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Abstract. The increasing adoption of autonomous systems in safety-
critical applications raises severe concerns regarding safety and reliabil-
ity. Due to the distinctive characteristics of these systems, conventional
approaches to safety assurance are not directly transferable and novel
approaches are required. One of the main challenges is the ability to deal
with signiőcant uncertainty resulting from (1) the inherent complexity of
autonomous system models, (2) potential insufficiencies of data and/or
rules, and (3) the open nature of the operational environment. The va-
lidity of assumptions made about these three layers greatly impact the
conődence in the guarantees provided by a safety argument. In this paper
we view the problem of safety assurance as the satisfaction of a safety
contract, more speciőcally as a conditional deduction operation from as-
sumptions to guarantees. We formalise this idea using Subjective Logic
and derive from this formalisation an argument structure in GSN that
allows for automated reasoning about the uncertainty in the guarantees
given the assumptions and any further available evidence. We illustrate
the idea using a simple ML-based traffic sign classiőcation example.

Keywords: safety assurance · uncertainty · autonomous systems.

1 Introduction

In recent years, the rapid advancement of artificial intelligence (AI) techniques
has led to an increasing adoption in safety-critical applications. One notable
area where AI has proven highly useful is perception in (semi-)autonomous driv-
ing. While these advancements have brought significant improvements in per-
formance, they also raise concerns regarding the safety and reliability of such
systems. Ensuring a sufficient level of safety in these components has become a
critical challenge that necessitates rigorous argumentation and assessment.

Inherent challenges of autonomous systems such as complex and open operat-
ing environments that render formal specification infeasible introduce a substan-
tial level of uncertainty into the safety argumentation process. Unlike traditional
systems, autonomous systems often lack explicit rules and rely on advanced al-
gorithms and decision-making processes, which can lead to unexpected behavior
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and novel failure modes. Safety arguments for autonomous systems must address
this inherent uncertainty and provide assurance with respect to the residual risk
associated with their operation. Furthermore, modern control systems are in-
creasingly complex, require the continuous integration of new or updated com-
ponents, and thus a modular and contract-based approach to safety assurance.

To structure the assurance argument for an autonomous safety-critical func-
tion, existing standards such as ISO 214483 (SOTIF) and the upcoming standard
ISO PAS 88004 serve as a useful starting point. SOTIF provides a framework for
assessing and managing hazards that arise from a gap between the specified and
the intended functionality or from foreseeable misuse of a system. By incorporat-
ing SOTIF principles, safety arguments can address not only the known failure
scenarios but also potential unforeseen risks and hazards that emerge from the
complex interactions between the autonomous system and its environment. In
reality, an assurance argument will typically include a mix of quantitative evi-
dences (including constructive measures, formal analysis and testing), but also
qualitative arguments. Thus, the level of residual risk that has been addressed is
not always clear and often relies on expert judgment and established reasoning
methods as prescribed in safety standards. Currently, there is no industry or re-
search community consensus on which set of methods are sufficient for evaluating
the performance of functions in a safety-critical context. This poses challenges
for assurance argumentation, as the validity of the evidences themselves can
be called into question [2]. It is thus important to acknowledge that the qual-
ity and effectiveness of the resulting argumentation requires deep scrutiny and
refinement.

With this paper, we make a contribution to this rapidly advancing field of re-
search by focussing on the problem of contract-based uncertainty quantification
in safety arguments. In a recent paper, we argued for the application of Subjec-
tive Logic (SL) [12] for analysing uncertainty in the context of safety assurance
[10]. Here, we expand upon this idea by (1) formulating the safety assurance
problem as a conditional deduction from premises (assumptions) to conclusions
(safety guarantees), and (2) deriving the structure of an assurance argument
that directly corresponds to the formalisation and allows for automated reason-
ing about assurance confidence. More specifically:

– We formalise the notion of a safety contract introduced elsewhere [2] as a
conditional deduction operation in SL.

– From this formalisation, we derive the structure of an assurance argument
including sub-arguments about both the sufficiency of the assumptions and
the resilience of the system in case of assumption violation.

– We provide a methodology to estimate assurance confidence in such an ar-
gument by (1) populating the argument with quantitative and qualitative
evidence, and (2) applying the SL conditional deduction operator to derive
an opinion about the top-level claim. The methodology is illustrated using
a simple traffic sign classification example.

