
This is a repository copy of Diagnosability, adequacy & size: How test suites impact
autograding.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/230093/

Version: Published Version

Proceedings Paper:
Clegg, B.S., McMinn, P. orcid.org/0000-0001-9137-7433 and Fraser, G. (2022)
Diagnosability, adequacy & size: How test suites impact autograding. In: Proceedings of
the 55th Hawaii International Conference on System Sciences. 55th Hawaii International
Conference on System Sciences 2022, 04-07 Jan 2022, Virtual / Maui, Hawaii, USA.
University of Hawai i at Mānoa , pp. 861-870. ISBN 9780998133157 ʻ

© 2022. Paper available under the terms of the CC-BY-NC-ND licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Diagnosability, Adequacy & Size: How Test Suites Impact Autograding

Benjamin S. Clegg

University of Sheffield

Phil McMinn

University of Sheffield

Gordon Fraser

University of Passau

Abstract

Automated grading is now prevalent in software

engineering courses, typically assessing the correctness

of students’ programs using automated test suites.

However, deficiencies in test suites could result in

inconsistent grading. As such, we investigate how

different test suites impact grades, and the extent to

which their observable properties influence these grades.

We build upon existing work, using students’ solution

programs, and test suites that we constructed using

a sampling approach. We find that there is a high

variation in grades from different test suites, with a

standard deviation of ∼10.1%. We further investigate

how several properties of test suites influence these

grades, including the number of tests, coverage, ability

to detect other faults, and uniqueness. We use our

findings to provide tutors with strategies for building test

suites that evaluate students’ software with consistency.

These strategies include constructing test suites with high

coverage, writing unique and diverse tests which evaluate

solutions’ correctness in different ways, and to run the

tests against artificial faults to determine their quality.

1. Introduction

Automated grading is often used in software

engineering courses, offering a means to quickly assess

a large number of students’ programs [1], which is

especially important with ever growing student cohorts.1

A common approach is to use automated test suites to

evaluate the correctness of students’ code [2]. However,

test suites can vary in quality, preventing them from

detecting some faults [3]. This produces a source of

potential inconsistency, inaccuracy and unfairness in

grades generated by these suites.

We illustrate such grading test suite issues with the

1BCS Press Office, “Record numbers choosing Computer Science
degrees”, https://www.bcs.org/more/about-us/press-
office/press-releases/record-numbers-choosing-
computer-science-degrees-new-data-reveals/

int max(int a, int b) {

if (a > b)

return a;

- return b; // Correct

+ return a; // Fault

}

(a) Example program
containing a mistake.

@Test void testA() {

assertEq(3, max(3, 2));

} // Passes

(b) Resulting grade: 100%.

@Test void testA() {

assertEq(3, max(3, 2));

} // Passes

@Test void testB() {

assertEq(3, max(2, 3));

} // Fails

(c) Resulting grade: 50%.

@Test void testC() {

assertEq(2, max(2, 1));

assertEq(2, max(1, 2));

} // Fails (2nd assert)

@Test void testD() {

assertEq(3, max(3, 1));

assertEq(3, max(2, 3));

} // Fails (2nd assert)

(d) Resulting grade: 0%.

Figure 1. Example test suites and a faulty method,

illustrating an impact on generated grades.

method definition in Figure 1a, which should return the

greatest of two integer parameters, but only ever returns

the first. If we consider grades to be calculated as the

percentage of tests that pass, the suite in Figure 1b yields

a grade of 100%; it only includes one test that never

exercises the fault. If we extend this suite to execute

more code, increasing coverage, it generates a more

reasonable grade of 50% (Figure 1c). However, even

with full coverage, extreme grades can still be generated;

in Figure 1d, both of the tests are very similar, and make

assertions that exercise the faulty line, so they both fail,

generating a grade of 0%. Instead, we can evaluate a

suite’s ability to isolate individual potential faults using

a diagnosability metric, such as uniqueness. Here, the

suite in Figure 1d has poor uniqueness, since every line

is covered the same way by each test. Comparatively, the

suite in Figure 1c achieves the best possible uniqueness

and generates the most reasonable grades; the return

statements are covered by different tests.

We seek to understand how such differences in

test suites affect students’ grades. We previously

investigated this, by measuring grades generated for

artificial faulty program variants, called mutants [4].

However, these mutants do not always perfectly reflect

students’ faults [5]. As such, we build upon our previous

work in this paper, using real students’ solution programs

in place of artificial mutants, to better reflect the real

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 861

URI: https://hdl.handle.net/10125/79438
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

influence of test suites on grades. In addition, we

hypothesise that suites which can isolate individual faults

should also produce fair and consistent grades. Since

fault diagnosability metrics can provide an estimate

of this quality, we expand upon our previous work

by also investigating the grading impact of three such

metrics: density, diversity, and uniqueness [6]. We

also revise our analysis technique, employing a relative

importance analysis instead of examining the coefficients

of linear models, in order to gain an accurate estimate

of the impact of various test suite properties on grading

consistency, even if the properties are correlated to one

another. We consider the following research questions:

RQ1: Do grades vary with different test suites?

We conducted a standard deviation analysis on the grades

generated by sampled test suites for students’ programs.

We found that the mean standard deviation of grades for

each solution is ∼10.1%; different suites generate a wide

variety of grades.

RQ2: Which properties of test suites impact grades?

To further investigate exactly how test suites produce

the effect we observed in RQ1, we performed a relative

importance analysis using measurements of various test

suite properties and the changes in generated grades. We

observe that several factors of test suites influence the

generated grades for students’ solutions, including the

quantity of tests, coverage, uniqueness, and the ability

to detect other students’ faults and artificial mutants.

