
This is a repository copy of Evaluating features for machine learning detection of order-
and non-order-dependent flaky tests.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/230092/

Version: Accepted Version

Proceedings Paper:
Parry, O., Kapfhammer, G.M., Hilton, M. et al. (1 more author) (2022) Evaluating features
for machine learning detection of order- and non-order-dependent flaky tests. In:
Proceedings of 2022 IEEE Conference on Software Testing, Verification and Validation
(ICST). 2022 IEEE Conference on Software Testing, Verification and Validation (ICST), 04-
14 Apr 2022, Valencia, Spain. Institute of Electrical and Electronics Engineers (IEEE) , pp.
93-104. ISBN 9781665466806

https://doi.org/10.1109/icst53961.2022.00021

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Evaluating Features for Machine Learning Detection

of Order- and Non-Order-Dependent Flaky Tests

Owain Parry

University of Sheffield

Gregory M. Kapfhammer

Allegheny College

Michael Hilton

Carnegie Mellon University

Phil McMinn

University of Sheffield

Abstract—Flaky tests are test cases that can pass or fail without
code changes. They often waste the time of software developers
and obstruct the use of continuous integration. Previous work
has presented several automated techniques for detecting flaky
tests, though many involve repeated test executions and a lot of
source code instrumentation and thus may be both intrusive and
expensive. While this motivates researchers to evaluate machine
learning models for detecting flaky tests, prior work on the
features used to encode a test case is limited. Without further
study of this topic, machine learning models cannot perform to
their full potential in this domain. Previous studies also exclude
a specific, yet prevalent and problematic, category of flaky tests:
order-dependent (OD) flaky tests. This means that prior research
only addresses part of the challenge of detecting flaky tests with
machine learning. Closing this knowledge gap, this paper presents
a new feature set for encoding tests, called FLAKE16. Using
54 distinct pipelines of data preprocessing, data balancing, and
machine learning models for detecting both non-order-dependent
(NOD) and OD flaky tests, this paper compares FLAKE16 to
another well-established feature set. To assess the new feature
set’s effectiveness, this paper’s experiments use the test suites of
26 Python projects, consisting of over 67,000 tests. Along with
identifying the most impactful metrics for using machine learning
to detect both types of flaky test, the empirical study shows how
FLAKE16 is better than prior work, including (1) a 13% increase
in overall F1 score when detecting NOD flaky tests and (2) a 17%
increase in overall F1 score when detecting OD flaky tests.

Index Terms—Software Testing, Flaky Tests, Machine Learning

I. INTRODUCTION

Flaky tests are test cases that can both pass or fail without

any changes to the test code or the code under test and are

therefore an unreliable indicator of software correctness [38].

They are a significant problem in software development be-

cause they may lead to time wasted investigating a non-existent

bug, or potentially more seriously, might mask the presence of

a genuine bug [42], [61], [66]. Their non-deterministic behav-

ior also hinders continuous integration: a study focused on the

Travis CI platform found that 47% of failing builds that were

manually restarted eventually passed without any changes,

indicating the presence of flaky tests [16]. As well as for open-

source development, flaky tests are a major problem for well-

known software companies, such as Google, Microsoft, and

Facebook [30], [39], [40]. A survey of software developers

found that 79% of respondents considered flaky tests to be

a moderate or serious problem, with 59% encountering them

on a monthly, weekly, or daily basis [18]. A specific category

of flaky tests, known as order-dependent (OD) flaky tests, are

influenced by previously executed test cases. Previous studies

have found these tests to be a very prevalent type of flaky test

[32], [34]. Their order-based non-determinism makes them a

major obstacle to the application of techniques that aim to

gather useful results from testing sooner, such as test case

prioritization, selection, and parallelization [6], [11], [33].

Given the problems associated with flaky tests, the research

community has developed automated techniques to detect

them. Many of these techniques involve a significant num-

ber of repeated test executions and some require extensive

instrumentation [6], [9], [17], [19], [32], [57], [66], mak-

ing them prohibitively expensive for practical deployment in

large software projects. This motivated researchers to develop

detection techniques based on machine learning models that

they trained using static features of test cases, such as their

length, complexity, and the presence of particular keywords

and identifiers [8], [44]. For instance, one study found that

combining static features with several dynamically-collected

characteristics, like execution time and line coverage, resulted

in significantly better detection performance at the relatively

minimal cost of a single, instrumented test suite run [3].

To date, prior studies have only evaluated a limited range of

features, while the broader literature has identified many more

test case characteristics that may be indicative of flakiness.

Without further evaluation of a wider range of features,

machine learning models cannot be used to their full potential

for detecting flaky tests. Moreover, previous studies trained

and evaluated models using datasets of flaky tests that do not

include OD flaky tests [7]. Yet, Lam et al. found that over

60% of their detected flaky tests were OD [32], suggesting

that previous studies may have labelled a large portion of flaky

tests as non-flaky when training models. This means they have

only considered a subset of the problem of flaky test detection.

Given the aforementioned difficulties caused by OD flaky tests,

their efficient detection has significant benefits [6], [11], [33].

This paper’s study evaluates the performance of 54 pipelines

of data preprocessing, data balancing, and machine learning

models for detecting flaky tests in 26 open-source Python

projects. Given previous successes with the random forest

model [3], [44], [56], it focuses on the decision tree model

and ensemble models thereof [20], [51]. It also introduces

FLAKE16, a new feature set for encoding test cases using

seven metrics from a previously established feature set [3]

and nine additional metrics, including the depth of the abstract

syntax tree of the test’s code and the maximum memory usage

during test case execution. The results show that FLAKE16

TABLE I
THE METRICS OF FLAKE16. THE “FF” COLUMN INDICATES IF THE FEATURE IS ALSO PART OF THE FLAKEFLAGGER FEATURE SET. THE “STATIC”

COLUMN INDICATES IF THE FEATURE CAN BE MEASURED WITHOUT EXECUTING THE TEST CASE. THE “IMPACT RANK” COLUMNS ARE THE RANKS OF

EACH FEATURE IN DESCENDING ORDER OF IMPACTFULNESS FOR DETECTING BOTH NOD AND OD FLAKY TESTS (SEE FIGURE 2 FOR MORE DETAILS).

Impact Rank

Feature Description FF Static NOD OD

1 Covered Lines Number of lines covered. ✓ 8 6
2 Covered Changes Total number of times each covered line has been modified in the last 75 commits. ✓ 3 5
3 Source Covered Lines Number of lines covered that are not part of test cases. ✓ 7 7
4 Execution Time Elapsed wall-clock time of the test case execution. ✓ 5 9
5 Read Count Number of times the filesystem had to perform input [28]. 6 2
6 Write Count Number of times the filesystem had to perform output [28]. 4 1
7 Context Switches Number of voluntary context switches. 10 8
8 Max. Threads Peak number of concurrently running threads (excluding the main thread). 1 11
9 Max. Memory Peak memory usage. 11 4

10 AST Depth Maximum depth of nested program statements in the test case code. ✓ 2 13
11 Assertions Number of assertion statements in the test case code. ✓ ✓ 14 3
12 External Modules Number of non-standard modules (i.e., libraries) used by the test case. ✓ 16 16
13 Halstead Volume A measure of the size of an algorithm’s implementation [2], [43], [45]. ✓ 15 14
14 Cyclomatic Complexity Number of branches in the test case code [21], [43], [45]. ✓ 12 12
15 Test Lines of Code Number of lines in the test case code [43], [45]. ✓ ✓ 9 10
16 Maintainability A measure of how easy the test case code is to support and modify [48], [64]. ✓ 13 15

offered a 13% increase in overall F1 score compared to

the previous feature set when detecting non-order-dependent

(NOD) flaky tests. The experiments also study the same

machine learning pipelines with both feature sets for the task

of detecting OD flaky tests. In this setup, FLAKE16 offered

a 17% increase in the overall F1 score. Finally, the paper

studies the impact of each FLAKE16 feature on the models’

predictions, revealing that the peak number of concurrently

running threads and the number of read- and write-related

system calls during test execution are the most valuable

features for detecting NOD and OD flaky tests, respectively.

In summary, the main contributions of this paper are:

Contribution 1: New Feature Set. The paper introduces

FLAKE16, a new feature set for machine learning-based flaky

test detection. The evaluation demonstrates an improved detec-

tion performance for both NOD and OD flaky tests compared

to a previous feature set, as further detailed in Section II.

Contribution 2: Novel Evaluation. Our evaluation of 54

machine learning pipelines is the first to consider the detection

of OD flaky tests, offering a more complete assessment of the

applicability of machine learning to the problem of flaky test

detection. See Section III for more details on this contribution.