3 https://www.iso.org/standard/77490.html
4 https://www.iso.org/standard/83303.html
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The paper is structured as follows. Section 2 provides a brief introduction to
the problem of safety assurance for autonomous systems and to the formalism of
SL. Section 3 introduces a formally derived argument structure that allows for
automated reasoning, followed by the description and illustration of a method-
ology to reason about an argument using a simple example in Section 4. The
paper concludes with an overview of related work and a summary.

2 Background

2.1 Safety assurance

The ISO/IEC/IEEE 15026:20195 standard defines assurance as grounds for jus-
tified confidence that a claim has been or will be achieved. A claim is defined
as a true-false statement about the limitations on the values of an unambigu-
ously defined property — called the claim’s property — and limitations on the
uncertainty of the property’s values falling within these limitations. The stan-
dard also defines an assurance argument as a reasoned, auditable artefact that
supports the contention that its top-level claim is satisfied, including systematic
arguments and its underlying evidence and explicit assumptions that support
the claim(s). As such, the assurance argument communicates the relationship
between evidence and the safety objectives. A model-based graphical represen-
tation of the assurance argument can aid its communication and evaluation.
Within this paper we make use of the Goal Structuring Notation (GSN)6 to vi-
sualise the assurance argument. An example of a simple GSN structure is shown
in Figure 1. It consists of a top-level claim G1 that is to be shown to hold given
assumptions A1 and context information C1 which defines or constrains the
scope over which claim G1 is made. G1 is further broken down using strategy
S1 which describes the inferential step between G1 and sub-goals G2 and G3.
The sub-goals are then substantiated by solutions Sn1 and Sn2, i.e. by concrete
evidential artifacts.

The standard ISO 21448 (SOTIF) addresses safety in terms of the absence of
unreasonable risk due to functional insufficiencies of the system or by reasonably
foreseeable misuse. The SOTIF approach considers hazards that are caused by
latent insufficiencies of the function that are uncovered by triggering conditions
in the operating environment at runtime. The SOTIF model describes the task
of risk reduction as maximising the number of triggering conditions that are
known to potentially lead to hazardous behaviour (known unknowns) such that
they can be made safe whilst minimising the number of potentially hazardous
residual unknown triggering conditions (unknown unknowns). In the context of
AI, known triggering conditions could be considered as inputs that are known to
reveal an insufficiency in the trained model, whilst unknown triggering conditions
relate to inputs that were not considered within the training and test set, e.g.
due to features considered irrelevant or distributional shift in the environment.

5 https://www.iso.org/standard/73567.html
6 https://scsc.uk/GSN
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Fig. 1. Example of a simple assurance argument structure in GSN

SOTIF appears well suited as a basis for discussing the safety of AI functions
where hazardous behaviours are caused by inaccuracies in the trained model
itself rather than by faults during its execution.

Burton et al. [2] express the task of assuring the safety of machine learning
(ML) according to the SOTIF model in terms of demonstrating the fulfillment
of a safety contract based on the following definition.

∀i ∈ I.A(i) ⇒ G(i,M(i)) (1)

Where, for all inputs i that fulfil the set of assumptions A on the operat-
ing domain and system context, the output of model M must fulfill a set of
conditions defined by guarantees G. For realistic applications, residual errors in
the model will inevitably remain. Assurance thus involves demonstrating that
the probability with which this contract is fulfilled is in accordance to the risk
acceptance criteria. This formulation of a safety contract will form the basis for
the argument structure introduced in Section 3.

2.2 Subjective Logic

Subjective Logic (SL) [12] is a framework for artificial reasoning with uncertain
beliefs that combines ideas from probabilistic logic and evidence theory. The
atomic building blocks of SL are subjective opinions and SL offers a wide range
of combination operators that allow for algebraic reasoning. Subjective opinions
in SL express beliefs about the truth of propositions under degrees of uncertainty.
Opinions can be binomial (X = {x, x̄}), multinomial (X of cardinality > 2 with
singleton elements only), or hypernomial (X of cardinality > 2 with elements
x ∈ R(X)7). Since we aim to model binary safety claims as explained in Section
2.1, we restrict the focus to binomial opinions here.

7 R(X)) denotes the reduced powerset of X, i.e., the set of all subsets excluding the
empty set ∅ and the full set X.
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Fig. 2. Opinion triangle visualization of example opinion ωx = (b = 0.2, d = 0.5, u =
0.3, a = 0.5) (left) and associated Beta PDF.

