
This is a repository copy of Automated repair of responsive web page layouts.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/230094/

Version: Accepted Version

Proceedings Paper:
Althomali, I., Kapfhammer, G.M. and McMinn, P. orcid.org/0000-0001-9137-7433 (2022)
Automated repair of responsive web page layouts. In: 2022 IEEE Conference on Software
Testing, Verification and Validation (ICST). 2022 IEEE Conference on Software Testing,
Verification and Validation (ICST), 04-14 Apr 2022, Valencia, Spain. Institute of Electrical
and Electronics Engineers (IEEE) , pp. 140-150. ISBN 9781665466806

https://doi.org/10.1109/icst53961.2022.00025

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Automated Repair of Responsive Web Page Layouts

Ibrahim Althomali
University of Sheffield

Gregory M. Kapfhammer
Allegheny College

Phil McMinn
University of Sheffield

Abstract—Responsive Web Design (RWD) is a strategy that
allows developers to create webpages that adjust their layout
according to available screen size. Since modern web applications
must format correctly on the small displays of mobile devices
up to the large displays on desktop computers, and given this
dramatic difference in screen space, Responsive Layout Failures
(RLFs) — visual discrepancies that are only apparent at certain
screen sizes — can easily creep into live production webpages.
These can include, for example, HTML elements protruding off
the edge of the page or into one another as layout space becomes
scarce. This leaves webpages looking unprofessional at best and
non-functional at worst. This paper presents a technique for
repairing RLFs, implemented into a tool called LAYOUT DR. After
detecting an RLF, LAYOUT DR harvests layouts from the page’s
responsive design that are closest to the point of failure, but where
the RLF does not occur. It then transforms these layouts so that
they can be transplanted over the failure, effectively “hiding” the
original RLF from the end user. We evaluated LAYOUT DR on
19 subjects, containing 55 RLFs in total. LAYOUT DR could find a
suitable fix for each of them. When we conducted a human study
of the repairs, 92% of the participants preferred the repaired
version of the page compared to the original containing the RLF.

I. INTRODUCTION

Both the smartphone era and the surging popularity of

tablets and other web-enabled devices with touchscreens has

resulted in a serious challenge for developers and designers:

ensuring that their webpages format correctly on different, ar-

bitrary screen sizes. Since developing multiple static webpage

layouts for a small number of specific devices is no longer

feasible, web developers use Responsive Web Design (RWD)

strategies [24] to formulate a webpage layout that dynamically

adjusts to the amount of space available to render a page,

known as the viewport. However, since responsive web designs

have to accommodate a very broad range of viewport sizes —

from small mobile devices up to large desktop displays —

ensuring that a webpage adapts to all screen sizes and always

formats correctly is a difficult problem. Responsive Layout

Failures (RLFs), or visual discrepancies in the layout of a

responsive webpage, can creep into designs and may not be

noticed until webpages go live, often because they occur at

a few viewport sizes out of a very wide range. RLFs occur

because there is not enough space for aspects of the webpage’s

design to display correctly at a particular viewport size, or

range of sizes. RLFs include, for example, HTML elements

being rendered off the edge of the screen or crashing into one

another and overwriting each other’s content.
Repairing RLFs in responsive pages is a non-trivial problem,

and may involve one or two and up to tens or even hundreds

of HTML elements and CSS properties. Some RLFs may be

fixed by the judicious adjustment of only a few CSS properties

while others may require a significant re-working of the

page’s design before they are completely resolved [27]. This

repair process is complex and potentially time-consuming for

developers, for whom automated assistance is needed. While

there are automated repair approaches for non-responsive types

of presentational failures in webpages, namely cross-browser

issues [20], international presentation failures [10], [21], and

mobile-friendly issues [19], there has been no work (to the

best of our knowledge) on automatically repairing RLFs.

There has, however, been work on detecting problems in

responsive pages. One such tool, called REDECHECK [28],

provides several algorithms for identifying different types of

common RLF present in a responsively designed webpage.

Based on this initial detection process, we propose a tech-

nique for automatically repairing the RLFs discovered. We

implemented this technique into a tool called LAYOUT DR

(responsive layout failure detection and repair, pronounced

“Layout Doctor”). Given an RLF and the range of viewports at

which it occurs, LAYOUT DR sources two layouts either side of

the range not affected by the RLF. It then scales and transforms

them in the failure range to produce two potential “hotfixes”

that the developer can choose from to provide a repair for

the page. This hotfix addresses the symptoms of the RLF,

giving developers time to accurately diagnose the underlying

problem with the HTML and CSS and to then develop a

durable solution to the problem. LAYOUT DR differs from

the aforementioned approaches to other, non-responsive types

of webpage failure repair, in that it uses layouts from other

viewports of the page’s own design, as opposed to a reference

“correct” version of the webpage [10], [20], a formal layout

specification [17], or guidance from usability metrics [21].

We empirically evaluated LAYOUT DR and showed that it

could automatically and reliably created repairs for a wide

range of RLFs found in real responsively designed webpages.

A study with human participants revealed that, in 92% of

the cases, participants preferred the repairs generated by

LAYOUT DR as opposed to the original, buggy version of the

page, suggesting that the hotfixes rarely degrade page layout.

Furthermore, the presented tool never takes more than 40

seconds to produce a repair for any of the studied webpages.

The contributions of this paper are therefore as follows:

1) A technique, implemented into a tool called LAYOUT DR,

that, given a responsive webpage and an RLF, offers a de-

veloper the choice between repair(s) created with the page’s

own design at different viewports (Section III). 2) An empir-

ical study evaluating LAYOUT DR with 19 real responsively

Webpage

Viewport: 680 pixels wide

Webpage

Viewport: 681 pixels wide

Webpage

Viewport: 698 pixels wide

(a) Bower ✓ — Narrower Viewport (b) Bower ✗ — Viewport Protrusion RLF (c) Bower ✓ — Wider Viewport

Webpage

Viewport: 767 pixels wide

Webpage

Viewport: 768 pixels wide

Webpage

Viewport: 1223 pixels wide

(d) MidwayMeetup ✓ — Narrower Viewport (e) MidwayMeetup ✗ — Element Protrusion RLF (f) MidwayMeetup ✓ — Wider Viewport

Fig. 1. Webpages with Responsive Layout Failures (RLFs), visual discrepancies that are only apparent when the page is rendered at certain viewport widths.
For the Bower example, the “r” in the logo protrudes off the right edge of the viewport (part (b)). For MidwayMeetup, the first text input box protrudes into
the second, and its associated button is hidden and no longer clickable (part (e)). Both pages render without issues at narrower and wider viewport widths.

designed webpages involving 55 RLFs, showing that (a) it

reliably fixes those RLFs; (b) compared to the original, buggy

page, humans prefer the repaired ones; and (c) LAYOUT DR

is practical for developers to run, always taking less than

40 seconds to repair the studied RLFs (Section IV).

II. BACKGROUND

Responsive Web Design (RWD) is a design paradigm for

webpages in which the layout of HTML elements adjusts to

accommodate the space available [24]. RWD allows for a web

page to be rendered on a range of different devices with a

comparable user experience — including from the relatively

small screens of mobile phones to larger displays such as those

provided by modern desktop monitors. With RWD, developers

design webpages in consideration of a broad range of viewport

widths, or the amount of space available horizontally to render

the page in a web browser. This is because a properly designed

RWD page adjusts its content to fit in the horizontal constraints

of the browser so that the user does not have to pan the

page back and forth sideways to read and access content.