Contribution 3: Findings and Implications. Leveraging the

empirical results, the paper surfaces findings with implications

relevant to both the research community and software develop-

ers, including the most impactful test case metrics for detecting

flaky tests. See Sections IV and V for details on these findings.

Contribution 4: Framework and Data. To collect the data re-

quired to train the machine learning pipelines and perform the

experiments, we developed our own comprehensive framework

of tools, called FLAKE16FRAMEWORK. To identify flaky

tests, we used the FLAKE16FRAMEWORK to execute 5,000

times the test suites for 26 programs containing 67,000 test

cases in total. Supporting the replication of this paper’s results

and further investigations into the use of machine learning for

flaky test detection, we make FLAKE16FRAMEWORK and all

of our data available as part of our replication package [49].

II. THE FLAKE16 FEATURE SET

Alshammari et al. [3] proposed a range of features for en-

coding test cases in machine learning-based flaky test detection

and split them into two groups. These were eight boolean

features indicating the presence of test smells [60], and eight

numerical features measuring a mixture of static and dynamic

test case properties. They found the test smell features to be

of limited value and excluded them from their evaluation of

their flaky test detection framework, FLAKEFLAGGER. One of

the remaining eight features, the total number of production

classes covered by a test case, was not applicable in the context

of our study. This is because the dataset of test cases used by

Alshammari et al. are from Java projects [7] and ours are from

Python projects. In Java, classes are a central construct for

building programs, whereas in Python, they are less critical and

it is possible to write programs without them [13]. We refer to

the remaining seven features as the FLAKEFLAGGER feature

set, which is subsumed by FLAKE16. One of these features

captures the “churn” of the lines covered by a test case, that

is, how frequently they are changed. This requires a window

of past commits to consider. Alshammari et al. evaluated eight

windows and found 75 commits to be the most informative,

and thus we selected this value for this paper’s study. Beyond

these seven features, FLAKE16 contains nine more static and

dynamic test case metrics, with Table I providing a summary.

Several empirical studies identified files as a potential vector

for OD flaky tests to arise [6], [9], [19], [38], [66]. In

particular, Zhang et al. [66] found that 39% of OD flaky tests

were caused by side effects left behind by other test cases in

external resources, such as files and databases. Furthermore,

flaky tests specifically caused by complications during input

and output operations were one of the flaky test categories

presented by Luo et al. [38]. This motivated our inclusion of

read count and write count in FLAKE16. Specifically, these

measure the number of read- and write-related system calls

during test execution. Another finding that many empirical

studies have in common is that asynchronous operations and

concurrency are very frequent causes of flaky tests [18], [31],

[38], [50]. For this reason, we incorporated context switches

and maximum threads into FLAKE16. The former measures

the number of voluntary context switches performed during

test case execution. These occur when a process gives up

its CPU time because it has nothing to do, which would

occur when a test case sleeps for a fixed amount of time.

Previous studies have identified this as a hallmark of flaky tests

in the asynchronous category [18], [38]. We also integrated

maximum memory into FLAKE16. This feature measures the

peak memory usage during test case execution, a property

identified by an author of the Google Testing Blog to be

correlated with the likelihood of a test case being flaky [35].

The FLAKE16 feature set also contains four additional static

metrics that aim to capture the size and complexity of the test

case code. A recent study identified this general property to be

a possible indicator of flaky tests [45]. With that said, another

recent study cast doubt on the reliability of various code

complexity metrics for measuring program comprehension

difficulty [43]. Nevertheless, this does not necessarily imply

that they would be of no use for detecting flaky tests, so this

paper evaluates them. The first of these is Abstract Syntax Tree

(AST) depth. Specifically, this feature measures the maximum

depth of nested program statements, such as if statements and

for loops. The second is Halstead volume, which attempts to

capture the “size” of an algorithm’s implementation. Where N

is the total number of operators and operands in the test case

code and η is the number of distinct operators and operands,

Halstead volume is given by Nlog2(η) [2]. The third static

metric is cyclomatic complexity, which measures the number

of branches in a piece of code [21]. In Python, and many

other programming languages, an if statement corresponds

to a branch and so would increase the cyclomatic complexity

by 1. Other examples of branches include for and while

statements, since they both evaluate a condition before every

iteration. The fourth metric is maintainability. This is an

empirical measure of how easy a piece of code is to support

and modify [64]. There are several formulations, though we

used the one implemented by the RADON library [48]. We

selected this library because it also contains implementations

for calculating Halstead volume and cyclomatic complexity.

III. EVALUATION

We designed and conducted experiments to answer the

following three research questions regarding the benefit of

features during machine learning-based flaky test detection:

RQ1. Compared to the features used by FLAKEFLAGGER,

does the FLAKE16 feature set improve the performance of

flaky test case detection with machine learning models?

TABLE II
THE 26 OPEN-SOURCE PYTHON PROJECTS EXAMINED IN THIS PAPER’S

STUDY. THE “STARS” COLUMN IS THE NUMBER OF TIMES A GITHUB

USER HAS INDICATED THEIR INTEREST IN THE PROJECT [52]. THE

“TESTS” COLUMN IS THE TOTAL NUMBER OF TEST CASES, BOTH FLAKY

AND NON-FLAKY. THE “NOD” AND “OD” COLUMNS ARE THE NUMBER

OF NON-ORDER-DEPENDENT AND ORDER-DEPENDENT FLAKY TESTS.

GitHub Repository # Stars # Tests # NOD # OD

apache/airflow 23175 3458 66 293
celery/celery 17952 2365 - 15
conan-io/conan 5274 3707 - 13
encode/django-rest-framework 21906 1402 - 1
spesmilo/electrum 5154 544 1 1
Flexget/Flexget 1342 1335 1 4
fonttools/fonttools 2850 3456 1 42
graphql-python/graphene 6810 347 - 1
facebookresearch/hydra 4861 1540 - 19
HypothesisWorks/hypothesis 5379 4386 5 6
ipython/ipython 14982 846 6 304
celery/kombu 2221 1025 2 23
apache/libcloud 1788 9840 3 133
Delgan/loguru 9838 1255 4 21
mitmproxy/mitmproxy 24702 1231 - 17
python-pillow/Pillow 8983 2583 - 26
PrefectHQ/prefect 6897 7038 25 20
PyGithub/PyGithub 4664 711 - 4
Pylons/pyramid 3593 2633 - 4
psf/requests 46050 537 5 -
scikit-image/scikit-image 4525 6281 - 12
mwaskom/seaborn 8772 1028 1 8
pypa/setuptools 1439 704 1 23
sunpy/sunpy 629 2072 - 2
urllib3/urllib3 2788 1900 15 1
xonsh/xonsh 5133 4782 9 19

Total 241707 67006 145 1012

RQ2. Can machine learning models be applied to effectively

detect order-dependent flaky test cases?

RQ3. Which features of FLAKE16 are the most impactful?

A. Data Collection

To evaluate the performance of any machine learning model

for detecting flaky tests, we needed a labelled dataset of test

cases. To that end, we sampled 26 popular Python projects,

most of which are considered critical to open-source infras-

tructure [41]. In total, these 26 projects, listed in Table II, gave

us a dataset of over 67,000 test cases. In order to train and

evaluate a machine learning classifier, we needed to label each

test case as non-flaky, NOD flaky, or OD flaky. To that end, we

created a framework of tools, called FLAKE16FRAMEWORK,

to automatically execute each project’s test suite 2,500 times

in a consistent order and an additional 2,500 times in a random

order. For reproducibility and isolation between test suite runs,

FLAKE16FRAMEWORK installs each project inside of a fully-

specified virtual environment [63] to produce a Docker image

[15], which it uses to create a separate container for each test

suite run. The framework also records the outcome (i.e., pass

or fail) of every test during each test suite execution. It labels

a test as NOD flaky if it has an inconsistent outcome during

the runs in a consistent order. Otherwise, it labels a test as

OD flaky if it has an inconsistent outcome during the runs in

0 500 1,000 1,500 2,000 2,500
20

60

100

Test Suite Runs Performed

%
F

la
k
y

T
es

ts
D

et
ec

te
d

NOD

OD

Fig. 1. The relationship between the number of test suites runs performed by
FLAKE16FRAMEWORK and the percentage of flaky tests it identified, both
NOD and OD. As the curves show, the relationship in both cases is sublinear.

random orders. Failing that, it labels a test as non-flaky. This

is an established practice for identifying flaky tests [23], [34].

Given the non-deterministic nature of flaky tests, it is

impossible to label a test case as non-flaky with complete

certainty. Naturally, confidence increases with the number

of test suite runs, but so too does the computational cost.

