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ABSTRACT

Regression test suites can have a large number of test cases, es-

pecially automatically generated ones, and tend to grow in size,

making it costly to run the entire test suite. Test suite reduction

aims to eliminate some test cases to reduce the test suite size and

therefore reduce the cost of running it. In this paper, string distances

on the text of the test cases are used as measures of similarity for

reduction. A practical benefit of using string distance is that there

is no need to run the test cases: the test suite source code is the

only requirement, making the approach fast. We reduce test suites

generated from Randoop and EvoSuite; two well-known test gen-

eration tools of Java programs. We implemented a string-based

similarity reduction and compared it against random reduction. In

the experiments, mutation scores using reduced test suites based

on maximising string dissimilarity of test cases were higher than

those for random reduction in over 70% of the test suites generated.

Also, the results showed that test suites generated by Randoop can

be drastically reduced in one case by 99% using the string-based

similarity reduction approach while maintaining the fault-finding

capabilities of the original test suite. Finally, on average, the nor-

malised compression distance was found to be the best similarity

metric choice in terms of fault-detection.
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1 INTRODUCTION

Regression testing involves testing the software after changing the

software or its execution environment. It ensures that modifications

do not affect existing functionality. However, regression testing can

consume a lot of resources and time [37]. This can even be more

problematic if regression tests are generated automatically using

test generation tools, because the sizes of the generated test suites

are much larger, unless these tools have a minimisation approach

built-in. To deal with this issue, Test Suite Reduction (TSR) ap-

proaches originally aimed to reduce a test suite while maintaining

the original test requirements by removing redundant test cases.

However, subsequent studies [12ś14], developed approaches that
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aim to gain more reduction at the expense of losing some power

of the original test suite. A study on these approaches has been

presented by Covieloo et al. [12], investigating the trade-off be-

tween the reduction in test suite size and the loss in fault detection

capability. They found that approaches with the partial fulfilment of

the test requirements have a better trade-off between reduction in

test suite size and loss in fault detection capability than approaches

maintaining the same test requirements as the original test suite.

There are different approaches to achieving the reduction of test

suites. A well-known approach for reduction is based on removing

łredundantž test cases, where a redundant test case is one that

covers a test requirement already covered by another test case [37].

However, reduction using code coverage requires instrumentation

of the program under test and requires the test suites to be executed

first, which can be complicated and time-consuming. Similarly,

model coverage requires one to have a model of the software under

test. An alternative, that does not suffer from such problems, is

to base reduction on a notion of textual diversity (i.e., test cases

that łlookž different from each other). The idea is that less similar

test cases are more likely to exercise different parts of the system

than more similar test cases. In this similarity-based approach, the

degree of similarities between the test cases is estimated without

the need to execute the test suites first. This way the source code

of the test suite itself is the only requirement for the reduction to

take place, which makes this approach faster to execute than other

reduction techniques.

Similarity-based approaches have been used in test case prioriti-

sation in many works (e.g. [27, 31, 36]) showing the effectiveness

of such similarity-based approaches in terms of average percentage

of fault detection. However, there has been relatively little work

applying similarity-based techniques for TSR and no work for re-

ducing automatically generated test suites. Coutinho et al. [10, 11]

evaluated the use of distance functions for test suite reduction

based on similarity, but within the scope of model-based testing.

Cruciani et al. [14] proposed scalable approaches for test suite re-

duction based on similarity and some big data domain techniques.

These approaches used only developer-written test suites showing

good results. Automatically generated tests also stand to gain from

similarity-based reduction approaches, because these test suites

are much larger than developer-written test suites, resulting in a

higher cost of rerunning these tests. Therefore, it is very appealing

to apply similarity-based reduction on such an automatically gen-

erated test suite. The extent to which similarity-based reduction

can be utilised for automatically generated test suites is the focus

of this empirical study.

In our empirical study, we investigate the effectiveness of reduc-

ing automatically generated test suites based on textual diversity.

We applied two state-of-the-art automatic test case generation tools

for Java, Randoop [32] and EvoSuite [19] on subjects from Defects4J
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[26]. We reduced test suites based on the set of most diverse test

cases and also on the set of least diverse test cases. Reduction based

on least diverse test cases serves as a baseline. If the hypothesis is

that maximising diversity would have a good fault-detection rate,

then conversely one would expect that minimising diversity would

result in a lower fault-detection rate. Also, we evaluate our string-

based similarity reduction and compare it against the first-n test

cases, where n is the desired size of the reduced test suite. Then,

we evaluated the reduced test suites based on their fault-finding

capability against random reduction and first-n test cases. We in-

vestigated the trade-off between the number of test cases lost in the

reduction and the loss in mutation scores. In our experiments, we

used Euclidean distance, Hamming distance, Levenshtein (edit) dis-

tance, Manhattan distance, and Normalised Compression Distance

(NCD).We foundmutation scores using reduced test suites based on

maximising string dissimilarity of test cases were higher than those

for random reduction in over 70% of the test suites generated, and

higher than first-n test cases in over 88% of the cases. The main goal

is to study the effectiveness of string-based similarity reduction on

automatically generated test suites. We evaluate the approach on

test suites generated by Randoop, where there is no minimisation

approach built-in, and compare these results with EvoSuite which

has a minimisation mechanism. This paper is the first to investigate

string-based similarity reduction on automatically generated test

suites applying NCD as a similarity metric.

The paper offers the following contributions:

(1) The first paper to evaluate the effectiveness of applying

string-based similarity reduction on test suites generated by

Randoop and EvoSuite using string distance metrics on the

text of the test cases.

(2) A comparison between string-based similarity reduction

against random reduction and first-n test cases.

(3) A comparison of string-based similarity reduction between

Randoop and EvoSuite.