Importantly, this means that the user should only have to scroll

the page vertically. The typical assortment of viewport widths

a developer must consider ranges from the very small ones

of just 320 pixels wide for a mobile device, up to very wide

widths of 1400 pixels and beyond for larger desktop displays.

RWD utilizes the concepts of fluid grids, flexible media,

and CSS media queries for accommodating different viewport

sizes [24]. Fluid grids allow HTML elements to be arranged

into layouts that adjust in relation to the current viewport size,

while flexible media refer to images or videos that expand

and contract in size according to space available. CSS media

queries allow developers to switch groups of CSS rules on and

off depending on the configuration and size of the browser.

Despite these innovations, and frameworks such as Bootstrap

[3] and more recent alternatives (e.g., Bulma [4], Tailwind-

CSS [8], and WindiCSS [9]) that help developers to create

an RWD page, designing layouts so that they dynamically

adjust to fit each viewport width in a broad range of viewport

sizes is still challenging. Responsive Layout Failures (RLFs)

— visual discrepancies in the layout of an RWD page — are

frequent and find their way onto live sites, as reported by

Walsh et al. [28], who identified five common RLF types:

Viewport Protrusion occurs when elements cannot be accom-

modated within the space of the current viewport and spill

off the edge of the page. An example of this can be seen

with the Bower webpage depicted in Figure 1. At the wider

viewport shown in part (c), the “Bower” title in the masthead

is properly located within the confines of the space of the

page. However, as the viewport narrows in part (b), there is

no longer enough horizontal space, and the title no longer

fits. The “r” protrudes off the edge of the page. Viewport

protrusion potentially forces the end user to pan sideways to

access content, thereby breaking one of the key principles of

RWD. At a narrower viewport width, shown by part (a), the

responsive layout reformats to fit the more confined space.

Element Protrusion occurs when an HTML element is con-

tained within the space of another, but as the viewport width

decreases the child element does not have sufficient space to

accommodate its contents within the constraints of its parent.

As such, the child element protrudes out of its container. An

example of element protrusion is shown by Figure 1(e) with

the MidwayMeetup webpage. At the wider viewport, shown by

part (f), the text box and “Add” button in the left column fit

into the space afforded to it. In part (e), however, there is no

longer enough horizontal space in the column, so the textbox

protrudes out, and the “Add” button is hidden behind another

element. The webpage reformats correctly for tighter screen

sizes with even less horizontal space, as shown by part (d).

Element Collision is when the viewport width reduces such

that elements do not have the required space to accommodate

their contents without being rendered on top of other elements.

Wrapping Failures occur when HTML elements are supposed

to be rendered together on one line (for example, the menu

items in the navigation bar of a page), but as the viewport

width reduces, they can no longer fit side by side, causing

one or more elements to wrap to a new line on the page.

Finally, Small-Range Failures occur when a page’s layout

chaotically changes for a small number of contiguous viewport

widths, often due to off-by-one errors made by developers

when encoding media queries in the CSS of a webpage. For

example, CSS rules pertaining to the media queries @media

(min-width: 768px) and @media (max-width: 768px)

would both be active at a viewport width of 768 pixels, since

the ranges defined by both queries are inclusive. When rules

are switched on that the developer did not intend, the design

of a page can look very erratic for particular viewport widths.

To automatically detect these issues, Walsh et al. [28]

proposed a data structure called the Responsive Layout Graph

(RLG). The RLG tracks the relative alignment of a web-

page’s HTML elements with respect to one another as the

viewport width of the page changes. Walsh et al.’s method

builds the RLG by sampling the layout of a webpage at

intervals throughout a range of viewport widths, leveraging

the Document Object Model (DOM) at each width sampled

to retrieve the coordinates of each HTML element. It employs

a binary search to locate precise viewport widths between

intervals relating to exact points of layout change. Walsh et al.

also proposed algorithms that use the RLG to identify each

of the five common responsive layout failures previously

introduced, reporting the viewport range of the RLF and details

about the elements involved. They implemented all of these

techniques into a tool called REDECHECK [29]. Even though

REDECHECK reliably detects the failures in a responsive page,

a developer must manually fix the CSS problems. That is,

REDECHECK does not automatically repair a reported RLF.

In general, fixing RLFs is a non-trivial problem. Tens or

hundreds of HTML elements may be involved, each with an

individual set of CSS properties that may vary depending

on the viewport width. For some RLFs, only a single CSS

property may need to be adjusted. Other RLFs may have

major implications for the overall design of the page, requiring

significant re-working of the HTML and CSS code [27].

III. AUTOMATED RLF REPAIR WITH LAYOUT DR

This section introduces an automatic responsive layout fail-

ure repair technique, which we implemented into a tool named

“LAYOUT DR” (responsive layout failure detection and repair,

pronounced “Layout Doctor”). The presented technique first

determines whether there are RLFs in a responsive webpage.

If any RLFs are found, it reports their type (according to the

categories defined in Section II) and the RLF range, denoted

{fail
min

. .fail
max

}, where fail
min

is the smallest viewport

width where the RLF occurs and fail
max

is the largest one.

The key idea behind our technique is to harness the webpage

layouts on either side of the failure range as a basis for the

repair. We refer to these layouts as the bordering layouts.

The narrower bordering layout exists at the viewport width

fail
min

−1, while the wider bordering layout exists at the

viewport width fail
max

+1; that is, they are at either side of the

RLF range. From the entire range of viewport widths that the

webpage can be viewed at, the bordering layouts of the failure

represent the ones likely to most closely represent the layout

where the RLF occurred, but without, themselves, exhibiting

the same failure. LAYOUT DR then selects a bordering layout

and extracts the HTML elements. Each viewport width within

the failure range uses a version of this layout that is dynami-

cally scaled to that width using an automatically created CSS

patch that overrides the prior layout behavior of the page.

LAYOUT DR thereby creates a temporary “hotfix” for a live

webpage that can then afford a developer the time needed to

realize a properly engineered patch for the page’s CSS. The

webpages in Figure 1 show the potential merit in our premise.

The narrower and wider viewport widths either side of the

RLF are layouts that could be scaled up or down to fit the

viewport width with the RLF, thus covering over the failure.

In the following, we describe the operation of our technique

in more detail, as summarized by Figure 2, which provides an

overview schematic of its implementation in the LAYOUT DR

tool. As shown by the figure, LAYOUT DR takes a responsive

webpage, and the responsive range of viewport widths it is

designed to be displayed for, {range
min

. .range
max

}.

RLF Detection. Figure 2 shows that our technique begins by

taking a responsively designed page and running it through a

process called RLF Detection, which seeks to find any RLFs

that may be present. For this step, we re-implemented RE-

DECHECK [29] and the RLF detection routines introduced in

Section II. We re-implemented REDECHECK to streamline the

incorporation of its algorithms into our tool, while also giving

us the chance to fix some bugs noted by Althomali et al. [13]

and update its outdated libraries. For example, REDECHECK

uses versions of Selenium to drive Firefox that were released

in 2016; in contrast LAYOUT DR uses a recent release of the

more modern Puppeteer to drive the Chromium browser. RLF

Detection outputs a set of one or more reports for a webpage

and its intended responsive range. Each report refers to a

specific detected RLF, comprising its type (one of Viewport

Protrusion, Element Protrusion, Element Collision, Wrapping,

or Small Range); details about the HTML elements involved

in the RLF; and the RLF range, {fail
min

. .fail
max

}, or the set

of viewports in which the layout failure occurs.