Alshammari et al. [3] executed test suites 10,000 times. Based

on their findings, the cumulative number of detected flaky

tests appears sublinearly related to the number of test suite

runs. In other words, continuing to re-execute a test suite gives

diminishing returns with respect to the confidence of labelling

a test case as non-flaky. Our study confirms these findings, for

both NOD and OD flaky tests, as illustrated by the curves in

Figure 1. As such, we selected a smaller number of test suite

runs to reduce the time to finish the labelling process. Despite

this, labelling still took over four weeks of computational time

on a computer with a 24-core AMD Ryzen 5900X CPU.

As well as having labels for each test case, we also needed

to measure values for each of the metrics of FLAKE16. To

that end, we designed FLAKE16FRAMEWORK to perform the

necessary static analysis on the source code of every test case

and to instrument test case execution to collect the dynamic

features. We implemented this with the help of several existing

Python libraries. To collect most of the static metrics, we

used the RADON library [48]. To determine the number of

external modules used by a test case, we implemented our own

approach that analyzes the AST of a test case. To measure line

coverage data, we used COVERAGE.PY [14]. For the majority

of the remaining dynamic features, we used PSUTIL [47].

In keeping with previous work [3], FLAKE16FRAMEWORK

executed each of the 26 test suites just once to measure these

values to keep its computational cost as low as possible. While

there may be some expected variance in these values, we leave

it as future work to investigate if the repeated measurement of

these features improves the performance of flaky test detection.

B. Data Preprocessing

Preprocessing of raw feature data is a typical component of

machine learning pipelines [22], [65]. To that end, we eval-

uated two common data preprocessing techniques. The first

was scaling (also known as standardization), which, for each

feature, involves subtracting the mean over the entire dataset

and dividing by the standard deviation. This has the effect of

“centering” the distribution of each feature with a mean of zero

and a variance of one, such as a standard normal distribution.

This is a common requirement for many machine learning

models [46]. The second was principal component analysis

(PCA) [1]. This is a technique used to transform a dataset such

that each new feature corresponds to a principal component.

The principal components of a dataset can be thought of as an

ordered set of orthogonal vectors representing axes that best

capture the variance of the data. The first principal component

captures the most variance and the subsequent components

capture increasingly less. A common use of PCA is to reduce

the number of features in a dataset while sacrificing as little

data as possible. This is known as dimensionality reduction

[62]. Because the principal components are orthogonal to one

another, PCA also decorrelates the features of a dataset. Since

the dimensionality of the dataset is relatively low, and Table

III shows that many of FLAKE16’s features are correlated,

decorrelation is our primary use case for PCA.

C. Data Balancing

As shown by Table II, the number of non-flaky tests in

our dataset vastly outnumbers both the NOD and OD flaky

tests. Training machine learning models with imbalanced data

such as ours potentially limits their performance [36], [58].

To address this, we evaluated five data balancing techniques.

Data balancing techniques can be split into two categories:

those that undersample (reduce) the majority class (non-flaky),

and those that oversample (increase) the minority class (flaky).

We evaluated two undersampling, one oversampling, and two

combined techniques. The first undersampling technique re-

moves the non-flaky samples within Tomek links of the dataset.

A Tomek link occurs between two samples when a sample of

one class is the nearest neighbor of a sample of the other [59].

The second technique, edited nearest-neighbors, removes non-

flaky samples whose nearest neighbors are all flaky. With a

neighborhood of only one sample, edited nearest-neighbors is

equivalent to the previous technique. We used a neighborhood

of three, our implementation’s default. For oversampling,

we evaluated the synthetic minority oversampling technique

(SMOTE) [12], which generates synthetic flaky samples by

interpolation. The two combined techniques we evaluated were

the combination of SMOTE with Tomek links and edited

nearest-neighbors. In both instances, SMOTE is applied first

and the undersampling technique acts as a data cleaning

method, rather than to undersample the non-flaky samples [5].

To ensure the correctness of these balancing techniques, we

used those in the IMBALANCED-LEARN Python library [27].

D. Machine Learning Models

For the classification of test cases as flaky or non-flaky,

we evaluated three machine learning models. Previous studies

have found the random forest model [10] to be particularly

performant in this domain [3], [44]. Random forest is an

ensemble model, which combines many base models, in this

TABLE III
SPEARMAN RANK-ORDER CORRELATION COEFFICIENTS BETWEEN EACH PAIR OF FEATURES IN FLAKE16. VALUES RANGE BETWEEN -1 AND 1, WITH 0

INDICATING NO CORRELATION AND -1 OR 1 INDICATING AN EXACT MONOTONIC RELATIONSHIP. A NEGATIVE VALUE INDICATES THAT AS THE FEATURE

IN THE ROW INCREASES, THE FEATURE IN THE COLUMN DECREASES. DARKER SHADED CELLS INDICATE A GREATER MAGNITUDE OF CORRELATION.

C
o
v
er

ed
L

in
es

C
o
v
er

ed
C

h
a
n

g
es

S
o
u

rc
e

C
o
v
er

ed
L

in
es

E
x
ec

u
ti

o
n

T
im

e

R
ea

d
C

o
u

n
t

W
ri

te
C

o
u

n
t

C
o
n

te
x
t

S
w

it
ch

es

M
a
x
.

T
h

re
a
d

s

M
a
x
.

M
em

o
ry

A
S

T
D

ep
th

A
ss

er
ti

o
n

s

E
x
te

rn
a
l

M
o
d

u
le

s

H
a
ls

te
a
d

V
o
lu

m
e

C
y
cl

o
m

a
ti

c
C

o
m

p
le

x
it

y

T
es

t
L

in
es

o
f

C
o
d

e

M
a
in

ta
in

a
b

il
it

y

Covered Lines 1.00 0.72 1.00 0.48 -0.05 0.32 0.50 0.15 0.21 -0.09 -0.07 -0.30 -0.11 -0.08 0.15 0.09
Covered Changes 0.72 1.00 0.72 0.41 -0.01 0.25 0.35 0.13 0.21 0.04 0.14 -0.14 0.08 0.13 0.17 -0.09
Source Covered Lines 1.00 0.72 1.00 0.48 -0.05 0.32 0.49 0.14 0.21 -0.10 -0.06 -0.31 -0.10 -0.07 0.13 0.08
Execution Time 0.48 0.41 0.48 1.00 0.55 0.48 0.48 0.30 0.76 0.03 0.17 -0.01 0.13 0.14 0.09 -0.12
Read Count -0.05 -0.01 -0.05 0.55 1.00 0.40 0.12 0.18 0.73 0.17 0.21 0.30 0.21 0.22 0.12 -0.18
Write Count 0.32 0.25 0.32 0.48 0.40 1.00 0.52 0.32 0.45 0.00 -0.07 -0.06 -0.04 -0.07 0.13 0.04
Context Switches 0.50 0.35 0.49 0.48 0.12 0.52 1.00 0.31 0.36 -0.11 -0.04 -0.18 -0.05 -0.06 0.09 0.07
Max. Threads 0.15 0.13 0.14 0.30 0.18 0.32 0.31 1.00 0.26 0.05 -0.01 0.05 0.01 0.00 0.10 -0.01
Max. Memory 0.21 0.21 0.21 0.76 0.73 0.45 0.36 0.26 1.00 0.10 0.21 0.16 0.20 0.20 0.06 -0.16
AST Depth -0.09 0.04 -0.10 0.03 0.17 0.00 -0.11 0.05 0.10 1.00 0.21 0.16 0.24 0.42 0.42 -0.26
Assertions -0.07 0.14 -0.06 0.17 0.21 -0.07 -0.04 -0.01 0.21 0.21 1.00 0.15 0.73 0.89 0.30 -0.69
External Modules -0.30 -0.14 -0.31 -0.01 0.30 -0.06 -0.18 0.05 0.16 0.16 0.15 1.00 0.28 0.18 0.18 -0.24
Halstead Volume -0.11 0.08 -0.10 0.13 0.21 -0.04 -0.05 0.01 0.20 0.24 0.73 0.28 1.00 0.75 0.35 -0.91
Cyclomatic Complexity -0.08 0.13 -0.07 0.14 0.22 -0.07 -0.06 0.00 0.20 0.42 0.89 0.18 0.75 1.00 0.43 -0.72
Test Lines of Code 0.15 0.17 0.13 0.09 0.12 0.13 0.09 0.10 0.06 0.42 0.30 0.18 0.35 0.43 1.00 -0.39
Maintainability 0.09 -0.09 0.08 -0.12 -0.18 0.04 0.07 -0.01 -0.16 -0.26 -0.69 -0.24 -0.91 -0.72 -0.39 1.00

case decision tree [51]. Decision tree is a non-parametric

model that learns simple if-then-else decision rules from the

training data, forming a binary tree. In this context, their output

is the estimated probability of a test case being non-flaky. The

random forest model trains each decision tree on a random

sample with replacement of the training data, that is, a sample

where individual data points can appear more than once. The

overall classification is based on the average of their estimated

probabilities. A related model, extremely randomized trees

[20], also known as extra trees, trains trees on random samples

without replacement and introduces additional randomization

in how they are trained. We evaluated random forest and

extra trees, as well as the base decision tree model, using

the implementations provided by SCIKIT-LEARN [53].

