the class are

likely to modify its state in an easily observable manner. As

such, for most mutants, larger test suites are likely to contain



TABLE IV: Summary of linear regression models built for each

subject and test suite size, mean values across 30 repetitions,

rounded to 2 decimal places.

Size Model Coverage Recoverage Mutation Score

p R2

adj β p β p β p

ByteVector

10 <0.01 0.27 0.56 <0.01 0.25 <0.01 −0.62 <0.01

20 <0.01 0.39 0.55 <0.01 0.33 <0.01 −0.56 <0.01

40 <0.01 0.5 0.47 <0.01 0.41 <0.01 −0.4 <0.01

60 <0.01 0.54 0.38 <0.01 0.49 <0.01 −0.32 <0.01

80 <0.01 0.57 0.3 <0.01 0.56 <0.01 −0.23 <0.01

100 <0.01 0.6 0.23 <0.01 0.63 <0.01 −0.21 <0.01

CharRange

10 <0.01 0.04 0.05 <0.01 −0.09 <0.01 −0.18 <0.01

20 <0.01 0.03 0.09 <0.01 −0.13 <0.01 −0.15 <0.01

40 <0.01 0.05 0.16 <0.01 −0.17 <0.01 −0.13 <0.01

60 <0.01 0.07 0.21 <0.01 −0.18 <0.01 −0.12 <0.01

80 <0.01 0.09 0.25 <0.01 −0.2 <0.01 −0.1 <0.01

100 <0.01 0.1 0.27 <0.01 −0.22 <0.01 −0.07 <0.01

Complex

10 <0.01 0.06 0.05 <0.01 0.1 <0.01 −0.3 <0.01

20 <0.01 0.04 0.05 <0.01 0.14 <0.01 −0.24 <0.01

40 <0.01 0.05 0.07 <0.01 0.2 <0.01 −0.21 <0.01

60 <0.01 0.07 0.12 <0.01 0.23 <0.01 −0.19 <0.01

80 <0.01 0.1 0.17 <0.01 0.26 <0.01 −0.19 <0.01

100 <0.01 0.14 0.21 <0.01 0.28 <0.01 −0.17 <0.01

IntHashMap

10 <0.01 0.44 0.67 <0.01 0.02 <0.05 −0.26 <0.01

20 <0.01 0.66 0.76 <0.01 0.08 <0.01 −0.1 <0.01

40 <0.01 0.76 0.7 <0.01 0.21 <0.01 −0.02 <0.05

60 <0.01 0.77 0.6 <0.01 0.33 <0.01 0 <0.05

80 <0.01 0.77 0.52 <0.01 0.41 <0.01 0 0.06

100 <0.01 0.78 0.45 <0.01 0.48 <0.01 0 <0.05

Lift

10 <0.01 0.13 0.43 <0.01 0.08 <0.01 −0.41 <0.01

20 <0.01 0.24 0.5 <0.01 0.1 <0.01 −0.32 <0.01

40 <0.01 0.37 0.55 <0.01 0.13 <0.01 −0.17 <0.01

60 <0.01 0.42 0.55 <0.01 0.16 <0.01 −0.08 <0.01

80 <0.01 0.45 0.54 <0.01 0.2 <0.01 −0.05 <0.05

100 <0.01 0.47 0.52 <0.01 0.23 <0.01 −0.02 0.15

Option

10 <0.01 0.1 0.01 0.17 0.11 <0.01 −0.3 <0.01

20 <0.01 0.08 −0.02 0.06 0.18 <0.01 −0.23 <0.01

40 <0.01 0.09 −0.03 <0.05 0.25 <0.01 −0.17 <0.01

60 <0.01 0.11 −0.03 <0.05 0.32 <0.01 −0.14 <0.01

80 <0.01 0.14 −0.02 <0.05 0.36 <0.01 −0.12 <0.01

100 <0.01 0.16 0 <0.05 0.39 <0.01 −0.1 <0.01

Rational

10 <0.01 0.31 0.75 <0.01 0.06 <0.01 −0.67 <0.01

20 <0.01 0.47 0.78 <0.01 0.07 <0.01 −0.51 <0.01

40 <0.01 0.58 0.76 <0.01 0.07 <0.01 −0.27 <0.01

60 <0.01 0.62 0.74 <0.01 0.09 <0.01 −0.15 <0.01

80 <0.01 0.63 0.72 <0.01 0.12 <0.01 −0.09 <0.01

100 <0.01 0.64 0.69 <0.01 0.16 <0.01 −0.05 <0.01

SparseIntArray

10 <0.01 0.41 0.61 <0.01 0.11 <0.01 −0.27 <0.01

20 <0.01 0.52 0.57 <0.01 0.21 <0.01 −0.15 <0.01

40 <0.01 0.66 0.58 <0.01 0.28 <0.01 −0.07 <0.01

60 <0.01 0.72 0.55 <0.01 0.35 <0.01 −0.04 <0.05

80 <0.01 0.74 0.46 <0.01 0.44 <0.01 −0.02 <0.05

100 <0.01 0.75 0.36 <0.01 0.54 <0.01 −0.01 0.07

XmlElement

10 <0.01 0.13 0.5 <0.01 0.09 <0.01 −0.59 <0.01

20 <0.01 0.16 0.47 <0.01 0.16 <0.01 −0.52 <0.01

40 <0.01 0.23 0.43 <0.01 0.25 <0.01 −0.43 <0.01