Definition 1 (Binomial opinion). Let X = {x, x̄} be a binary domain. A
binomial opinion about the truth of X is a tuple ωX = (b, d, u, a) where

– b (belief): the belief mass in support of x being true

– d (disbelief): the belief mass in support of x being false

– u (uncertainty): the uncommitted belief mass

– a (base rate): the a priori probability in the absence of committed belief mass
(often set to 0.5 for binary domains).

The components have to satisfy b, d, u, a ∈ [0, 1] and b+ d+ u = 1.

Binomial opinions can be visualised on an equilateral triangle as shown for
the example opinion ωx = (0.2, 0.5, 0.3) in Figure 2 (left). Any point inside the
triangle represents a possible (b, d, u) triple.

Given positive evidence r (i.e. the number of positive observations) for a
claim, negative evidence s (the number of negative observations) and a non-
informative prior weight8 W = 2, an opinion can be computed as follows:

bX = r/(r + s+W ) (2)

dX = s/(r + s+W ) (3)

uX = W/(r + s+W ) (4)

Given domain X = {x, x̄}, let p : X → [0, 1] be a continuous probability
distribution over the same domain where p(x) + p(x̄) = 1. A binomial opinion
corresponds with a Beta probability density function (PDF) Beta(p(x), α, β)

8 The non-informative prior weight W ensures that when evidence begins to accumu-
late (i.e. r gets larger), uncertainty uX decreases accordingly. W is typically set to
the same value as the cardinality of the domain (2 in our binary case), thus artiő-
cially adding one łsuccessž r and one łfailurež s. Higher values of r and s require
more evidence for uncertainty to decrease.
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over variable p(x) as shown graphically in Figure 2 (right). The α and β param-
eters of the PDF can be derived from the base rate a, the observation evidence
r and s, and the non-informative prior weight W as follows:

α = r + aW, β = s+ (1− a)W (5)

The expectation value E(X) of the Beta PDF is then derived as follows:

E(X) =
α

α+ β
=

r + aW

r + s+W
(6)

SL provides a wide range of combination operators [12] which provide an
elegant and intuitive way to combine opinions directly instead of the underlying
Beta distributions, a direct manipulation of which would be mathematically
challenging. In this paper, we focus on conditional deduction, a realisation of
Modus Ponens in SL, represented by the ternary ‘⃝◦ ’ operator9.

Definition 2 (Conditional deduction). Let X = {x, x̄} and Y = {y, ȳ} be
two binary domains with arbitrary mutual dependence. Let ωx = (bx, dx, ux, ax),
ωy|x = (by|x, dy|x, uy|x, ay|x) and ωy|x̄ = (by|x̄, dy|x̄, uy|x̄, ay|x̄) an agent’s respec-
tive opinions about x being true, about y being true given that x is true, and
about y being true given that x is false. Based on that,

ωy||x = ωx ⃝◦ (ωy|x, ωy|x̄) (7)

denotes a conditionally deduced opinion derived from ωx, ωy|x, and ωy|x̄. It
expresses the belief in y (the conclusion) being true as a function of the belief in
x (the premise) and the two sub-conditionals y|x and y|x̄. It can be understood as
a direct translation of the deduced probability P (y||x) into SL which can be defined
using the law of total probability as follows: P (y||x) = P (x)P (y|x)+P (x̄)P (y|x̄).

3 A formally grounded assurance argument structure

The conditional deduction operator of SL provides us with a basis to derive an
argument structure that allows for formal deduction as follows. Referring to the
constituents of a formal deduction ωy||x = ωx ⃝◦ (ωy|x, ωy|x̄) as per Equation 7:

– ωx represents an opinion about the premise of the deduction. It thus ex-
presses belief in the assumptions in the safety contract in (1) from which the
guarantees are to be deduced.

– ωy|x and ωy|x̄ represent sub-conditionals about the sufficiency and the ne-
cessity of the premise, respectively [15]. As such, the former can be seen as
an opinion about the claim that the guarantees are satisfied given that the
assumptions are satisfied. The latter can be understood as dealing with the
(invariably) existing uncertainty in the assumptions arising from unforeseen
circumstances, or unknown triggering conditions in the context of SOTIF. It
represents a defensive claim about the resilience of the system, i.e. its ability
to still meet its requirements even if the assumptions do not hold.

9 A more formal treatment of the operator is provided in the literature [12].
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Fig. 3. Formally grounded high-level argument structure

This formalisation allows us to represent our belief in the occurrence of the
four SOTIF scenarios as follows10:

– E(ωy|x): expectation about the system satisfying its guarantees when the
assumptions hold. It thus reflects known safe scenarios.