(4) A comparison between the different similarity metrics in

terms of time and fault-finding capability.

2 METHODOLOGY

The goal of this paper is to study the effectiveness of string-based

similarity reduction on regression test suites automatically gener-

ated using tools. We developed a tool to perform the steps of our

technique in an automated way. First, the tool generates regression

test suites. Then, it calculates the similarities between the generated

test cases using the similarity metrics, and applies string-based sim-

ilarity reduction and random reduction using different reduction

sizes. Finally, the tool evaluates the reduced test suites in terms of

fault-finding capabilities.

2.1 Research questions

We answer the following research questions:

• RQ1: How does reduction based on maximising and mini-

mizing diversity compare to random reduction?

• RQ2: How does string-based similarity reduction compare

to a lower time budget for the test generation?

• RQ3: Which similarity metric performs the best in terms of

time to compute and loss of fault-finding capability?

(a) Test case 1

(b) Test case 2

(c) Test case 3

Figure 1: An example of three test cases generated by Ran-

doop from the Lang project. Test cases 1 and 2 call the same

method, while test case 3 is different from them

• RQ4: What is the effect of string-based similarity reduction

on automatically generated test suites with no built-in min-

imisation (Randoop) compared to an already minimised test

suites (EvoSuite)?

2.2 Test suite generation

We used two state-of-the-art tools, Randoop and EvoSuite, to au-

tomatically generate regression test suites using their default con-

figurations on real-world Java applications from the Defects4J [26]

framework. We set the time budget to 3000 seconds for the gen-

eration of test suites. Randoop and EvoSuite create unit tests in

the JUnit format to cover the classes under test. Randoop gener-

ates unit tests using feedback-directed random test generation [32]

for object-oriented programs. This technique iteratively extends

sequences of method calls for the classes under test until the gener-

ated sequence raises an undeclared exception or violates a general

code contract. Randoop executes the sequences it creates, using

the results of the execution to create assertions that capture the be-

haviour of the program, then creates tests from the code sequences

and assertions. EvoSuite uses search-based techniques applying a

hybrid approach to evolve whole test suites towards satisfying a

coverage criterion [19]. A fitness function guides the process based

on a coverage criterion. When the search is completed, the highest

code coverage test suite is minimized and regression test assertions

are added [20].

2.3 Similarity metrics

A similarity metric is a function that quantifies the similarity be-

tween two objects in a numeric value. There are metrics based

on string distance, while others are based on trace executions or

coverage distance between the test cases.
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A test case is a collection of string lines, which we can con-

catenate into a single string. If we do this for two test cases, we

have two long strings that can be compared directly. Similarity is

measured at the character level between the two strings. Figure 1

is an example to show how the notion of diversity can be used

for reduction. The first two test cases are very similar invoking

the max method, while the third one is more different invoking

a different method (toShort). The faults found by the first two

test cases might be similar compared to the third test case calling

an entirely different method. If the goal is to remove one test case

from these three, then from a static point of view, it would make

more sense to remove one of the two similar test cases. This way,

we have two test cases calling two different methods resulting in a

higher probability of coverage and fault detection.

There are many similarity metrics that can be used in similarity-

based approaches. We used five different similarity metrics: Eu-

clidean, Hamming, Levenshtein, Manhattan, and Normalised Com-

pression Distance (NCD) metrics. The selected metrics are used

since the first four metrics are classical string distance metrics used

in many software testing studies [9, 23, 27, 35], and NCD is a recent

method proposed by Li et al. [29] and used by Feldt et al. [18] in

measuring distance between test cases. NCD has been used in test

case prioritisation [21, 24], in selecting between test suites for finite

state machines [25], and to generate a minimised test suite [6, 7].

Furthermore, Elgendy et al. [16] found that the five similarity met-

rics we used were among the top-used similarity metrics in software

testing. However, NCD has not been used in test suite reduction

approaches before, and we use it in our study to compare it with

the classical string similarity metrics.

2.3.1 Euclidean and Manhattan distances. The Euclidean distance

is calculated as the square root of the sum of the squared differences

between the vectors, while the Manhattan distance is computed

as the sum of the absolute differences between two vectors. The

two vectors must have the same length. It is possible to represent a

string of characters as a vector of numbers, where each number is

the ASCII code of the corresponding character. When two strings

have different sizes, we can append to the smaller one 𝑐ℎ𝑎𝑟 (0) to

make them the same size.

2.3.2 Hamming distance. The Hamming distance [22] between two

strings is the number of times when the corresponding characters

are different. Like Euclidean and Manhattan distances, the strings

should be the same size. Again, we can solve this by appending

𝑐ℎ𝑎𝑟 (0) to the smaller one to make them the same size.

2.3.3 Levenshtein distance. The Levenshtein distance [28] or edit

distance between two strings is the minimum number of edits

(insertions, deletions or substitutions) required to change one string

into the other. Levenshtein distance takes into consideration that

parts of the strings can be similar even if not in corresponding

places, and can work with strings of different sizes.

2.3.4 Normalised compression distance (NCD). The Kolmogorov

complexity of a string of symbols, 𝑥 , is the length of the shortest

program that outputs 𝑥 [30]. The normalised compression distance

(NCD) is based on the observation that the size of the output when

compressing a string with real-world compression programs, such

as gzip and bzip2, is a good approximation of its Kolmogorov com-

plexity [17]. Let 𝑥 and 𝑦 be two strings, then NCD is calculated

using:

𝑁𝐶𝐷 (𝑥,𝑦) =
𝐶 (𝑥𝑦) −𝑚𝑖𝑛{𝐶 (𝑥),𝐶 (𝑦)}

𝑚𝑎𝑥{𝐶 (𝑥),𝐶 (𝑦)}

where 𝐶 (𝑥) is the length of the compressed string 𝑥 , 𝐶 (𝑦) is the

length of the compressed string 𝑦, and 𝐶 (𝑥𝑦) is the length of the

concatenated strings 𝑥 and 𝑦 after compression. The NCD value is

in the range [0, 1].