RLF Filtering. The next step of the process, RLF Filtering,

is a manual one that happens outside of the LAYOUT DR

tool. Since RLF detection is prone to false positives, a human

must examine the RLF reports and check whether each RLF

is visibly evident and requires repair. This is because DOM-

based RLF detection, such as that employed by REDECHECK,

RLF Detection

Repair Generation

Patch Sourcing

Patch Generation

Patch Injection

Repair Confirmation

LAYOUT DR
Webpage

May
Contain
RLFs

{range
min

. .range
max

}

Webpage

Repaired
Option 2

Webpage

Repaired
Option 1

RLF
Filtering

Fig. 2. Overview schematic showing the operation of LAYOUT DR.

is particularly prone to a class of false positives known as

non-observable issues — issues that are apparent in the DOM

but which are not visibly evident in the page itself [13]. For

instance, two HTML elements may overlap, as discovered

from checking the coordinates of each element in the DOM,

but if they are both transparent and the content of one does not

overwrite that of the other, the collision of elements will not be

visible to a human looking at the page. Since the focus of this

paper is on RLF repair, we judge that this is not a significant

issue for the presented technique. However, in the future, we

plan to implement techniques that extend REDECHECK to

alleviate these issues in LAYOUT DR, such as VERVE [13],

which applies further visual checks to discern visible RLFs

in these kinds of situations. It is worth noting, however, that

even the VERVE tool is not 100% accurate, so it is inevitable

that some level of manual checking may still be required.

Repair Generation. LAYOUT DR then sets about repairing the

RLF(s), identified by the RLF Filtering step. The four stages

of repair, as shown by Figure 2, are Patch Sourcing, Patch

Generation, Patch Injection, and Repair Confirmation.

Patch Sourcing. The presented technique works to produce

a repair by sourcing a layout from the narrower and wider

bordering layouts at fail
min

−1 and fail
max

+1, respectively.

Each bordering layout must pass LAYOUT DR’s applica-

bility test to ensure it is acceptable for use in a repair.

First, its viewport width must be within the responsive

range, {range
min

. .range
max

}, originally sampled by the fail-

ure detection component. That is, fail
min

−1 ≥ range
min

∧
fail

max
+1 ≤ range

max
. Suppose the responsive range of a

page is 320–1400 pixels, and LAYOUT DR detects an RLF

between 320 and 600 pixels wide. As the layout at the viewport

of 319 pixels wide is not part of the original responsive

range (i.e., fail
min

−1 < range
min

), this bordering layout is

not used, and patch generation from the narrower bordering

layout (fail
min

−1) does not proceed. Equally, if the failure

occurred at the viewports between 1000 and 1400 pixels

wide, the layout at the viewport width at 1401 pixels would

similarly not be considered since fail
max

+1 > range
max

.

While, practically, the layout at 319 pixels could form a

viable repair, the responsive range of the page inputted to our

technique is considered to be the range of valid viewports at

which it may be viewed. Furthermore, the cut-off must be

established somewhere, since even if range
min

=1, the layout

at 0 pixels wide would not be usable by LAYOUT DR.
The second test is that a bordering layout must be free of

a transformed version of the RLF under repair. For example,

an element protrusion failure may transform into a viewport

protrusion failure if, at the narrower bordering layout, an

element protrudes not only out of its container, but also out of

the viewport itself. Our tool, and the REDECHECK tool before

it, will report these as two distinct RLFs with two different

ranges. Therefore, the patch sourcing element of LAYOUT DR

performs a check on the DOM of the bordering layout —

depending on the type of failure — to ensure that it is suitable

for use as a patch. For example, when handling element

protrusion, LAYOUT DR checks that in the bordering layout,

the child element does indeed reside inside its containing

element, and thus has not spilled out of the viewport as well.
Assuming one or both of the bordering layouts is a viable

layout according to the two aforementioned criteria, the tech-

nique proceeds to generate one or two patches for the failure. If

neither is suitable, then LAYOUT DR fails to produce a repair.

Patch Generation. Patch generation begins by collecting the

CSS from each bordering layout (if applicable), rescaling it,

and applying it to all viewports in the failure range. Figure 3

illustrates the stages of the patch generation process with

wireframe webpage layouts, starting with a page containing

an RLF (part (a) of the figure), where the element marked “D”

collides with the element marked “E”. Using the two bordering

layouts (the narrower shown in part (b) of the figure, the wider

in part (f)), our approach generates two possible repairs for the

RLF that the developer can choose from to fix the page.
To produce a repair from a bordering layout, the tool

drives a browser to open the webpage with the viewport

set at that layout’s particular viewport width, and then ex-

tracts the CSS properties of all of its elements. These CSS

properties are a result of the browser resolving all CSS

rules and property settings defined in the webpage’s CSS

files and through inline style HTML elements. To do this,

LAYOUT DR embeds JavaScript code into the page to invoke

the getComputedStyle() method on all elements of the

page. This particular method returns all possible CSS settings

(including computed positional and dimensional values in

pixels) associated with each HTML element in the page after

the browser applies all CSS styles from the webpage’s CSS

style files, HTML style elements, and any relevant browser

default style settings. Starting at the root element of the DOM

(i.e., the html element), LAYOUT DR traverses the DOM to

capture all the CSS properties of each element in the tree. The

CSS snippet in Figure 3(k) shows CSS properties of some of

the HTML elements of the wider bordering layout in 3(f).
Since LAYOUT DR now has all the CSS properties needed

to reproduce the layout at another viewport width, it proceeds

to generate a CSS patch that can be applied to the page. As

a first step, it creates a CSS selector for each HTML element

in the bordering layout that will become part of the repair, so

Webpage

850 pixels wide

A B C DE

- - - - - - -

- - - - - - -

(a) Page with RLF

Webpage

799 pixels wide

Dropdown ∇

- - - - -

- - - - -

(b) Narrower bordering layout

Webpage

850 pixels wide

Dropdown ∇

- - - - -

- - - - -

(c) CSS copied

Webpage

850 pixels wide

- - - -

(d) Layout scaled

Webpage

850 pixels wide

Dropdown ∇

- - - - -
(e) Layout anchored

Webpage

901 pixels wide

A B C D E

- - - - - - -

- - - - - - -

(f) Wider bordering layout

Webpage

850 pixels wide

A B C D E

- - - - - - -

- - - - - - -

(g) CSS copied

Webpage

850 pixels wide

A B C D E

- - - - - - -

- - - - - - -

(h) Layout scaled

Webpage

850 pixels wide

A B C D E

- - - - - - -

- - - - - - -

(i) Layout anchored

...

D {
width: 80px;

height: 80px;

...

}
E {
width: 80px;

height: 80px;

...

}
...

(j) CSS of 850 pixels wide

...

D {
width: 100px;

height: 100px;

...

}
E {
width: 100px;

height: 100px;

...

}
...

