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Abstract—Machine learning techniques are an active area of
research for speech enhancement for hearing aids, with one
particular focus on improving the intelligibility of a noisy speech
signal. Recent work has shown that feature encodings from self-
supervised speech representation models can effectively capture
speech intelligibility. In this work, it is shown that the distance
between self-supervised speech representations of clean and noisy
speech correlates more strongly with human intelligibility ratings
than other signal-based metrics. Experiments show that training
a speech enhancement model using this distance as part of a loss
function improves the performance over using an SNR-based
loss function, demonstrated by an increase in HASPI, STOI,
PESQ and SI-SNR scores. This method takes inference of a high
parameter count model only at training time, meaning the speech
enhancement model can remain smaller, as is required for hearing
aids.

Index Terms—self-supervised speech representations, speech
enhancement, loss functions

I. INTRODUCTION

Hearing impairment is a widespread problem worldwide [1]

and especially in countries with ageing populations [2], [3].

There is an emerging interest in the development of hearing aid

systems which incorporate neural network components [4]–

[9]. The particular focus of this development has been on

increasing the intelligibility of speech in the processed input

audio. A core challenge in this area is that neural hearing

aid models must be computationally efficient to fit within

hardware constraints. Standard loss functions used to train

neural network-based hearing aid systems operate at a signal

level, e.g., based on signal-to-noise ratio (SNR), scale-invariant

signal-to-noise ratio (SI-SNR), or short-term objective intelli-

gibility (STOI) [10]–[12]. However, recent work has shown

that representations sourced from large speech foundational

models (i.e., with high parameter count), such as Whisper [13]

or WavLM [14], are able to well capture information about

the intelligibility of the signal [15]–[17]. Previous work has

explored how the distances between the self-supervised speech

representation (SSSR) representations of clean speech and

noisy speech correlate with speech quality metrics and how

they can be used in loss functions [18] for single-channel noise

reduction. However, the correlation with speech intelligibility

metrics and application of SSSR based loss functions for

This work was supported by the Centre for Doctoral Training in Speech and
Language Technologies (SLT) and their Applications funded by UK Research
and Innovation [EP/S023062/1] and EPSRC Clarity Project [EP/S031448/1].
This work was also supported by WS Audiology and Toshiba.

hearing aid systems have not yet been well explored in the

existing literature.

This paper investigates how distances between WavLM

representations correlate with speech intelligibility (SI) and

speech quality (SQ) metrics like the hearing aid speech per-

ception index (HASPI) [19], STOI [12], perceptual evaluation

of speech quality (PESQ) [20], and others, as well with

real-world human speech intelligibility (HSI) ratings from

listening tests, released as part of the 2nd Clarity Predic-

tion Challenge (CPC2) [21]. Further, the distances of the

WavLM representations are evaluated for their usefulness as

loss functions to train the denoising component of a neural

hearing aid system. The proposed method shows an increase

in terms of perceptually motivated enhancement metrics versus

a traditional baseline [22], while maintaining the strict model

parameter count, speed and memory consumption constraints

typical of a hearing aid system. This is achieved by taking

inference of the much larger WavLM model only during model

training.

The structure of the paper is as follows. Section II introduces

the use of WavLM in this work and provides some background

of the prior work which uses SSSRs for speech enhancement.

Section III defines a distance measure using the WavLM

representations of signals, and investigates how this correlates

with human intelligibility labels and perception-based metrics.

Section IV describes the system which is subsequently used

for the signal enhancement experiments in Section V, using

the WavLM-based distance metric as a loss function. Results

are presented in Section VI and Section VII concludes the

paper.

II. SELF-SUPERVISED SPEECH REPRESENTATIONS FOR

SPEECH ENHANCEMENT

SSSRs such as wav2vec [23] and HuBERT [24] were

initially designed and evaluated as front-end feature extractors

for down-stream automatic speech recognition (ASR) tasks.

More recently, WavLM was developed to support a broader

set of speech processing tasks, including, e.g., speaker verifi-

cation, or speaker diarization, which it achieves by not only

learning masked speech prediction, but also by learning speech

denoising during training [14].

Recent work has shown that WavLM and other SSSRs are

powerful feature representations for quality [25] and intelligi-

bility prediction [15]. Furthermore, the ability of SSSR-derived
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representations to encode quality and intelligibility-related in-

formation has been exploited in loss functions for the training

of speech enhancement systems [18], [26], showing improved

performance in comparison to traditional loss functions for

speech enhancement. WavLM is a neural network with two

WavLM

SOLs
CNN

WFE

Transformers

WOL

SFE

Figure 1. Representations extracted from WavLM model stages.

distinct stages as shown in Figure 1: a convolutional neural

network (CNN) based encoder WFE and a Transformer [27]

based output stage WOL. The input to the encoder WFE is

a time-domain signal s and its output representation SFE has

a dimension FFE × T with encoder output feature dimension

FFE = 512 for WavLM [14] and T representing the variable

number of frames depending on the length of the input audio

s. SFE is the input to the Transformer-based WavLM decoder

stage WOL which returns a final output representation SOL

with dimensions FOL × T . For WavLM the output layer

feature dimension is FOL = 768 [14]. Based on findings from

previous work [18], [26], only the encoder representation SFE

is used in the following. In this work, the WavLM Base1 model

trained on the Librispeech 960 hour dataset [28] is used, which

has 94.7 million parameters.