E. Methodology

We used the FLAKE16FRAMEWORK to evaluate all com-

binations of data preprocessing, data balancing, and machine

learning model, including no preprocessing and no balanc-

ing. This resulted in 54 machine learning pipelines. The

framework evaluated these using both the FLAKE16 and the

FLAKEFLAGGER feature sets and applied them to two binary

classification problems, non-flaky or NOD flaky and non-flaky

or OD flaky, culminating in 216 models. It used stratified 10-

fold cross validation for model training and testing, as done by

Alshammari et al. in their evaluation of their FLAKEFLAGGER

framework [3]. This creates 10 folds, in which 90% of the

dataset is used for training and 10% is used for testing. The

class balance of each fold roughly follows that of the entire

dataset, and FLAKE16FRAMEWORK applied data balancing to

the training set only. This is so the model testing accurately

reflects the imbalanced nature of the classification problem.

After training the model, the framework applied it to each test

case of the testing set, resulting in a prediction of flaky or non-

flaky. Since the testing portion of each fold is unique, after 10

folds every test case in the dataset has a predicted label.

Where flaky is the positive label and a predicted label for a

test case is true if it matches the label assigned to it during data

collection, FLAKE16FRAMEWORK enumerated the number of

false positives, false negatives, and true positives, for the test

cases of each project and for the entire dataset. From these,

it calculated the precision, the ratio of true positives to all

positives, and the recall, the ratio of true positives to the sum

of true positives and false negatives. In other words, precision

is the fraction of genuine flaky tests among all test cases the

model labelled as flaky and recall is the fraction of genuine

flaky tests that the model labelled as flaky. The framework

also calculated the F1 score, or the harmonic mean of these

two metrics. These are all common metrics used in previous

studies of machine learning to detect flaky tests [3], [8], [44].

The F1 score metric is particularly well-suited to imbalanced

binary classification problems, like the one in this paper, since

it penalizes significant differences between a model’s precision

and recall. This is important because a model that trivially la-

bels all test cases as non-flaky would achieve maximum recall

but very poor precision. We answered RQ1 by comparing the

performance of the best pipeline using the FLAKEFLAGGER

feature set to the best using the FLAKE16 set, for both the

NOD and OD classification problems. We answered RQ2 by

specifically focusing on the OD classification problem.

TABLE IV
THE TOP 10 PIPELINES WITH BOTH FEATURE SETS FOR DETECTING BOTH NOD AND OD FLAKY TESTS. TRAIN TIME AND TEST TIME ARE IN SECONDS.

FLAKEFLAGGER FLAKE16

Pre. Balancing Model Train Time Test Time F1 Pre. Balancing Model Train Time Test Time F1

NOD

None Tomek Links Extra Trees 8.41 0.27 0.46 PCA SMOTE Extra Trees 133.72 0.57 0.52
Scaling None Extra Trees 11.73 0.37 0.44 PCA SMOTE Tomek Extra Trees 100.77 0.26 0.52
None SMOTE Tomek Extra Trees 41.17 0.26 0.43 Scaling SMOTE Tomek Extra Trees 123.84 0.59 0.51
None SMOTE Extra Trees 21.12 0.21 0.43 Scaling SMOTE Extra Trees 139.19 0.49 0.51
None ENN Extra Trees 6.10 0.13 0.43 None SMOTE Random Forest 269.69 0.22 0.48
None None Extra Trees 14.43 0.49 0.43 None ENN Extra Trees 34.94 0.25 0.48
Scaling ENN Extra Trees 10.58 0.46 0.43 PCA SMOTE ENN Extra Trees 146.26 0.53 0.48
Scaling Tomek Links Extra Trees 4.78 0.16 0.43 Scaling SMOTE Tomek Random Forest 209.72 0.25 0.48
Scaling SMOTE Tomek Extra Trees 41.20 0.56 0.42 None SMOTE Tomek Extra Trees 53.42 0.20 0.48
PCA Tomek Links Extra Trees 13.11 0.27 0.42 PCA SMOTE Tomek Random Forest 334.66 0.32 0.48

OD

None SMOTE Tomek Extra Trees 70.29 1.23 0.47 Scaling SMOTE Random Forest 148.34 0.52 0.55
None SMOTE Extra Trees 75.57 1.16 0.46 Scaling SMOTE Tomek Random Forest 173.06 0.65 0.55
None SMOTE Tomek Random Forest 83.82 0.81 0.46 Scaling SMOTE Extra Trees 150.09 0.92 0.54
None SMOTE Random Forest 85.06 0.28 0.45 Scaling SMOTE Tomek Extra Trees 155.38 1.49 0.54
None ENN Extra Trees 13.75 0.80 0.45 None SMOTE Extra Trees 128.18 1.24 0.53
Scaling ENN Extra Trees 13.40 0.92 0.45 Scaling ENN Extra Trees 37.62 0.79 0.52
Scaling Tomek Links Extra Trees 18.03 1.08 0.45 None SMOTE Tomek Extra Trees 38.68 0.43 0.52
Scaling None Extra Trees 21.20 1.17 0.44 None Tomek Links Extra Trees 27.47 0.62 0.51
None None Extra Trees 12.92 0.69 0.44 Scaling Tomek Links Extra Trees 29.62 0.79 0.51
None Tomek Links Extra Trees 14.50 0.70 0.44 None ENN Extra Trees 27.93 0.80 0.50

To rank each feature of FLAKE16 in terms of its impact,

we used the Shapely Additive Explanations (SHAP) tech-

nique [37]. This automated technique leverages concepts from

game theory to quantify the contribution that a feature has on

the output of a model. SHAP requires a dataset (i.e., a matrix

where each row is a data point and each column represents

a feature) and a trained model, and it returns a matrix of

SHAP values in the same shape as the dataset. Each column

of the SHAP values matrix corresponds to the impact that the

respective feature had on the decision of the trained model for

each data point. In our case, FLAKE16FRAMEWORK applied

SHAP to estimate the contribution of each feature of FLAKE16

to a model’s estimated probability of each test case being non-

flaky. It did this for the best non-PCA pipelines for both test

case classification problems when using FLAKE16.

Since the features of a PCA-transformed dataset correspond

to a linear combination of the original features [1], it would be

difficult to relate their impact back to the features of FLAKE16.

To answer RQ3, FLAKE16FRAMEWORK quantified the im-

pact of each feature for detecting both NOD and OD flaky tests

by taking the mean absolute value of each column of the SHAP

values matrices for both pipelines. A common alternative

technique we could have used is to calculate the permutation

importance of each feature. Given a trained model, this would

involve shuffling the values of each feature across the dataset

and measuring the impact this has on the performance of the

model when applied to the shuffled dataset (e.g., the F1 score).

Yet, this technique can give misleading results when features

are correlated [26], as Table III shows is the case for the

features used to predict whether or not a test is flaky.

F. Threats to Validity

This section considers the potential threats to the validity of

this paper’s evaluation and discusses how we mitigated them.

First, during data collection the FLAKE16FRAMEWORK could

have labelled some flaky tests as non-flaky. Given the non-

deterministic nature of flaky tests, it is impossible to fully

rectify this issue, although we mitigated it by performing

as many test suite runs as possible within the limits of the

computational resources available to us. Furthermore, some

specific categories of flaky tests are unlikely to be manifested

by rerunning alone [38], [54]. The only category we made spe-

cial arrangements to detect were OD flaky tests; we consider

other categories requiring additional means to identify out of

the scope of this study. Second, FLAKE16FRAMEWORK could

have contained bugs, which may have impacted the results of

our evaluation. To that end, we used well-established Python

libraries for the bulk of its functionality. These included COV-

ERAGE.PY [14] to measure line coverage, PSUTIL [47] to mea-

sure many other dynamic properties of test cases, and SCIKIT-

LEARN [53] for our model implementations. These are all

popular open-source projects with many contributors, giving

us confidence that any bugs would be identified, documented,

and patched in a timely manner. We also wrote unit tests for

greater confidence in the correctness of the bespoke elements

of FLAKE16FRAMEWORK. Third, individual projects with

significantly more test cases than others could bias the overall

results. For example, AIRFLOW had the highest number of

NOD flaky tests at 66, or 264% more than that of the second

highest. To resolve this concern, we calculated performance

metrics with respect to each individual project.