(k) CSS of 901 pixels wide

...

@media (min-width: 800px) and (max-width:900px)

{
D {
width: 100px; !important;

height: 100px; !important;

...

}
E {
width: 100px !important;

height: 100px !important;

...

}
...

}
...

(l) Layout applied to failure range

...

@media (min-width: 800px) and (max-width:900px)

{
D {
width: 100px !important;

height: 100px !important;

...}
...

}
...

@media (min-width: 850px) and (max-width:850px)

{
html {
transform: scale(850/901) !important;

transform-origin: top left !important;

}
}
...

(m) Scaling and anchoring added to patch

Fig. 3. A wireframe example of the steps involved in producing repair, with CSS snippets for the patch generated using the page’s wider bordering layout.

that the properties can be reapplied to the same element they

were extracted from. For this, our technique uses the XPath

of each element to generate a unique CSS selector which

will encompass all the properties of an individual element

in the patch. Since the CSS properties in the patch will be

competing with others from the code base of the webpage,

the !important flag is added to all properties in the patch

to override any competing declarations. With the selectors

set to target each element, the tool must now target the

viewports for which the patch should take effect. Otherwise,

the patch will be applied to all viewports. To restrict the

patch to the failure range, the selectors and their properties are

encapsulated within a media rule spanning the failure range.

These modifications to the CSS are demonstrated by part (l) of

Figure 3, with the failure range appearing in the media query

segment (the line beginning “@media. . . ”) as 800–900 pixels.

Without further improvements to the patch, the webpage

will cease to be responsive where the patch is applied. This is

because the patch contains absolute positional values (i.e., any

CSS property measured in pixels) specific to a single viewport

— the viewport width of a particular bordering layout — and

need adaptation to “fit” into a smaller viewport size if the

wider bordering layout is under adaptation, or seamlessly use

all the space if it is the narrower layout. To scale the layout

to occupy the full viewport width and nothing more or less,

our technique uses the scale() CSS method in conjunction

with the transform CSS property. The transform property

modifies the coordinates of the associated element to rotate,

scale, skew, or translate from its original coordinates. The

technique uses the scale() method to scale an element’s

coordinates to be smaller or larger than the originals, resulting

in a zoom effect. Since the application of this property and

method on an element exceeds the element itself and affects

all descendant elements in the DOM tree, the tool applies the

scale() property on the root element of the DOM, the html

element, to scale all elements of the layout appropriately. This

scale value is calculated based on the ratio of the browser’s

“current” viewport to the bordering layout viewport, to make

the patch itself, when applied to the webpage, responsive.

These adjustments are shown by Figure 3(m). For the example

viewport width of 850 pixels, elements are scaled with the

amount 850/901 (i.e., this specific repair viewport width,

divided by the width of the bordering layout used to generate

the patch, 901 pixels). The full patch contains more similar

declarations for the other viewport widths in the RLF range.

Although our technique scales the bordering layout using

the transform property, the scaled layout transformation for

the wider bordering viewport is anchored to the center of the

original coordinates. The result is a webpage with empty space

to the top, right, bottom, and left of the page. Parts (d) and (h)

illustrate the result of applying the scale() method on the

example layout from parts (c) and (g) respectively. The result

is a scaled down version of the layout that shrinks to the center.

Worse than the empty space is the portion of the page that

Webpage

Viewport: 767 pixels wide

Webpage

Viewport: 767 pixels wide

Webpage

Viewport: 767 pixels wide

(a) Original webpage containing RLF ✗ (b) Repair using the narrower bordering layout ✓ (c) Repair using the wider bordering layout ✓

Fig. 4. Two repairs produced by LAYOUT DR for the DjangoREST subject as part of this paper’s empirical evaluation.

will not be visible without scrolling horizontally and breaking

one of the responsive design principles. To resolve this issue,

LAYOUT DR also adds the transform-origin CSS property

to the patch to position the scaled layout appropriately at

the top-left of the browser window. This property identifies

the position around which a transformation is applied using

the transform property. This addition is shown as the last

declaration in the snippet of the patch shown by part (m) of

the figure, anchoring the scaled layout to the proper location,

as seen in parts (i). Along with the repair generated from the

narrower bordering layout, these two final repairs form two

options that the developer can use to fix the webpage.

Patch Injection. LAYOUT DR proceeds to inject each patch

into the webpage. LAYOUT DR achieves this by creating a

style element that contains the CSS code of the patch and

attaches it to the end of the DOM tree. On refreshing the

page, the browser then uses the additional CSS comprising

the patch to render the scaled bordering layout at viewports

within the original failure range. The patch is then assessed

by LAYOUT DR in the next stage, Repair Confirmation.

LAYOUT DR then removes the style element from the page.

Repair Confirmation. Re-using the RLF detection algorithms,

LAYOUT DR checks the RLF range of the repaired page to

confirm that the repair has successfully removed the original

responsive layout failure. If both bordering layouts led to

successful patches, the developer may pick the one to use.

Otherwise, if there was only one successful patch, then LAY-

OUT DR applies it by default to the final page. Figure 4 gives

the DjangoREST subject used in the evaluation. Part (a) shows

obvious visual discrepancies, while parts (b) and (c) show two

repairs produced by LAYOUT DR, with patches respectively

sourced from the narrower and wider bordering layouts.

IV. EVALUATION

To evaluate Section III’s technique, we implemented it into

the LAYOUT DR tool and applied it to 19 webpages that

contained a total of 55 RLFs. Since the first author’s thorough

visual investigation always confirmed that LAYOUT DR was

successful at automatically fixing each RLF, we designed the

empirical study to answer these three research questions:

RQ1: Which bordering layout is likely to result in a repair?

This RQ aims to evaluate how effective LAYOUT DR is at

repairing failures in responsive webpages, investigating which

bordering layout (i.e., the narrower bordering layout or the

wider bordering layout) tends to result in successful repairs.

RQ2: Do humans prefer the repaired version of the webpage

produced by LAYOUT DR compared to the version exhibiting

the failure? Along with determining if LAYOUT DR’s repairs

are acceptable to humans viewing the webpage, this RQ also

investigates whether humans prefer LAYOUT DR’s repairs at

the narrower bordering layout or the wider bordering layout.

RQ3: How long does LAYOUT DR take to generate patches?

This RQ intends to find out if the time taken by LAYOUT DR

is reasonable for developers who wish to apply it in practice.

Tool and Experimental Runtime Environment. We imple-

mented LAYOUT DR in JavaScript and ran it using Node

version 14.15.4 with NPM version 6.14.10 installed on a

workstation running the 64-bit version of the Ubuntu 20.04.2

operating system. The workstation had 16GB of RAM and

an Intel Core i7-4720HQ processor. LAYOUT DR also used

Puppeteer version 4.0.1, a Node library with an API to control

a Chromium browser that we configured to run in headless

mode, with a fixed viewport height of 1000 pixels. To as-

sess LAYOUT DR’s effectiveness at producing and confirming

patches for the viewports of mobile devices up to desktop

monitors, we set a page’s responsive range to 320–1400 pixels.

