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Traffic Safety in Relation to Multidimensional Street Network and Land Use 1 

Features: A Nonlinear Analysis with Population Heterogeneity 2 

 3 

Abstract: Road traffic crashes remain a critical concern for public health and sustainable urban 4 

development. In recent years, there has been an emerging interest in applying nonlinear approaches 5 

to examine the relationship between the built environment and crash occurrence. Extending this line 6 

of inquiry, this research examines how diverse dimensions of street network configuration 7 

(geometry, hierarchy, topology) and land use (type, intensity, diversity) influence traffic crash 8 

density (i.e., crashes per unit area), and investigates how such effects vary by zonal population 9 

composition. within a nonlinear framework. Using data from Wuhan, China, and gradient boosting 10 

decision trees, we find that street topology and land use density are the most influential correlates 11 

in explaining the variation in crash density. Nonlinear associations of street network and land use 12 

characteristics with crash density are prevalent, with most variation occurring within a specific 13 

threshold range. Moreover, the effects of these built environment characteristics vary significantly 14 

across zones with differing age and income structures. Zonal elderly population density amplifies 15 

the effects of most street network and land use characteristics on crash density. Low-income zones 16 

demonstrate a greater sensitivity to changes in certain built environment features, such as street 17 

density, residential land ratio, and land use diversity, resulting in more pronounced increases in crash 18 

density. Our findings provide a more comprehensive and nuanced understanding of the links 19 

between the built environment and traffic safety, and call for both recognitional and distributive 20 

considerations of spatial justice to be incorporated into traffic safety interventions. 21 

 22 

Keywords: population heterogeneity; street network; land use; traffic safety; gradient boosting 23 

decision tree (GBDT)  24 

 25 

  26 
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1 Introduction 27 

Road traffic crashes have become a major threat to global public health and the development of 28 

sustainable cities (Jiang et al. 2017). Each year, approximately 1.19 million lives are lost in traffic 29 

crashes, with tens of millions more people suffering serious injuries (WHO 2023). As an increasing 30 

share of the population settles in urban areas, the need for traffic safety-oriented spatial planning 31 

becomes ever more pressing. A growing body of literature at the intersection of transport geography 32 

and planning has examined how built environmental factors are associated with the occurrence 33 

(frequency, rate, and density) of traffic crashes. Among these factors, street networks (Zhang et al. 34 

2015, Wang et al. 2018) and land use (Xie et al. 2019, Qiao et al. 2020), which condition the 35 

emergence of travel demand, shape the spatial configuration of mobility systems, frame traffic 36 

speeds, and contribute to the formation of spatial conflicts (Saha et al. 2020, Ewing and Dumbaugh 37 

2009), have received wide attention. This line of inquiry is driven by the recognition that modifying 38 

these factors potentially enables more proactive, wide-reaching, and enduring improvements in 39 

traffic safety through spatial planning, in contrast to passive measures such as vehicle safety 40 

technologies or occupant protection (Ewing and Dumbaugh 2009, Dumbaugh and Li 2011). 41 

 Most existing studies have relied on linear or generalized linear model to examine the 42 

association of street network and land use patterns with crash occurrence (Marshall and Garrick 43 

2011, Dumbaugh and Zhang 2013, Chen and Shen 2016, Zheng et al. 2021). These approaches 44 

implicitly impose a (near-)linear functional form on the relationship, a presumption that is not 45 

sufficiently justified theoretically and empirically. Consequently, such models may fail to capture 46 

more complex, nonlinear, or threshold effects that likely exist, particularly in the context of diverse 47 

urban environments (Zhou et al. 2025). Methodologically, nonlinearity suggests the existence of 48 

variable thresholds, beyond which relationships may shift or even reverse (Ding et al. 2018a). For 49 

example, several recent studies have identified nonlinear and threshold effects of built environment 50 

features on travel behavior (Yang et al. 2021, Ding et al. 2018b, Shao et al. 2022). Although these 51 

studies do not directly examine traffic safety, their findings suggest that similar nonlinear 52 

mechanisms may also exist in the relationship between the built environment and crash outcomes.  53 

Nonetheless, nonlinear analytical frameworks remain relatively underutilized in traffic safety 54 

research. While a few studies have adopted nonlinear approaches to examine the association 55 

between crash occurrence and street network or land use patterns, they have been limited in scope. 56 

Specifically, they have predominantly focused on characteristics in narrow dimensions—such as 57 

street density or land use type—rather than systematically considering the multidimensional nature 58 

of such characteristics. This limited perspective fails to capture the structural, spatial, and functional 59 

diversity inherent in these two built environmental elements, including important features such as 60 

street network geometry, hierarchy, and topology, as well as land use type, intensity, and diversity. 61 

Although some of these features have been considered—sometimes in combination—within linear 62 

analytical frameworks, there has been little systematic effort to integrate the full spectrum of these 63 

multidimensional attributes into nonlinear analyses. This omission limits our accurate understanding 64 

of the complex interactions between built environmental characteristics and crash occurrence.  65 

Moreover, some recent studies have highlighted that the impact of the built environment on 66 

traffic safety may vary across different subpopulation groups (Barajas 2018, Lee et al. 2020b, Shin 67 

2023, Yu et al. 2022, Pirdavani et al. 2017). For example, low-income areas are often found to 68 

experience higher rates of pedestrian crashes and fatalities than high-income areas, likely due to 69 

underlying infrastructure deficiencies such as inadequate street networks (Quistberg et al. 2022), 70 
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suboptimal land development, and imbalanced traffic organization (Stoker et al. 2015, Noland and 71 

Laham 2018). Similarly, population aging introduces further variation in the effects of the built 72 

environment on road safety, as elderly population may experience different levels of risk exposure 73 

and crash severity compared to younger groups. These differences arise not only from age-related 74 

declines in physical and cognitive abilities, but also from varying degrees of sensitivity to built 75 

environment features that may not be age-adaptive (Grise et al. 2018, Wilmut and Purcell 2022).  76 

Despite these observations, zonal demographic and socioeconomic compositions, such as the 77 

age and income structure of the population, are still most often treated as control variables or 78 

aggregated attributes in analyses, rather than explicitly modeled as moderators that might alter the 79 

relationship between the built environment and traffic safety. As a consequence, this is equivalent 80 

to estimating the effects of built environment factors on crash occurrence for a homogeneous 81 

population, after accounting for the influence of these characteristics, rather than examining how 82 

these effects might vary across different subgroups. This limitation is not merely methodological 83 

but also raises concerns of spatial justice along both recognitional and distributive dimensions (Soja 84 

2013, Walker 2012). Recognitionally, it reflects the analytical failure to acknowledge such 85 

heterogeneity in the first place—treating all populations as functionally equivalent, and thereby 86 

overlooking the differentiated ways in which built environments interact with social and 87 

demographic structures. Distributively, it risks concealing how a uniform built environment 88 

intervention, while appearing equal in its application, actually functions as a mechanism for the 89 

unequal distribution of safety benefits.  90 

To advance understanding in this field, the present study uses a nonlinear analytical framework 91 

to examine (1) the effects of multidimensional street network and land use characteristics on traffic 92 

crash density (defined as the number of traffic crashes per unit area within a zone), and (2) how 93 

these effects vary across areas with different compositions of population subgroups. We consider 94 

multiple dimensions of structural, spatial, and functional diversity by incorporating a 95 

comprehensive set of street network measures, including hierarchy, geometry, and topology, as well 96 

as land use measures, including type, density, and diversity. We examine how these effects vary 97 

across zones with different income and age compositions by stratifying the population accordingly. 98 

We employ an advanced, explainable machine learning method, the gradient boosting decision tree 99 