Using our findings, we formed strategies for tutors to

use in order to construct test suites that grade students’

programs consistently.

We provide three key contributions in this paper:

(1) evidence that different suites generate varying grades

for students’ programs; (2) a relative importance analysis

revealing how a suite’s properties influence these grades,

with different results to the existing work; and (3) five

strategies for tutors to improve their grading test suites.

2. Background

2.1. Existing Work

We previously investigated how different test suites

generated varying grades, and how properties of the

suites influence this variation [4]. We constructed test

suites by randomly sampling from a large set of tests,

and executed these test suites on simple artificial faulty

variants of their associated subject programs, called

mutants. Our results revealed that these varying suites

had a significant variation in grades, with a mean standard

deviation of 2.94%, despite the mean grade only being

∼96.5%. While we later found that the detection of

mutants and students’ faults are correlated [5], there are

still some differences between mutants and real faults. In

particular, mutants typically contain only one fault, while

students’ faults can contain several; they would likely

produce different test results and grades. As such, we

build upon our previous work by using students’ solution

programs in place of mutants. Our original investigation

particularly focused on adequacy metrics; estimates of

how effective a test suite is in identifying faults.

2.2. Coverage

Code coverage is a fairly simple and widely used

adequacy metric; it evaluates how many components of

a program are executed when running a test suite [7].

While many types of components can be used to form a

coverage metric (e.g. conditional branches), we explore

line coverage (Cτ) in this study due to its simplicity:

Cτ =
|Cm|

|Lm|
,

where τ = a given test suite, such that τ ⊂ T (where T =
set of all unit tests for the subject class); m = subject

class’s model solution; C
m = model solution’s lines

covered by τ ; and L
m = all lines in the model solution.

We found that coverage had the most significant

impact on generated grades in our previous study. We

also considered repeated coverage with recoverage, Rτ ,

but found that it had the lowest impact on grades.

Rτ =

∑
l∈Cm(|❝lτ | − 1)

|τ | · |Lm|
,

where ❝lτ = set of tests in τ that cover l.

2.3. Mutation Score

Another means to evaluate adequacy is by executing

a test suite on a series of artificial faults called mutants,

which are generated using a mutation tool such as Pit [8].

The proportion of the mutants that are detected by the test

suite is referred to as the mutation score (Mτ). Higher

mutation scores indicate greater test adequacy; a suite

that detects more mutants should detect more real faults.

Mτ =
|FM

τ |

|M|
,

where F
X
τ = set of programs in X detected by τ ; and

M = set of mutants for the subject class.

We previously found that mutation score impacts

generated grades, but to a lesser extent than coverage.

Page 862

2.4. Diagnosability

Test suites can be used to estimate the location of

a fault in a program, using a technique called fault

localization [6]. A suite’s fault localization accuracy—its

ability to distinguish between possible faults—can be

estimated using diagnosability metrics. We consider

three such metrics in addition to the adequacy metrics

that we previously explored; we hypothesise that a suite

that can isolate particular faults generates different grades

than one that cannot. Density (ρτ) measures the lines that

are covered across every test in a suite:

ρτ =

∑t|t∈τ

l|l∈Lm Atl

|τ | · |Lm|
,

where A = an activity matrix (|τ | × |Lm|), Atl denotes

whether line l was executed by test t.

When ρτ = 0, no lines are ever covered; when ρτ =
1, every test covers every line. Gonzalez-Sanchez et

al. [9] show that the optimal density to isolate faults is

ρτ = 0.5. We use normalised density, ρ′τ = 1−|1−2ρτ |,
in this study; ρ′τ = 1 indicates ideal density [6].

Diversity evaluates the probability that two randomly

selected tests differ in their coverage behaviour, measured

by the Gini-Simpson index, Gτ [6, 10].

Gτ = 1−

∑
❛∈A

|❛| · (|❛| − 1)

|τ | · (|τ | − 1)
,

where ❛ = set of all tests, t ⊆ τ , that cover the same

lines in m, ∀l ∈ L
m, ∀t, t′ ∈ ❛: Atl = At′l; and A is the

set of all possible ❛ for τ and L
m.

It is possible for some lines to share the same

coverage for every test in a suite; these lines form

an ambiguity group (❣). Having few, large ambiguity

groups poses a potential issue for grading; if the lines

within an ambiguity group implement different parts of a

specification, tests may not be able to distinguish which

aspect a fault is associated with. Uniqueness (Uτ) reveals

how many ambiguity groups are present in the program.

Uτ =
|G|

|Lm|
,

where ❣ = set of lines, l ⊆ L
m, that are covered in

the same way by all tests in τ , ∀t ∈ τ , ∀l, l′ ∈ L
m :

Atl = Atl′ ; and G = set of all possible ❣ for τ and L
m.

3. Research Methodology

3.1. Experiment Procedure

In this empirical study, we use students’

implementations of five Java classes from three

real programming assignments, and a set of unit tests

for each (Section 3.3). Since we require a variety of

test suites to investigate how suites influence grades,

we generate test suites by sampling from this wider set

of unit tests (Section 3.4). For each subject class, we

execute every test on all of the students’ solutions, as

well as a correct model solution.

We store the results of these tests, and use the proportion

of a suite’s tests that pass for a solution to produce a

generated grade (Gs
τ) [2]:

Gs
τ =

|Ps
τ |

|τ |
,

where s = the student’s solution under test; Gs
τ = grade

generated by τ for s; and P
s
τ = tests in τ that pass for s.