TABLE V
FOR NOD FLAKY TESTS, THE PER-PROJECT COMPARISON OF THE BEST

PIPELINE FOR BOTH FEATURE SETS.

In this table, FP, FN, and TP are false positives, false negatives, and true
positives, respectively. Finally, Pr stands for precision and Re is recall.

FLAKEFLAGGER FLAKE16

Project FP FN TP Pr Re F1 FP FN TP Pr Re F1

airflow 7 37 29 0.81 0.44 0.57 20 30 36 0.64 0.55 0.59
ipython 0 4 2 1.00 0.33 0.50 3 2 4 0.57 0.67 0.62
loguru 1 2 2 0.67 0.50 0.57 1 2 2 0.67 0.50 0.57
prefect 2 17 8 0.80 0.32 0.46 5 12 13 0.72 0.52 0.60
requests 1 3 2 0.67 0.40 0.50 1 3 2 0.67 0.40 0.50
xonsh 4 4 5 0.56 0.56 0.56 3 5 4 0.57 0.44 0.50

Total 16 97 48 0.75 0.33 0.46 49 76 69 0.58 0.48 0.52

IV. EMPIRICAL RESULTS

RQ1. Compared to the features used by FLAKEFLAG-

GER, does the FLAKE16 feature set improve the perfor-

mance of flaky test case detection with machine learning

models? The top half of Table IV shows the top 10 pipelines

for detecting NOD flaky tests with both the FLAKEFLAG-

GER and FLAKE16 feature sets. The best pipeline with the

FLAKE16 feature set was preprocessing with PCA, balancing

with SMOTE, and extra trees as the model. Its F1 score was

13% higher than the best pipeline with the FLAKEFLAGGER

feature set. Table V shows the per-project performance of

the best pipelines with both feature sets. This table excludes

projects for which we could not calculate precision, recall,

or F1 score due to a division by zero. For all the included

projects, with the exception of XONSH, the F1 score is either

unchanged or higher with FLAKE16. Overall, the best pipeline

with FLAKE16 had a better trade-off between precision and

recall, whereas the best pipeline with the FLAKEFLAGGER

feature set had significantly greater precision than recall, which

was relatively poor. This result suggests that the FLAKE-

FLAGGER pipeline was particularly conservative with regard to

labelling a test case as flaky. The bottom half of Table IV gives

the best pipelines for the OD classification problem. In this

case, the best pipeline with FLAKE16 had an F1 score that was

17% greater than the best pipeline with the FLAKEFLAGGER

feature set. Table VI gives the per-project scores for these

two pipelines. Once again, we excluded projects if we could

not calculate precision, recall, or F1 score. For 11 of the 18

projects listed, the F1 score was greater when using FLAKE16.

Overall, the best pipeline with FLAKE16 had a recall that was

36% greater than that of the FLAKEFLAGGER feature set and a

precision that was unchanged, indicating a clear improvement

in the performance of the flaky test detection method.

Conclusion for RQ1. The FLAKE16 feature set offered

a 13% increase in overall F1 score when detecting NOD

flaky tests and a 17% increase when detecting OD flaky

tests. These results indicate that the FLAKE16 feature

set improves machine learning-based flaky test detection

performance compared to the FLAKEFLAGGER feature set.

TABLE VI
FOR OD FLAKY TESTS, THE PER-PROJECT COMPARISON OF THE BEST

PIPELINE FOR BOTH FEATURE SETS.

In this table, FP, FN, and TP are false positives, false negatives, and true
positives, respectively. Finally, Pr stands for precision and Re is recall.

FLAKEFLAGGER FLAKE16

Project FP FN TP Pr Re F1 FP FN TP Pr Re F1

airflow 89 94 199 0.69 0.68 0.69 133 55 238 0.64 0.81 0.72
celery 6 7 8 0.57 0.53 0.55 4 9 6 0.60 0.40 0.48
conan 23 7 6 0.21 0.46 0.29 14 8 5 0.26 0.38 0.31
Flexget 2 3 1 0.33 0.25 0.29 0 3 1 1.00 0.25 0.40
fonttools 19 5 37 0.66 0.88 0.76 21 1 41 0.66 0.98 0.79
hydra 19 9 10 0.34 0.53 0.42 4 13 6 0.60 0.32 0.41
ipython 96 248 56 0.37 0.18 0.25 274 126 178 0.39 0.59 0.47
kombu 6 13 10 0.62 0.43 0.51 1 15 8 0.89 0.35 0.50
libcloud 62 91 42 0.40 0.32 0.35 103 78 55 0.35 0.41 0.38
loguru 4 2 19 0.83 0.90 0.86 6 6 15 0.71 0.71 0.71
mitmproxy 10 11 6 0.38 0.35 0.36 5 12 5 0.50 0.29 0.37
Pillow 14 20 6 0.30 0.23 0.26 21 11 15 0.42 0.58 0.48
prefect 9 16 4 0.31 0.20 0.24 1 16 4 0.80 0.20 0.32
PyGithub 0 1 3 1.00 0.75 0.86 1 1 3 0.75 0.75 0.75
scikit0image 31 3 9 0.23 0.75 0.35 2 7 5 0.71 0.42 0.53
seaborn 11 6 2 0.15 0.25 0.19 1 6 2 0.67 0.25 0.36
setuptools 5 5 18 0.78 0.78 0.78 4 7 16 0.80 0.70 0.74
xonsh 10 12 7 0.41 0.37 0.39 8 13 6 0.43 0.32 0.36

Total 440 569 443 0.50 0.44 0.47 608 401 611 0.50 0.60 0.55

RQ2. Can machine learning models be applied to effec-

tively detect order-dependent flaky test cases? As shown

in the bottom half of Table IV, the most performant pipeline

for detecting OD flaky tests used the FLAKE16 feature set

with scaling for preprocessing, SMOTE for balancing, and

random forest as the model, and achieved an F1 score of

0.55. Compared to the best NOD pipeline, its overall precision

was 14% lower and its recall was 25% higher, resulting in an

F1 score that was just 6% higher. These differences are too

marginal to conclude that machine learning models are any

better at detecting OD flaky tests than NOD flaky tests, but

rather suggests that their performance at both classification

problems was roughly the same. For the best OD pipeline, the

per-project F1 scores showed a significant degree of variance,

achieving an F1 score of just 0.31 for CONAN and up to 0.79

for FONTTOOLS. Comparatively, the best NOD pipeline had

a much lower per-project variance, though the sample size

of projects in this case is rather small to draw any reliable

conclusions. This per-project variance is not unique to our

study [3], [8], however ours is the first to report it in the

context of using machine learning to detect OD flaky tests.

Conclusion for RQ2. The performance of the best OD

pipeline was broadly similar to that of the best NOD

pipeline, suggesting that machine learning models are just

as applicable to the task of detecting OD flaky tests as they

are to detecting NOD flaky tests.

RQ3. Which features of FLAKE16 are the most impact-

ful? Figure 2 shows each feature of FLAKE16 in descending

order of their mean absolute SHAP value in the context of

detecting both NOD and OD flaky tests (see Section III-E

for details on how these are calculated). The lines connecting

the boxes indicate how their ranks differ between the two

classification problems. As indicated by the volume of lines

with steep gradients, the difference is significant. For detecting

NOD flaky tests, the maximum threads feature was the most

impactful by a considerable margin. For OD flaky tests, the

number of read- and write-related system calls were the

most impactful metrics. All these features are exclusive to

FLAKE16, which could partially explain why it improved

detection performance compared to the FLAKEFLAGGER fea-

ture set. In general, the dynamic features occupy the higher

ranks and the static features occupy the lower ranks for both

classification problems. This shows that the static features had

less influence on the models’ decisions, implying that they

may be less useful for detecting flaky tests. Clear exceptions

to this are the AST depth feature, which was the second most

impactful for NOD flaky tests, the number of assertions, which

was third for OD flaky tests, and test lines of code, which

occupied the lower-middle ranks in both instances.

Conclusion for RQ3. The most impactful feature when

detecting NOD flaky tests was the peak number of con-

currently running threads during test case execution. When

detecting OD flaky tests, the number of read- and write-

related system calls were the most impactful. In general,

the dynamic features were more impactful than the static

features, though there were notable exceptions to this.