(GBDT) model, to capture both nonlinear relationships and disparities in traffic crash density across 100 

population subgroups. Our research findings contribute to a more comprehensive and nuanced 101 

understanding of how built environment features affect traffic safety. They offer practical value by 102 

generating targeted, localized evidence to inform spatial planning strategies for traffic safety 103 

improvements. Importantly, our analytical approaches explicitly integrate considerations of spatial 104 

justice into traffic safety improvements, so that our findings can support interventions that are 105 

sensitive to the needs of areas with different population compositions and are better positioned to 106 

improve traffic safety for all. 107 

 108 

2 Literature Review 109 

2.1 Street network, land use, and traffic crash frequency 110 

Street networks and land use are two fundamental aspects of the built environment that shape both 111 

the occurrence and severity of traffic crashes. Street network configuration determines how traffic 112 

flows and concentrates within an area, affecting exposure to risk, traffic speed, and the likelihood 113 

of conflict points; land use patterns, on the other hand, influence the distribution and intensity of 114 
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travel demand, thereby impacting where and when crashes are most likely to occur (Ewing and 115 

Dumbaugh 2009). Prior research, depending on a linear analytical framework, has showed that both 116 

street networks and land use play significant roles in determining crash occurrence (Saha et al. 2020, 117 

Ewing and Dumbaugh 2009).  118 

For urban street network characteristics, most studies have focused on the role of geometric 119 

and hierarchical features, such as intersection density, block shapes, and proportion of different 120 

types of segments, in shaping crash occurrence (Marshall and Garrick 2011). Along these lines, 121 

several studies have found that higher street density and smaller block sizes are associated with 122 

reductions in crash frequency (Rifaat et al. 2010, Zhang et al. 2015, Wang et al. 2018). These 123 

associations are commonly attributed to factors such as the more even distribution of traffic, 124 

enhanced precision in traffic control, and generally lower vehicle speeds, all of which can help 125 

reduce the likelihood of over-speed crashes. However, other researchers have argued that increasing 126 

street density can also result in overly connected networks or more complex routing patterns, which 127 

may intensify spatial conflicts between road users and thus increase crash frequency (Marshall and 128 

Garrick 2011). Moreover, hierarchical features of street networks are found to be closely linked with 129 

crash frequency. For example, studies suggest that a higher proportion of principal arterial roads, 130 

minor arterial roads, and roads without transit points is associated with increased injury crash 131 

occurrence (Wier et al. 2009, Huang et al. 2010).  132 

Beyond the geometric and hierarchical aspects of street networks, a few studies have 133 

investigated the effect of network topology on crash frequency. Topological characteristics describe 134 

the underlying spatial configuration and connectivity patterns of a street network, reflecting how 135 

locations are organized and interlinked, independent of geometric distance or road hierarchy. 136 

Theoretically, topological metrics capture different pathways through which street network 137 

structures influence crash frequency. Closeness centrality and average shortest path length both 138 

reflect the overall reachability within a street network: higher closeness and lower average shortest 139 

path length indicate that locations are more directly accessible to one another. Such configurations 140 

tend to facilitate higher movement flows, thereby increasing the likelihood of user interactions and 141 

conflicts (Zhang et al. 2015). In contrast, betweenness centrality captures the concept of ‘choice’, 142 

highlighting street segments that serve as key routes for through-movements. Segments with high 143 

betweenness concentrate more traffic and, as a result, are often subject to greater exposure and a 144 

higher risk of crash events (Wang et al. 2018, An et al. 2023). 145 

For land use patterns, research has primarily focused on how land use composition and mixed-146 

use development influence crash occurrence. For example, studies show that higher proportions of 147 

certain land use types, such as commercial and residential land, within an area are associated with 148 

increased crash frequency (Xie et al. 2019, Hu et al. 2023), likely as a result of the intensified traffic 149 

activity that accompanies higher concentrations of such land uses. However, the impact of land use 150 

diversity on crash occurrence remains a subject of debate. Some studies report that greater land use 151 

diversity is associated with lower rates of severe cyclist injuries and fatalities—for instance, a 1.0% 152 

increase in diversity may correspond to a 1.43% decrease in severe crash rates (Chen and Shen 153 

2016). In contrast, other research finds a positive relationship between land use diversity and crash 154 

risk, suggesting that intensified, mixed-use areas with higher traffic flows may experience more 155 

crashes (Miranda-Moreno et al. 2011, Chen 2015). These divergent findings may be partly explained 156 

by the limitations of conventional linear regression models, which tend to capture only average 157 

global effects while overlooking abrupt changes, local variations, or threshold phenomena (Chen et 158 
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al. 2018). 159 

Due to the limitations of generalized linear models, several recent studies have sought to 160 

employ nonlinear approaches to investigate the effects of street network and land use characteristics 161 

on crash occurrence. Ding et al. (2018c) used Poisson regression tree analysis to identify nonlinear 162 

effects of road network features—such as intersection and sidewalk density—as well as land use 163 

type and diversity, on pedestrian–vehicle collision frequency. Saha and Dumbaugh (2021) examined 164 

the relationship between pedestrian crash frequency and the lengths of various types of streets (such 165 

as local roads, arterial roads, and surface streets with five or fewer lanes), as well as the number of 166 

points of interest—a proxy for land use type—using both decision tree models and generalized 167 

additive models. Their results indicated that these relationships were generally nonlinear. Luo et al. 168 

(2023) employed an extreme gradient boosting decision tree model to examine the frequency of 169 

injurious traffic crashes, finding nonlinear associations with the lengths and geometric features of 170 

street elements (e.g., sidewalks, bike lanes, and curvature), as well as land use types. However, these 171 

studies have primarily focused on a limited set of street network and land use characteristics, and 172 

have not taken into account the heterogeneity in population composition across areas. 173 

2.2 Traffic crash frequency and population heterogeneity 174 

Empirical research has observed close correlations between economic status and pedestrian-175 

involved crash occurrence (Mansfield et al. 2018, Stoker et al. 2015). Individuals living in 176 

economically disadvantaged neighborhoods tend to be notably more likely to be involved in crashes 177 

compared to those in high-income areas (Li et al. 2022, Chakravarthy et al. 2010). Higher crash 178 

exposure in these areas has been attributed to factors such as increased residential density, 179 

inadequate safety infrastructure, disconnected street networks, and suboptimal land use 180 

development (Roll and McNeil 2022, Yu et al. 2022, Yu 2014, Noland et al. 2013). For example, 181 

Morency et al. (2012) found that the lack of safe pedestrian crossings at intersections in low-income 182 

neighborhoods significantly contributes to elevated pedestrian collision rates. Moreover, studies 183 

indicate that distinct risk factors contribute to crash frequency across different income groups, even 184 

after controlling for variations in neighborhood environments based on income composition (Yu 185 

2014, Yu et al. 2022). This suggests that, beyond environmental factors, individuals living in 186 

neighborhoods with different income levels may themselves exhibit divergent travel behaviours, 187 

safety practices, and perceptions of risk, which in turn contribute to observed disparities in crash 188 

occurrence. 189 

Several studies have highlighted inequalities in crash occurrence associated with zone-level 190 

demographic characteristics, particularly in high-density Asian cities (Ling et al. 2024). These 191 

disparities are often attributed to differences in the proportions and densities of elderly residents, 192 

which result in varying levels of vulnerability among pedestrian populations and, in turn, differing 193 

levels of crash involvement. High population concentration, combined with reduced mobility 194 

among the elderly population, poses significant challenges for implementing effective road safety 195 

improvements. Research consistently shows that elderly populations are more susceptible to injuries 196 

in traffic crashes (Feng et al. 2021) and require supportive walking environments (Grise et al. 2018). 197 