2.4 Reduction

In this step, we explain the reduction using four methods: ran-

dom reduction, first-n test cases, reduction based on maximising

diversity, and reduction based on minimising diversity. To achieve

random reduction, our tool randomly picks a test case to discard

and continues until the desired size is reached. The first-n test cases

are simply using the first generated test cases up to the desired

size. For string-based similarity reduction, the tool calculates all

similarity values between the test cases based on the desired simi-

larity metric and returns the similarity values in a two-dimensional

array that we call the similarity matrix. In this matrix, a cell with

index [2, 5] for example represents the similarity value between

the third and sixth test cases. After calculating all the similarity

scores, the tool reduces the test suite into the most diverse test suite

and the least diverse test suite. We used a greedy algorithm for the

reduction, which is based on the technique by Cartaxo et al. [4, 5],

used for model-based testing and adapted to use on Java tests. Our

technique builds the most diverse test suite by discarding one of

the pair of test cases found in the lowest value in the similarity

matrix. This process continues until we reach the desired reduction

size. Similarly, the least diverse test suite is built by discarding one

of the pair of test cases found in the highest value in the similarity

matrix until we reach the desired reduction size.

To explain this further, consider this example. Assume that the

minimum value in the similarity matrix is in cell [3, 7]. The tech-

nique selects one of these indices randomly, say index three, and

removes the entire row and column. Then it finds the next mini-

mum value and continues until the desired size is reached. If there

is more than one highest or lowest value in the matrix, the first one

is selected as the target for reduction. Because of the random choice

of removing between two possible test cases, the technique repeats

the reduction 30 times for random, the most diverse, and the least

diverse test suites. Later, we analysed this sample size of 30 using

statistical testing to find out the significance level and effect size in

order to justify the validity of the results.

2.5 Analysis and evaluation

Each project in Defects4J has faulty versions, where there are one or

two real-faults in that faulty version. A test suite that has a very low

coverage and mutation score can still detect the real fault, but that

test suite would simply be unreliable since it did not even cover the

rest of the program which might contain more faults. Therefore, we

used mutants as representatives for faults because they are better

distributed across the program and mutants are better suited to

perform statistical testing.
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To evaluate string-based similarity reduction, we determined

the mutation score of each reduced test suite using the Defects4J

framework. Defects4J uses the łMajorž mutation framework to

generate mutants and to run the mutation analysis. One issue that

might occur after reduction is that some test suites fail due to

test-dependency issues. We needed to fix these test suites first to

remove the test cases causing the failure, and then run the mutation

analysis. The tool provides bash scripts which we used to fix and

analyse all the test suites. Finally, the tool parsed all the generated

reports and log files producing a CSV file with all coverage and

mutation scores for all 30 attempts. Also, during parsing, the tool

calculated the statistical significance and effect size to verify the

results.

3 EXPERIMENTAL SETUP

Since EvoSuite generates minimised test suites, the number of test

cases varies greatly between the generated test suites from EvoSuite

and Randoop. We limited the number of generated tests to 1,500

tests to make it possible to run the experiments in a reasonable

amount of time.

In order to compare Randoop and EvoSuite, we made the re-

duction using an absolute number of test cases. This decision was

made to control for test suite size. If we used the same reduction

percentages, the Randoop test suite would be much larger than

the EvoSuite test suite. The reduced test suites of Randoop might

perform better simply because they are larger.

For each test subject, we chose the smaller of the two generated

test suites and then picked the size of the reduced test suite to be a

percentage of the smaller test suite size. The selected percentages

for the reduced test suites were 35%, 60%, and 85%. To illustrate

this, consider the "Lang" project, for which given 3000 seconds,

EvoSuite generated a test suite of size 123 test cases, while Randoop

generated the upper limit of 1,500 test cases. Now based on the

selected reduction percentages, the reduction sizes were 43 (35% of

123), 73 (60% of 123), and 104 (85% of 123), with these sizes being

used with the test suites from both tools. However, it is important

to note that in the case of reduced test suites for Randoop, a test

suite of size 43 is 35% of 123 (the size of the smaller test suite), and

2.87% of 1,500 (the size of the test suite generated by Randoop).

The test generation algorithms used are stochastic, so there is

a risk that any results might not hold more generally. In order to

explore this potential threat and verify our findings, we carried out

an additional smaller study in which we generated five different

test suites for 10 projects using the Defects4J framework by chang-

ing the random seed. Then, we applied the reduction approach

to the generated test suites. Due to time constraints we excluded

the łCompressž, łCsvž, and łJxPathž projects. We followed the

same methodology described before, where we used the same abso-

lute numbers for a reduction on both Randoop and EvoSuite. For

example, in the łCodecž project, the first original test suite size

was 14. Thus, we used test suites of sizes five, nine, and 12 on both

test suites generated by Randoop and EvoSuite.