RQ1 As we aim to investigate how much different test

suites generate different grades, we calculate the standard

deviation of grades generated by our sampled test suites

for each solution. We use this standard deviation instead

of the absolute range of grades since some suites may

only include tests that pass or fail, and would therefore

have a typical grade range of [0%, 100%]. We also

remove any test suites that only generate such extreme

grades for every solution.

RQ2 In order to identify how different properties of

test suites cause this grade variation, we perform a

relative importance analysis on normalised test suite

properties and changes in grades for each suite execution

(Section 3.5). We estimate a change in grades by

computing the grade delta (∆Gs
τ); the difference

between the execution’s generated grade and the median

generated grade for every execution of the same solution:

∆Gs
τ = |Gs

τ − G̃s
T|,

where T = set of all test suites for the subject class; and

G̃s
T = median grade generated for s by every suite in T.

3.2. Test Suite Properties

In order to address RQ2, we observe various

properties of the sampled test suites, allowing us to

evaluate the impact they have on the generated grades for

each student’s solution. In particular, we use coverage

and mutation score, alongside the three diagnosability

metrics that we discussed in Section 2. In addition, we

include the detection of other students’ solutions:

DS\{s}
τ =

|F
S\{s}
τ |

|S\{s}|
,

where S = set of all solutions for the subject class;

D
S\{s}
τ = the proportion of other solutions detected by

τ ; and S\{s} = S, excluding s. While not every solution

contains a fault, the least effective test suite will yield the

minimum value for this metric, and the most effective

will yield the maximum for a given solution.

We also consider the size of a test suite (|τ |)
as a property, for two main reasons. First, the

size of a suite may directly influence grades. For

example, if a large test suite has one failing test suite

Page 863

Table 1. Subject Classes. We only include mutants

that are detected by at least one test, and merge any

mutants with equivalent test traces.

Task
Subject

Class

Stdnts.’

Sltns.
Muts

Tests
LoC

Man. Evo

Chess Board 45 55 18 14 26

Queen 40 46 9 2 41

Wine Cellar 36 40 16 15 272

Fitness DataLoader 38 19 7 1 71

Questions 38 65 20 30 263

for a solution, it will generate a higher grade than

one with few tests and a single failure. Second, a

suite’s size may influence other properties, such as

coverage and mutation score, as shown by Namin and

Andrews [11]. Since the relative importance analysis

that we employ is robust to correlated variables, by

including |τ | as a property we can effectively control

for its contribution to the other properties. We exclude

the recoverage metric that we used in our original

study [4], since diagnosability metrics also evaluate the

repeated coverage of a program’s lines, and are more

well established in other studies [6, 9].

With the exception of the detection of other students’

solutions, we measure all of the properties using the

model solution, to simulate a tutor developing a new

grading test suite. For metrics that require coverage

information, we use JaCoCo [12] to record the coverage

for every test execution, and store which lines are covered

and uncovered by each test for the model solution. In

order to evaluate the mutation score of a suite, we

generate mutants with Pit [8]. We remove any mutants

that are not detected by any tests, effectively normalising

the mutation score to a range of [0, 1]. We also merge

any mutants with the same behaviour for every test into

a single mutant, such that every remaining mutant passes

for a unique set of tests. This removes a potential source

of bias, since some types and locations of mutants would

otherwise be considerably more prevalent than others.

3.3. Dataset

We use students’ solutions from three end of year

assignments for an introductory undergraduate Java

programming module in this study, as outlined in Table 1.

Each assignment was completed by a different cohort

of students. We conduct our empirical study on five

subject Java classes from these assignments. For each

subject class, we use a series of JUnit tests. Where

available, we use the tutor’s original grading tests for

the assignments. We extend these test sets, to ensure that

every line of code in each model solution that is relevant

to its task’s specification is covered. To do this, we use

EvoSuite, an automatic test generation tool [13]. We also

manually define new tests for each class, with the aim of

maximising the variety of tests. We ensure that every test

is valid by removing any that fail on the model solution.

Table 1 summarises our subject classes, mutants, and test

sets; Man. shows the manually defined tests, while Evo.

shows the tests that we generated using EvoSuite.

3.4. Grading Test Suites

To investigate the possible changes in grades for

our first research question, we designed our test suite

sampler to simulate the iterative development of various

individual test suites. In order to do this, we utilised the

suite growth technique described by Chen et al. [14], in

which a test suite is extended by randomly selecting an

additional test that increases a given criterion, generating

a new suite whenever a test is added. The first test

suite is created by simply randomly selecting any test

from the whole set. Our generator then selects tests that

increase coverage; since a model solution implements

the whole specification of a task, increasing coverage

simulates adding tests that cover more of the specification.

However, some of our subject classes can be fully

covered by few tests, so the generator would quickly

run out of new tests that would further enhance a suite.

As such, once 100% coverage is reached, we change

the generator’s target to the suite’s mutation score, as

this is often a harder criterion to fulfil. This can be

considered as more rigorously exercising a specification,

ensuring that solutions do not include subtle mistakes.

As with the mutation score property, we only use mutants

with unique combinations of passing tests, to avoid bias

from different proportions of similar mutants. Since it

is possible for suites to detect every mutant, we use a

“stacking” approach to continue growing the suite [14,15];

the suite’s current mutation score is reset to zero by the

generator, so every available test that detects any mutants

can be selected. Once there is only one unselected

test, our generator ends the generation run. We halt

the generation here to avoid bias from a large number of

identical suites that contain every available test. Similarly,

we remove the initial suites with only one test each, since

they will introduce a sampling bias by only generating

grades of 0% or 100%. In order to account for the random

element of suite generation, we repeat this process across

100 generation runs, and use all of the resulting test suites

to generate grades for each of the solutions.