When confronted with imminent traffic conflicts, the elderly population are more likely to make 198 

erroneous decisions, due to age-related declines in visual acuity, auditory perception, and physical 199 

agility (Dommes et al. 2013, Luo et al. 2023, Niebuhr et al. 2016). 200 

Existing traffic safety research has predominantly treated zone-level socioeconomic and 201 

demographic factors, such as income levels and age composition, as control variables capturing 202 
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contextual effects. While this approach helps to isolate the effects of built environment features, it 203 

often overlooks the complex and potentially interactive roles these population attributes play 204 

through their interactions with the built environment, thereby altering crash risks. As a result, current 205 

empirical models may oversimplify the role of zone-level socioeconomic and demographic 206 

composition, which not only independently influences traffic safety but may also moderate the 207 

effects of built environment factors on crash occurrence by either amplifying or attenuating their 208 

impacts. 209 

3 Research design 210 

Figure 1 illustrates the analytical framework of our research; the colored pathways highlight our 211 

focal points of analysis. Under a nonlinear analytical framework, we address two central areas of 212 

interest. First, we consider the multidimensional characteristics of street networks (hierarchy, 213 

geometry, topology) and land use (type, intensity, diversity), and examine their relationships with 214 

zonal road crash density. Following  the existing  literature (Ewing and Dumbaugh 2009, 215 

Dumbaugh and Li 2011), we hypothesize that such relationships are mediated by traffic volume, 216 

traffic speed, and traffic conflicts. Next, we investigate how these relationships are moderated by 217 

zone-level demographic and socioeconomic compositions, specifically zonal age composition and 218 

income levels. Finally, nonlinear explainable machine learning methods are utilized to model 219 

nuanced relationships between variables, following recent advances in the fields (Liu et al. 2024, 220 

Liu et al. 2025b). 221 

 222 

Figure 1. The analytical framework. 223 

 224 

3.1 Case study area 225 

This study took Wuhan City, China, as an example and used traffic analysis zones (TAZs) as 226 

the statistical units to trace the high frequency of traffic crashes and the dynamic population changes 227 

in these small regions (Figure 2). Severe traffic crash record data were officially collected by the 228 

Wuhan Medical Center for Emergency, wherein each record represents a traffic crash accident 229 

associated with fatality or disability. A previous study has demonstrated the good representativeness 230 

and accuracy of this dataset (Xie et al. 2019). We performed a geocoding verification step for the 231 

data and excluded records with incomplete addresses, duplicate information, or ambiguous address 232 



Page 7 of 30 

 

names. From 2012 to 2015, a total of 17,711 severe crashes occurred in Wuhan, of which 71% were 233 

within our study area. The average annual crash rate was calculated to be 55.38 per 100K people, 234 

significantly higher than peer cities with similar population and urban forms. 235 

 236 

 237 

Figure 2. Traffic crashes in central Wuhan. 238 

 239 

3.2 Variables and measurements 240 

Table 1 presents the definitions and descriptive statistics of variables used in our study. The 241 

dependent variable is traffic crash density in each Traffic Analysis Zone (TAZ), and the independent 242 

variables include built environment as well as demographic and socioeconomic (i.e., population 243 

heterogeneity) features.  244 

 245 

3.2.1 Traffic crash density 246 

The crash density of a specific TAZ was defined as the ratio of severe crashes to the area of that 247 

TAZ, following Qiao et al. (2020):  248 

 𝐶𝑟𝑎𝑠ℎ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑐𝑟𝑎𝑠ℎ𝑒𝑠𝑇𝐴𝑍 𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎   (1) 249 

where the TAZ land area refers to the TAZ's total land area excluding water bodies. Standardizing 250 

by area is necessary because some TAZs—particularly those at the edges of the study area—can be 251 

much larger than others. Using raw crash frequency as the dependent variable may introduce bias 252 

and uncertainty, as larger TAZs could report higher crash counts simply due to their size rather than 253 

a genuinely higher risk.  254 

 255 

3.2.2 Traffic exposure 256 

Following Ewing and Dumbaugh (2009) and Saha et al. (2020), we included traffic volume in the 257 
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model to account for traffic exposure levels (Figure 3(a)). Traffic volume was measured as annual 258 

average daily traffic, using vehicle count data that was automatically recorded by road cameras and 259 

provided by the Wuhan Traffic Management Bureau. 260 

 261 

 262 

Table 1. Variable measurements and descriptive statistics. 263 

Variables Measurements Mean S.D. Min Max 

Dependent Variable     

Crash Density Number of severe traffic crashes per TAZ (counts/km²) 34.55 28.79 0.98 174.67 

Independent Variables     

Traffic Exposure     

Traffic Volume Annual average daily traffic per TAZ (10 K/ km²) 6.05 6.12 0 47.99 

Population Heterogeneity     

Population Density Population density (K/km²) 17.56 17.49 0.04 92.92 

Elderly Population Density Population density of people over 60 years old (K/km²) 2.3 2.59 0 12.5 

Income Groups Three groups based on zonal income estimations {1,2,3}    

Street Network     

I: Street Network Hierarchy     

Arterial Street Ratio Arterial street ratio to total streets 0.25 0.21 0 1 

Local Street Ratio Local street ratio to total streets 0.42 0.22 0 1 

II: Street Network Geometry     

Street Density Street length per TAZ (km/km²) 7.79 2.96 0.71 20.42 

Avg. Vehicle Lanes per Segment Average number of motorways per street segment 4.01 0.8 2 7 

Avg. Sidewalks per Segment Average ratios of sidewalks (1=one side, 2=two sides) 1.61 0.46 0.13 2 

III: Street Network Topology     

Street Degree Centrality Average degree centrality per street  4.57 0.74 0.95 6.1 

Street Closeness Centrality Average closeness centrality per street 0.21 0.13 0 1 

Street Betweenness Centrality Average betweenness centrality per street 0.16 0.13 0 1 

Avg. Shortest Path Length Average shortest path length of the street network (km) 0.93 0.4 0.35 4.16 

Land use     

I: Land Use Type     

Commercial Land Ratio Ratio of commercial and business land 0.07 0.1 0 0.72 

Residential Land Ratio Ratio of residential land 0.41 0.23 0 0.96 

II: Land Use Intensity     

Building Density Building area per TAZ 0.17 0.11 0 0.48 

Floor Area Ratio Building floor area per TAZ 0.92 0.68 0 3.03 

III: Land Use Diversity     

Land Use Mix Entropy index of six-type land uses 0.68 0.14 0.11 1 

Other Built Environment Factors     

Distance to CBD Distance to city central business districts (CBDs) (km) 4.84 3.47 0.28 14.99 

Bus Stop Density Density of bus stops (counts/km²) 4.78 4.1 0 26.03 

Notes: Land use mix = −(1/ ln𝐾)∑ 𝑝𝑘 ln(𝑝𝑘)𝐾𝑘=1  where pk is the share of k-th land use type. The 264 
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index ranges from 0 to 1, with larger values pointing to more diverse land use layouts. 265 

 266 

3.2.3 Population heterogeneity factors 267 

To capture zonal demographic heterogeneity, we used population density and elderly population 268 

density as indicators of the demographic composition within each TAZ. In this study, the elderly 269 

population refers to individuals aged over 60 years. In 2015, the proportion of the elderly population 270 

in Wuhan was 12.37%. 221 TAZs had a population density exceeding 2,000 persons/km², while 96 271 

TAZs had a density greater than 5,000 persons/km². Areas with higher population density were 272 

predominantly located in long-established neighborhoods and traditional downtown districts 273 

(Figure 3(b)). 274 

 275 

 276 

Figure 3. Traffic exposure, aged population, and income distribution in Wuhan. 277 