III. WAVLM REPRESENTATION DISTANCES

Initially, the distance between WavLM encoder representa-

tions of clean and enhanced speech signals is explored, with

a loss function defined as

LWLM (s, ŝ)=
1

TFFE

T
∑

t=1

FFE
∑

f=1

(

SFE[t, f ]− ŜFE[t, f ]
)2

, (1)

where SFE = WFE(s) and ŜFE = WFE(ŝ) are the represen-

tations of the target and estimated signal, respectively. Please

note that frame (time) index t and feature index f are omitted

for brevity at most places in this paper.

This distance measure is compared with the signal-to-noise

ratio (SNR) based loss function

LSNR (s, ŝ) = −10 log10

(

∥s∥2

∥s− ŝ∥2 + τ∥s∥2

)

, (2)

which is commonly used for training the speech enhancement

component of hearing aid systems, with τ = 10−SNRmax/10 =
0.001 (where SNRmax = 30dB) to prevent sufficiently de-

noised signals from dominating the training, as described in

[29].

In the following, an analysis of how LSNR and LWLM

correlate with human intelligibility labels, as well as other

perception-based metrics will be conducted.

1https://huggingface.co/microsoft/wavlm-base

A. The 2nd Clarity Prediction Challenge (CPC2) Dataset

The CPC2 dataset is used to investigate the relationship

between LWLM in (1) and LSNR in (2), and existing speech

metrics and HSI labels. The task of CPC2 is to predict the

intelligibility of a signal for listeners with hearing impairment.

The main signal assessed in CPC2 is the binaural output

signal for left and right channels ŝ = [ŝl, ŝr] = M (x),
processed by a hearing aid (HA) M(·) with 6-channel noisy

input signal x (for 3 microphones in each (left and right) HA),

containing a clean speech signal s. The samples in the CPC2

dataset include an enhanced signal ŝ, a target signal s, and a

HSI label, which is the proportion of words that a hearing-

impaired listener was able to identify in ŝ, as well as the

audiogram of the respective listener [21]. The first training

split is used, which contains 2779 samples; the distribution of

these samples is shown in Figure 2. For each sample in one

of the training splits, LWLM and LSNR were calculated as in

(1) and (2), respectively.
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Figure 2. Distribution of human intelligibility labels in the CPC2 train set

B. Correlation Analysis

Table I shows Pearson correlations between HSI labels,

−LSNR, −LWLM, SI-SNR, HASPI, STOI, and PESQ, with

scatter-plots visualising some of the correlations with human

intelligibility labels in Figure 3. Negative values of LSNR and

LWLM are used so that positive correlations are expected for

all rows and columns. For each objective metric, values for

each (left and right) channel are computed and the better score

is taken.

Table I
PEARSON CORRELATIONS r BETWEEN HSI, LOSSES UNDER TEST AND

VARIOUS SPEECH METRICS ON THE CPC2 DATASET.

Losses SI-
Scores HSI

-LWLM -LSNR SNR
HASPI STOI PESQ

HSI 1.00 0.59 -0.26 0.02 0.47 0.71 0.47
−LWLM 0.59 1.00 -0.29 -0.08 0.43 0.74 0.70
−LSNR -0.26 -0.29 1.00 0.22 -0.16 -0.26 -0.31
SI-SNR 0.02 -0.08 0.22 1.00 0.08 0.19 -0.05
HASPI 0.47 0.43 -0.16 0.08 1.00 0.62 0.27
STOI 0.71 0.74 -0.26 0.19 0.62 1.00 0.64
PESQ 0.47 0.70 -0.31 -0.05 0.27 0.64 1.00

One would expect that a higher SNR value (lower LSNR)

would indicate a higher intelligibility rating. Table I and the

scatter plot in Figure 3 (top left) indicate the opposite; the

signals with higher SNR did not necessarily indicate that they

would have higher intelligibility. This is likely to be because
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Figure 3. Correlations of −LSNR, −LWLM, HASPI and STOI with the human intelligibility labels for the CPC2 dataset.

the signals in the CPC2 dataset were not originally optimised

with an SNR loss and do not necessarily match the levels of

the references.