4 RESULTS

In this section, we report the results of the experiments. We made

our experiments on 13 test subjects, taken from the łDefects4Jž

framework. For each test subject, we generated test suites using

Table 1: Information about the test subjects and the original

test suites generated to cover them

Project

Name

Total

No. of

Mutants

Randoop EvoSuite

Test

Suite

Mutation

Score

Test

Suite

Mutation

Score

Chart 972 504 27.47 106 36.4

Cli 16 1500 31.25 14 62.5

Codec 934 1500 57.81 37 32.1

Compress 395 1500 17.72 22 52.4

Csv 99 1091 25.25 22 54.5

Gson 266 1209 24.06 66 50.0

JacksonCore 480 1500 50.83 53 56.5

JacksonDatabind 617 341 24.79 128 53.5

Jsoup 203 1496 51.23 19 17.7

JxPath 274 1500 25.91 56 56.2

Lang 941 1500 29.30 123 49.7

Math 884 1500 59.84 112 63.7

Time 415 1500 13.01 75 63.4

EvoSuite and Randoop. Then, we used five similarity metrics and

used three different sample sizes for reduction. We ran our exper-

iments 30 times for random, least diverse, and most diverse test

suites respectively. Finally, we made an evaluation based on muta-

tion scores. In total, we ran 25,740 experiments and this took around

2,436 hours. Also, we ran another 1,100 experiments using different

regression test suites in the smaller study to verify our findings.

Table 1 presents all 13 test subjects with information about the total

number of mutants in each subject, the original test suites’ sizes and

mutation scores generated from both Randoop and EvoSuite given

3000 seconds and an upper size limit of 1,500. The first column

shows the project ID as defined in the Defects4J framework. The

second and third columns display the test suite size and test suite

mutation score for the Randoop test suites, respectively. The fourth

and fifth columns display the test suite size and test suite mutation

score for the EvoSuite test suites, respectively.

Tables 2 and 3 show the analysis results of the łCliž and łLangž

projects respectively. The remaining analysis tables for the remain-

ing projects can be found in a public GitHub repository 1. In each

table, the first column is the used similarity metric, and the second

column is the size of the reduced test suite. The third, fourth, and

fifth columns display the average (Avg) and standard deviation

(SD) for the mutation scores using both Randoop and EvoSuite for

least diverse, most diverse, and random reductions, respectively.

The sixth column displays the p-values for both tools’ statistical

significance test between LR (least diverse and random), and MR

(most diverse and random). We used the The Mann-Whitney U test

as our statistical test because the two samples (MR or LR) are inde-

pendent, and the observations are independent and not normally

distributed satisfying the preconditions of the Mann-Whitney U

test. An 𝛼 represents a number lower than 0.001, which is in the

99% significance level. The last column displays the correspond-

ing A12 effect sizes proposed by Vargha and Delaney [33]. Effect

size informs you how meaningful the relationship between LR and

MR is. The effect size is in the range [0, 1], where higher values

1https://github.com/islamelgendy/Diversity-test-suite-reduction
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(a) Example of pattern 1 łCliž project (b) Example of pattern 2 łCsvž project

(c) Example of pattern 3 łTimež project (d) Example of pattern 4 łLangž

Figure 2: The patterns observed in the experiments. Figure 2a shows the łCliž project as an example of the pattern where

diversity-based reduction performed better. Figure 2b shows the łCsvž project as an example of the pattern where diversity-

based performed better in EvoSuite, but random reduction was better in Randoop. The łTimež project is shown in Figure 2c

where diversity-based performed better in Randoop but not in EvoSuite. Finally, Figure 2d shows the łLangž project where

random reduction performed better than diversity-based reduction

(> 0.8) mean large effect, values around 0.5 mean medium effect,

and small values (< 0.2) mean small effect. Our experiments show

four patterns of performance.

4.1 String-based similarity reduction better on
EvoSuite and Randoop (Pattern 1)

The first and most common pattern is where maximising diversity

gave better mutation scores using tests from both tools. Table 2

shows the reduction analysis for łCliž as an example of this pat-

tern. Figure 2a shows the box plot for the same project showing

the achieved mutation scores for least diverse, most diverse, and

random reduced test suites. For łChartž, łCliž, łCodecž, łGsonž,

łJacksonCorež, łJsoupž, łJxPathž, and łMathž projects, the

achieved average mutation scores for the most diverse test suites

are higher than randomly reduced test suites and the standard de-

viations are lower as well. Also, random reduction performs better

than reduction based on the least diverse with few exceptions. How-

ever, the reduction in Randoop test suites caused a noticeable drop

of mutation scores in łJacksonCorež, łJsoupž, łJxPathž, and

łMathž projects.

A slight advantage of string-based similarity reduction over ran-

dom reduction occurred with łGsonž and łJacksonDatabindž

projects. For łGsonž project, using Randoop, the achieved muta-

tion score averages for the most diverse test suites are higher than

randomly reduced test suites and the standard deviations are lower

as well. However, using EvoSuite, for only the Levenshtein metric

were the most diverse results better than those of random reduction.

The results in other metrics are varying, where there is a slight

advantage for the most diverse test suites over random reduction.

For łJacksonDatabindž project, the achieved mutation score

averages for the most diverse test suites are slightly higher than

randomly reduced test suites, but the standard deviations are lower

making the results more consistent. Also, random reduction is per-

forming slightly better than reduction based on the least diverse

across all metrics using both Randoop and EvoSuite.
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Table 2: The reduction analysis for the Cli project

Similarity

Metric

Reduced

Test

Suite

Size

Least diverse Most diverse Random diverse p-Value Effect size

Randoop EvoSuite Randoop EvoSuite Randoop EvoSuite Randoop EvoSuite Randoop EvoSuite

Avg SD Avg SD Avg SD Avg SD Avg SD Avg SD LR MR LR MR LR MR LR MR

Euclidean

5 25.0 0.00 30.2 15.90 26.9 2.86 51.5 6.79 23.1 7.24 32.9 14.43 0.65 0.24 0.42 𝛼 0.14 0.39 0.41 0.84

8 25.0 0.00 40.4 14.32 29.8 2.64 60.6 2.86 24.2 7.35 49.2 10.17 0.18 𝛼 0.01 𝛼 0.14 0.69 0.30 0.86