60 <0.01 0.29 0.41 <0.01 0.31 <0.01 −0.37 <0.01

80 <0.01 0.33 0.37 <0.01 0.36 <0.01 −0.3 <0.01

100 <0.01 0.36 0.35 <0.01 0.39 <0.01 −0.22 <0.01

Mean (All Subjects & Suite Sizes)

<0.01 0.36 0.39 <0.05 0.2 <0.01 −0.22 <0.05

similar proportions of tests that detect the fault, irrespective

of how much of the program they cover. From this, we can

conclude that the impact of test suite properties on grades can

depend on the subject itself, though most subjects do follow a

similar trend.

RQ2 Results: Coverage generally has the most effect on

generated grades (β ≈ 0.39), though Mutation Score (β ≈

−0.22) and Recoverage (β ≈ 0.20) also have a significant

impact.

IV. DISCUSSION

As we observed in Section III, different test suites can

produce varying grades, influenced by various properties of

the test suites themselves. While the effect of test suite

properties on students’ grades cannot be directly controlled,

some measures can be made by tutors when designing or

updating a test suite, in order to improve consistency and

fairness. We discuss such measures in this section. For each

of our suggestions, we assume that a correct model solution

which perfectly reflects a programming task’s specification is

available when developing a grading test suite.

In this section we demonstrate the effects of each property

on grades, using Lift as an example, since its β coefficients

are similar to the means across all subjects for suites with

10 tests. These means are 0.40, 0.08, and −0.4 for Coverage,

Recoverage, and Mutation Score, respectively. We use three

mutants to illustrate the effects of these properties. Figure 3

is the source code of Lift, including the diffs of the three

mutants. Figure 4 shows the relationship between the properties

and grades for each of the three mutants, alongside all of the

mutants for Lift.

We selected the mutants by the relationships between their

grades and the properties measured for the executions of each

test suite:

• Mutant X (Figure 4b, Line 7-8) exhibits similar grade-

property relationships to the overall trend of all Lift mu-

tant executions combined.

• Mutant Y (Figure 4c, Line 21-22) has a positive relation-

ship between grades and each property.

• Mutant Z (Figure 4d, Line 61-62) has a negative relation-

ship between grades and each property.

A. Coverage

Overall Observations

Our results in Section III-B show that the coverage of a

test suite often has a significant impact on generated grades.

Figure 4 shows the grades generated by test suites of varying

coverage levels.

The overall trend for Lift indicates an increase in grades

along with coverage. It is possible that this is due to the mutants

only affecting a subset of the lines of code, and as such, suites

that have higher levels of coverage may have fewer tests that

detect the mutant than suites with lower coverage that only

cover lines affected by the mutant.