 278 

Zonal socio-economic heterogeneity was represented by the stratification of zones based on their 279 

residents' income levels. We combined occupational data and housing price data to determine zonal 280 

income levels. Population and occupational data for 2015 were acquired from the official data 281 

source from the Wuhan Community Grid Center and the 1% National Population Sampling Survey, 282 

respectively. We collected a dataset consisting of 7,746 housing units with sale prices as of October 283 
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2015 from Anjuke (https://m.anjuke.com/wh/), the largest online housing purchase and rent 284 

platform in China. This data was applied as references. 285 

Three steps were arranged to divide TAZs into three categories according to income and 286 

occupational structures in each district of Wuhan: 287 

First, the proportions of the shares of three income levels based on zonal occupational 288 

distribution were calculated. The 2015 National 1% Population Sampling Survey data was used to 289 

compute district-level occupation features. The original 7-point occupational scale—including: 1) 290 

leaders of government, party, and organizational bodies, 2) professional and technical workers, 3) 291 

clerical and administrative staff, 4) social and personal service workers, 5) agricultural and 292 

environmental workers, 6) manufacturing workers, and 7) other unclassified workers—was reduced 293 

to three income groups following Rong and Jin (2023). The first two categories were classified as 294 

high-income groups, the next two as the middle-income group, and the last three as low-income 295 

groups. The results of this step were presented in Figure 3(c), showing significant socio-economic 296 

heterogeneity. 297 

Second, a descending sequence of TAZs was generated by zonal housing prices. Housing prices 298 

can partially reflect household and regional income levels (Cai et al. 2020). Due to the unavailability 299 

of individual income data, we employed zonal housing prices as a proxy and used an inverse 300 

distance weight interpolation to supplement some income levels of each TAZ. 301 

Thirdly, we chose different ratios of high-income (or low-income) units for each district, based 302 

on different income distributions identified in step 1. For example, 33.7% of TAZs were divided 303 

into high-income zones in Jiangan District, while only 26.9% of TAZs were identified to belong to 304 

high-income groups in Jianghan District. 305 

As a result, there were 139 TAZs, 290 TAZs, and 145 TAZs categorized into high-, middle-, 306 

and low-income groups, respectively (Figure 3(d)). This approach took district-level variations into 307 

account, which is different from traditional single-faceted classifications that only use housing 308 

prices (i.e., representing income) or urban forms. Notably, although low-income areas make up only 309 

56% of the population, the annual crash rate for residents in these areas was approximately 1.65 310 

times higher than in high-income areas (93.88 vs 65.78 per 100,000 population). 311 

 312 

3.2.4 Built environment features 313 

We collected detailed street network data from the official urban planning department of Wuhan 314 

Municipality. Street networks have been normalized into single-line connections, encompassing 315 

motorways (including expressways, arterials, secondary roads, and branch roads), bicycle lanes, and 316 

sidewalks, according to the Municipal Master Plan of Wuhan (2010–2020). We measured street 317 

network structures to reflect potential traffic assignment performance by its hierarchical structure, 318 

geometric structure, and topological structure (Marshall 2004). 319 

 First, the hierarchical structure of the street network was measured by the share of street 320 

segments with different traffic capacities. We considered two levels of urban streets, including 321 

arterial streets and branch streets, based on their different design and planning characteristics. 322 

 Second, the geometric structure was measured by street densities and street geometric shapes.  323 

 Third, we utilized the Spatial Design Network Analysis (sDNA) to measure the topology of 324 

each street segment. Specifically, we took four indicators into account: degree (also known as 325 

connectivity), network closeness (network quantity penalized by distance), network betweenness, 326 

and average shortest path length. Closeness reflected the direct accessibility and central location of 327 
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nodes in the network. Betweenness indicated the number of geodesics passing through a node, 328 

functioning like a “bridge.” Relevant technical details can be found in Cooper and Chiaradia (2020). 329 

The average shortest path length of a network measured the local network efficiency in terms of 330 

shortcut routes. The specific mathematical definitions are specified in Appendix A. 331 

For land-use patterns, we focused on land use for trip generation functions and included land 332 

use types, land use density, and land use diversity in our analysis. Land use data was also obtained 333 

from the official parcel-level land use mapping from the 2015 Wuhan Land Use Survey. Detailed 334 

building information was retrieved from Baidu Map big data in 2015. Specifically, our analysis 335 

included six categories of land: administrative land, commercial/business land, residential land, 336 

manufacturing/industrial land, green space/park land, and others. Land use density was measured 337 

by TAZ-level building density and floor area ratio. The cross entropy index was used to quantify 338 

land use diversity (Xie et al. 2019). A higher entropy value indicates greater land use mix, while a 339 

value near zero suggests only a single land type. 340 

For robust modeling, we conducted a thorough examination of multicollinearity among the 341 

variables and found that all independent variables had variance inflation factors below 10, indicating 342 

no problematic multicollinearity. We also explored other built environment variables such as street 343 

intersection density, street network efficiency, street network clusters, and street curvature; however, 344 

they were excluded due to significant multicollinearity or measurement redundancy. 345 

 346 

3.3 Modeling approach 347 

To examine the nonlinear relations between crash density and our focused variables, we applied 348 

explainable machine learning (XML) methods to estimate both an overall model and separate 349 

models for high-, middle-, and low-income TAZs. While advanced econometric models offer clear 350 

advantages for addressing certain methodological problems (such as spatial dependency and 351 

hierarchical data structure) in traffic safety analysis, machine learning approaches provide unique 352 

and complementary strengths. Notably, machine learning models can automatically capture 353 

complex, nonlinear, interactive patterns in the data, without requiring the researcher to pre-specify 354 

functional forms based on prior theoretical knowledge. In contrast, econometric models rely on 355 

polynomial functions or other transformations to address nonlinearity, a process that becomes 356 

increasingly complex and difficult to interpret as higher-order terms are added. By flexibly 357 

uncovering intricate relationships and interactions, XML methods offer additional insights that are 358 

often difficult to achieve using econometric approaches. 359 

The Gradient Boosting Decision Tree (GBDT) model is an advanced machine learning 360 

technique that combines decision trees with a boosting algorithm to effectively capture nonlinear 361 

effects (Friedman 2001). GBDT offers several key strengths: (1) high predictive accuracy and 362 

computational efficiency; (2) the capacity to handle diverse types of independent variables; (3) 363 

effective management of multicollinearity; and (4) no requirement for specific distributional 364 

assumptions (Yang et al. 2021). Owing to its robust predictive performance, efficiency, and strong 365 

ability to model complex nonlinear relationships, GBDT has been widely applied in safety science 366 

and transportation research (Ding et al. 2019, Liu et al. 2020, Shao et al. 2022, Yang et al. 2020). 367 

The specific algorithm process and technical details of the GBDT have been well-documented 368 

in prior studies (Ding et al. 2018a, Yang et al. 2021). In this study, we provide a concise overview 369 

of the model (Appendix A). In the model fitting steps, three important parameters were regularized 370 

using the grid search method: shrinkage rate, maximum estimators, and the tree depth parameter. 371 
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Following previous studies (Ding et al. 2018b, Yang et al. 2021), we set the shrinkage rate to 0.001. 372 

We tested three optional maximum tree numbers in the set {3,000, 5,000, 10,000} and found that 373 

5,000 was suitable for the overall model, while 3,000 was appropriate for grouped models, balancing 374 

the risk of overfitting and underfitting. Tree depth (also known as complexity) determines the 375 

interaction among explanatory variables. The existing literature suggests that tree depths in travel 376 

behavior models typically range from 5 to 15 (Tao and Næss 2022, An et al. 2022). We explored 377 

depths from 1 to 20. Additionally, five-fold cross-validation was used for performance evaluation 378 

based on root mean square error. 379 

To interpret the black box of machine learning, we quantified relative importance (RI), 380 

accumulated local effect (ALE), and partial dependence plot (PDP) to understand the relationship 381 

between independent variables and predicted values. RI captures the relative contributions of 382 

independent variables to predicting and explaining dependent variables, similar to standardized beta 383 

coefficients (in Section 4.1). ALE is a microscopic method reflecting partial influence and 384 

effectively managing multicollinearity (Tao and Næss 2022). This method was used to illustrate 385 

nonlinear effects of street networks and land use on crash density along the same axis for direct 386 

comparisons (in Section 4.2). ALE plots demonstrate the marginal effect of an independent variable 387 

on the dependent variable while controlling for other independent variables. The impact of the built 388 

environment on crash density varied across its range, indicating nonlinear effects. Two-dimensional 389 