Subjects. To answer the RQs we needed a subject set of web-

pages containing RLFs for our technique to repair. To compile

our subject set, we began with the 26 webpages studied by

Walsh et al. [28] and available in their online repository [6],

which contains examples of responsive webpages in which

their REDECHECK tool was able to find real examples of

RLFs. To this we added further webpages harvested from the

web. In particular, we sought to find examples of RLFs in the

websites of open source tools, using the search terms “open

source software” and “top open source software”, while also

manually searching for webpages linked from the repositories

of software with high numbers of stars hosted on GitHub.

We used GNU Wget version 1.20.3 to download all candidate

webpages. and ran LAYOUT DR with these examples and

studied the detected RLFs. As part of the necessarily manual

RLF Filtering phase (see Section III), we discarded RLF

reports for which we could not see a visual discrepancy in the

layout of the page. LAYOUT DR’s detection routines are based

on REDECHECK, which is DOM-based, and therefore prone

to reporting non-observable issues, a prevalent form of false

positive [13]. For instance, two HTML elements may overlap,

as discovered from the DOM, but if they are both transparent

and the content of one does not overwrite that of the other, the

collision of elements will not be visible to a human looking

at the page. Since the LAYOUT DR tool is primarily focussed

on repair, this is not a major issue. However, in the future, we

intend to implement the techniques that extend REDECHECK

to alleviate these issues, such as VERVE [13], which applies

extra visual checks to discern these kinds of situations. We

further discarded reports when we found a visual “disturbance”

that did not significantly influence the page in a way that a

human developer would want to repair. An example of this is

when there is not enough horizontal space to fit every social

media icon side-by-side in the footer of the page, with one of

the icons wrapping to the new line, thus triggering a wrapping

RLF. However, since the icons are still centered, this wrapping

behavior is likely not worthy of a developer’s further attention.

Only considering the definite and visually evident RLFs

resulted in a total of 55 from 19 webpages overall, comprising

9 pages from Walsh et al.’s original subject set and 10 unique

to this paper. Table I lists these webpages and the RLF counts,

revealing that these pages vary in their size and complexity and

thus form a diverse subject set suitable for this study.

Methodology. To answer RQ1, we ran the Repair Generation

stage of LAYOUT DR on the 19 webpages. We recorded

the bordering viewport layouts (i.e., narrower and/or wider)

that it used to generate repairs (i.e., passed both the tool’s

applicability tests and its automated repair confirmation check

following the repair’s creation). The first author then visually

inspected each repair to check that (a) it had correctly removed

the original RLF; and (b) had not introduced more RLFs.

To determine whether the repairs were acceptable to human

users in general, and to answer RQ2, we conducted a human

study on Amazon Mechanical Turk [1]. We designed a web-

based questionnaire where participants were asked to judge

the repairs. The basis of each question is an RLF that was

fixed by LAYOUT DR, with a repair generated from both the

narrower and wider bordering layout. The questionnaire asked

participants to compare an image of the original webpage

containing the RLF and images of each of the two repairs,

and to select which version of the page they prefer in each

case. To maintain as much authenticity as possible within

the scope of the questionnaire, we did not scale the snapshot

images of the different webpage versions, presenting images

that were the same width as the originals. Since it was not

TABLE I
SUBJECT WEBPAGES USED IN THE EXPERIMENTS

In this table, #RLFs is the number of RLFs found in the subject, #HTML is the number

of HTML elements on the page, and #CSS is the number of CSS properties for each of

those elements. Note that a subject may no longer be available in its studied form at the

URL listed — please refer to our replication package for all of a subject’s details [7].

Subject Original URL #RLFs #HTML #CSS

3MinuteJournal 3minutejournal.com 4 80 5499
Ardour ardour.org 2 222 3774
Bottender bottender.js.org 5 243 2202
Bower bower.io 1 370 844
BugMeNot bugmenot.com 1 42 658
ConsumerReports consumerreports.org 7 1042 8005
Django djangoproject.com 1 242 4732
DjangoREST django-rest-framework.org 1 610 3787
Duolingo duolingo.com 1 856 4260
ElasticSearch elastic.co/elasticsearch 2 1243 21467
Honey joinhoney.com/install 1 461 7903
HotelWiFiTest hotelwifitest.com 1 359 6746
MantisBT mantisbt.org 3 247 7731
MarkText marktext.app 15 560 1890
MidwayMeetup midwaymeetup.com 1 86 4147
OrchardCore orchardcore.net 5 234 6352
PepFeed pepfeed.com 1 343 7276
Selenium selenium.dev 1 286 4980
WillMyPhoneWork willmyphonework.net 2 782 6576

Total 55 8308 108829

possible to present whole webpages in their entirety without

vertical scrolling, we presented the images within a frame, so

that participants could scroll around the image as they would

a normal webpage in a browser window. The questionnaire

presented each image in a tab, allowing participants to flip

between tabs, comparing each image. When the RLF was not

at the top of the page, the questionnaire would present the

image automatically scrolled vertically to the position of the

failure, so that each version of the page could be compared

directly by switching tabs. Finally, if a participant’s screen was

not big enough to accommodate the width of the snapshot

and the questionnaire, the questionnaire displayed an error

message. Users needed to have a minimum screen resolution

of 1400×780 to accommodate both webpage screenshots and

the surrounding GUI elements of the questionnaire itself.

We used 20 RLFs from the 14 webpage subjects for the

human study, which were specifically the RLFs for which

LAYOUT DR successfully generated repairs for both the nar-

rower bordering layout and wider bordering layout of the

RLF. So as to mitigate the potential effects of fatigue af-

fecting participants, we limited each questionnaire to only ten

questions. Each questionnaire for each participant featured ten

questions randomly selected from the overall pool of 20. We

terminated the availability of the study on Mechanical Turk

after we had reached over 100 responses. Since Mechanical

Turk necessitates that we remunerate participants, we paid

them $1 for a median of just under 5 minutes of their time to

complete the questionnaire. The amount we paid was similar

to other studies in software engineering of a similar style and

length (e.g., [19], [32]). As part of controlling the quality of

the data from the survey, we added code to the web-based

questionnaire to monitor the number of clicks on each of the

TABLE II
BORDERING LAYOUTS FORMING REPAIRS

This table records the number of RLFs for a subject that has a particular
type of bordering layout (N, W, N|W, and N&W) used by LAYOUT DR for
a repair. The second figure (in parentheses) is the number of those layouts
manually verified as RLF-free (including the non-presence of further RLFs).

N and W count RLFs with applicable narrower and wider bordering layouts,
respectively; N&W counts RLFs with an applicable narrower and wider
layout, N|W counts RLFs with an applicable narrower or wider layout.