In order to investigate the impact of test suite

properties on grades for RQ2, we must use a different

approach, since constructing test suites with the goal to

optimise coverage or mutation score would influence

their impacts on grade delta. As such, we instead

opt to construct test suites by randomly sampling tests

from the pool. For each of 100 generation runs, our

Page 864

random sampler constructed |T| test suites, the number

of available unit tests for a subject class. Our generator

split these |T| test suites equally between several test

suite sizes; 20%, 40%, 60%, and 80%. Our generator

generates each individual test suite by constructing a

pool of the available test suites, and randomly selecting

a test from it, removing the test from the pool in the

process. Once the target number of tests is reached, the

generator compares the constructed suite against other

suites constructed during the same generation run, and

adds it to this wider set if no equivalent suites are present.

This is repeated for the run until the target number of

tests, or an iteration limit of 4|T|, is reached.

3.5. Relative Importance

To evaluate the impact of each test suite property

on generated grades for RQ2, we perform a relative

importance analysis [16] on linear models with the

observed properties as predictor variables, and the grade

delta as the response variable. Relative importance

analysis allows for the impact of a set of predictors

on the response to be compared directly. Specifically,

we use the relative importance measure first proposed

by Lindeman et al. [17, 18]. This approach effectively

calculates the average change in the R2
adj of a linear model

when a predictor is added, by adding the predictors to a

linear model in different orders. This allows the relative

importance of predictors (i.e. test suite properties)

to be compared, even if they have some degree of

correlation to one another, as is often the case for our

properties. For example, test suites that have a higher

coverage tend to have a higher mutation score [11]. This

offers a benefit over simply comparing the magnitudes

of a linear model’s normalised (β) coefficients, which

we used in our original study [4]; β coefficients do

not accurately capture the contributions for correlated

predictors. This measure also provides estimates of the

relative importance in terms of the predictors’ impacts

on the variance of the response variable. This reveals the

proportional impact of the properties on the change in

grades, even if the linear model does not perfectly predict

the change in grades. This also allows us to compare the

impact of each property across different subject classes.

We use bootstrapping to derive a confidence interval for

this analysis, with 2000 runs per subject class and a

confidence interval of 95%

We also calculate the Spearman’s correlations (rs)

between the test suite properties and grade delta. We

do not use these correlations to determine the impact of

the properties, but instead use them to further explain

the impacts of the test suite properties, such as if higher

measurements of a property correspond to increasing

Table 2. Median grades of each solution and their

median standard deviations, across all 30 runs.

Rounded to 1 d.p.

Subject Class Median Grade, g̃ Std. Dev, σg

Board 83.3% 8.7%
Queen 100.0% 9.9%
Cellar 78.9% 13.6%
DataLoader 20.0% 14.2%
Questions 87.8% 3.8%

Mean 74.0% 10.1%

or decreasing the divergence in generated grades. In

addition, we include the β coefficients and p-values of

each property for simple linear models that we derive

with grade delta as the predicted variable, as in the

analysis of our previous study. We use these observations

to identify limitations with our previous analysis.

3.6. Threats to Validity

One potential threat to validity is that sampled test

suites may not necessarily reflect the construction of

real grading test suites. We mitigated this by explicitly

choosing a guided sampling technique for RQ1, as a

test suite that a tutor would write to cover more learning

outcomes should, in principle, increase in coverage and

mutation score as more tests are added. However, for

RQ2 we cannot use this approach, as we are investigating

the impact of several properties, including those which

guide the suites for RQ1. As such, a random sampling

approach is the only viable option for this dataset.

Another possible threat to validity is that some

students’ faults may not be detected by our tests. This

is unlikely to impact our results in a meaningful manner,

however; we manually analysed the faults present in the

students’ solutions and found that the vast majority of

faults cause tests to fail.

For RQ2, we use bootstrapped confidence intervals,

shown by the range bars in Figure 3. Bootstrapped

confidence intervals may not truly reflect their target

confidence level [16], posing a potential threat to validity.

As such, we note that some properties may be more

similar in how they impact students’ grades than they

appear in the data; properties with slightly less high

importance estimates are possibly more important than

those ranked above them. This should not heavily affect

the general trends of relative importance; high or low

estimates still provide a reliable indication of how the

observed properties influence generated grades.

Page 865

Board Queen Cellar DataLoader Questions

0.06
0.75

0.41
0.22

0.31
0.56

0.66
0.18

0.91
0.55

0.36
0.27

0.45
0.73

0.64
0.82

0.06
0.58

0.32
0.19

0.13
0.26

0.45
0.39

0.52
0.25

0.880.5
0.38

0.62
0.75

0.04
0.960.5

0.26
0.14

0.38
0.720.6

0.84
0

25

50

75

100

Proportion of Tests Enabled

G
e
n
e
ra

te
d
 G

ra
d
e
 (

%
)

(a) Generated grades, per solution, per test suite.