12 25.0 0.00 59.6 5.29 31.0 1.12 62.5 0.00 27.3 5.93 58.3 5.43 𝛼 𝛼 0.30 𝛼 0.14 0.69 0.30 0.86

Hamming

5 21.9 5.53 26.9 14.08 30.2 2.33 54.6 3.20 23.1 7.24 32.9 14.43 0.03 𝛼 0.11 𝛼 0.11 0.78 0.35 0.92

8 22.1 5.53 37.5 8.54 31.3 0.00 59.0 3.10 24.2 7.35 49.2 10.17 𝛼 𝛼 𝛼 𝛼 0.11 0.81 0.18 0.79

12 24.2 2.12 58.5 6.14 31.3 0.00 62.5 0.00 27.3 5.93 58.3 5.43 𝛼 𝛼 0.72 𝛼 0.00 0.56 0.46 0.58

Levenshtein

5 18.1 5.19 22.7 10.76 28.1 3.12 53.5 6.39 23.1 7.24 32.9 14.43 𝛼 0.02 𝛼 𝛼 0.06 0.52 0.26 0.88

8 21.3 4.45 40.8 12.15 30.0 2.50 61.0 2.64 24.2 7.35 49.2 10.17 𝛼 𝛼 𝛼 𝛼 0.09 0.70 0.27 0.87

12 23.5 2.64 60.0 5.00 31.0 1.12 62.5 0.00 27.3 5.93 58.3 5.43 𝛼 𝛼 0.19 𝛼 0.00 0.55 0.50 0.58

Manhattan

5 25.0 0.00 28.1 14.77 28.1 3.12 50.0 6.04 23.1 7.24 32.9 14.43 0.65 0.02 0.18 𝛼 0.14 0.52 0.37 0.80

8 25.0 0.00 39.4 14.08 30.0 2.50 61.3 2.50 24.2 7.35 49.2 10.17 0.18 𝛼 𝛼 𝛼 0.14 0.69 0.28 0.90

12 25.0 0.00 60.6 4.88 30.6 1.88 62.5 0.00 27.3 5.93 58.3 5.43 𝛼 0.02 0.09 𝛼 0.00 0.52 0.53 0.58

NCD

5 24.4 1.88 25.8 10.42 25.8 5.53 46.7 8.50 23.1 7.24 32.9 14.43 0.34 0.63 0.07 𝛼 0.13 0.45 0.33 0.76

8 25.0 0.00 44.4 14.19 27.3 4.41 56.5 5.22 24.2 7.35 49.2 10.17 0.18 0.41 0.34 𝛼 0.14 0.48 0.41 0.71

12 25.0 0.00 50.8 7.86 31.0 1.12 62.5 0.00 27.3 5.93 58.3 5.43 𝛼 𝛼 𝛼 𝛼 0.00 0.55 0.20 0.58

Table 3: The reduction analysis for the Lang project

Similarity

Metric

Reduced

Test

Suite

Size

Least diverse Most diverse Random diverse p-Value Effect size

Randoop EvoSuite Randoop EvoSuite Randoop EvoSuite Randoop EvoSuite Randoop EvoSuite

Avg SD Avg SD Avg SD Avg SD Avg SD Avg SD LR MR LR MR LR MR LR MR

Euclidean

43 2.1 1.13 18.8 0.60 8.7 0.73 19.6 1.03 7.9 1.74 24.5 2.24 𝛼 0.12 𝛼 𝛼 0.00 0.62 0.00 0.00

73 3.6 1.17 32.4 1.75 9.9 0.67 29.6 1.29 11.4 1.90 34.7 2.73 𝛼 𝛼 𝛼 𝛼 0.00 0.21 0.26 0.03

104 5.2 0.82 44.6 1.07 10.8 0.56 44.2 0.85 13.8 1.99 55.1 1.48 𝛼 𝛼 0.15 0.79 0.00 0.06 0.60 0.48

Hamming

43 4.0 1.47 21.1 2.42 8.9 0.73 19.4 1.09 7.9 1.74 24.5 2.24 𝛼 0.05 𝛼 𝛼 0.05 0.65 0.15 0.01

73 5.5 1.54 33.8 2.03 11.8 0.86 28.3 0.63 11.4 1.90 34.7 2.73 𝛼 0.70 0.34 𝛼 0.01 0.53 0.43 0.00

104 6.4 1.77 45.8 0.59 12.6 0.92 42.9 1.74 13.8 1.99 55.1 1.48 𝛼 𝛼 𝛼 0.01 0.00 0.28 0.88 0.31

Levenshtein

43 1.3 0.12 25.4 1.37 9.5 1.18 19.7 1.73 7.9 1.74 24.5 2.24 𝛼 𝛼 0.16 𝛼 0.00 0.76 0.60 0.04

73 2.0 0.23 35.4 0.76 11.1 0.86 27.6 1.58 11.4 1.90 34.7 2.73 𝛼 0.16 0.13 𝛼 0.00 0.39 0.62 0.00

104 2.4 0.12 45.5 0.38 12.3 1.06 43.1 0.64 13.8 1.99 55.1 1.48 𝛼 𝛼 𝛼 𝛼 0.00 0.25 0.82 0.26

Manhattan

43 1.9 0.68 18.9 0.91 8.5 0.76 18.7 1.23 7.9 1.74 24.5 2.24 𝛼 0.33 𝛼 𝛼 0.00 0.57 0.00 0.00

73 3.0 1.13 32.8 1.88 10.3 0.77 29.0 1.16 11.4 1.90 34.7 2.73 𝛼 𝛼 𝛼 𝛼 0.00 0.26 0.28 0.01