– 1 − E(ωy|x): expectation about the system violating its guarantees despite
the assumptions holding. It thus reflects known unsafe scenarios.

– E(ωy|x̄): expectation about the system satisfying its guarantees despite the
assumptions not holding. It thus reflects unknown safe scenarios.

– 1−E(ωy|x̄): expectation about the system violating its guarantees when the
assumptions do not hold. It thus reflects unknown unsafe scenarios.

We can now use these building blocks to introduce an argument structure
(shown in Figure 3) that directly reflects the deductive structure and thus allows
for an automated assessment of assurance confidence. The argument consists of
a top-level claim G1 (corresponding to the final opinion ωy||x) that is broken
down into sub-claims about the sufficiency of the assumptions (G2) and the
resilience of the system in case of violated assumptions (G3), thus reflecting the
sub-conditionals ωy|x and ωy|x̄

11. The overall strength of the argument therefore
depends on a combination of (1) our belief that the system meets its requirements
when the assumptions hold, (2) our belief that the assumptions hold, and (3)
our belief that the system will meet its requirements despite the assumptions
not holding. The next section illustrates how this structure helps to construct
and assess an argument.

4 Constructing the argument and computing confidence

We will now illustrate the process of argument construction and evaluation with
a simple running example of an autonomous system function. We consider the

10 We denote with E(ω) the expectation value of the Beta PDF of opinion ω.
11 By a slight abuse of GSN notation, we use A2 and A3 to ‘override’ A1. An alter-

native (more GSN-compliant) representation would be to replace A1 with A2 and
formulate A3 as the negation of A2.
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Input space 64x64 RGB pixel images of traffic signs

Assumptions Camera is operating correctly and within its operating range with nominal
noise, weather conditions as deőned in the speciőcation.

Top claim The model satisőes its safety requirements.

Guarantees The function does not miss construction signs.

Sufficiency claim If the assumptions hold, then each construction sign image shall be correctly
classiőed as such.

Resilience claim Operation-time measures are in place to detect the violation of assumptions
and deactivate the function.

Table 1. Safety contract for construction sign classiőcation

case of ML-based traffic sign recognition (TSR) whose failure may have safety-
relevant consequences and therefore requires safety assurance. We assume that
the TSR is used as part of a highway pilot function that is enabled to automati-
cally control the vehicle under certain conditions on a highway and should adjust
its driving strategy based on prompts it receives from roadside traffic signs. We
are particularly concerned with the recognition of construction site signs so that
the highway pilot can be deactivated and control passed back to the driver.

To illustrate the methodology, we trained a Resnet-18 model on the GTSRB
dataset12 and assess its performance. The central question that we aim to answer
is the following: Given our assumptions and the available evidence, what
is our confidence in the satisfaction of the top-level claim (and thus
also the guarantees)? To this end, we perform the following steps. First, we
formulate a safety contract according to the formally derived argument structure
described in Section 3. We then turn the safety contract into a GSN structure
similar to that in Fig. 3. For each building block in the GSN argument, we
then form SL opinions based on actual quantitative measurements or qualitative
judgment. Finally, we combine the SL opinions using the SL deduction operator
and derive an opinion ωG1 about top-level goal G1. We then determine the
uncertainty in the top-level claim by calculating the lower confidence bound
(LCB), i.e. the lower bound of the 95% credible interval associated with ωG1.

Step 1: Formulating the safety contract: The safety contract for the func-
tion is shown in Table 1. First, some assumptions about the system environment
are made. For simplicity, we restrict the focus here to the quality of the camera.
Next, the top claim states that the function satisfies its safety requirements which
are stated as guarantees directly below. The sufficiency claim states that, if as-
sumptions are satisfied, no construction signs shall be missed (i.e. false negatives
are to be avoided). And finally, the resilience claim states that, any violation of
the assumptions will be detected and the system will be deactivated.

12 https://benchmark.ini.rub.de/index.html



A deductive approach to safety assurance 9

A1

Camera is operating correctly and
within its specific operating range
with nominal noise, weather
conditions as defined in the ODD
specification.

A

G1

The function satisfies its safety
requirements

C1

The function does not miss
construction signs (= safety
requirement)

S1

Argument over assumption sufficiency
and system resilience.

A2

Assumptions A1
are satisfied

A

G2

Each construction sign image shall
be correctly classified as such.

G3

Operation-time measures are in place
to detect the violation of
assumptions and deactivate the
function.