Board Queen Cellar DataLoader Questions

0.06
0.75

0.41
0.22

0.31
0.56

0.66
0.18

0.91
0.55

0.36
0.27

0.45
0.73

0.64
0.82

0.06
0.58

0.32
0.19

0.13
0.26

0.45
0.39

0.52
0.25

0.880.5
0.38

0.62
0.75

0.04
0.960.5

0.26
0.14

0.38
0.720.6

0.84
0

10

20

30

Proportion of Tests Enabled

S
td

.
D

e
v
.
G

ra
d
e
s
 P

e
r

S
o
lu

ti
o
n
 (

%
)

(b) Standard deviation of generated grades for each solution.

Figure 2. Generated grade statistics of solutions for each subject class, across all 100 repetitions of suite

generation. For ease of presentation, we removed the outliers.

4. Results

4.1. RQ1: To what extent do different test
suites generate varying grades?

Table 2 shows the median grades and their standard

deviations for all solutions and test suites, and their

means across all subject classes. The mean standard

deviation of grades per solution is 10.1%; different test

suites yield grades that vary drastically for the same

solution program. This is greater than the median

standard deviation that we observed in our previous study

(∼2.6%), likely due to students’ solutions containing

several faults, while generated mutants only each include

one. This may also be due to these subject classes having

fewer tests; smaller test suites induce a greater change in

grades if a single test fails.

Our results also reveal a limitation of our previous

work; it is unreliable to evaluate how much of the possible

change in grades from the median is represented by

the standard deviation. For example, for Queen the

median grade is 100%, and as such the possible change

in grades must be 100%. Considering how we defined the

possible change in grades, if its median grade was 99%,

the possible change would be 1%; this minor difference

in the median grade would produce a greatly different

proportional impact of standard deviation. Instead, it

is better to directly consider the standard deviation in a

solution’s grades alone.

Figure 2 shows the individual generated grades and

grade standard deviations for each solution. We find that

the subject classes have some variation in their behaviour,

such as in the range of standard deviations at each test

suite size, or the median grades. We conjecture that a

programming task itself may affect how suites evaluate

students’ solutions, perhaps because the specification of

how a class should be implemented may influence the

mistakes that students make. For example, in Cellar,

grades generated for some solutions by suites with

26% of the tests enabled have standard deviations of

∼16%, while others have standard deviations of ∼8%.

This solution dependent variation in grades generated

by different suites is a source of potential unfairness;

some solutions’ grades are affected by suites more than

others. Comparatively, this effect is less prevalent for

Board, where most solutions have similar standard

deviations in grades; the influence of the test suites

on their grades is similar between different solutions.

We note that the specification of Cellar is more

complex than that of Board. As such, some students’

solutions may contain more faults for particular aspects

of the program’s specification, and thus would be more

susceptible to differences in test suites than other solution

implementations. However, even for Board, different

suites still generate varying grades for a given solution;

suites themselves have an influence on grades. We

consider how suites influence such behaviours in more

detail in RQ2 and Section 5.

RQ1 Results: Grades generated by different suites

vary considerably, with a standard deviation of ∼10.1%
per solution. This standard deviation also varies

between different solutions; the grades of some

solutions are affected by the test suite more than others.

Page 866

4.2. RQ2: Which properties of test suites
impact grades?

Table 3 shows the results of our analysis for RQ2.

This analysis differs from that of our original study in

two key ways. The first difference is that we use a

relative importance analysis instead of comparing the

β coefficients of linear models. This is a more reliable

approach, since the β coefficients of correlated predictors

may not accurately reflect their contributions to the

predicted variable, or one of the correlated predictors

may not make a statistically significant contribution to

a linear model. This can be observed for mutation

score and the detection rate of other solutions in

Cellar; these properties are correlated to one another

(rs = 0.8), and the predictor for mutation score is not

statistically significant (p = 0.64). However, if the

detection rate of other solutions is not included as a

predictor, mutation score’s contribution to the linear

model becomes statistically significant (p ≤ 0.01).

Relative importance does not suffer from this problem,

by virtue of summarising the contribution of a single

predictor across linear models constructed by adding

predictors in every possible order. Accordingly, we

observe that the impact of mutation score is greater than

the detection rate of other solutions for Cellar, and

their impacts are similar overall.

The second change to our original analysis is that we

use grade delta as the response variable of our analysis,

rather than the simple generated grades. By assuming

that the median grade of a solution is a fair grade, the

distance of individual grades to this median represent

their inconsistencies. As such, grade delta provides a

metric of grading consistency, whereas the simple grades

that we used in our previous study only provide an

indication of the proportion of tests that fail for a solution.

Grade deltas do have a limitation, however; if a solution’s

median grade is 0% or 100%, grade delta becomes a

one-sided metric, equivalent to the proportion of tests

that pass or fail for the solution; it becomes equivalent

to our original analysis. This property is not what we

aim to capture in our analysis. This issue occurs for

Queen, where our randomly sampled test suites generate

median grades of 100% for most solutions, similarly to

the test suites that we use in RQ1. This is reflected in

comparatively low relative importance estimates (and

accordingly, R2
adj) for the subject. Similarly, this effect

also affects the correlations of the properties to grade

delta. For other subject classes, the correlations are

typically negative, indicating that suites with higher

measurements of the respective properties produce lower

grade deltas, and as such generate more consistent grades.

However, for Queen these correlations are typically

positive; instead this only reveals that increasing the

values of the properties increases the proportion of tests

that fail for most solutions and test suites. This subject

also affects the mean observations; the mean p-value

of uniqueness’s correlation to grade delta (p̄ = 0.17) is

heavily inflated by its correlation for Queen (p = 0.87).

Excluding Queen from our results shows that the other

correlations for uniqueness are significant (p̄ h 0.00). In

effect, for Queen, grade delta does not truly measure

grading consistency, since it is skewed by such an

extreme median grade. As such, it essentially represents

an outlier in our dataset.