Subject #RLFs N W N&W N|W

3MinuteJournal 4 2 (2) 4 (4) 2 (2) 4 (4)
Ardour 2 0 (0) 2 (2) 0 (0) 2 (2)
Bottender 5 0 (0) 5 (1) 0 (0) 5 (1)
Bower 1 1 (1) 1 (1) 1 (1) 1 (1)
BugMeNot 1 0 (0) 1 (1) 0 (0) 1 (1)
ConsumerReports 7 2 (2) 7 (7) 2 (2) 7 (7)
Django 1 0 (0) 1 (1) 0 (0) 1 (1)
DjangoREST 1 1 (1) 1 (1) 1 (1) 1 (1)
Duolingo 1 1 (1) 1 (1) 1 (1) 1 (1)
ElasticSearch 2 1 (1) 2 (2) 1 (1) 2 (2)
Honey 1 1 (1) 1 (1) 1 (1) 1 (1)
HotelWiFiTest 1 1 (1) 1 (1) 1 (1) 1 (1)
MantisBT 3 2 (1) 3 (3) 2 (1) 3 (3)
MarkText 15 3 (2) 15 (2) 3 (0) 15 (4)
MidwayMeetup 1 1 (1) 1 (1) 1 (1) 1 (1)
OrchardCore 5 0 (0) 5 (5) 0 (0) 5 (5)
PepFeed 1 1 (1) 1 (1) 1 (1) 1 (1)
Selenium 1 1 (1) 1 (1) 1 (1) 1 (1)
WillMyPhoneWork 2 2 (2) 2 (2) 2 (2) 2 (2)

Total 55 20 (18) 55 (38) 20 (16) 55 (40)

three tabs involving either the RLF or one of the repairs. To

account for the possibility of participants voting for an option

without viewing all of them first, we filtered the results to show

only the responses of the participants who clicked on each of

the tabs at least once, firing the JavaScript load event for each

of the webpage images in the questionnaire application.

To answer RQ3, we recorded the time taken, in milliseconds,

by LAYOUT DR in the Repair Generation phase on each of

the 19 webpage subjects in Table I. Finally, to obtain a reliable

average, we repeated these timing experiments 10 times.

V. ANSWERING THE RESEARCH QUESTIONS

Answer to RQ1. For each RLF listed in Table II, we

recorded whether each bordering layout formed the basis of

LAYOUT DR’s repair. Table II also presents how many repairs

pass the first author’s visual checks for being free of (a) the

original RLF and (b) any further RLFs that may have been

inadvertently copied into or created as part of the repair.

For all RLFs, LAYOUT DR could always use wider bor-

dering layout to generate a repair. However, for the narrower

bordering layout only 20 (36%) of the original 55 narrower

layouts passed the applicability test and were subsequently

used by LAYOUT DR to generate a repair. For the 35 RLFs

with bordering layouts that failed the applicability test, 17 had

a viewport range starting at 320 pixels wide, for which the

narrower bordering layout was excluded by LAYOUT DR. For

the other 18 RLFs, the failure transformed to a different RLF

type at the narrower viewport and so were also inappropriate,

thus causing LAYOUT DR to discard them as patch sources.

Further manual inspection revealed that not all repairs were

free of interference from additional RLFs. In each case, this

was because of additional RLFs in the page that happened

to be present in the bordering layout used as part of the

repair. LAYOUT DR repairs each RLF independently; it does

not currently account for other RLFs detected/filtered prior to

the repair process. (We leave this for future work, while RQ2

addresses whether these repairs were acceptable to human par-

ticipants in general.) However, as Table II shows in the “N|W”

column, 40 of the 55 RLFs had at least one viable repair that

was also free of some other RLF. The majority of these repairs

were sourced from the wider bordering layout. RLFs for which

neither repair was free of additional RLFs were found only in

3 of the 19 subjects — Bottender, MantisBT, and MarkText

— the subjects that had some of the higher numbers of RLFs

detected in them, and therefore are prone to this issue.

Conclusion for RQ1. The wider bordering layout is more

likely to result in a repair than the narrower bordering layout.

Answer to RQ2. Table III gives the 20 RLFs and the 14

webpage subjects from which we drew them. They are, specif-

ically, the RLFs from Table II where LAYOUT DR generated

two repairs sourced from each of the narrower and wider

bordering layouts. This table shows that the set of RLFs

includes failures of each of the different types identified in

Section II, demonstrating their suitability for the human study.
In total, 101 participants took our questionnaire. As ex-

plained in Section IV, we disregarded individual answers when

the participant did not view each image (i.e., the original page

containing the RLF and the two repairs generated from each

bordering layout) before responding. We hereafter refer to

non-disregarded answers as “votes” for a particular version

of a webpage — either the original or a particular repair —

only accepting a vote when the participant did view each

questionnaire tab before answering. Overall, the participant

responses to our questionnaire resulted in a total of 738 votes.
Table III shows an overwhelming preference for one of

the repairs compared to the original version of the webpage

containing the RLF. For all RLFs, the number of votes for the

original page was small, and never greater than either repair.

This result suggests that LAYOUT DR effectively produces a

hotfix that does not degrade a webpage, giving developers

extra time to diagnose and resolve a responsive layout failure.
This was true even though, as noted in our answer to

RQ1, a few of bordering layouts themselves involved other

RLFs. Four of these RLFs involved repairs that had further

visible RLFs. The two Viewport Protrusion RLFs for MarkText

had further RLFs appearing in the repair generated from the

wider bordering layout; while the second wrapping RLF for

MantisBT had a further RLF in the repair generated for the

narrower bordering layout. For these, participants voted for

the repairs generated from the alternative layout, except for the

second Viewport Protrusion RLF for MarkText. Here, the RLF

in the wider bordering layout appears to have not been noticed

or regarded as insignificant by the participants. Both repairs

for the Element Protrusion RLF of MarkText had further RLFs.

TABLE III
NUMBER OF VOTES FOR THE ORIGINAL AND REPAIRED VERSIONS FOR

EACH SUBJECT AND RLF FEATURING IN THE HUMAN STUDY

In this table, “O” is the number of votes for original page involving the RLF,
“N” and “W” are votes for the repairs generated from the narrower and wider
bordering layouts, respectively, “N+W” is the sum of votes for both repairs.

In terms of RLF types, “EC” is Element Collision, “EP” is Element Protrusion,
“SR” is Small Range, “VP” is Viewport Protrusion, “W” is Wrapping.

Subject (RLF Type) O N W (N+W)

3MinuteJournal (EP) 3 7 25 (32)
3MinuteJournal (VP) 2 22 12 (34)
Bower (VP) 3 27 2 (29)
ConsumerReports (VP) 5 33 2 (35)
ConsumerReports (EP) 2 9 20 (29)
DjangoREST (VP) 3 6 29 (35)
Duolingo (VP) 4 8 25 (33)
ElasticSearch (EC) 6 9 21 (30)
Honey (EC) 3 11 27 (38)
HotelWiFiTest (VP) 1 22 10 (32)
MantisBT (W) 4 5 40 (45)
MantisBT (W) 4 10 26 (36)
MarkText (VP) 2 20 12 (32)
MarkText (EP) 6 20 8 (28)
MarkText (VP) 0 12 21 (33)
MidwayMeetup (EP) 1 15 24 (39)
PepFeed (VP) 3 20 10 (30)
WillMyPhoneWork (EC) 5 14 22 (36)
Selenium (W) 2 7 27 (34)
WillMyPhoneWork (SR) 1 15 23 (38)

Total 60 292 386 (678)
(8%) (40%) (52%) (92%)

Here also, the page with the original RLF was not the preferred

choice, since the repair presented one less visual issue.

Overall, the wider bordering layout was the preferred source

of the repair, scoring the most votes for 13 of the 20 RLFs.