PDPs were employed to capture interactions with other independent variables such as 390 

socioeconomics and the built environment. These interactions revealed effects larger or smaller than 391 

the sum of individual effects of the two variables (in Section 4.3). Technical details about the 392 

algorithms can be found in Appendix A, Parts 3 and 4. 393 

To compare model performance, we used pseudo R² values, Root Mean Squared Error (RMSE), 394 

and Relative Absolute Error (RAE) to evaluate and compare the GBDT model with the commonly 395 

used multiple linear regression and geographically weighted regression (GWR) models. 396 

 397 

4 Results and Discussion 398 

Through grid parameter search with five-fold cross-validation, the optimal tree depths for the four 399 

GBDT models were 15, 9, 10, and 8, respectively. In other words, each optimal model represents 400 

the result of five models with the same parameters or a total of 315 (=3×21×5) models with different 401 

parameters. The best performance was achieved after 2,956, 2,153, 2,760, and 2,356 iterations for 402 

each model, respectively. The GBDT models exhibited higher pseudo R² values and lower RMSE 403 

and RAE values compared to the corresponding multiple linear regression models, indicating better 404 

overall performance (see Appendix B Table B1). While the results of Global Moran’s I indicate 405 

some spatial autocorrelation in crash density across TAZs, the GWR models did not substantially 406 

improve pseudo R² values over multiple linear regression (with the largest improvements less than 407 

0.11). For the same modeling scenarios, GBDT outperformed GWR in all three evaluation metrics. 408 

Together, these results demonstrate the clear advantages and robustness of the GBDT model for 409 

analyzing crash density patterns in our dataset. 410 

 411 

4.1 Relative importance for explaining crash density 412 

Table 2 presents the relative importance of variables, showing that traffic exposure, floor area ratio, 413 

and population density are the most influential variables across all models, which aligns well with 414 
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the results from previous studies on traffic crash frequencies (Wu et al. 2020, Luo et al. 2023). 415 

Moreover, the traffic volume’s importance consistently ranked within the top seven across all four 416 

models, notably achieving second importance with 13.67% in high-income areas.  417 

The prediction share of street network and land use accounted for approximately 60% across 418 

the four models. In the overall model, street network topology demonstrated the highest explanatory 419 

power at 17.56%, followed by land use density (13.34%) and street network geometry (10.9%). 420 

Among the five most significant built environment variables, floor area ratio exhibited a predictive 421 

ability of 9.86%, followed by distance to CBDs (6.85%), bus stop density (6.5%), street density 422 

(5.7%), and street average shortest path length (5.64%). 423 

It is notable that elderly population density is an influential factor affecting traffic density in 424 

space, as it shows a strong coincidence between denser elderly populations and denser traffic crashes. 425 

This phenomenon cannot be fully captured by the population density variable since elderly 426 

population density still achieves at least 1.57% to at most 10.68% of relative importance even 427 

though total population is considered. Across income groups, floor area ratio demonstrated superior 428 

predictive ability at 15.46% for high-income zones. Street betweenness centrality exhibited the 429 

highest predictive ability in the middle-income areas, while the residential land ratio showed the 430 

highest predictive ability in the low-income areas. These observations partially confirmed the 431 

necessity of considering the status of disaggregated people stratification for traffic safety analysis. 432 

 433 

Table 2. Relative importance of variables in the four-income models. 434 

 Overall High-income Middle-income Low-income 

 RI Rank Sum RI Rank Sum RI Rank Sum RI Rank Sum 

Variables (%)  (%) (%)  (%) (%)  (%) (%)  (%) 
Traffic Exposure    7.98   13.67   7.12   6.61 

Traffic Volume 7.98 3  13.67 2  7.12 5  6.61 7  

Population Heterogeneity   18.58   10.53   17.50   20.69 

Population Density 10.68 1  8.95 4  9.75 1  10.61 3  

Elderly Population Density 7.90 4  1.57 18  7.75 4  10.08 4  

Street Network             

I: Street Network Hierarchy   6.02   4.12   6.42   5.65 

Arterial Street Ratio 3.09 16  2.54 15  2.85 18  3.52 11  

Local Street Ratio 2.94 18  1.58 17  3.57 14  2.13 15  

II: Street Network Geometry   10.90   11.13   10.04   12.38 

Street Density 5.70 7  6.53 5  3.71 12  8.13 5  

Avg. Vehicle Lanes per Segment 3.37 14  3.12 11  3.19 16  2.39 13  

Avg. Sidewalks per Segment 1.83 19  1.48 19  3.14 17  1.87 16  

III: Street Network Topology   17.56   16.55   19.06   15.99 

Street Degree Centrality 3.54 12  2.86 14  3.86 11  2.90 12  

Street Closeness Centrality 3.01 17  4.28 8  2.47 19  5.87 8  

Street Betweenness Centrality 5.36 9  3.76 9  8.80 2  2.19 14  

Avg. Shortest Path Length 5.64 8  5.65 6  3.93 10  5.03 9  

Land use             

I: Land Use Type   8.37   6.34   9.95   15.26 

Commercial Land Ratio 3.29 15  2.90 13  3.53 15  3.71 10  
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Residential Land Ratio 5.08 10  3.44 10  6.42 7  11.55 1  

II: Land Use Density   13.34   17.44   13.07   13.01 

Building Density 3.48 13  1.98 16  7.79 3  1.67 18  

Floor Area Ratio 9.86 2  15.46 1  5.28 9  11.34 2  

III: Land Use Diversity   3.89   2.94   3.58   1.83 

Land Use Mix 3.89 11  2.94 12  3.58 13  1.83 17  

Other Built Environment 
Factors 

  13.36   17.28   13.27   8.57 

Distance to CBD 6.85 5  12.64 3  6.29 8  1.24 19  

Bus Stop Density 6.50 6  4.64 7  6.98 6  7.33 6  

Notes: The relative importance (RI) of variables captures their partial influence on the crash density 435 

and measures to what extent the variable is important to predict the relationship. 436 

 437 

4.2 Nonlinear effects 438 

4.2.1 Traffic exposure 439 

Several key factors were found to exhibit evident nonlinear effects. As illustrated in Figure 4, the 440 

relationship between traffic volume and crash density was positively and nonlinearly correlated 441 

when the traffic volume was below 120 K vehicles per day, after which it plateaued. Moreover, 442 

when the traffic volume exceeded 100 K vehicles per day, the positive impact of traffic volume and 443 

crash density was more pronounced in high-income areas than in other areas.  444 

 445 

 446 

Figure 4. Nonlinear effects of traffic exposure. 447 

Notes: The lines portray the local relationships (accumulated local effect, ALE) between 448 

independent variables and crash density, which are confined to the same y-axis scale. The rug plot 449 

on x-axis illustrates the data distribution. 450 

 451 

4.2.2 Population heterogeneity factors 452 

Across all income groups, increasing population density up to about 25 units is associated with a 453 

sharp increase in predicted crash density (Figure 5). Beyond that point, the marginal effect levels 454 

off, indicating a saturation effect—further increases in population density have little to no added 455 

effect on predicted crash density. Low-income areas (blue) experience the strongest positive effect 456 

of population density on crash density—even after saturation, the predicted crash density remains 457 
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consistently higher than for other groups. The ALE curves are generally nonlinear, especially at low 458 

population densities where sharp increases occur. 459 

For elderly population density, the turning point occurs around 4,000 people per square 460 

kilometer. Before this point, a higher density of elderly population was associated with more traffic 461 

crashes. Beyond this threshold, the effect becomes less pronounced. Among the three groups, low-462 

income areas have the highest ALE values throughout, indicating a poorer safety environment. In 463 

high-income groups (red), elderly population density appears less sensitive to traffic crash 464 

occurrence or crowding. Limited mobility resources, such as lower private car ownership and 465 

greater dependence on walking and electric bikes (especially in some East Asian cities), may further 466 

increase crash exposure for low-income populations (Roll and McNeil 2022). These characteristics 467 

imply an imbalanced safety outcome across population groups. 468 

 469 

 470 

Figure 5. Nonlinear effects across population groups. 471 

 472 

4.2.3 Street network factors 473 

Street network, as a predominant driver, demonstrates vivid interplay with traffic crash density. 474 