The adjusted R2 of each linear model represents the

grade delta’s variance that is captured by the model.

This is equivalent to the sum of the relative importance

estimates for each property; it represents how much the

combined properties influence grading consistency. This

is shown as a percentage by R2
adj in Table 3; the mean

across all five models is 25.08%; together, the properties

account for 25.08% of the change in grades.

When evaluating the relative importance estimates,

we find that, on average, the detection rate of other

students’ solutions is the most influential property with

respect to a change in a solution’s grades, accounting for

4.86% of the variance in grade delta. This is followed

by the suite’s size, uniqueness, and mutation score;

with impacts of 4.66%, 4.43%, and 4.21% respectively.

Code coverage has a lesser impact on generated grades

(2.74%), followed closely by diversity (2.59%). Finally,

density has the least impact on the change in grades; 1.6%
on average. These results differ considerably to those of

our previous work, where we instead found coverage to

be the most important property with respect to grading

consistency, followed by mutation score, and recoverage

(which is analogous to diversity in this updated study).

Aside from the changes to our experimental procedure,

correlations between coverage and the diagnosability

metrics may be responsible for this difference; part of

the variance explained by diagnosability metrics may

have been subsumed by the sole use of coverage in our

previous study. The properties’ contribution estimates

also vary between the subject classes. For example,

diversity has a very high contribution for DataLoader,

but a very low contribution for the other classes. These

differences are reflected in the contributions of the

complete linear models; the R2
adj for DataLoader is

the highest of all of the subject classes. It is possible

that this divergence in behaviour could be due to aspects

of the subject class itself having an impact on grading

consistency.

As Figure 3 shows, there is some overlap between

the bootstrapped confidence bounds for some of the

Page 867

Table 3. Summary of RQ2 analysis for all 100 random suite generation runs; including relative importance

estimates (Est.), linear model normalised coefficients (β), and mean Spearman’s correlations (rs). Significance

levels of β and rs are reported as: * = p < 0.05; ** = p < 0.01; *** = p < 0.001. p < 0.01 for each linear model.

Subject Class R2

adj Suite Size |τ | Coverage Cτ Mut. Score Mτ Other DS\{s}
τ

Density ρτ
′ Diversity Gτ Uniqueness Uτ

Board 31.24 Est. 8.7% 3.13% 6.42% 6.54% 1.21% 0.7% 4.55%

β ***-4.82 ***6.11 ***-5 ***-4.69 ***11.25 ***10.05 ***-8.58

Queen 15.62 Est. 1.51% 1% 3.24% 3.95% 4.09% 0.84% 1.01%

β ***-8.26 *5.3 ***-15.62 ***18.58 ***13.38 ***4.21 *-5.82

Cellar 18.96 Est. 4.32% 3.67% 4.01% 2.81% 0.37% 0.06% 3.74%

β ***-7.24 ***-5.99 -0.17 ***-6.83 ***16.47 -0.67 ***7.66

DataLoader 39.68 Est. 4.65% 2.55% 3.18% 7.03% 2.25% 11.27% 8.77%

β ***11.43 ***12.57 ***-16.78 ***-10.4 ***-2.28 ***-41.15 ***-128.78

Questions 19.88 Est. 4.11% 3.38% 4.21% 3.96% 0.09% 0.07% 4.07%

β ***-2.87 ***3.13 ***-6.15 ***-5.79 ***8.14 ***9.02 *-3.83

Mean 25.08 Est. 4.66% 2.74% 4.21% 4.86% 1.6% 2.59% 4.43%

β ***-2.35 ***4.22 -8.74 ***-1.83 ***9.39 -3.71 *-27.87

rs ***-0.3 ***-0.3 ***-0.3 ***-0.25 *0 ***-0.02 -0.27

Board Queen Cellar DataLoader Questions

Cove
rage

Density

Dive
rsity

Mutatio
n Score

Other S
olutio

ns

Suite
 Size

Uniqueness

Cove
rage

Density

Dive
rsity

Mutatio
n Score

Other S
olutio

ns

Suite
 Size

Uniqueness

Cove
rage

Density

Dive
rsity

Mutatio
n Score

Other S
olutio

ns

Suite
 Size

Uniqueness

Cove
rage

Density

Dive
rsity

Mutatio
n Score

Other S
olutio

ns

Suite
 Size

Uniqueness

Cove
rage

Density

Dive
rsity

Mutatio
n Score

Other S
olutio

ns

Suite
 Size

Uniqueness

0.0

2.5

5.0

7.5

10.0

12.5

Test Suite Property

%
 o

f
R

e
s
p
o
n
s
e
 V

a
ri

a
n
c
e

Figure 3. Relative importance of each test suite property, with respect to grade delta. The range bars denote

the upper and lower bounds of a bootstrapped 95% confidence interval.

test suite properties. In these cases, the true order of

relative importance for the properties may be slightly

different, with one of the overlapping properties possibly

outperforming the other. For example this effect can be

observed for mutation score and the detection rate of

other solutions for Board, Queen, and Questions.

In these cases, these two properties should be considered

as having a similar impact on grading consistency, since

despite the overall estimate for one property being higher,

the true order of their importance could be the opposite.

RQ2 Results: Most properties have a statistically

significant impact on grades, especially suite size,

the detection of other solutions, mutation score, and

uniqueness. Suites with a higher measurements of these

properties tend to generate more consistent grades.