In contrast, LWLM shows considerably stronger correlation

with human intelligibility shown in Figure 3 (top right) and

the other metrics compared with LSNR. The particularly strong

correlation of LWLM with PESQ and STOI in the CPC2 data is

consistent with other datasets [18]. This strength speaks to the

suitability of LWLM as a loss function to train the denoising

component of a hearing aid system; training the denoising

model to minimize this distance should by proxy improve the

performance in terms of these metrics.

Additionally, despite being the only metric considered

which takes into account the severity of a listener’s hear-

ing loss i.e is specifically designed to predict intelligibility

scores for hearing impaired people, HASPI shows a weaker

correlation with human intelligibility labels when compared

with LWLM and STOI and has a similar level of correlation

compared to PESQ, which is not aimed at assessing intelligi-

bility. This brings into question the usefulness of HASPI as a

metric. Alternatively, it indicates that the severity of hearing

loss does not actually factor massively into distribution of

the human intelligibility labels, which is consistent with the

findings in [15].

IV. HEARING AID SYSTEM

The hearing aid enhancement system trained in this work is

an MC-Conv-TasNet-based system [22], which performed best

in the 1st Clarity Enhancement Challenge (CEC1), consisting

of two independently trained systems (one for each ear). Since

modern hearing aids have multiple microphones, the system

for each ear will take a multi-channel input, and the system

for each ear will output a single channel.

This is a two-stage system as illustrated in Figure 4,

consisting of an MC-Conv-TasNet denoising block MD [30],

followed by a finite-impulse response (FIR) filter block MA to

amplify the signal according to a specific listener’s audiogram

[31]. During training, the output of MA is passed into a

Spectral
Encoder

Spatial
Encoder Mask

Estimator

Decoder Amplifier
Denoiser 

Figure 4. Workflow of the hearing aid system. For a C-channel signal x =
[x0, . . . , xC ], a reference channel x0 is input to the spectral encoder, while
the spatial encoder takes all C channels as input.

differentiable hearing loss simulation before the loss function

is applied.

The overall system consists of 4 neural networks: a denoiser

MD for each stereo channel, and an amplifier MA for each

stereo channel. For each ear, the denoiser MD is trained first,

then the parameters are frozen for training of the amplifier

MA.

A. Denoiser MD

The structure of MC-Conv-TasNet is given in Figure 4. This

model consists of a spectral encoder, a spatial encoder, a mask

estimation network, and a decoder. The spectral encoder is

a 1D convolutional network which takes a single reference

channel from the multi-channel mixture and which has a kernel

size L. The spatial encoder takes a multi-channel signal x as

input and operates as a 2D convolutional network over all

channels; if C denotes the number of microphone channels,

the kernel size of the spatial encoder is C × L so that the

number of frames of the spatial encoder is the same as the

number of frames of the spectral encoder. The encoder outputs

are concatenated as they are input to the mask estimator,

which is a temporal convolutional network [32]. The mask

is multiplied element-wise with the spectral encoder output to

give the features of the estimated source. Finally, a decoder

reconstructs a single-channel waveform as an estimate for the

target.

The configuration of MD is exactly as described in [22],

where the spectral and spatial encoders use 256 and 128 filters,



respectively, both with a frame length of L = 20 samples.

The 1 × 1 bottleneck convolutional block uses 256 channels

and the convolutional blocks use 512 channels. There are

6 convolutional blocks, which have a kernel size of 3 and

dilation factors of 1, 2, . . . , 32 and are repeated 4 times. The

input to MD is the time domain multi-channel noisy signal x

and the output is the denoised single channel audio ŝ.

B. Amplifier MA

The FIR filter amplification module [31], MA, is a simple,

linear amplification model designed to compensate for hearing

loss in each ear without introducing distortions and artefacts.

As with the denoiser, two independent amplification models

are trained (one for each ear), taking the 22.05kHz, single

channel output of the denoising module MD. The result is

upsampled to 44.1kHz, clipped to the range [−1, 1], and fed

into the differentiable hearing loss simulator MHL. Upsam-

pling is required as the hearing loss simulator used operates

at 44.1kHz.

V. EXPERIMENT SETUP

A. Clarity Enhancement Challenge Datasets

Two datasets are used for training the system: the CEC1

dataset, for which the baseline system was designed, and the

2nd Clarity Enhancement Challenge (CEC2) dataset, which

is a more challenging dataset for the same task. Both of

these datasets consist of a train set containing 6000 samples,

a validation set of 2500 samples, and an evaluation set of

1500 samples. Each sample is a 6-channel, noisy, reverberant

mixture x, with a target, anechoic speech signal s = [sl, sr]
for each ear (left and right).

