
This is a repository copy of Semi-supervised learning for automatic speech recognition 
with word error rate estimation and targeted domain data selection.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/230076/

Version: Accepted Version

Proceedings Paper:
Park, C. and Hain, T. orcid.org/0000-0003-0939-3464 (2025) Semi-supervised learning for 
automatic speech recognition with word error rate estimation and targeted domain data 
selection. In: Scharenborg, O., Oertel, C. and Truong, K., (eds.) Proceedings of 
Interspeech 2025. Interspeech 2025, 17-21 Aug 2025, Rotterdam, The Netherlands. 
International Speech Communication Association (ISCA) , pp. 3663-3667. ISSN: 2958-
1796 EISSN: 2958-1796 

https://doi.org/10.21437/Interspeech.2025-191

© 2025 The Authors. Except as otherwise noted, this author-accepted version of a paper 
published in Proceedings of Interspeech 2025 is made available via the University of 
Sheffield Research Publications and Copyright Policy under the terms of the Creative 
Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted 
use, distribution and reproduction in any medium, provided the original work is properly 
cited. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.21437/Interspeech.2025-191
https://eprints.whiterose.ac.uk/id/eprint/230076/
https://eprints.whiterose.ac.uk/


Semi-Supervised Learning for Automatic Speech Recognition with Word

Error Rate Estimation and Targeted Domain Data Selection

Chanho Park, Thomas Hain

School of Computer Science, University of Sheffield, UKUniversity of Sheffield, UK
cpark12@sheffield.ac.uk, t.hain@sheffield.ac.uk

Abstract

There is a growing demand for leveraging untranscribed multi-

domain data in semi-supervised learning (SSL) for automatic

speech recognition (ASR) to broaden its applications. How-

ever, domain mismatch between source and target data can limit

SSL’s performance gains, even when transcript accuracy for

training is high. While word error rate (WER) estimation (WE)

methods for automatic transcription have advanced, they remain

insufficient for handling multi-domain data.

This paper proposes a novel data selection method for

SSL in ASR that integrates WE and acoustic domain similarity

(ADS). For WE, multi-target regression for error rate prediction

(MTR-ER) is introduced, while ADS is incorporated as a selec-

tion criterion, measured using noise-contrastive estimation. The

effectiveness of this approach is demonstrated through compar-

isons with a confidence-based method. Results show that com-

bining WE and ADS achieves 26.66% of the expected perfor-

mance improvement of fully supervised learning.

Index Terms: speech recognition, semi-supervised learning,

word error rate estimation, acoustic domain similarity

1. Introduction

As data-driven approaches to automatic speech recognition

(ASR) have become widely adopted for ASR, the demand for

manual transcripts for training has increased to more than a

thousand hours [1, 2]. However, manual transcription still re-

mains costly and time-consuming and it is not available for

all domains, e.g., different recording conditions or topics. As

an alternative to the approaches that rely on large amounts

of manually transcribed data, researchers have explored semi-

supervised learning (SSL), leveraging untranscribed utterances

to enhance ASR performance [3, 4, 5, 6, 7]. One of the early

attempts at SSL was proposed in [8]. The authors used an ASR

system, known as a seed model, to transcribe utterances and

generate transcripts, referred to as ASR transcripts. They found

that ASR transcripts with up to 20% error could still improve

the performance of an ASR system when the transcripts were

used for training. To ensure the high accuracy of these ASR

transcripts, training data were selected using information from

ASR decoding, such as a confidence score.

Although this method has proven to be useful for data se-

lection, it was reported that overconfident data contribute min-

imally to ASR performance improvement [9, 10]. Moreover,

methods relying on confidence scores not only require access to

the internal process of the ASR system, which is not always pos-

sible, especially in industrial systems, but also overlook dele-

tions in ASR system output. To address these issues, a word

error rate (WER) estimation (WE) method for an ASR sys-

tem’s output using features obtainable without ASR decoding

was proposed in [11, 12]. Recently, WER estimation models us-

ing self-supervised learning representations (SSLRs) for speech

and text was introduced [13, 14]. Fe-WER [14], in particular,

adopted the temporal mean of speech representations over time

to improve computational efficiency without sacrificing WE

performance. Building on these advancements, the Fe-WER

model was employed to select ASR transcriptions estimated to

have high accuracy for training. However, the performance was

found to degrade on out-of-domain data, as will be shown in this

paper. To alleviate this issue, this paper proposes a method that

trains a WE model to predict more detailed error information,

including substitution, deletion and insertion error rates (ERs)

alongside WER. This approach leverages multiple real-valued

outputs from the ER estimation model to improve generalisa-

tion by simultaneously learning multiple related tasks, a method

known as multi-target regression (MTR) [15, 16].