Individual Mutants

The overall effect is demonstrated by Mutant X, which modifies

the initial value of numRiders. This mutant only affects three

of the nine public non-constructor methods. If a test suite were

to evenly cover all nine of these methods, two thirds of its

tests would not be capable of detecting the mutant. If a test



1 public class Lift {

2

3 private int topFloor;

4 private int currentFloor = 0;

5 private int capacity = 10;

6 # Mutant X - Incorrect Values

7 - private int numRiders = 0;

8 + private int numRiders = 1;

9

10 public Lift(int highestFloor) {

11 topFloor = highestFloor;

12 }

13

14 public Lift(int highestFloor, int maxRiders) {

15 this(highestFloor);

16 capacity = maxRiders;

17 }

18

19 public int getTopFloor() {

20 # Mutant Y - Incorrect Values

21 - return topFloor;

22 + return 0;

23 }

24

25 public int getCurrentFloor() {

26 return currentFloor;

27 }

28

29 public int getCapacity() {

30 return capacity;

31 }

32

33 public int getNumRiders() {

34 return numRiders;

35 }

36

37 public boolean isFull() {

38 return numRiders == capacity;

39 }

40

41 public void addRiders(int numEntering) {

42 if (numRiders + numEntering <= capacity)

43 numRiders = numRiders + numEntering;

44 else

45 numRiders = capacity;

46 }

47

48 public void goUp() {

49 if (currentFloor < topFloor)

50 currentFloor++;

51 }

52

53 public void goDown() {

54 if (currentFloor > 0)

55 currentFloor--;

56 }

57

58 public void call(int floor) {

59 if (floor >= 0 && floor <= topFloor) {

60 # Mutant Z - Relational Operator Replacement

61 - while (floor != currentFloor)

62 + while (true)

63 {

64 if (floor > currentFloor)

65 goUp();

66 else

67 goDown();

68 }

69 }

70 }

71 }

Fig. 3: The source code of Lift, with three example mutants.

suite exclusively covered the three affected methods, none of

the tests would face such a restriction, and detecting the fault

would be a matter of the tests’ quality alone. This effect is even

more apparent for Mutant Y, which only affects one public

method. It is also possible that this behaviour is correct for the

single faults introduced in most mutants; the faults are often

relatively minor, so they should not lose many grades. In this

sense, suites with higher coverage may provide more accurate

grades for most faults.

Full coverage does not, however, guarantee that faults are

always detected. In Mutant X and Mutant Y, some test suites

provide a 100% grade despite achieving 100% coverage on

these mutants. For these cases, revealing the fault may require

different tests that evaluate results with higher precision, or

exercise an edge condition.

These observations do not necessarily occur for all mutants,

however. Mutant Z exhibits a trend of falling grades as coverage

increases, and has no executions with 100% grades and 100%

coverage. This is due to the mutant’s introduction of a while

(true) loop, which would never terminate, and cause any

tests that execute it to timeout, revealing the fault. Merely

executing such highly fragile faults guarantees that they are

detected. Conversely, if any fault is not covered by tests, it

cannot be detected. This is shown by the 100% grades for

Mutant Z at lower coverage levels; these test suites do not

cover the fault. If a fault in a student’s solution is not covered,

it would prevent them from receiving feedback on why they

made a mistake.

Impact Mitigation

Fortunately, limiting the effect of coverage on grades is

relatively straightforward, a tutor can write a test suite that

achieves 100% coverage on the model solution. Such a test suite

may not achieve 100% coverage on some student solutions,

but in these cases either a student solution’s uncovered code

would not improve correctness, or the uncovered code would

improve correctness but is not executed due to a fault that the

student has introduced elsewhere.

If 100% coverage is difficult to achieve in the model solution,

it is possible that the tests alone are not sufficient. For example,

the model solution may load test data. In this case, test data

should be created that allows for 100% coverage to be achieved.

If it remains impossible to gain 100% coverage, there may

be problems with either the task’s specification or the model

solution themselves; a redesign may be required.

Although it is not covered in this paper, branch coverage can

also be used to ensure that the test suite sufficiently exercises

conditional statements. Most modern IDEs have support for

code coverage metrics, and provide coverage highlighting to

help identify where code is insufficiently exercised by tests.

Suggestion 1: Autograding test suites should achieve 100%

coverage on a model solution.