We surmise this is because the wider layout is often most

similar to the one with the failure, while the narrower layout is

often a scaled-up “mobile” view of the webpage. We manually

analyzed the repairs to ascertain why participants may have

opted for the narrower repair in the instances they did, and

found that in four cases (i.e., the Viewport/Element Protrusions

for 3MinuteJournal, Bower, ConsumerReports, and MarkText)

the wider layout solved the protrusion but pushed elements

up to the edge of the viewport or their container, making the

narrower repair more appealing. Figure 1 evidences this issue

for the Bower RLF. Although the “r” in the logo is no longer

clipped in part (c) — and the RLF does not occur — it is still

on the right edge of the viewport boundary. For the remaining

cases, the wider layout was scaled down to the point that the

text was hard to read, which again makes the narrower repair

more appealing. Future work needs to create methods for better

taking into account these preferences of participants.

Conclusion for RQ2. Participants preferred a repaired ver-

sion of the webpage generated by LAYOUT DR over the

original page containing the RLF. Generally, participants

preferred the repairs created from the wider bordering layout

over those originating from the narrow bordering one.

Answer to RQ3. Figure 5 plots the time taken to repair the

RLFs listed in Table II. The plot shows that the time taken

never exceed 40 seconds (i.e., for RLFs of the largest subject

in terms of HTML elements, ElasticSearch) making the repair

approach practical to use. It reveals a positive relationship

between time and the number of HTML elements in the page

(Spearman’s correlation coefficient, ρ, is 0.81). Our timing

analysis did not reveal a practically significant difference

between the bordering layout used (i.e., narrower or wider) nor

between RLF type, nor a strong correlation with the number

of CSS properties. This is an intuitive result, since our method

involves copying layouts pertaining to all the page’s HTML

elements, for which not all CSS properties defined by the page

may be in active use for the particular viewport width used.

Conclusion for RQ3. Repairs by LAYOUT DR took no

longer than 40 seconds for the subject webpages studied,

which is a very practical amount of time for developers to

apply the tool in practice. The time taken is related to a

page’s complexity in terms of its number of HTML elements.

Threats to Validity. One threat to the validity of this paper’s

results is the extent to which they generalize to other web-

pages. We mitigated this by selecting webpages of a range of

sizes. Table I shows that our subjects ranged in complexity

from 42–1,243 HTML elements, and having between 658–

21,467 CSS rules. The functionality and design of these

webpages also varies, including online language learning (i.e.,

Duolingo) to browser automation tools (i.e., Selenium). An-

other potential threat to validity is the RLFs used as part of our

study. These were found by re-implementing the algorithms of

the REDECHECK tool, and were manually checked to remove

false positives. This intrinsically manual, yet necessary, pro-

cess was a straightforward one in which we discarded any

reports of RLFs that were not visible or did not significantly

impact the page — and were therefore unsuitable for our

study. Finally, we attempted to avoid any potential subjectivity

associated with confirming LAYOUT DR’s repair(s) for each

RLF by having the first author verify them with a thorough

visual inspection and asking humans to judge the repairs.
There are also threats to the validity of the results from the

human study. We only asked the participants to pick between

the orginal, defective webpage and the repairs generated by

LAYOUT DR, aiming to confirm that the hotfixes do not

degrade a page’s layout. We did not compare LAYOUT DR’s

repairs to alternatives created by tools like XFIX or IFIX

because they do not automatically repair responsive layouts.
Another human study threat is the selection of participants.

We used Amazon Mechanical Turk [1] to recruit anonymous

participants from a relatively large pool. To ensure authentic

results, we discarded any questionnaire responses if the par-

ticipant had not clicked on each webpage image in order to

assess the layout of each of the particular options provided.

Another threat involves the devices on which participants

viewed the study’s webpages. To ensure that participants used

a device with a display that correctly rendered each responsive

page at the required viewport width in a frame of the overall

questionnaire page, the system showed an error message if the

participants’s resolution was below 1400×768 and prevented

10

20

30

0 250 500 750 1000 1250

Number of HTML elements

T
im

e
 t
o

 r
e

p
a

ir
 (

s
e

c
o

n
d

s
)

Fig. 5. Number of HTML elements in a webpage compared to its repair time.
In this plot the blue goodness-of-fit line has an R

2 value of 0.62.

them from proceeding onto the questions. To mitigate threats

regarding differences in participants’ web browsers, we dis-

played the original webpages and their repairs as static, yet

scrollable, images. Even though this meant that people could

not interact with the webpages, this was not necessary as the

study’s goal was for participants to evaluate page layout.

Finally, there are validity threats in the implementation of

the LAYOUT DR tool itself, which may contain defects. We

mitigated this by ensuring that we wrote unit tests during its

development, and manually checking all results. To support the

replication of our results and the availability of our tool set,

we have made our scripts, tool, and other artefacts associated

with this paper’s study available in a replication package [7].

VI. RELATED WORK

Detecting different types of presentation failures in web

applications is a topic that has been extensively explored in

the literature, including cross browser issues (XBIs) [15], [14],

[25], a type of presentation failure that occurs when a web

page is rendered with one particular browser, but is free of

failures with at least one other browser; and international-

ization presentation failures (IPFs) [11] — layout issues that

arise from the translation of a web page due to differences

in the space occupied by translated text compared to text in

the page’s original language. There have also been methods

for detecting generalized presentation failures by comparing

images of intended layout (e.g., mockups provided by a

graphic designer) with actual layout in a web application [18],

[23] and through the use of verification methods that require,

for example, a developer to provide a layout specification [16].

For responsively designed web pages, Walsh et al. presented

two versions of the REDECHECK tool, one that works to

identify regressions between two consecutive versions of a

webpage [30], [31] and one that checks for layout failures

according to the implicit oracles reviewed in Section II.

Furthermore, Ryou et al. [26] proposed VFDETECTOR, which

also finds responsive layout failures, including those triggered

by human interaction due to the incorporation of dynamic

elements on the page coded with CSS and/or JavaScript.

While there has been much work on detecting presentation

failures, there has been comparatively less work on automated

approaches to repairing them. Mahajan et al. proposed a suite

of tools for fixing different types of presentation failures.

XFIX [20] implements a search-based approach for automati-

cally repairing XBIs. IFIX [21], [22] also used a search-based

technique for repairing IPFs. Meanwhile, Alameer et al. [10]

took a constraint solving approach to the same problem.

Finally, MFIX [19] patches webpages so that they passed

“Mobile Friendly” tests (e.g., those implemented in tools by

Google [5] and Microsoft [2]) designed to rate web pages

based on their suitability for rendering in a mobile browser

(e.g., font sizing and “tap target” spacing). Jacquet et al. [17]

also presented an approach that uses linear programming to

repair layout failures such as element protrusions, overlaps,

and misalignment. Their technique requires a web developer

to furnish a constraint specification of the desired layout of the

page. Moreover, it only appears to work with a webpage’s lay-

out at a fixed viewport width and, in contrast to LAYOUT DR,

is therefore unsuitable for repairing responsive webpages.