V. DISCUSSION

A. General Model Performance

The best pipeline for detecting NOD flaky tests achieved

an F1 score of 0.52 and the best for OD flaky tests achieved

an F1 score of 0.55. For a binary classification problem with

balanced classes, an F1 score of 0.50 can be trivially attained

by randomly guessing labels with uniform class probabilities.

Yet, both of this paper’s classification problems are signifi-

cantly imbalanced. For the NOD problem, flaky tests account

for just 0.02% of the entire dataset. For the OD problem, flaky

tests represent 1.5%. In both cases, we would expect uniform

random guessing to yield an F1 score significantly lower

than 0.5. Considering the NOD problem, we would expect

random guessing to render half of the 66,861 non-flaky test

cases as true negatives and half as false positives. Similarly,

we would expect half of the 145 flaky test cases to become

false negatives and the other half true positives. Applying the

calculations for precision and recall described in Section III-E,

this strategy would score 0.5 and 0.002 respectively, giving an

ultimate F1 score of 0.004. The F1 score would be similarly

low for the OD problem and for both problems using other

trivial approaches, such as guessing according to class prior

probabilities or labelling all test cases as non-flaky. Therefore,

the two pipelines that use FLAKE16 are significantly better

suited to flaky test detection than these trivial approaches.

Alshammari et al. [3], who presented the FLAKEFLAGGER

framework, recorded an F1 score of 0.66 when detecting NOD

Read Count

Write Count

Context Switches

Maintainability

Execution Time

Covered Changes

Max. Threads

Max. Memory

Source Covered Lines

Covered Lines

Cyclomatic Complexity

Test Lines of Code

Assertions

Halstead Volume

External Modules

0.064

0.042

0.040

0.036

0.034

0.034

0.033

0.032

0.032

0.026

0.025

0.023

0.020

0.016

0.012

AST Depth

Read Count

Write Count

Context Switches

Maintainability

Execution Time

Covered Changes

Max. Threads

Max. Memory

Source Covered Lines

Covered Lines

Cyclomatic Complexity

Test Lines of Code

Assertions

Halstead Volume

External Modules

0.020

0.013

0.038

0.082

0.033

0.080

0.035

0.036

0.023

0.035

0.044

0.016

0.012

0.047

0.013

0.010

NOD OD

AST Depth
0.046

Fig. 2. Impact of each feature of FLAKE16 for both classification problems.
Each box represents a feature and contains its mean absolute SHAP value
(see Section III-E), of which they are in descending order. The left column
contains the values in the context of detecting NOD flaky tests and the right
in the context of detecting OD flaky tests. Features are connected between
each column with a line, representing how significantly the ranks differ.

flaky tests. This is considerably higher than the F1 score

achieved by the best pipeline with the FLAKEFLAGGER fea-

ture set in this paper’s study, which was 0.46. Yet, Alshammari

et al. used an entirely different dataset of tests from projects in

the Java programming language, which makes the comparison

largely invalid. With our Python dataset, we demonstrated that

FLAKE16 improved NOD flaky test detection performance.

There is no evidence to suggest that this would not also be

the case on Alshammari et al.’s dataset. Since this is the first

study to apply machine learning models to detecting OD flaky

tests, there are no previous results to which we can compare.

B. Reliability of Performance Metrics

Extrapolating the curves of Figure 1 suggests that we

would identify more flaky tests of both categories if we had

FLAKE16FRAMEWORK perform more test suite runs. Since

more runs can only result in test case labels transitioning

from non-flaky to flaky, true negatives may become false

negatives and false positives may become true positives. The

effect that this would have on precision, recall, and F1 score

would entirely depend on the frequency of both types of

change. However, we do not consider it likely that more

test suite runs would change the overall conclusion of RQ1

for two reasons. First, any label transitions would affect the

results for the FLAKEFLAGGER feature set the same as they

would for FLAKE16. Second, given the sublinear curves, we

would expect to identify increasingly fewer flaky tests as

FLAKE16FRAMEWORK performed more runs, meaning that

any changes in the F1 scores would be increasingly small.

C. Impact of Features

Our results for RQ3 indicate that maximum threads was the

most impactful feature when detecting NOD flaky tests. This

is unsurprising given the prevalence of flaky tests caused by

asynchronicity and concurrency, as reported in the literature

[18], [31], [38], [50]. Naturally, both of these causes imply

multiple running threads during test case execution. For OD

flaky tests, our results indicate that the number of read- and

write-related system calls were the most impactful. Similarly,

this could be explained by the relationship between filesystem

activity and OD flaky tests that has been described in previous

studies [6], [9], [19], [38], [66]. Interestingly, these two

features were also highly impactful when detecting NOD flaky

tests. A possible explanation for this is that input and output

operations may be performed asynchronously [4], which has

been established as a common cause of NOD flaky tests [38].

Alshammari et al.’s evaluation suggested that execution time

was the most informative feature that they considered for their

FLAKEFLAGGER framework [3]. In our results, execution time

was the fifth most impactful feature when detecting NOD flaky

tests, but was considerably less impactful for OD flaky tests.

They also determined that the three coverage features were

highly informative. Similarly, we found these to occupy the

upper-middle ranks for both classification problems, support-

ing the notion that they are valuable features for detecting flaky

tests. In general, we would expect features such as execution

time, the three coverage features, and maximum memory to be

higher for larger and more complex test cases. We hypothesize

that the impactfulness of this group of features is simply a

consequence of the intuition that the more a test case is doing,

the greater the margin for both error and flakiness.

Many of the static features of FLAKE16, such as cyclomatic

complexity, Halstead volume, and maintainability, appeared to

have the lowest impact for both classification problems. A

recent study cast doubt on the fitness for purpose of Halstead

volume and other code complexity metrics [43]. This could

be the reason why they appeared to be of limited value in

the context of flaky test detection. This is despite another

recent study finding that the Halstead volume of flaky tests

was greater than non-flaky tests to a statically significant

degree, albeit with a small effect size [45]. With this result in

mind, concluding that static features are generally less valuable

than dynamic features could be misguided, especially since

we identified three static features that appeared to make a

considerable contribution to the models’ predictions.

D. Impact of Preprocessing, Balancing, and Model Choice

Table IV does not indicate any clear best choice of pre-

processing or balancing. For both the FLAKEFLAGGER and

FLAKE16 feature sets, pipelines with different preprocessing

and balancing are in the top 10 for both classification problems

with only small differences in F1 score. Most interestingly,

given the significant class imbalances, pipelines with no data

balancing are in the top 10 for both classification problems

with the FLAKEFLAGGER features. In general, these results

indicate that extra trees was the better choice of model, though

this is not definitive since random forest was best for detecting

OD flaky tests with FLAKE16, though in comparison to extra

trees the difference in F1 score is minimal. Overall, the only

reliable conclusions we can draw from these findings is that

data balancing mostly improves detection performance, though

there is no clear best technique, and extra trees appears to

have a slight edge over random forest. When compared to

random forest, extra trees trades increased bias for reduced

variance [20]. Having increased bias means the model may

fail to recognize relationships between feature data and labels,

known as underfitting. Having reduced variance means the

model may be less sensitive to noise and outliers, avoiding

overfitting. It could be that the particular bias-variance trade-

off of extra trees makes it generally more suited to the specific

problem of using machine learning for flaky test detection.

E. Implications

Researchers. This paper shows that using FLAKE16 im-

proved machine learning-based flaky test detection perfor-

mance compared to the FLAKEFLAGGER dataset. This demon-

strates that measuring a greater diversity of test case properties

allows models to better distinguish between flaky and non-

flaky test cases. The results also reveal that machine learning

models are just as applicable to detecting OD flaky tests as

they are to detecting NOD flaky tests. Therefore, researchers

should consider how machine learning models can improve

the scalability of OD flaky test detection, since many previous

techniques incur a significant time cost [19], [32], [66].

Developers. This paper establishes that the maximum num-

ber of concurrently running threads during test case execution

is a very impactful feature when detecting NOD flaky tests. As

such, our advice to developers would be to avoid concurrency

in tests as much as is possible. When developers cannot heed

this advice, it may be useful for them to assume such tests are

likely to be flaky [25]. The same can be said for test cases that

perform significant input and output, given that we found the

number of read- and write- related system calls to be impactful

features for detecting both NOD and OD flaky tests.