Figure 6 illustrates the significant nonlinear impact of three street network variables. In the overall 475 

model, street density shows a positive correlation with crash density within the range of 5–10 476 

km/km2. However, when the street density exceeds this range, the correlation slightly decreases and 477 

stabilizes, indicating a threshold effect. Moreover, in low-income areas where street density is 478 

greater than 10 km/km2, the ALE is significantly higher than other combinations. The positive 479 

relationship is consistent with studies conducted in Florida, USA (Xu et al. 2014) and Shanghai, 480 
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China (Wang et al. 2016). This finding can be attributed to the high density of street intersections in 481 

our study area of Wuhan (Wang and Huang 2016), where the number of intersections is proportional 482 

to the total street length (r=0.91), thereby increasing the risk of traffic crashes. Furthermore, we 483 

observed a significant reduction in crash density only when the street density exceeded 10 km/km2. 484 

A potential explanation is that a higher street density may promote low-speed travel and equitable 485 

distribution of traffic flow (Xie et al. 2022), thereby potentially encouraging the implementation of 486 

safety countermeasures (Zhang et al. 2015).  487 

 488 

 489 

Figure 6. Impacts of street network factors. 490 

 491 

Regarding betweenness centrality of the street network, in the overall model, the impact of 492 

betweenness on crash density is unclear below 0.2. However, once the betweenness value surpasses 493 

0.2, even minor changes can lead to a substantial increase in crash density. Conversely, this trend 494 

does not apply to the low-income model, where an inversed negative relationship is observed. The 495 

different performances of low-income groups may be attributed to their inherent low transport 496 

connectivity and ongoing street construction activities. Additionally, the average shortest path 497 

length demonstrates a negative effect ranging from 0.5 to 1, with low-income areas showing a 498 

significantly stronger impact than the other two areas. Notably, consistent inflection points are 499 

observed on the curves across all four models, particularly at 1 km where the effect is negligible. 500 

These findings regarding other street network elements align closely with existing studies. Moreover, 501 

average shortest path length, which measures the efficiency of street networks based on Euclidean 502 

distance, exhibits a negative association with traffic crashes. This finding is consistent with previous 503 

research indicating that an increase in detours leads to a reduction in crash density per square 504 

kilometer (Zhang et al. 2015).  505 

High-income areas, benefiting from greater motivation and substantial financial resources, are 506 

more capable of implementing comprehensive improvements to road infrastructure, with a 507 
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particular emphasis on mitigating conflicts or interactions with low-speed travelers (Guerra et al. 508 

2022). Middle-income areas generally adhere to the overall trends observed in most variables; 509 

however, they exhibit lower sensitivity to street density while showing stronger correlations with 510 

betweenness centrality and building density. This phenomenon can be attributed to the spatial 511 

imbalance in land use and street network development between low-income and high-income areas 512 

(Wang et al. 2018, Liu et al. 2025a). Even when street density is similar, disparities exist in the 513 

integrity and continuity of the street network. For example, the proportion of sidewalks in low-514 

income areas is approximately 70% of that in high-income areas, while the average shortest path 515 

length variable stands at 1.3. Some studies suggest that these areas often lack sustainable budgets 516 

for maintaining high-level services (Yuan and Wang 2021). Furthermore, street improvements in 517 

low-income areas are often associated with other risk factors that have a more pronounced impact, 518 

particularly at intersections. These factors can sometimes lead to fatal outcomes when conflicts 519 

occur (Yu et al. 2022).  520 

 521 

4.2.4 Land use factors 522 

Regarding land use types, the relationships are clear. First, an increase in residential land is linked 523 

to a significant rise in crash density in both the overall and subgroup models (Figure 7). In low-524 

income areas, the effect of residential land on crash density is sometimes stronger than that of other 525 

variables, showing an almost linear increase when the proportion of residential land is between 0.15 526 

and 0.7. When the share of commercial and business land is between 0.05 and 0.15, crash density 527 

reaches its highest point and is significantly affected in all three income groups (Appendix C Figure 528 

C1). Second, both floor area ratio and building density show positive nonlinear effects on crash 529 

density, but floor area ratio generally has a stronger impact. In the 0.1–0.3 range, increasing building 530 

density leads to a nearly linear increase in crash density. For floor area ratio, in low-income areas, 531 

the effect is greatest in the 0.5–1 range, while in high-income areas, the strongest effect occurs when 532 

floor area ratio is above 1. For land use diversity, the effect on crash density is minimal when the 533 

land use mix index is below 0.5. A decrease in crash density is observed when the index is between 534 

0.5 and 0.7. However, when land use diversity exceeds 0.7, crash density rises sharply, especially 535 

in low-income areas. 536 

Regarding land use, the positive associations between building density, floor area ratio, and 537 

crash density are consistent with previous studies (Graham and Glaister 2003, Ding et al. 2018c). 538 

Previous studies have consistently acknowledged a negative association between land use mix and 539 

crash density (Ding et al. 2018c, An et al. 2022). However, our study reveals that a moderate land 540 

use mix within the 0.5–0.7 range is associated with reduced crash risks; when the land use mix 541 

exceeds 0.7, there is a significant increase in crash density. Therefore, it is crucial to avoid 542 

indiscriminately increasing land use diversity, as it may lead to higher pedestrian density (Yu 2014) 543 

and more complex traffic flows (Xie et al. 2019), both of which can elevate crash risks. 544 
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 545 

Figure 7. Impacts of land use factors. 546 

 547 

In contrast, the low-income areas demonstrate heightened sensitivity to the residential ratio and 548 

floor area ratio. These regions are often characterized by inadequate infrastructure, largely due to 549 

historical patterns of the land use development (Noland and Laham 2018). Consequently, this has 550 

resulted in suboptimal land use and socially vulnerable neighborhoods (Yuan and Wang 2021). In 551 

Wuhan, low-income areas exhibit a residential ratio as low as 34%, accompanied by a corresponding 552 

low floor area ratio. Moreover, street density in these areas is only 71% of that in high-income areas, 553 

indicating significant delays in street construction.  554 

4.3 Interaction effects 555 

The above sections show strong positive associations between elderly population density and crash 556 

density, indicating that an increase in the aged population is expected to significantly raise traffic 557 

crash density. Next, we test whether the combined effect of two variables (elderly density and 558 

another variable) on crash density is larger or smaller than the sum of their individual effects. This 559 

helps us examine the interaction effects between variables. Figure 8 shows the absolute changes in 560 

predicted crash density when elderly population density increases from 1,000 to 4,000 people per 561 

square kilometer and the other variable also increases at the same time. 562 
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 563 

Figure 8. Interaction effects between elderly population density and other variables. 564 