All of the repair techniques discussed in this section tackle

specific types of presentation failures. None of them, however,

tackle RLFs as does this paper. Another key difference be-

tween the technique presented in this paper and others is where

the “oracle” information comes from that guides or drives the

repair. For XFIX, it is the “correct” webpage rendering in the

reference browser. For IFIX, it is the original, untranslated,

webpage rendering. For MFIX, it is the information supplied

by mobile-friendliness test tools; while for the approach of

Jacquet et al. [17], it is the constraint specification describing

the correct layout of the page. For LAYOUT DR, presented in

this paper, the repair originates from renderings of the same

page at viewport widths either side of the range of an RLF.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a technique, implemented in a tool

called LAYOUT DR, that repairs layout failures in responsive

webpages. The tool “hotfixes” the page, meaning that, al-

though the repair is not necessarily a suitable long-term repair,

it addresses the symptoms of the original failure so that it

cannot be “seen” by users of the page. The presented approach

automatically generates a worthwhile fix, buying a developer

time to diagnose and address issues appearing on live sites,

which is a time-consuming and challenging process that may

involve changes to many HTML elements and CSS properties

or even necessitate a partial re-design of the responsive page.

Since the human study revealed that 92% of the participants

preferred the repaired version of a webpage compared to the

original one containing the RLF, we plan to improve LAY-

OUT DR as part of future work. For instance, we will provide

further automatic support to the developer in identifying and

fixing the particular components involved in the RLF. We also

plan to further extend the presented approach by strengthening

its RLF detection capability through the incorporation of

ideas from tools such as VERVE [12], [13], thereby providing

support for identifying RLFs that are not yet visually evident

in a page. Future work will also provide support for repairing

overlapping RLFs, in which both bordering layouts for a

particular RLF involve some other, further RLF, detected for

the page. Ultimately, the combination of these innovations with

the efficient and effective baseline established by the current

version of LAYOUT DR will result in a complete solution to

automatically repairing responsive layout faults in webpages.

REFERENCES

[1] Amazon Mechanical Turk. Online: https://www.mturk.com/.
[2] Bing Mobile Friendliness Test Tool. Online: https://www.bing.com/w

ebmaster/tools/mobile-friendliness.
[3] Bootstrap. Online: https://getbootstrap.com.
[4] Bulma CSS Framework. Online: https://bulma.io.
[5] Google Mobile Friendliness Test Tool. Online: search.google.com/test

/mobile-friendly.
[6] ReDeCheck tool and ISSTA results archive. Online: http://redecheck.or

g/issta17.
[7] Replication package for this paper. Online:

https://bitbucket.org/responsiverepair/replicationpackage.
[8] TailwindCSS. Online: https://tailwindcss.com.
[9] Windi CSS. Online: https://windicss.org/.

[10] Abdulmajeed Alameer, Paul T Chiou, and William GJ Halfond. Ef-
ficiently repairing internationalization presentation failures by solving
layout constraints. In International Conference on Software Testing,

Verification and Validation (ICST 2019), pages 172–182, 2019.
[11] Abdulmajeed Alameer, Sonal Mahajan, and William GJ Halfond. De-

tecting and localizing internationalization presentation failures in web
applications. In International Conference on Software Testing, Verifica-

tion and Validation (ICST 2016), pages 202–212, 2016.
[12] Ibrahim Althomali, Gregory M. Kapfhammer, and Phil McMinn. Auto-

matic visual verification of layout failures in responsively designed web
pages. In International Conference on Software Testing, Verification and

Validation (ICST 2019), pages 183–193, 2019.
[13] Ibrahim Althomali, Gregory M. Kapfhammer, and Phil McMinn. Au-

tomated visual classification of DOM-based presentation failure reports
for responsive web pages. Software Testing, Verification and Reliability,
31(4), 2021.

[14] Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. Cross-
Check: Combining crawling and differencing to better detect cross-
browser incompatibilities in web applications. In International Con-

ference on Software Testing, Verification and Validation (ICST 2012),
pages 171–180, 2012.

[15] Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. WebD-
iff: Automated identification of cross-browser issues in web applications.
In International Conference on Software Maintenance (ICSM 2010),
pages 1–10, 2010.

[16] Sylvain Hallé, Nicolas Bergeron, Francis Guérin, Gabriel Le Breton, and
Oussama Beroual. Declarative layout constraints for testing web appli-
cations. Journal of Logical and Algebraic Methods in Programming, 8,
2016.

[17] Stéphane Jacquet, Xavier Chamberland-Thibeault, and Sylvain Hallé.
Automated repair of layout bugs in web pages with linear programming.
In International Conference on Web Engineering (ICWE 2021), pages
423–439, 2021.

[18] S. Mahajan, B. Li, P. Behnamghader, and W. G. J. Halfond. Using visual
symptoms for debugging presentation failures in web applications. In In-

ternational Conference on Software Testing, Verification and Validation

(ICST), pages 191–201, 2016.

[19] Sonal Mahajan, Negarsadat Abolhassani, Phil McMinn, and William G.J.
Halfond. Automated repair of mobile friendly problems in web pages. In
International Conference on Software Engineering (ICSE 2018), pages
140–150. ACM, 2018.

[20] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G.J.
Halfond. Automated repair of layout cross browser issues using search-
based techniques. In International Conference on Software Testing and

Analysis (ISSTA 2017), pages 249–260, 2017.
[21] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G.J.

Halfond. Automated repair of internationalization failures using style
similarity clustering and search-based techniques. In International Con-

ference on Software Testing, Validation and Verification (ICST 2018).
IEEE, 2018.

[22] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G.J.
Halfond. Effective automated repair of internationalization presentation
failures in web applications using style similarity clustering and search-
based techniques. Software Testing, Verification and Reliability, 31(1–2),
2021.

[23] Sonal Mahajan and William G. J. Halfond. WebSee: A tool for
debugging HTML presentation failures. In International Conference on

Software Testing, Verification and Validation Tools Track (ICSE 2015),
pages 1–8, 2015.

[24] Ethan Marcotte. Responsive Web Design. A Book Apart, 2014.
[25] Ali Mesbah and Mukul R Prasad. Automated cross-browser compatibil-

ity testing. In International Conference on Software Engineering (ICSE

2011), pages 561–570, 2011.
[26] Yeonhee Ryou and Sukyoung Ryu. Automatic detection of visibility

faults by layout changes in HTML5 web pages. In International Con-

ference on Software Testing, Validation and Verification (ICST 2018),
pages 182–192, 2018.

[27] Thomas A. Walsh. Automatic Identification of Presentation Failures in

Responsive Web Pages. PhD thesis, University of Sheffield, 2018.
[28] Thomas A. Walsh, Gregory M. Kapfhammer, and Phil McMinn. Au-

tomated layout failure detection for responsive web pages without an
explicit oracle. In International Conference on Software Testing and

Analysis (ISSTA 2017), pages 192–202, 2017.
[29] Thomas A. Walsh, Gregory M. Kapfhammer, and Phil McMinn. Re-

DeCheck: An automatic layout failure checking tool for responsively
designed web pages. In International Conference on Software Testing

and Analysis (ISSTA 2017), pages 360–363, 2017.
[30] Thomas A. Walsh, Gregory M. Kapfhammer, and Phil McMinn. Au-

tomatically identifying potential regressions in the layout of responsive
web pages. Software Testing, Verification and Reliability, 30(6), 2020.

[31] Thomas A. Walsh, Phil McMinn, and Gregory M. Kapfhammer. Auto-
matic detection of potential layout faults following changes to respon-
sive web pages. In International Conference on Automated Software

Engineering (ASE 2015), pages 709–714, 2015.
[32] Westley Weimer. Advances in automated program repair and a call to

arms. In Proceedings of the International Symposium on Search Based

Software Engineering (SSBSE 2013), 2013.