B. Recoverage

Overall Observations



(a) All Mutants

(b) Mutant X (Incorrect Values)

(c) Mutant Y (Incorrect Values)

(d) Mutant Z (Relational Operator Replacement)

Fig. 4: Generated grades vs. each property for individual executions of Lift mutants with suites of 10 tests across 30 runs.



Figure 4 shows how suites with varying degrees of average

line recoverage generate grades. Recoverage levels are lower

than the other two properties for suites of 10 tests, with

Lift’s maximum recoverage only being ∼48%, despite having

multiple test suites that achieve 100% coverage. This shows

that these test suites are unlikely to cover most lines of each

subject more than once. This may be due to some areas of

the code requiring specific conditions to be covered, and the

limited size of the test suites.

Across the whole set of mutants, grades tend to increase as

recoverage increases. Similarly to coverage, this depends on

how tests cover individual mutants, but perhaps to a greater

extent on a per mutant basis, where the gradients of the lines of

best fit are steeper. At a first glance, this contradicts our findings

for RQ2, where Recoverage has a very low β coefficient for

Lift with suites of 10 tests. This may be due to opposite

cases (e.g. Mutants Y and Z) effectively cancelling each other

out in the set of all mutants. This suggests that, for some faults,

recoverage may have a greater impact than our linear models

suggest, and as such it should not be ignored.

Individual Mutants

The behaviour typical of the full set of mutants is apparent in

Mutant X. Similarly to coverage, the impact of recoverage may

be due to how many tests are covering lines affected by the

mutant; suites with lower recoverage levels may be recovering

only affected lines, while suites with higher recoverage may

recover other parts of the code. This indicates that if the faulty

lines of a solution are covered by disproportionately many

tests, it would lose more grades than if all lines were covered

equally. Conversely, if many non-faulty lines are recovered,

but a faulty line is only covered once, it may receive an overly

high grade. Again, the effect is more prevalent for Mutant Y,

likely due to it only having an effect on a single statement.

The reverse effect occurs for Mutant Z, which has grades of

∼50% for suites with high recoverage, and high grades for low

recoverage. Since this mutant is always detected if it is covered,

and only affects a single method, increased recoverage likely

reduces grades as is it more likely that more of the tests in the

suite are executing (and thus revealing) the fault. Recovering

such fragile faults will have a great impact on the grade that

they receive, compared to other faults that may require specific

assertions to detect. This may be beneficial, since these faults

would greatly impact functionality, but it may also be a source

of unfairness if students are not readily able to detect the fault

when running the program themselves. Providing students with

a set of simple tests to use before submitting their solutions

would help to remedy this issue.

Impact Mitigation

Unevenly recovering some lines of code is likely to affect

fairness; mistakes that are heavily recovered are more likely to

receive lower grades than mistakes that are covered less. While

method dependencies and compound branches will make a

degree of recoverage inevitable, we recommend that care is

taken to avoid needlessly recovering some lines of code more

than others. However, for cases where some portions of the

code are more important with respect to the task’s learning

objectives, or where code is more likely to contain subtle faults,

having greater recoverage may be beneficial.

We have provided our reference implementation of line

recoverage to assist with the identification of recovered

code [15].

Suggestion 2: Tutors should be wary of unevenly recovering

lines when developing their test suites.

C. Test Quality (Mutation Score)

Overall Observations

Figure 4 shows how mutation score relates to generated grades.

One important observation to note in these plots is that no

observed test suite achieves a mutation score of 100%, despite

typically achieving high levels of coverage. This shows that

coverage alone is not sufficient to detect faulty solutions; tests

must also make correct and robust assertions, and exercise

edge conditions. We find an overall trend of grades falling as

mutation score increases.

Individual Mutants

This general behaviour is exhibited by Mutant X. The three

methods that this mutant affects may not always demonstrate

divergent behaviour when tested:

• getNumRiders() would pass tests that expected

numRiders to be equal to capacity.

• isFull() would only fail on tests that expect the

method to return false if capacity - 1 is added to

numRiders.

• addRiders() cannot reveal this fault alone, but allows

for numRiders to be manipulated as described above.