A3

Assumptions A1
are not satisfied

A

Sn1

Recall = 0.98

Fig. 4. Assurance argument structure for the traffic sign example

Step 2: Construction of the GSN argument structure: Adapting the
structure shown in Figure 3 to our example results in the argument shown in
Figure 4. Goal G2 is substantiated with a measured recall value of 98%.

Step 3: Formulation of SL opinions: Now, we formulate SL opinions for
each of the building blocks in the GSN argument in Figure 4. To illustrate the
mapping, we name each opinion ωX where X is the identifier of the respective
building block. For example, ωA1 is the opinion associated with A1. We proceed
bottom-up by first focussing on the evidence Sn1 used to substantiate G2.

Modelling Sn1: In order to satisfy G2, we identified recall as the relevant met-
ric here. Applying this measurement to the trained model yields TP = 500
(true positives) and FN = 10 (false negatives) and therefore a recall rate of
10/(500+10) = 0.98. By interpreting TP as positive evidence and FN as nega-
tive evidence, we use Equations 2–4 to derive the belief, disbelief, and uncertainty
masses of opinion ωSn1 as follows (assuming W = 2):

bSn1 = 500/(500 + 10 + 2) ≈ 0.977 (8)

dSn1 = 10/(500 + 10 + 2) ≈ 0.02 (9)

uSn1 = 2/(500 + 10 + 2) ≈ 0.004 (10)

A summary of this opinion including expectation value and LCB is given in
the first line of Table 2. We see that the LCB is 96.4% and thus significantly lower
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Opinion Bel. Disb. Unc. Exp. LCB (95% )

ωSn1 0.977 0.02 0.004 0.979 0.964

ωG2 0.977 0.02 0.004 0.979 0.964

ωG3 0.0 0.0 1.0 0.5 0.025

ωA1 0.874 0.051 0.075 0.911 0.78

ωG1 0.89 0.018 0.092 0.98 0.896

Table 2. SL opinions for the traffic sign clas-
siőcation example

Fig. 5. Beta distribution visualisation
of ωG1, the opinion associated with G1

than the originally measured 98% recall. This reflects the uncertainty resulting
from the comparatively small number of data points used to measure recall.

Modelling G2: Since Sn1 is the only evidence used to substantiate goal G2, it
inherits the belief, disbelief, and uncertainty masses of ωSn1, resulting in equiv-
alent numbers in Line 2 of Table 2.

Modelling G3: G3 represents the resilience claim and requires the existence of
additional measures to detect violations of the assumptions in order to deactivate
the function. Let us assume that we have no information about the existence of
additional measures yet, expressed by a completely uncertain opinion ωG3 =
(b = 0.0, d = 0.0, u = 1.0). As shown in Line 4 of Table 2, this results in a
uniform Beta distribution with expectation value 0.5 and an LCB of 0.025.

Modelling A1: A1 expresses the assumptions about the system environment
that form the basis of the argument. Let us assume that no quantitative mea-
surements are available, and that we have to rely on qualitative judgment in-
stead. To this end, we can use the idea of qualitative opinions described in [12].
We start with a qualitative judgement of likelihood (on a discrete scale from
absolutely unlikely to absolutely likely) and confidence (on a discrete scale from
no confidence to total confidence) and turn that into an opinion by mapping
the qualitative tuple to the corresponding area of the opinion triangle. Let us
assume that the assumptions are “very likely true with high confidence” which
results in opinion ωA1 = (b = 0.874, d = 0.051, u = 0.075). The numbers in Line
5 of Table 2 illustrate that, although the expectation value is 0.91, the opinion
is associated with a fair amount of uncertainty, indicated by an LCB of 0.78.

Step 4: Computing overall uncertainty in G1: We now have all ingredients
to calculate opinion ωG1 using deduction from ωA1, ωG2, and ωG3 according to
Equation 7. The calculation yields the following results:

ωG1 = ωA1 ⃝◦ (ωg2, ωg3) = (b = 0.89, d = 0.018, u = 0.092) (11)
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As shown in the bottom line in Table 2, the resulting opinion about G1 has
a high expectation value (98%), yet there is a significant amount of uncertainty
associated with it which negatively impacts confidence. A Beta distribution vi-
sualisation of ωG1 is shown in Figure 5.