VI. RELATED WORK

One of the earliest empirical studies of flaky tests was

performed by Luo et al. [38]. They classified the flaky tests

repaired in 201 commits into 10 cause categories. The most

common cause they identified was related to waiting for

asynchronous calls. For example, a test case that launches a

separate process to do some work and waits for a fixed amount

of time for it to finish may fail when the process happens to

take longer than expected. Another common category was test-

order dependency, the cause of OD flaky tests. Luo et al. found

that this was often characterized by the OD flaky test expecting

a particular value of a global variable which is modified by

another test case, which came to be known in later studies

as a polluter [55]. They also identified OD flaky tests that

were caused by a polluter modifying a file. Subsequent studies

generally support the finding that these three particular causes

are very prevalent in many projects [18], [31], [38], [50].

Lam et al. [32] presented IDFLAKIES, a technique for

detecting flaky tests and labelling them as OD or NOD.

Initially, IDFLAKIES repeatedly executes a test suite in its

original test run order, the default order scheduled by the test

runner, to identify which test cases pass consistently. It then

repeatedly executes the test suite in modified orders. When

a test case that had consistently passed in the original order

fails in a modified order, IDFLAKIES executes the test suite

again in both the original and the modified order, up to and

including the failing test case. Should the test case fail again

in the modified order, but pass in the original order, the tool

labels it as OD, otherwise it is labelled as NOD.

Since IDFLAKIES requires many repeated test executions,

it may not scale well to either large or slow-running test

suites. Bell et al. [7] presented DEFLAKER, which, unlike

IDFLAKIES, cannot identify OD flaky tests. Should a test case

fail, having passed on a previous version of the software under

test and without covering any modified code, DEFLAKER

labels it as flaky. To measure coverage, DEFLAKER requires

instrumentation. Likewise, FLAKE16FRAMEWORK requires

instrumentation to measure coverage and other metrics in

FLAKE16. In both cases, this instrumentation introduces run-

time overhead. However, FLAKE16FRAMEWORK only re-

quires a single instrumented run to detect flaky tests, whereas

DEFLAKER requires instrumentation every time it is used.

One of the earliest techniques for specifically detecting OD

flaky tests was DTDETECTOR, presented by Zhang et al. [66].

Their approach utilizes repeated test suite executions in dif-

ferent orders and, in some configurations, with test case

isolation using separate processes. One configuration of their

technique uses byte-code instrumentation to filter test cases

that are unlikely to be OD flaky tests. The combination of

all these factors meant the time cost of the technique was

significant. Bell et al. [6] presented ELECTRICTEST, which,

unlike DTDETECTOR, involved only a single instrumented test

suite run and was thus significantly faster. The instrumentation

employed by ELECTRICTEST identifies instances where one

test case would modify a location in memory that was accessed

by another test case. However, there is no guarantee that this

would result in a OD flaky test, and so while Bell et al. were

able to demonstrate that the recall of ELECTRICTEST was at

least as good as DTDETECTOR, its precision may be much

poorer. To that end, Gambi et al. [19] presented PRADET,

which uses similar instrumentation to ELECTRICTEST. Unlike

ELECTRICTEST, PRADET verifies suspected OD flaky tests

by executing subsets of the test suite in particular orders.

Naturally, this made it a lot slower than ELECTRICTEST.

The drawbacks of previous techniques, specifically the high

volume of test executions, motivated several studies to evaluate

machine learning models for detecting flaky tests. Bertolino

et al. [8] presented FLAST for predicting if a test case is

flaky based purely on its source code. Their technique uses a

k-nearest neighbor classifier [29] which labels test cases based

on their cosine distance to labelled training instances within

a bag-of-words feature space. The bag-of-words approach is

used to represent test cases as sparse vectors where each

element corresponds to the frequency of a particular identifier

or keyword in its source code. Pinto et al. [44] performed a

similar study but included additional static features beyond

the bag-of-words representation such as the number of lines

of code that make up a test case. This work was subsequently

replicated and expanded by Haben et al. [24]. Alshammari

et al. [3] presented FLAKEFLAGGER, a random forest model

encoding test cases with a feature set containing a mixture

of static and dynamic features that are mostly a subset of

FLAKE16. Their evaluation showed that their feature set

offered a 347% improvement in overall F1 score compared to

Pinto et al.’s purely static feature set at the relatively minimal

cost of the single test suite run, required to collect the dynamic

features. One aspect these three studies have in common is

that they used datasets based on Bell et al.’s evaluation of

DEFLAKER [7]. Recall that DEFLAKER does not detect OD

flaky tests, meaning they would be labelled as non-flaky during

the training and evaluation of the models in these studies.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented FLAKE16, a new feature set that

encodes test cases for machine-learning-based flaky tests de-

tection. It evaluated the performance of 54 machine learning

pipelines when detecting both NOD and OD flaky tests using

both FLAKE16 and a previously established feature set. For

both categories of flaky test, experiments with flaky tests

from 26 real-world Python projects showed greater detection

performance when using FLAKE16. Offering a more complete

evaluation of the problem of flaky test detection, this paper is

the first to apply machine learning models to the detection

of OD flaky tests. Using the SHAP technique to evaluate the

impact that each FLAKE16 feature has on the models’ deci-

sions, the results show that the peak number of concurrently

running threads during test case execution to be the most

impactful for detecting NOD flaky tests. For OD flaky tests,

the number of read- and write-related system calls have the

greatest impact. The experiments also reveal that static code

complexity features such as cyclomatic complexity, Halstead

volume, and maintainability to have little impact in both cases.

As future work, we plan to repeat our experiments with

a much larger dataset of flaky tests, thereby improving the

generalizability of this paper’s findings. We will also include

test cases from projects implemented in different programming

languages. Furthermore, we will evaluate the performance of

machine learning models for detecting flaky tests in additional

specific categories beyond OD flaky tests. By extending our

work in these three areas, we aim to create an automated

technique for detecting a greater variety of flaky test types

that would be applicable to many different types of project.

REFERENCES

[1] H. Abdi and L. J Williams. Principal component analysis. Wiley Inter-

disciplinary Reviews: Computational Statistics, 2(4):433–459, 2010.
[2] R. Al-Qutaish and A. Abran. Halstead Metrics: Analysis of their Design,

pages 145–159. Wiley, 2010.
[3] A. Alshammari, C. Morris, M. Hilton, and J. Bell. FlakeFlagger:

Predicting flakiness without rerunning tests. In Proceedings of the

International Conference on Software Engineering (ICSE), 2021.
[4] Asynchronous I/O https://docs.python.org/3/library/asyncio.html, 2022.
[5] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard. A study of

the behavior of several methods for balancing machine learning training
data. Explorations Newsletter, 6(1):20–29, 2004.

[6] J. Bell, G. Kaiser, E. Melski, and M. Dattatreya. Efficient dependency
detection for safe Java test acceleration. In Proceedings of the Joint

Meeting of the European Software Engineering Conference and the

Symposium on the Foundations of Software Engineering (ESEC/FSE),
pages 770–781, 2015.

[7] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov.
DeFlaker: Automatically detecting flaky tests. In Proceedings of the

International Conference on Software Engineering (ICSE), pages 433–
444, 2018.

[8] A. Bertolino, E. Cruciani, B. Miranda, and R. Verdecchia. Know your
neighbor: Fast static prediction of test flakiness. IEEE Access, 9:76119–
76134, 2021.

[9] M. Biagiola, A. Stocco, A. Mesbah, F. Ricca, and P. Tonella. Web test
dependency detection. In Proceedings of the Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations

of Software Engineering (ESEC/FSE), pages 154–164, 2019.
[10] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[11] J. Candido, L. Melo, and M. D’Amorim. Test suite parallelization in

open-source projects: A study on its usage and impact. In Proceedings of

the International Conference on Automated Software Engineering (ASE),
pages 153–158, 2017.

[12] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer.
SMOTE: Synthetic minority over-sampling technique. Journal of Ar-

tificial Intelligence Research, 16:321–357, 2002.
[13] Classes, https://docs.python.org/3/tutorial/classes.html, 2022.
[14] Coverage.py documentation, https://coverage.readthedocs.io/en/stable/,

2022.
[15] Docker documentation, https://docs.docker.com/, 2022.
[16] T. Durieux, C. L. Goues, M. Hilton, and R. Abreu. Empirical study

of restarted and flaky builds on Travis CI. In Proceedings of the

International Conference on Mining Software Repositories (MSR), pages
254–264, 2020.

[17] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and Misailovic S.
Detecting flaky tests in probabilistic and machine learning applications.
In Proceedings of the International Symposium on Software Testing and

Analysis (ISSTA), pages 211–224, 2020.
[18] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli. Understanding

flaky tests: The developer’s perspective. In Proceedings of the Joint

Meeting of the European Software Engineering Conference and the

Symposium on the Foundations of Software Engineering (ESEC/FSE),
pages 830–840, 2019.