5. Discussion

Since our results indicate that different test suites

generate varying grades for the same solution, and that

the properties of these suites influence grading, it would

be beneficial to use our observations to control this effect

as much as possible in grading. In this section, we

offer strategies for tutors to improve the quality and

consistency of their grading test suites. While tutors

could simply write tests based solely on expected input

and output, they may not evaluate solutions fairly. As

such, our suggestions assume that a tutor executes their

tests on a gold-standard model solution, as this ensures

that tests are correct, and allows for the use of metrics to

guide fair test suite design.

Suite Size Since the number of tests in a test suite is

correlated to other properties of the test suite, such as

its coverage or mutation score [11], we include it as a

property for our relative importance analysis, as a means

of controlling for its impact. As such, while a test suite’s

size has a relatively high impact on generated grades,

accounting for ∼4.66% of the variance in grade delta, we

cannot provide a specific recommendation for how many

tests a tutor should include in their grading test suite.

Instead, we note that fulfilling our other suggestions will

likely require a tutor to create a series of high quality tests,

the quantity of which will depend on the programming

task that they assess.

Page 868

Coverage Coverage has a moderate impact on grading

consistency compared to the other properties, with a

relative importance estimate of ∼2.74%. As such, while

coverage does impact grading consistency, some other

properties of a test suite have a greater impact.

Coverage has a negative correlation with grade delta,

indicating that test suites with higher coverage produce

grades that are closer to the median for the subject

class; grading is more consistent. This is likely due

to uncovered faults being impossible for a test suite to

detect; covering more lines improves a suite’s ability to

detect faults, and as such generate grades that are not

100%, and closer to the median grade of the solution

across every sampled suite in this study.

Suggestion 1: Tutors should aim to cover every line

of the model solution with their grading test suite.

Mutation Score Mutation score has a fairly high

impact on grades, with a relative importance estimate

of ∼4.21%. In addition, mutation score is negatively

correlated with grade delta; improving a suite’s ability

to detect mutants also results in more consistent grading.

Like coverage, this is likely due to the property’s ability

to predict the adequacy of a test suite; detecting more

mutants will improve a suite’s ability to detect students’

faults, and as such produce more consistent grades. This

impact is greater for mutation score than coverage for

each of the subject classes; it is more important to detect

artificial faults than to cover lines of code in order to

create more consistent test suites.

Suggestion 2: Tutors should use mutation testing

to improve their grading test suites’ abilities to detect

faults, since this can prevent unfairness from some

students’ mistakes being missed.

Detection Rate of Other Students’ Solutions The

detection rate of other students’ solutions has the greatest

impact on grading consistency of any test suite property

on average, accounting for ∼4.86% of the variance in

grade delta. This metric reflects the true adequacy of

a test suite; its ability to detect students’ faults. Since

this metric is negatively correlated to grade delta, we can

conclude that a test suite which detects more students’

faults will produce more consistent grades.

However, this metric may be hard for tutors to use to

improve their test suites. The metric would allow tutors

to understand how many solutions have faults that are

detected, but without manually identifying individual

faults that are present in students’ solutions, but it does

not provide information for unknown faults that are

present in students’ solutions; these can only be identified

and understood by using manual analysis. Comparatively,

artificial mutants serve as known faults; it would be easier

for a tutor to write tests that target undetected, but known

mutants than unobserved students’ faults.

Suggestion 3: If available, tutors can use existing

students’ solutions to inform the design of their grading

test suites, but this could be challenging in practice;

attaining an understanding of every fault in existing

solutions requires manual analysis.

Density Normalised density has the lowest impact on

grading consistency of any test suite property, with a

relative importance estimate of ∼1.6, reflecting its lack

of correlation to grade delta. As such, we can conclude

that the average proportion of lines that each test in a suite

covers has little bearing on the suite’s ability to generate

consistent grades. Instead, other qualities related to

coverage—such as diversity and uniqueness—may be

more important.

Diversity A test suite’s diversity can have an impact

on its grading consistency, representing ∼2.59 of the

variance in grade delta, though this can be attributed

exclusively to DataLoader, where it has the single

greatest estimate of any property for any subject class,

11.27. From this, we can conclude that a test suite’s

diversity typically has almost no impact on grading

consistency, except for in very specific circumstances.

It is possible that this effect is related to how many tests

in a sampled suite behave differently, and how well this

sampled suite represents a typically sampled test suite

(i.e. generate grades that are close to the median for

each solution). For example, if the typical sampled test

suite only contains tests that each have unique coverage

behaviour, then test suites which have multiple tests

with the same behaviour will generate grades that differ

considerably from the median grade. This may be

especially relevant to DataLoader, since it includes

several tests that cover the same code, by virtue of the

specification only defining the use of a single public

method which can be called in a test.

Suggestion 4: Tutors should avoid writing

disproportionately many tests which only exercise the

same aspects of a programming task. If this is necessary,

weights can be assigned to limit the impact that each

similar test has on grading.

Uniqueness Uniqueness has a considerable impact on

grading consistency, with a relative importance estimate

of ∼4.43%. It is also negatively correlated to grade delta,

indicating that test suites with more unique tests generate

more consistent grades. Uniqueness likely leads to higher

grading consistency since low uniqueness indicates that

Page 869

some aspects of a programming task are evaluated by

every test, solutions with faults in such aspects may be

overly punished by being more likely to be detected than

solutions with different faults. High uniqueness also

indicates that every aspect of a program is evaluated at

least once; no fault would be completely uncovered by

any test, and as such would be more likely to be detected.