As such, merely covering these methods would not necessarily

reveal this mutant. However, if tests are able to detect faults

in the same methods that exhibit similar behaviour, they are

more likely to detect this mutant. Consider a fault that makes

isFull return numRiders == capacity - 1. Any test

detecting such a fault would also reveal Mutant X.

This behaviour is present with a stronger effect for Mutant

Z. Since this mutant will be detected by any test which covers

it, its relationship between grades and mutation score follows a

similar pattern to its relationship between grades and coverage.

However, these relationships are by no means identical; the

mutation scores of test suites do not directly match their

coverage levels due to more subtle mutants only being detected

by more complex tests. Furthermore, mutation score may have

a stronger relationship for this mutant since the method it

is in (call()) uses multiple conditionals. Other mutants in

this method would only be detected by tests that meet these

conditions; tests that detect those mutants would also detect

this mutant.

Mutant Y exhibits the inverse behaviour; grades increase as

mutation score increases. This is a deviation from its behaviour

for the other properties, where it followed the same trend

as the combination of all mutants. This may be due to a

lack of interaction with other mutants; Mutant Y only has an



effect on one method (getTopFloor()), with no method

dependencies. Furthermore, it only modifies a single statement,

and only the Incorrect Values operator can be applied to this

statement without affecting compilation. Therefore, there will

be proportionally few mutants that also modify this method.

As such, suites with higher mutation scores would have a

smaller proportion of tests that exercise this mutant; it cannot

be detected by most of these tests, receiving a high grade. This

behaviour is similar to that of coverage and recoverage for

this mutant. However, this is not to say that test suites with a

high mutation score are incapable of detecting this mutant; no

suites with the maximum mutation score (∼83%) generate a

100% grade for this mutant. It is likely that such test suites

detect another mutant that affects the same statement.

Impact Mitigation

As discussed in Section IV-A, merely executing faulty state-

ments does not guarantee that the fault is revealed. An effective

means to ensure that tests are capable of detecting faulty

solutions would be to execute them on such faulty solutions.

This could be approached by using existing students’ solutions,

allowing a tutor to check the distribution of grades generated by

the test suite, and to make adjustments if necessary. However,

it may have a significant time cost if the correctness of

these students’ solutions is not already known. This method

would be preferable for any tutors seeking to improve an

existing autograding test suite or to convert a manually assessed

programming task to be autograded.

Another approach is to use mutation analysis, as we did in

this paper. By generating artificial mutants from the model

solution, a tutor can easily verify that the test suite is able

to identify faulty solutions. Any artificial faults that are not

detected by the test suite provide information on how to

improve the test suite. This is reflected in our data, where

some faults have grades of 100% for many test suites, while

none of the test suites detect all of the mutants. If the test

suites had a perfect mutation score, they would be capable of

detecting more faults.

A key benefit of this approach is that it does not require

existing solutions; it is suitable for preparing an autograder for

a new programming assessment. This can also be combined

with student solutions to provide additional confidence that a

test suite is capable of detecting faults. Mutants would however

not be beneficial for tuning grade distributions, though this can

be performed after collecting students’ solutions.

Suggestion 3: Tutors should run their test suites against either

real or artificial student programs to ensure that they can

detect faults.

V. CONCLUSIONS & FUTURE WORK

In this paper, we have shown that different test suites can

yield vastly different grades for faulty solutions. We have also

demonstrated that coverage, and to a lesser extent, mutation

score and recoverage can each affect generated grades of faulty

solution programs. Additionally, we have provided tutors with

suggestions on how they can improve the consistency and

fairness of their automated grading test suites. Specifically, we

recommend writing test suites that achieve 100% coverage, to

avoid unnecessarily recovering statements, and to verify the

effectiveness of grading test suites using mutation analysis or

existing student solutions, where available.

While it has been established that mutants are representative

of real faults in software analysis [13], we will conduct future

work with real student faults to validate whether this also holds

in a grading context. We will also perform further research

into the impact of other test suite properties on higher order

mutants and real student solutions. Such additional properties

may include diagnosability metrics (e.g., [16]), which aim

to assess test suites in terms of how well they support fault

localisation.
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