104 4.8 0.95 44.2 1.07 10.8 0.70 42.8 1.48 13.8 1.99 55.1 1.48 𝛼 𝛼 0.81 𝛼 0.00 0.07 0.52 0.27

NCD

43 2.7 0.22 24.9 1.95 10.9 0.82 20.7 2.09 7.9 1.74 24.5 2.24 𝛼 𝛼 0.60 𝛼 0.00 0.94 0.54 0.12

73 3.6 0.43 36.1 0.70 13.5 1.45 28.9 1.22 11.4 1.90 34.7 2.73 𝛼 𝛼 𝛼 𝛼 0.00 0.81 0.70 0.00

104 4.4 0.45 44.9 0.41 14.9 1.16 43.1 0.92 13.8 1.99 55.1 1.48 𝛼 0.03 0.03 𝛼 0.00 0.66 0.66 0.28

4.2 String-based similarity reduction better on
EvoSuite (Pattern 2)

The second pattern occurs where maximising diversity performed

better in EvoSuite but not in Randoop. Figure 2b shows the box

plot for łCsvž as an example of this pattern, showing the achieved

mutation scores for least diverse, most diverse, and random reduced

test suites. For łCompressž and łCsvž projects, using EvoSuite,

the achieved average mutation scores for the most diverse test

suites are higher than randomly reduced test suites in EvoSuite test

suites. Also, the standard deviations are lower.

The reduction of the Randoop test suites caused a huge drop

in mutation scores using any reduction technique. The mutation

score drop from 17.72% to 4.4-6.8% in łCompressž, while the mu-

tation score dropped from 25.25% to 1.0-5.1% in łCsvž. There was

no clear-cut advantage to either random reduction or reduction

based onmaximising diversity in łCompressž. However, for łCsvž

project reductions based on random were better than most diverse
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Figure 3: The reduction analysis for all repeated test subjects

in terms of mutation scores. These results suggest that the reduc-

tion was drastic for these two projects, and higher sizes would

have achieved better mutation scores. This also might explain why

random reduction was slightly better than string-based similarity.

4.3 String-based similarity reduction better on
Randoop (Pattern 3)

The third pattern occurs where maximising diversity performed

better in Randoop but not in EvoSuite. Figure 2c shows the box

plot showing the achieved mutation scores for least diverse, most

diverse, and random reduced test suites of łTimež project. Using

Randoop, the achieved mutation score averages for the most di-

verse test suites and randomly reduced test suites are very close to

each other. However, the standard deviations for most diverse test

suites are lower than randomly reduced test suites. On the other

hand, using EvoSuite, reductions based on random were better than

most diverse in terms of mutation scores. Also, random reduction

performed better than the reduction based on the least diverse.

4.4 Random reduction better on EvoSuite and
Randoop (Pattern 4)

The last pattern is where random reduction performed better than

string-based similarity reduction for both Randoop and Evosuite.

This only occurred with łLangž project, as the achieved mutation

score averages for the randomly reduced test suites, are higher than

both most and least diverse test suites with a few exceptions, but

the standard deviations are lower for most and least diverse than

those in randomly reduced. The exceptions occurred in Randoop

using NCD and other metrics with sizes 43 (35% of the original

size). Furthermore, the reduction of Randoop test suites caused a

big drop in mutation scores from 29.3% to 7.9-14.9%. Table 3 shows

the reduction analysis of the łLangž project, and Figure 2d shows

the box plot for the same project, showing the achieved mutation

scores for least diverse, most diverse, and random reduced test

suites.

Figure 3 shows the box plots of the reduction analysis of our

smaller study. We included all the reduction analysis data using

all similarity metrics and different reduction sizes in the plot. The

Randoop EvoSuite
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Figure 4: Mutation analysis for all projects presenting the

first-n test cases, worst cases of maximising diversity, and

average scores of maximising diversity

mutation scores for the most diverse test suites are higher than the

mutation scores for the least diverse except for the łLangž project.

These results are consistent with our findings reported earlier.

4.5 Generate smaller test suite sizes

To solve the problem of having a large regression test suite size,

we can apply reduction as we did in this paper. However, another

possibility is just to simply set a lower time budget for Randoop

and EvoSuite to generate a smaller test suite. Thus, saving even

more time than the reduction approach.

Therefore, we evaluated the string-based similarity reduction

against using the first-n test cases. Figure 4 shows the box plots of

all mutation scores for the first-n test case, the worst cases in string-

based similarity reduction, and the average scores of string-based

similarity reduction.
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5 DISCUSSION

Wediscuss the findings of our results and relate them to our research

questions.

Answer to RQ1 - How does reduction based on
maximising and minimizing diversity compare to
random reduction?

We had a total of 195 records of reduced test suites for each genera-

tion tool. Based on average mutation scores for test suites generated

by Randoop, the reduction based on maximising diversity was bet-

ter than random reduction in 71.28% of the cases, where random

reduction performed better in 15.9%. In the remaining 12.82% ran-

dom and most diverse gave almost identical mutation scores (±0.5

difference). For test suites generated by EvoSuite, the reduction

based on maximising diversity was better in 70.26% of the cases

than random reduction, where random reduction performed better

in 17.44%. In the remaining 12.3% random and most diverse gave

very close mutation scores.

On the other hand, for Randoop, reduction based on minimis-

ing diversity was better only in 11.28% of the cases than random

reduction, where random reduction performed better in 78.46% of

the cases. In the remaining 10.26% random and most diverse gave

almost identical mutation scores (±0.5 difference). For test suites

generated by EvoSuite, the reduction based on minimising diversity

was better in 20% of the cases than random reduction, where ran-

dom reduction performed better in 68.21%. In the remaining 11.79%

of the cases random and most diverse gave very close mutation

scores.