Attaining high uniqueness may pose a challenge for

tutors however, since it is possible for a reference solution

class to only have a single entry point, and as such

this entry point must be evaluated by every test. This

may require some redesign of the task’s specification

and reference solution to avoid this problem, such as

requiring that additional public methods are used. It may

be beneficial for tutors to run an analysis to identify lines

or methods that are executed or missed by every test, such

as by adapting and using Perez’s diagnosability tool [6].

Suggestion 5: Tutors should avoid covering some

lines of their model solution with every test, though

this may require redesigning the programming task.

6. Conclusions & Future Work

In this paper, we have provided empirical evidence

that different test suites generate varying grades for

students’ programs, and that observable properties of

suites can influence these generated grades. Our findings

differ from those our previous study [4]. We attribute

this to both differences in our updated analysis, and

differences between students’ solutions and mutants,

such as the quantity of faults, or their subtlety. We

have also offered strategies for tutors to write fair and

consistent grading test suites: (1) achieve 100% coverage

on a model solution; (2) run tests against mutants to

ensure that they detect faults; (3) analyse students’

faults if possible, to gain an understanding of their

mistakes; (4) avoid tests that cover the exact same lines

unnecessarily; and (5) write tests that each exercise the

program in unique ways.

Our study reveals several avenues for future research.

First, replicating this study with test suites written by

different tutors for the same programming tasks would

be beneficial, since this would reveal how the properties

impact grading consistency for real test suites. Second,

further properties of test suites can be investigated, such

as variants of diagnosability metrics that use mutants as

test goals instead of covered lines; such metrics may be

more relevant since they are grounded in fault detection

rather than coverage. Finally, an automated tool to

evaluate and identify deficiencies in a test suite with

respect to these properties may be useful for tutors aiming

to develop fair and consistent grading test suites.

References

[1] S. Krusche and A. Seitz, “ArTEMiS - An Automatic
Assessment Management System for Interactive
Learning,” in SIGCSE ’18, ACM, 2018.

[2] D. Insa and J. Silva, “Automatic assessment of Java code,”
Comput. Lang. Syst. Struct., vol. 53, 2018.

[3] K. Dewey, P. Conrad, M. Craig, and E. Morozova,
“Evaluating Test Suite Effectiveness and Assessing
Student Code via Constraint Logic Programming,”
ITiCSE 2017, vol. 6, 2017.

[4] B. S. Clegg, P. McMinn, and G. Fraser, “The Influence
of Test Suite Properties on Automated Grading of
Programming Exercises,” in CSEET ’20, IEEE, 2020.

[5] B. S. Clegg, P. McMinn, and G. Fraser, “An Empirical
Study to Determine if Mutants Can Effectively Simulate
Students’ Programming Mistakes to Increase Tutors’
Confidence in Autograding,” in SIGCSE ’21, ACM, 2021.

[6] A. Perez, R. Abreu, and A. Van Deursen, “A
Test-Suite Diagnosability Metric for Spectrum-Based
Fault Localization Approaches,” in ICSE ’17, IEEE, 2017.

[7] Q. Yang, J. J. Li, and D. M. Weiss, “A Survey of
Coverage-Based Testing Tools,” Comput. J., vol. 52, no. 5,
2009.

[8] H. Coles, T. Laurent, C. Henard, M. Papadakis, and
A. Ventresque, “PIT: A practical mutation testing tool
for Java (Demo),” in ISSTA ’16, ACM, 2016.

[9] A. Gonzalez-Sanchez, H. G. Gross, and A. J. Van
Gemund, “Modeling the diagnostic efficiency of
regression test suites,” in ICSTW ’11, 2011.

[10] L. Jost, “Entropy and diversity,” Oikos, vol. 113, no. 2,
2006.

[11] A. S. Namin and J. H. Andrews, “The Influence of Size
and Coverage on Test Suite Effectiveness,” in ISSTA ’09,
ACM, 2009.

[12] M. R. Hoffmann, E. Mandrikov, and M. Friedenhagen,
“JaCoCo.” http://eclemma.org/jacoco/, 2016.

[13] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite
generation for object-oriented software,” SIGSOFT/FSE

’11, 2011.

[14] Y. T. Chen, A. Tadakamalla, M. D. Ernst, R. Holmes,
G. Fraser, P. Ammann, R. Just, Y. T. Chen, R. Gopinath,
A. Tadakamalla, M. D. Ernst, G. Fraser, P. Ammann,
and R. Just, “Revisiting the Relationship Between Fault
Detection, Test Adequacy Criteria, and Test Set Size,”
ASE ’20, 2020.

[15] M. Harder, J. Mellen, and M. D. Ernst, “Improving test
suites via operational abstraction,” in ICSE ’03, IEEE,
2003.

[16] U. Grömping, “Relative Importance for Linear Regression
in R: The Package relaimpo,” Tech. Rep. 1, 2006.

[17] R. H. Lindeman, P. F. Merenda, and R. Z. Gold,
Introduction to bivariate and multivariate analysis. 1980.

[18] J. W. Johnson and J. M. Lebreton, “History and Use of
Relative Importance Indices in Organizational Research,”
Organ. Res. Methods, vol. 7, no. 3, 2004.

[19] R. J. Lipton and F. G. Sayward, “Hints on test
data selection: Help for the practicing programmer,”
Computer, vol. 11, no. 4, 1978.

[20] A. J. Offutt, “Investigations of the software testing
coupling effect,” ACM Trans. Softw. Eng. Methodol.,
vol. 1, no. 1, 1992.

Page 870