Nevertheless, when training data are selected from hetero-

geneous domains, high accuracy of ASR transcription is not suf-

ficient. Domain mismatch between source and target domains

can lead to performance degradation, especially between read

speech and telephone speech [17]. Moreover, findings from

[18] suggest that domain mismatch can have a greater impact

on ASR performance than the quantity of training data. To ad-

dress this, acoustic domain similarity (ADS) is introduced as

an additional criterion for data selection, building upon the un-

supervised data selection method in [19], which accounts for

matching domains. This similarity is measured using mutual

information modelled through an objective function for noise-

contrastive estimation (NCE) [20] with target data.

In this paper, a data selection method for SSL in ASR is

proposed that incorporates WE and ADS. First, a WE model

with MTR for ER prediction (MTR-ER) is used to select highly

accurate ASR transcripts. Second, ADS between an utterance

and target data is measured using a loss based on NCE. By in-

corporating these techniques, data can be effectively selected

from an untranscribed multi-domain data pool for SSL in ASR.

The contributions of this work are as follows:

• Proposal of a new data selection method for SSL in ASR,

utilising an untranscribed multi-domain data pool

• Extensive experimental evaluation, including analysis of

different amounts of selected data, comparison with a

confidence-based method and random selection

• Demonstration of effectiveness, showing that combining

these two criteria yields 26.66% of the performance gain ex-

pected from fully supervised learning



2. Semi-Supervised Learning with Word
Error Rate Estimation and Acoustic

Domain Similarity

This section outlines the proposed SSL approach, which lever-

ages WER estimation and acoustic domain similarity (ADS) to

enhance ASR performance in multi-domain settings. The over-

all steps of SSL for ASR with WE and targeted domain data

selection are as follows:

1. An ASR model MASR, a WE model MWE, a ADS model

MADS, a dataset with reference transcripts DR, an untran-

scribed data pool DU , a target dataset DT .

2. Train MASR with DR.

3. Generate DA by applying MASR to DU .

4. Build MWE with DR and determine a threshold τW

5. Select DW from DA using MWE with τW .

6. Build MADS with DT and determine a threshold τS

7. Select DS from DA using MADS with τS .

8. Build M ′
ASR with DR ∪ {DW ∩DS}.

2.1. Word Error Rate Estimation

This section describes the WER estimation process, which aims

to predict various error rates of ASR transcripts. WER is de-

fined as the ratio of substitution S, deletion D and insertion I
errors in an ASR transcript and a total number of words N in a

reference transcript: WER = (S+D+ I)/N . The rate of each

error type is also defined as its ratio to the total word count, N .

For example, substitution error rate yS is defined as S
N

. WER

of ASR transcripts is estimated using a model with MTR for

ER estimation, MTR-ER, as illustrated in Figure 1. This model

Figure 1: Multi-target regression for error rate prediction

consists of encoders, f(·) and g(·) for speech and text, respec-

tively, along with a multi-layer perceptron (MLP) for WE. The

estimation is given by:

ŷ
l = MLP(concat[avg(f(Xl)); avg(g(Al))]) (1)

where Xl and Al represent the utterance and the ASR transcript

of the l-th pair, respectively, and ŷ is estimation of insertion

ŷI , deletion ŷD , substitution ŷS and word error rates ŷW of

A. avg(·) is an average pooling function. The model is trained

by minimising the sum of mean squared error (MSE) across all

error rates:

MSE =
1

M

M∑

l=1

∑

j∈{I,D,S,W}

(yl
j − ŷl

j)
2

(2)

where M is the total number of training instances and y is an

actual error rate. Root mean square error (RMSE) and Pearson

Correlation Coefficient (PCC) were used to evaluate both the

accuracy and reliability of WER predictions. PCC measures

the linear relationship between two variables, ranging from -1

(negative correlation) to 0 (no linear relationship) to 1 (positive

correlation).

2.2. Acoustic Domain Similarity

To complement WER estimation, ADS is introduced to mea-

sure the similarity between utterances in a data pool DU and a

target dataset DT , ensuring that the selected data aligns closely

with the target domain. ADS is calculated for each utterance

using the mutual information between a context representation

ct = g(zt . . . zt−v), where t represents the current time and v
represents the context length, and a latent representation xt+k

of a future observation in speech, where k is the future step.

This mutual information can be modelled with DT using an ob-

jective function for noise-contrastive estimation [21].

Lk(xt) = −[log(fk(xt+k, ct))+
∑

x̃∈pn

log(1−fk(x̃, ct))] (3)

where fk(xt+k, ct) is a density ratio preserving the mutual in-

formation between xt+k and ct, and pn is a set of random sam-

ples from the same recording. The utterance-level loss of a se-

quence X1:T = {x1...xt...xT } is given as:

L(X1:T ) =
1

T − k

T−k∑

t=1

K∑

k=1

Lk(xt) (4)

where K is the maximum number of future steps. ADS is then

computed as:

ADS(Xl) =

1

|DT |

∑
Xm∈DT

L(Xm)

L(Xl)
(5)

where Xl is the l-th utterance in the data pool DU and |DT | is

the number of utterances in the target data DT . The average loss

of target data is divided by the utterance-level loss for normal-

isation of the similarity value so that it increases as the mutual

information increases and the utterance-level loss decreases. If

the utterance loss is close to the average loss of the target data,

the value approaches 1.