Notes: The joint effect shows the combined impact of elderly population density and each built 565 

environment factor on crash density. The single effect is the sum of their individual partial 566 

dependence effects. A colored plus sign (“+”) means the joint effect is greater than the single effect, 567 

suggesting there may be an interaction between the two variables. 568 

 569 

 570 

Among the built environment predictors, the combined effects of street density and elderly 571 

population density, as well as street degree centrality and elderly population density, on crash density 572 

exceed the sum of their individual effects, independent of zonal income levels. In other words, these 573 

two features exhibit amplified synergistic effects with elderly population density. The strongest 574 

effect is observed when street density increases from 5 km/km² to 10 km/km² and elderly population 575 

density rises from 1,000 to 4,000 people per square kilometer. In this range, crash density increases 576 

by 10.66, 3.53, 8.37, and 9.14 in the four income groups, respectively—all of which are greater than 577 

the sums of the individual effects in corresponding groups (9.48, 3.5, 8.22, and 9.11). Notably, the 578 

increase in crash density associated with rising street density is smaller in middle- and high-income 579 

areas compared to low-income areas. A similar amplified synergistic effect is observed for street 580 

degree centrality. Although the combined effects of street degree centrality and elderly density on 581 

crash density are smaller in absolute terms compared to those of street density and elderly density, 582 

the magnitude of their synergy—that is, the extent to which the joint effect exceeds the sum of 583 

individual effects—is even greater. 584 

Amplified synergistic effects with elderly population density are also observed for several 585 

street network features, including the number of vehicle lanes, sidewalk presence, and closeness 586 

centrality. For land use, residential land ratio, commercial land ratio, and building density 587 
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demonstrate greater-than-additive effects when combined with elderly population density.  588 

These results suggest that increases in elderly population density tend to amplify the effects of 589 

built environment features that have independent negative impacts on traffic safety. The 590 

amplification may be explained by the heightened vulnerability of elderly individuals to traffic risks 591 

arising from specific built environment conditions. Age-related declines in hearing, visual 592 

perception, motion sensitivity, and the ability to estimate contact time can compromise older 593 

individuals’ capacity to respond effectively in dynamic traffic environments (Wilmut and Purcell 594 

2022). These limitations often result in slower movement speeds, reduced situational awareness, 595 

and prolonged exposure to potential hazards (Lee et al. 2020a). Moreover, difficulties in 596 

distinguishing critical information from irrelevant cues can impair judgement during hazardous 597 

situations, particularly in complex street environment (Dommes et al. 2013, Saha et al. 2020).  598 

Given these vulnerabilities, certain built environment features are likely to pose greater risks 599 

for elderly individuals. Specifically, features such as residential land ratio and street density are 600 

independently associated with elevated crash risk. A high residential land ratio typically leads to 601 

increased pedestrian activity and street-level interactions, while greater street density results in more 602 

frequent intersections and complex navigation demands. When these risk factors coincide with high 603 

elderly population density, older individuals—already constrained by age-related declines in 604 

perception, cognition, and mobility—are confronted with both more frequent opportunities for 605 

traffic conflict and greater difficulty in making safe navigation decisions. Consequently, the 606 

combined presence of these built environment characteristics and a high concentration of elderly 607 

residents can produce a synergistic amplification of crash risk that exceeds the impact of each factor 608 

considered independently. 609 

 610 

5 Conclusion and Implications 611 

This research uses a nonlinear analytical framework to examine the effects of multidimensional 612 

street network and land use characteristics on traffic crash density, and how these effects vary across 613 

areas with different compositions of population subgroups.  614 

Our analyses revealed significant nonlinear effects of street density, street network 615 

betweenness, street average shortest path length, floor area ratio, and land-use diversity as the 616 

primary influencers on crash density. Notably, street topology exhibited superior predictive 617 

capabilities for crash density compared to other variables. In contrast to studies assuming linear 618 

relationships, our study quantifies the relative contributions of various dimensions of street networks 619 

and land use patterns to crash occurrence under more accurate, nonlinear conditions. Unlike research 620 

focused solely on nonlinear relationships, our study considers a broader range of dimensions in 621 

capturing street networks and land use characteristics. These contributions together offer clear 622 

planning implications for traffic safety improvements.  623 

First, our results highlight which factors should be prioritized in urban planning for traffic 624 

safety. Street density, network betweenness, and land use diversity emerged as key influencers, 625 

suggesting that planners should pay close attention to these dimensions when designing safer urban 626 

environments. For instance, interventions could include optimizing street layouts to balance density 627 

and connectivity, and promoting a diverse mix of land uses to distribute travel demand more safely 628 

across the network. It is important to note that changes in street density, network betweenness, and 629 

land use diversity are associated with changes in crash density only within certain intervals. 630 

Therefore, targeted adjustments should be made according to the specific range of these variables 631 
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in a given area. Second, our findings emphasize the crucial role of street topology—a factor often 632 

overlooked in practical planning. Urban planners and engineers should adopt a holistic perspective 633 

and, before redesigning or constructing new streets, carefully consider the topological relationships 634 

between proposed and existing streets. Evaluating how overall changes in street network topology 635 

within an area may influence traffic safety outcomes can inform better design decisions and help 636 

mitigate crash risks. 637 

We found that the influence of the built environment on traffic safety varies across zones with 638 

different socioeconomic and demographic compositions. Specifically, zone-level income and age 639 

composition moderate the association between built environment elements and crash density. Zonal 640 

elderly population density amplifies the effects of most street network and land use characteristics 641 

on crash density. Low-income zones demonstrate a greater sensitivity to changes in certain built 642 

environment features, such as street density, residential land ratio, and land use diversity, resulting 643 

in steeper and more pronounced increases in crash density. For features like building density and 644 

street network betweenness centrality, income level shapes the nonlinear relationship with crash 645 

density, with different inflection points and effect magnitudes observed across income groups.  646 

Our findings suggest that uniform, one-size-fits-all interventions in the built environment are 647 

unlikely to yield equitable improvements in traffic safety. When population heterogeneity is ignored, 648 

policy and design decisions risk maintaining a superficial improvement in overall safety, while 649 

continuing to conceal deep-rooted disadvantages for specific groups. In terms of spatial justice, this 650 

is both a distributive issue—concerning how risks and benefits are unevenly allocated—and a matter 651 

of recognition, as it systematically disregards the specific ways in which different populations are 652 

made vulnerable or protected through the built environment. Therefore, advancing traffic safety 653 

requires integrating both recognition and distribution as equally important principles in planning 654 

practice. This involves acknowledging which groups are most vulnerable to traffic risks and, at the 655 

same time, using empirical evidence to reveal how the impacts of built environment interventions 656 

are distributed across different population segments. Planning and policy should be guided by both 657 

perspectives, ensuring that interventions are sensitive to local vulnerabilities and attentive to the 658 

unequal allocation of risks and benefits. By explicitly capturing nonlinear effects and population 659 

heterogeneity, our analytical framework supports this approach, offering practical guidance for 660 

developing strategies that are both effective and equitable in promoting urban traffic safety. 661 

We close by outlining the main limitations of this study. First, our crash data do not allow us 662 

to distinguish between specific severity levels or transport modes involved (for example, whether a 663 

crash involved pedestrians or only motor vehicles). While aggregating these crashes can still offer 664 

meaningful planning and policy implications, analyzing crashes by severity and type could further 665 

help reveal heterogeneous risk patterns and underlying mechanisms across different crash 666 

circumstances. Second, we used crash data from 2012 to 2015. While this period was chosen to 667 

ensure temporal consistency across all variables and to maximize data quality and completeness, 668 

the use of older data may limit the generalizability of our findings to present-day practices. Third, 669 

due to data limitations, we may have omitted some variables that could influence crash density, 670 

despite the wide range of variables considered in our analysis. For example, detailed street design 671 

elements, including zebra crossings, safety islands, turnabouts, signal lights, signs, and markings, 672 

are crucial for traffic safety. However, raw datasets containing this information were unavailable. 673 

This omission may have influenced the results of our analysis by introducing endogeneity issues. 674 