[19] A. Gambi, J. Bell, and A. Zeller. Practical test dependency detection.
In Proceedings of the International Conference on Software Testing,

Verification and Validation (ICST), pages 1–11, 2018.
[20] P Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees.

Machine Learning, 63(1):3–42, 2006.
[21] G. K. Gill and C. F. Kemerer. Cyclomatic complexity density and soft-

ware maintenance productivity. Transactions on Software Engineering,
17(12):1284, 1991.

[22] S. Grafberger, J. Stoyanovich, and S. Schelter. Lightweight inspection of
data preprocessing in native machine learning pipelines. In Proceedings

of the Conference on Innovative Data Systems Research (CIDR), 2021.
[23] M. Gruber, S. Lukasczyk, F. Kroiß, and G. Fraser. An empirical study

of flaky tests in Python. In Proceedings of the International Conference

on Software Testing, Verification and Validation (ICST), 2021.
[24] G. Haben, S. Habchi, M. Papadakis, M. Cordy, and Y. Le Traon. A

replication study on the usability of code vocabulary in predicting flaky
tests. In Proceedings of the International Conference on Mining Software

Repositories (MSR), 2021.
[25] M. Harman and P. O’Hearn. From start-ups to scale-ups: Opportunities

and open problems for static and dynamic program analysis. In

Proceedings of the International Working Conference on Source Code

Analysis and Manipulation (SCAM), pages 1–23, 2018.
[26] G. Hooker and L. Mentch. Please stop permuting features: An explana-

tion and alternatives. ArXiv, 2019.
[27] Imbalanced-Learn documenation, https://imbalanced-learn.org/stable/in

dex.html, 2022.
[28] I/O statistics fields, https://www.kernel.org/doc/Documentation/iostats.t

xt, 2022.
[29] J. M. Keller, M. R. Gray, and J. A. Givens. A fuzzy k-nearest neighbor

algorithm. Transactions on Systems, Man, and Cybernetics, 15(4):580–
585, 1985.

[30] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta.
Root causing flaky tests in a large-scale industrial setting. In Proceed-

ings of the International Symposium on Software Testing and Analysis

(ISSTA), pages 204–215, 2019.
[31] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta. A study on the

lifecycle of flaky tests. In Proceedings of the International Conference

on Software Engineering (ICSE), pages 1471–1482, 2020.
[32] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie. IDFlakies: A framework

for detecting and partially classifying flaky tests. In Proceedings

of the International Conference on Software Testing, Verification and

Validation (ICST), pages 312–322, 2019.
[33] W. Lam, A. Shi, R. Oei, S. Zhang, M. D. Ernst, and T. Xie. Dependent-

test-aware regression testing techniques. In Proceedings of the Inter-

national Symposium on Software Testing and Analysis (ISSTA), pages
298–311, 2020.

[34] W. Lam, S. Winter, A. Astorga, V. Stodden, and D. Marinov. Under-
standing reproducibility and characteristics of flaky tests through test
reruns in Java projects. In Proceedings of the International Conference

on Software Reliability Engineering (ISSRE), pages 403–413, 2020.
[35] J. Listfield. Where do our flaky tests come from?, https://testing.goog

leblog.com/2017/04/where-do-our-flaky-tests-come-from.html, 2022.
[36] V. López, A. Fernández, S. Garcı́a, V. Palade, and F. Herrera. An insight

into classification with imbalanced data: Empirical results and current
trends on using data intrinsic characteristics. Information Sciences,
250:113–141, 2013.

[37] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair,
R. Katz, J. Himmelfarb, N. Bansal, and S. Lee. From local explanations
to global understanding with explainable AI for trees. Nature Machine

Intelligence, 2(1):2522–5839, 2020.
[38] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An empirical analysis

of flaky tests. In Proceedings of the Symposium on the Foundations of

Software Engineering (FSE), pages 643–653, 2014.
[39] M. Machalica, A. Samylkin, M. Porth, and S. Chandra. Predictive test

selection. In Proceedings of the International Conference on Software

Engineering: Software Engineering in Practice (ICSE-SEIP), pages 91–
100, 2019.

[40] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco. Taming Google-scale continuous testing. In Proceedings

of the International Conference on Software Engineering: Software

Engineering in Practice (ICSE-SEIP), pages 233–242, 2017.
[41] Open source project criticality score, https://github.com/ossf/criticality

score, 2022.
[42] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn. Surveying the

developer experience of flaky tests. In Proceedings of the International

Conference on Software Engineering: Software Engineering in Practice

(ICSE-SEIP), 2022.
[43] N. Peitek, S. Apel, C. Parnin, A. Brechmann, and J. Siegmund. Program

comprehension and code complexity metrics: An fMRI study. In
International Conference on Software Engineering (ICSE), pages 524–
536, 2021.

[44] G. Pinto, B. Miranda, S. Dissanayake, M. D. Amorim, C. Treude,
A. Bertolino, and M. D’amorim. What is the vocabulary of flaky tests?
In Proceedings of the International Conference on Mining Software

Repositories (MSR), pages 492–502, 2020.
[45] V. Pontillo, F. Palomba, and F. Ferrucci. Toward static test flakiness

prediction: A feasibility study. In Proceedings of the International Work-

shop on Machine Learning Techniques for Software Quality Evoluton,
pages 19–24, 2021.

[46] Preprocessing data https://scikit-learn.org/stable/modules/preprocessing.
html#preprocessing-scaler, 2022.

[47] Psutil documentation, https://psutil.readthedocs.io/en/stable/, 2022.
[48] Radon documentation, https://radon.readthedocs.io/en/stable/index.html,

2022.

[49] Replication package, https://github.com/flake-it/flake16-framework,
2022.

[50] A. Romano, Z. Song, S. Grandhi, W. Yang, and W. Wang. An empirical
analysis of UI-based flaky tests. In Proceedings of the International

Conference on Software Engineering (ICSE), 2021.
[51] S. R. Safavian and D. Landgrebe. A survey of decision tree clas-

sifier methodology. Transactions on Systems, Man, and Cybernetics,
21(3):660–674, 1991.

[52] Saving repositories with stars https://docs.github.com/en/get-started/exp
loring-projects-on-github/saving-repositories-with-stars, 2022.

[53] Scikit-Learn documentation, https://scikit-learn.org/stable/, 2022.
[54] A. Shi, A. Gyori, O. Legunsen, and D. Marinov. Detecting assumptions

on deterministic implementations of non-deterministic specifications.
In Proceedings of the International Conference on Software Testing,

Verification and Validation (ICST), pages 80–90, 2016.
[55] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov. iFixFlakies: A

framework for automatically fixing order-dependent flaky tests. In
Proceedings of the Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE), pages 545–555, 2019.
[56] T. Shi and S. Horvath. Unsupervised learning with random forest predic-

tors. Journal of Computational and Graphical Statistics, 15(1):118–138,
2006.

[57] D. Silva, L. Teixeira, and M. D’Amorim. Shake it! Detecting flaky tests
caused by concurrency with Shaker. In Proceedings of the International

Conference on Software Maintenance and Evolution (ICSME), pages
301–311, 2020.

[58] Y. Sun, A. K. C. Wong, and M. S. Kamel. Classification of imbalanced
data: A review. International Journal of Pattern Recognition and

Artificial Intelligence, 23(4):687–719, 2009.
[59] Ivan Tomek. Two modifications of cnn. Transactions on Systems, Man,

and Cybernetics, 6:769–772, 1976.
[60] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,

and D. Poshyvanyk. An empirical investigation into the nature of test
smells. In Proceedings of the International Conference on Automated

Software Engineering (ASE), pages 4–15, 2016.
[61] A. Vahabzadeh, A. A. Fard, and A. Mesbah. An empirical study of

bugs in test code. In Proceedings of the International Conference on

Software Maintenance and Evolution (ICSME), pages 101–110, 2015.
[62] L. Van Der Maaten, E. Postma, and J. Van den Herik. Dimensionality

reduction: A comparative. Journal of Machine Learning Research,
10(66-71):13, 2009.

[63] Virtual environments and packages, https://docs.python.org/3/tutorial/v
env.html, 2022.

[64] K. D Welker. The software maintainability index revisited. CrossTalk,
14:18–21, 2001.

[65] C. V. G. Zelaya. Towards explaining the effects of data preprocessing
on machine learning. In Proceedings of the International Conference

on Data Engineering (ICDE), pages 2086–2090, 2019.
[66] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D. Ernst, and

D. Notkin. Empirically revisiting the test independence assumption. In
Proceedings of the International Symposium on Software Testing and

Analysis (ISSTA), pages 385–396, 2014.