5 Related work

Assurance confidence estimation aims to reduce uncertainties associated with
validity of the assurance argument itself. Qualitative approaches aim to de-
crease uncertainty by strengthening the argument itself, e.g. through additional
confidence-specific claims, sub-claims, and evidences. Hawkins et al. [9] present
the concept of assured safety arguments, an extension that separates safety ar-
gumentation from confidence argumentation. The two types of argument are
connected through assurance claim points (ACPs) in the structural notation
of the argument. Whilst this approach aims to provide confidence in the overall
safety argument through a separate set of confidence arguments, it does not allow
for the assignment of a quantitative confidence metric. A range of quantitative
approaches have also been presented, e.g. using eliminative induction and Ba-
conian probabilities [6], Bayesian inference [8, 4, 11], or Dempster-Shafer (D-S)
belief functions [1, 14]. Compared with plain probabilities, D-S-based approaches
allow for the representation of higher-order uncertainty (i.e. uncertainty in the
probabilities themselves). However, there has been some confusion regarding the
application of Dempster’s rule of combination [16] which, according to Jøsang, is
mainly due to a misinterpretation of the nature of situations to be modelled [12].
Subjective Logic (SL) addresses this problem and incorporates a wide range of
operators to model different situations. Since we believe that a safety argument
contains deductive aspects (as described in this paper), but also trust discount-
ing relationships for the representation of defeaters [10], and situations of belief
fusion, we adopt SL with its various operators for our work.

SL has also been considered by other authors. Duan et al. [5] build upon the
work of Goodenough et al. [6] by quantifying the Baconian probability as a Beta
distribution and visualising it in Jøsang’s opinion triangle. Yuan et al. [15] pro-
pose an approach closely related to ours where they utilise SL operators to make
formal inferences in an argument. However, whereas we aim to reason about the
overall satisfaction of the safety contract (the relationship between assumptions
and guarantees), they use the approach to formalise different argument types
(e.g. one-to-one and alternative arguments) in the body of an argument. As
such, the two approaches are essentially complementary.

On a more general level, “Assurance 2.0” (henceforth A2.0) has been proposed
[13], a methodological approach that requires assurance cases to be “as deductive
as possible and inductive only as strictly necessary” and suggests three principles
for their assessment: (1) the positive perspective which considers the extent to
which the evidence and overall argument make a positive case to justify belief
in its claims (involving logical soundness and validity), (2) the negative perspec-
tive which involves active search for and resolution of doubts and defeaters, and
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(3) the residual perspective that considers the risk of unresolved doubts and
defeaters. A2.0 provides a useful framework to contextualise our work in this
paper. First, structuring the argument based on the idea of a deduction of guar-
antees from assumptions addresses the positive perspective, in particular logical
validity. Second, a subdivision of the argument into sufficiency and resilience
claims makes an explicit distinction between the positive and the residual per-
spective. Third, using SL opinions to represent individual building blocks of the
argument helps to assess the soundness of the evidence by explicitly representing
belief, disbelief, and uncertainty. And, finally, as shown in [10], a consideration
of different layers of uncertainty and the formulation of trust discounting rela-
tionships between evidences can help to identify and formally express doubts in
the argument and to formulate conservative adjustments of any estimates.

6 Discussion and conclusions

Being able to reason about the uncertainty in a safety argument is an important
prerequisite for increasing the trustworthiness of autonomous system functions.
This, however, is exacerbated by the informal nature of many real-world safety
arguments which is primarily due to a lack of formal underlying semantics. In
this paper, we addressed this problem by viewing the satisfaction of a safety
contract as a conditional deduction operation from assumptions to guarantees.
A formalisation of this idea yields a high-level structure for safety arguments
that allows for automated reasoning about the uncertainty associated with the
guarantees based on the stated assumptions and the available evidence. With
this, we hope to make a contribution towards a more formal treatment of safety
arguments by extending the existing body of knowledge with a novel perspective.

Obviously, many questions remain open and indicate directions for future re-
search. First, we only addressed the very high-level structure of an argument. It
would be interesting to investigate how the idea presented in this paper could be
combined with some of the existing approaches mentioned in Section 5, for ex-
ample Yuan et al.’s work on the formalisation of argument types [15], to support
a safety engineer with the construction of a comprehensive argument. Further-
more, we believe that the formalisation may also be a helpful starting point for
the derivation of ‘defeaters’ which could be attached as assurance claim points
to the argument in the spirit of [9]. As shown extensively by Graydon et al. [7],
no formalism can, by itself, provide guarantees about the computed confidence
and it is crucial to understand hidden implications of the chosen evidence on the
confidence results. We therefore believe that doubts in evidence need to be iden-
tified and also incorporated into the argument as, e.g., addressed in our ongoing
work on uncertainty-driven safety assurance [10, 3].
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