Conclusion for RQ1: The experiments show that reduction

based on maximising diversity has higher mutation scores

than random reduction in 71.28% of the cases for Randoop

and 70.26% of the cases for EvoSuite. Also, reduction based on

minimising diversity has lower mutation scores than random

reduction in 78.46% of the cases for Randoop and 68.21% of

the cases for EvoSuite. We conclude that reduction based on

similarity plays a role in fault-finding capabilities.

Answer to RQ2 - How does string-based
similarity reduction compare to a lower time
budget for the test generation?

As we mentioned before, setting a lower time budget will generate

a smaller test suite. However, the generated test suites will have

much smaller fault-detection capabilities. The average of string-

based similarity reduction gave better mutation scores than the

first-n test cases in 88.5% of the cases. Furthermore, even the worst

cases of string-based similarity reduction were still better than the

first-n test cases in 74.4% of the cases.

Conclusion for RQ2: String-based similarity reduction is bet-

ter than using the first-n test cases in terms of fault-detection.

Therefore, it is more effective to generate a large regression

test suite, and then reduce it based on similarity.

(a) The reduction time for all metrics

(b) A closer inspection of the metrics without the Levenshtein

metric

Figure 5: Test suite reduction time

Answer to RQ3 - Which similarity metric
performs the best in terms of time to compute
and loss of fault-finding capability?

For test suites generated by Randoop, NCD performed best in

38.5% of the cases giving the highest average mutation scores for

łChartž, łGsonž, łJxPathž, łLangž, and łMathž projects. Leven-

shtein came in second performing best in 30.8% of the cases giving

the highest average mutation scores for łCodecž, łCompressž,

łJacksonDatabindž, and łJsoupž projects. Manhattan, Ham-

ming, and Euclidean gave the highest average mutation scores for

łJacksonCorež, łCliž, and łCsvž projects respectively. There

was no clear advantage for any of the metrics in the łTimež project.

Manhattan distance gave the highest for the 35% test suite size,

while Euclidean distance gave the highest for the 60% test suite size,

and NCD gave the highest for the 85% test suite size.

For test suites generated by EvoSuite, NCD performed best in

46.2% of the cases giving the highest average mutation scores for

łCodecž, łCompressž, łCsvž, łJxPathž, łLangž, and łTimež

projects. Manhattan distance came in second performing best in

30.8% of the cases giving the highest average mutation scores for

łCliž, łChartž, łJsoupž, and łMathž projects. Hamming distance

gave the highest average mutation score for łJacksonCorež,

and łJacksonDatabindž projects. Also, it is worth noting that

Levenshtein and NCD both performed the best in the łJxPathž,

and łTimež projects. There was no clear advantage for any of the

metrics in the łGsonž project.
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Similarity metrics varied in effectiveness from one project to an-

other and varied between Randoop and EvoSuite as well. However,

NCD performed better than the other metrics at 42.3% across all ex-

periments using both Randoop and EvoSuite. Also, NCD performed

the best using Randoop and EvoSuite in the łJxPathž, and łLangž

projects.

The box plots of Figure 5 show the time for the reduction of

the compared similarity metrics. In Figure 5a, all similarity metrics

are shown. However, it takes much more time to compute the

Levenshtein metric than the others, so we can not observe the time

spent on them properly. Thus, the box plots in Figure 5b show only

the Euclidean, Hamming, Manhattan, and NCD metrics to get a

better view of the time spent in reduction. As shown, Levenshtein

takes the most time by far, which conforms with Ledru et al. [27].

NCD comes in next as it spends a little more time computing than

Euclidean, Hamming, and Manhattan, which are very close to one

another in time spent for reduction. NCD was nine to 53 times

faster to compute than Levenshtein distance.

Conclusion for RQ3: The best similarity metric in terms of

maintaining fault-finding capabilities is NCD. NCD performed

best in 42.3% of cases in test suites generated by Randoop

and EvoSuite. Also, the reduction time spent is close to other

metrics. The Levenshtein comes in second performing best

in 23% of cases, followed by Manhattan performing 19.2% of

cases. However, Levenshtein distance spends a huge amount

of time to compute compared to other metrics. It is nine to 53

times slower than NCD.

Answer to RQ4 - What is the effect of
string-based similarity reduction on
automatically generated test suites with no
built-in minimisation (Randoop) compared to an
already minimised test suites (EvoSuite)?

The test suite sizes generated by EvoSuite are already minimised,

and further reduction of the test suites can negatively affect the

fault-finding capabilities. However, if resources are limited, reduc-

tion based on the most dissimilar test cases is preferable. We man-

aged to achieve a 15% reduction in size with only a 5% drop in

mutation scores. On the other hand, the test suites generated by

Randoop are considerably larger. In the łCliž project, we managed

to achieve the mutation score of the original test suite after reduc-

ing the size by 99.2%. In the łCodecž project, we maintained 97.2%

of the mutation score of the original test suite after making a 97.9%

reduction. Although other projects did not achieve strong results,

in almost every project we made a huge reduction in size.

Considering all 13 test subjects, where we made reduction using

five similarity metrics on three different size batches, we have a

total of 195 records of most and least diverse test suites per tool

(Randoop and EvoSuite). The most diverse test suites performed

better at 175 for Randoop (89.7%), and 159 for EvoSuite (81.5%).

Conclusion for RQ4: Randoop can benefit much more from

similarity-based reduction, often reducing the size of the test

suites considerably and maintaining either the same mutation

score of the original or a very close number. On the other hand,

since EvoSuite has its minimisation techniques, any further

reduction tends to drop the mutation score. However, string-

based similarity reduction still achieved a 15% reduction in

size with only a 5% drop in mutation scores.

5.1 Threats to validity

We address validity threats that can affect our results.