 675 
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 676 

Appendix A 677 

Part 1: Calculation methods of street network topology 678 

 679 

(1) Degree centrality 680 

The sDNA constructs streets as a network with the street segment as a node and intersections as 681 

edges. Degree centrality means the number of directly connected street segments. 682 

 683 

(2) Closeness centrality 684 

Street network closeness centrality is measured by network quantity penalized by distance (in a 685 

gravity model). The expression can be written as 686 Closeness(𝑥) = ∑ 𝑊(𝑦)𝑃(𝑦)𝑑𝑀(𝑥,𝑦)𝑦∈𝑅𝑥       (1) 687 

where x, y, and z are street segments in the network. Rx means the set of street segments in the 688 

network radius from link x. The distance according to a metric M, along a geodesic defined by M, 689 

between an origin street segment x and a destination street segment y is denoted 𝑑𝑀(𝑥, 𝑦). Weight 690 

of a street segment y is denoted W(y). The proportion of any street segment y within the radius is 691 

denoted P(y). 692 

 693 

(3) Betweenness centrality 694 

Betweenness counts the number of geodesic paths that pass through a street segment, i.e., the 695 

number of times the segment lies on the shortest path between other pairs of street segments. 696 

 697 Betweenness(𝑥) = ∑ ∑ 𝑊(𝑦)𝑊(𝑧)𝑃(𝑧)𝑂𝐷(𝑦, 𝑧, 𝑥)𝑧∈𝑅𝑦𝑦∈𝑁       (2) 698 

OD(𝑦, 𝑧, 𝑥) = {  
  1, if x is on the first geodesic found from y to z12 , 𝑦 ≠ 𝑧, 𝑥 = 𝑦 or 𝑧13 , 𝑥 = 𝑦 = 𝑧0, otherwise         (3) 699 

where the set of street segments in the global spatial system is denoted N. OD(y,z,x) means the number 700 

of geodesic lines passing through the street segment x between y and z. The contributions 1/2 of 701 

OD(y,z,x) to reflect the end street segments of geodesics which are traversed half as often on average, 702 

as journeys begin and end in the link center on average. The contributions of 1/3 represent origin 703 

self-betweenness. 704 

We calculate the average closeness and betweenness centrality of all street segments within 705 

each zone, and then normalize both indices to the [0,1] interval. 706 

 707 

(4) Average shortest path length 708 

This indicator is a local network measure representing the average shortest path length between any 709 

two street segments within the local street network (in this study, within each TAZ). The calculation 710 

is performed using the standard Dijkstra algorithm. 711 

 712 

Part 2: Algorithmic details of Gradient Boosting Decision Tree (GBDT) 713 

The computation and optimization of the Gradient Boosting Decision Tree (GBDT) model involve 714 

defining an objective function and employing minimization procedures. Let x denote a vector of 715 
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predictors (i.e., built environment attributes) and f(x) represent the approximation function of the 716 

dependent variable 𝑦 (i.e., crash density). The ensemble model can be expressed as: 717 𝑓(𝑥) = ∑ 𝛼𝑚ℎ(𝑥; 𝜃𝑚)𝑀𝑚=1      (4) 718 

where ℎ(𝑥; 𝜃𝑚) denotes the regression tree fitted at the m-th iteration with structure parameters 719 𝜃𝑚, and 𝛼𝑚 is a scalar weight that minimizes the loss function in the direction of ℎ(𝑥; 𝜃𝑚). 720 

The function f(x) is updated in the negative gradient direction of the loss function as follows: 721 𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥) + 𝛼𝑚ℎ(𝑥; 𝜃𝑚)     (5) 722 

where 𝛼𝑚 is obtained by solving: 723 𝛼𝑚 = argmin𝛼 ∑ 𝐿(𝑦𝑖𝑛𝑖=1 , 𝑓𝑚−1(𝑥𝑖) + 𝛼ℎ(𝑥𝑖;  𝜃𝑚))     (6) 724 

where 𝐿(∙) is the loss function measuring the difference between the prediction and the true value. 725 

To prevent overfitting, a shrinkage parameter 𝜂 ∈ (0,1), also known as the learning rate, is 726 

introduced to scale the contribution of each tree: 727 𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥) + 𝜂 ∙ 𝛼𝑚ℎ(𝑥; 𝜃𝑚)    (7) 728 

where a smaller value of 𝜂 leads to slower learning but often yields better generalizability. 729 

 730 

Part 3: Algorithmic details of Accumulated Local Effects (ALE) 731 

Let f(x) denote the prediction function of the trained model, and let xj be the feature of interests. The 732 

ALE method works by partitioning the domain of xj into K intervals defined by grid points 733 

z0<z1<…<zK. For each interval [𝑧𝑘−1, 𝑧𝑘], ALE computes the average local effect as 734 𝑓𝑗′(𝑧𝑘) = 1𝑛𝑘∑ [𝑓(𝑧𝑘 , 𝑥𝑖,\𝑗) − 𝑓(𝑧𝑘−1, 𝑥𝑖,\𝑗)]𝑖∈𝐼𝑘         (8) 735 

where 𝑥𝑖,\𝑗 is the feature vector for observation i excluding xj, and Ik is the set of observations 736 

falling in the k-th bin (i.e., 𝑥𝑖𝑗 ∈ [𝑧𝑘−1, 𝑧𝑘]). 737 

The ALE up to point zk is then given by 738 ALE𝑗(𝑧𝑘) = ∑ 𝑓𝑗′(𝑧𝑙)𝑘𝑙=1      (9) 739 

This yields a function that describes how xj contributes to model predictions across its range, 740 

averaged over the data distribution. The result is centered such that 𝔼[ALE𝑗(𝑥𝑗)] = 0 , ensuring 741 

interpretability in relative rather than absolute terms. 742 

 743 

Part 4: Algorithmic details of Partial Dependence Plot (PDP) 744 

Partial Dependence Plot (PDP) estimates the marginal effect of a target feature on the predicted 745 

outcome by averaging model predictions over the distribution of all other features.  746 

Select two features 𝑥𝑗 , 𝑥𝑘, we have the 2-D PDP measures as 747 𝑃𝐷𝑗𝑘(𝑥𝑗 , 𝑥𝑘) = 𝐸𝑥−(𝑗,𝑘)[𝑓(𝑥𝑗 , 𝑥𝑘 , 𝑥−(𝑗,𝑘))] 748 

The result provides a global, model-agnostic view of feature-response relationships and is 749 

particularly useful for detecting non-linear patterns and thresholds. 750 

 751 

  752 
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Appendix B 753 

Table B1. Model fit and comparisons. 754 

Group Model Moran's I AIC RMSE MAE (Pseudo) R2 

Overall OLS - 5195.4 21.54 15.24 0.439 

 GWR 0.352*** 5141.0 20.61 14.60 0.487 

 GBDT - - 14.14 9.42 0.800 

High OLS - 1290.2 21.57 16.43 0.476 

 GWR 0.158* 1254.8 19.84 15.08 0.557 

 GBDT - - 18.81 13.09 0.657 

Middle OLS - 2669.4 22.45 15.96 0.399 

 GWR 0.278*** 2630.2 21.30 15.08 0.459 

 GBDT - - 15.80 10.51 0.759 

Low OLS - 1261.7 16.23 10.83 0.478 

 GWR 0.132* 1222.0 14.46 9.88 0.585 

 GBDT - - 14.69 8.75 0.622 

Note: OLS refers to multiple linear regression solved by the ordinary least squares method; GWR 755 

denotes the geographically weighted regression model; and GBDT is the gradient boosting decision 756 

tree approach used in this study. Significance levels are indicated as *** p<0.001, ** p<0.01, and * 757 

p<0.05. For the GBDT model, the pseudo R² value represents the average performance across five-758 

fold cross-validation. 759 

 760 

 761 

  762 
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Appendix C 763 

 764 

Figure C1. Effects of other variables on traffic crash density. 765 

 766 

  767 
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