For CEC1, there is only one interfering source in the noisy

mixture. In half of the samples, this is a second speech signal

sourced from [33], and in the other half, the interfering signals

are domestic noise sourced from [34]. For CEC2, there are 2
or 3 interfering sources in each noisy mixture, which could be

competing speakers, music, or domestic noise. All data has a

sampling frequency of 44.1kHz.

B. Training Setup

In this task, maintaining the signal level is important for

the downstream amplification, which is required for hearing

aid users. With this in mind, we propose a joint loss function

LJoint (s, ŝ) = LSNR (s, ŝ) + LWLM (s, ŝ) , (3)

where LSNR is used to maintain the signal level of the

reference.

In early experiments, it was found that LSNR and LWLM

optimise with different learning rates, with LSNR preferring a

greater learning rate. Two different training strategies are used,

which vary the learning rate over the training process.

All modules were trained using the Adam optimiser [35].

The learning rate is initially set to 10−3, and gradient clipping

is applied with a maximum L2-norm of 5. Three training

settings were used:

1) Baseline - The denoiser MD was trained for 200 epochs

using the SNR loss function LSNR (2).

2) WavLM Encoder loss fine-tuning - MD is trained for

100 epochs using LSNR (2) followed by 100 epochs of

training using LJoint (3). During the fine-tuning stage,

the learning rate is set to 10−4.

3) Joint Loss with learning rate scheduling - MD is trained

using the joint loss function LJoint (3) for 200 epochs. A

scheduled learning rate change inspired by [27] is used,

with the learning rate linearly increasing for the first few

training steps, and then with a learning rate decay over

the remaining epochs.

Models for each (left and right) ear are trained separately;

both sides take all 6 channels of input (downsampled to

22.05kHz), and the single corresponding left/right channel of

the target audio is as the reference.

VI. RESULTS

Table II shows the evaluation metrics for the output of the

denoiser MD for the baseline LSNR and the proposed LWLM

for both the CEC1 and CEC2 test sets. On CEC1, the system

trained with the proposed loss function using a scheduled

learning rate shows a significant improvement on HASPI,

STOI, PESQ and SI-SNR scores over the LSNR baseline, while

the proposed fine-tuning approach performs similarly to the

baseline.

On the more challenging CEC2 dataset, there is an im-

provement in HASPI and STOI for the proposed loss function

using a scheduled learning rate, but the fine-tuning approach

performs worse than the baseline. All systems give slightly

lower PESQ scores on this dataset versus the noisy input; this

is interesting given the strong correlation between these two

metrics shown in Table I. It should, however, be noted that the

main task of CEC is increasing intelligibility.

Table II
PERFORMANCE OF THE DENOISER MD .

Dataset Model HASPI STOI PESQ
∆ ∆

SI-SNR fwSNR

C
E

C
1 LSNR 0.90 0.76 1.19 7.92 3.72

LWLM, FT 0.90 0.76 1.20 8.03 3.42
LWLM, Sched. 0.91 0.78 1.23 8.45 1.65

C
E

C
2 LSNR 0.72 0.67 1.11 10.09 0.60

LWLM, FT 0.72 0.66 1.10 9.98 0.57
LWLM, Sched. 0.75 0.68 1.12 10.33 0.78

On CEC1, the HASPI improvement is only small, though

the scores for all systems are very high for this metric. On

CEC2, the improvement over the baseline is larger, and on this

more challenging dataset, there is a perceptual improvement

in these signals for listeners with hearing impairment.

VII. CONCLUSION

In this work, it is shown that encoder representations ob-

tained from WavLM can effectively capture the intelligibility

of a speech signal. This is shown by implementing a simple

distance function between representations of noisy and clean

speech signals and correlating these distances with human



intelligibility labels and perceptually motivated metrics for

both intelligibility and quality. Further, this work evaluates

the use of this distance in a loss function for training the

denoising network of a hearing aid system. This new training

setting shows improved performance over a system trained

with a purely signal-based loss function, with improvements

on HASPI, STOI, PESQ, and SI-SNR.
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Conference, N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri,
T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani, H. Mazo,
A. Moreno, J. Odijk, and S. Piperidis, Eds., Marseille, France, May
2020, pp. 6532–6541, European Language Resources Association.

[34] F. Font, G. Roma, and X. Serra, “Freesound technical demo,” in Proc.

21st ACM International Conference on Multimedia, 2013, p. 411–412.
[35] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”

in 3rd International Conference for Learning Representations, 2015,
2017, number arXiv:1412.6980.


	Introduction
	Self-Supervised Speech Representations for Speech Enhancement
	WavLM Representation Distances
	The 2nd Clarity Prediction Challenge (CPC2) Dataset
	Correlation Analysis

	Hearing Aid System
	Denoiser
	Amplifier

	Experiment Setup
	Clarity Enhancement Challenge Datasets
	Training Setup

	Results
	Conclusion
	References