(1) Construct validity: The selected similarity metrics and

the used test subjects can be a construct risk in our study.

To mitigate this risk, we selected widely-used metrics in

software testing research, and the dataset used [26] has been

constructed by external researchers and is also used in many

research studies such as [12, 14].

(2) Internal validity: The accuracy of the results can be af-

fected by random factors. To mitigate this risk, we repeated

the reduction 30 times for each of the random, least and

most diverse test suites. Also, we applied the same reduction

approach using five different test suites for each test subject.

(3) External validity: This risk is concerned with how much

can we generalize the results to different Java programs and

different test suites generated by different tools, or even

developer-written test suites. To mitigate this risk, we used

13 different projects. However, we still need to use more

test subjects and conduct more experiments to try to draw

general conclusions.

(4) Reliability: This concerns how other researchers can repli-

cate our study. To mitigate this risk, we explained the reduc-

tion approach and similarity metrics used. Also, we specified

the test subjects which can be accessed from the web to repli-

cate the study. Furthermore, all the data and test subjects are

available on the web in a replication package [15].

6 RELATED WORK

Diversity-based approaches have been used in many areas of test-

ing, such as test suite generation, test suite reduction, test case

prioritisation, test suite evaluation, and so on. Elgendy et al. [16]

made a survey about diversity-based techniques in software testing.

They reported the similarity metrics used in the literature, software

artefacts used as a basis for diversity, software testing problems

where diversity-based techniques were used to solve, application

domains where diversity-based techniques were utilised, and the

diversity-based tools developed in the literature. They identified

test suite reduction as one area where diversity-based approaches

were not utilised as much as other areas in software testing. It is

clear that diversity is a hot research topic in software testing, and

this paper is related to investigating diversity in the context of test

suite reduction.

Some TSR techniques involve applying clustering algorithms to

group test cases with similar characteristics or behaviours into clus-

ters, then from each cluster, one or more representative test cases
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are selected [1, 8, 34]. Coviello et al. [13] proposed a clustering-

based approach for test suite reduction. The clustering-based ap-

proach places similar test cases into groups based on their statement

coverage, and then treats the test cases in each group as redundant.

In order to fix scalability issues, Cruciani et al. [14] proposed a

family of scalable approaches based on similarity for test suite re-

duction, that uses techniques from the big data domain. The tester

specifies the desired number of test cases. Then, they model each

test case as a point in some D-dimensional space, and use Euclidean

distance to select evenly spaced test cases. Similar to our study,

these techniques do not maintain the same test requirements as the

original test suite. However, they do not study the effectiveness of

reduction on automatically generated test suites.

Similarity metrics were used for test suite reduction in the con-

text of model-based testing. Coutinho et al. [10, 11] proposed using

similarity-based approaches to reduce test suites in the context of

model-based testing. They made an analysis of the effectiveness

of six different string distances to compute the similarity between

the test cases and applied them to three test subjects. The distance

functions they used were Similarity function, Levenshtein distance,

Sellers algorithm, Jaccard index, Jaro distance, and Jaro-Winkler

distance. They concluded that the choice of the similarity metric

does not affect the size of the reduced test suite, but it affects the

fault coverage. These studies are in the context of model-based

testing while our work is traditional test suite reduction of Java

test suites.

Diversity-based techniques have been used for test data gener-

ation in many works. Some used evolutionary algorithms guided

by diversity-based fitness functions [3, 17, 18], a diversity-based

system-level web test generation [2], or to generate a minimized

test suite [6, 7]. These are important to understand how to use

similarity metrics in software testing.

None of the above papers have used the reduction using auto-

matic test suite generators like EvoSuite and Randoop, and to the

best of our knowledge, this paper is the first to evaluate the effec-

tiveness of similarity-based reduction on automatically generated

test suites.

7 CONCLUSIONS AND FUTUREWORK

Regression test suites usually have numerous test cases, and run-

ning the entire test suite will be costly. A number of ways have been

suggested to address this issue such as TSR approaches. This paper

evaluates the effectiveness of applying similarity metrics to reduce

the size of automatically generated regression test suites. The study

used two widely used tools, Randoop and EvoSuite, that generate

test suites. Five different similarity metrics were employed in the

study, Euclidean distance, Hamming distance, Levenshtein distance,

Manhattan distance, and NCD. We compared these similarity met-

rics, and compared the reduced test suites from random (Randoop)

and search-based (EvoSuite) in terms of fault-finding capabilities.

The reduction approach was evaluated on 13 test subjects from the

Defects4J framework available on the web.

The results showed that reducing test suites based onmaximising

diversity is more efficient than random reduction in 71.28% of the

cases in test suites generated by Randoop, and 70.26% of the cases

in test suites generated by EvoSuite. When minimising diversity,

random reduction gave higher mutation scores in 78.46% of the

cases using Randoop and 68.21% of the cases using EvoSuite. Also,

the comparison between the similarity metrics shows that NCD is

the best similarity metric. The time to compute NCD is comparable

to other similarity metrics and much faster than the Levenshtein

metric, and NCD performed better than the other metrics in 42.3%

of the experiments. Furthermore, string-based similarity reduction

is more effective than using the first n test cases in terms of fault-

detection. Finally, we found that it was possible to make significant

reductions in the test suite sizes generated by Randoop andmaintain

the same fault-finding capabilities of the original test suites.

In the future, we plan to consider more similarity metrics and

apply the study to different test subjects. Also, we plan to extend

this work to reduce the loss in fault detection after reduction for

the test suites generated by Randoop. Furthermore, we will apply

string-based similarity reduction on developer-written tests and

explore the differences in applying string-based similarity reduction

between test suites generated automatically and developer-written

tests.
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