2.3. Data Selection for Semi-supervised Learning

WE and ADS were used to select training data for SSL. Thresh-

olds for the measures of WE and ADS are denoted as τW and

τS , respectively. The pairs of utterances and transcripts whose

estimate of WER is lower than τS were selected, while the ut-

terances whose domain similarity was lower than the threshold

were filtered out.

DW = {Xl, Al}, where ŷl
W < τW

DS = {Xl, Al}, where ADS(Xl) > τS

The data selection methods are evaluated using WER Recov-

ery [22], which measures the ratio of ASR performance gain

achieved through SSL to supervised learning for ASR.

3. Experimental Setup

3.1. Datasets

CHiME-5 (CH5) [23] was used as a target domain dataset, con-

sisting of 50 hours of conversational speech recorded in a home

environment. Among the multiple channels, the binaural mi-

crophone recording of speakers was used. An untranscribed

data pool was composed of spoken utterances from five ASR

corpora. The AMI corpus [24] comprises meeting recordings

involving up to four participants in an office environment. A

subset of AMI, Full-corpus-ASR, was used in this experiment.



LibriSpech (LSP) [25] offers approximately 1000 hours of read

speech from books. The Switchboard (SWB) corpus [26] en-

compasses two-sided telephone conversations. Ted-Lium 3

(TL3) [27] is a corpus of 452 hours of audio talks, and the Wall

Street Journal (WSJ) corpus [28] is composed of read speech

with machine-readable texts from Wall Street Journal news ar-

ticles. The hours of the datasets are summarised in Table 1.

Table 1: Hours of Speech in ASR corpora used.

Corpus Training Dev Test

Target CH5 37.76 6.07 5.37

Data

Pool

AMI 64.80 5.12 8.68

LSP 961.25 10.51 10.75

SWB 311.26 4.61 4.59

TL3 444.62 6.13 3.57

WSJ 81.485 2.20 2.22

3.2. Automatic Speech Recognition Models

A HuBERT large model1 pre-trained on 60k hours of Libri-

Light [29] was fine-tuned according to the publicly released

recipe. The seed model was fine-tuned on CH5 Training, while

SSL models were fine-tuned on both the CH5 Training set

and automatically transcribed data selected using the proposed

method. All models were trained to the point of overfitting,

with a limit of 3720 epochs. Default hyper-parameters were

used, except for the masked input length, which was set to 2 to

accommodate short utterances. All transcripts were standard-

ised using the Whisper normaliser 2 and NeMo text processing

tool 3.

3.3. Word Error Rate Estimation Models

For WE, the Fe-WER model was compared with MTR-ER,

which estimates insertion, deletion, substitution ERs and WER.

Both models were trained on the 32 hours of data in CH5 Train-

ing with their corresponding ASR transcripts generated using

the seed model. Then they were evaluated on out-of-domain

datasets. To minimise data imbalance, the number of ASR tran-

scripts with a WER of 0 was limited to the sum of the second

and third most frequent bins in a 100-bin histogram. Features

for speech and text were extracted using HuBERT large and

XLM-R large models. Hyper-parameters were determined via

grid search, with input and output layers fixed at 2048 and 1,

respectively. The sizes of two hidden layers were chosen from

the ranges [300, 600, 900] and [16, 32, 64], respectively. An

Adam optimiser with a Cosine Annealing scheduler4 was used

and learning rates were selected from [1e-4, 3e-4, 7e-4, 1e-3,

3e-3, 7e-3].

3.4. Acoustic Domain Similarity

For ADS computation, a wav2vec [20] model was employed,

where the density ratio fk(xt+k, ct) was implemented. Us-

ing the default hyper-parameters of the wav2vec large 5, ker-

nel sizes were set to (16, 16) and strides to (8, 8). The context

networks were comprised of three layers with increasing kernel

1https://github.com/facebookresearch/fairseq
2https://github.com/openai/whisper
3https://github.com/NVIDIA/NeMo-text-processing
4https://pytorch.org/docs/stable/optim.html
5https://github.com/facebookresearch/fairseq

sizes (2, 3, 4) to fit the smaller amount of data in DT . Training

stopped after 15 epochs of no performance improvement on a

validation set. This model was pre-trained on CH5 Test; then

the ADS of each utterance in AMI, LSP, SWB, TL3 and WSJ

Training was computed.

3.5. Data Selection for Semi-supervised Learning

τW was set at 20%, which was below the ASR model’s perfor-

mance with reference transcripts (see Figure 2). For ADS, τS of

0.74 was determined from the distribution of ADS in CH5 Test

(see Figure 5), as it was assumed that some target data might

also be outliers in terms of acoustic domain similarity. There-

fore, data with acoustic domain similarity below the maximum

similarity of the bottom 10% in the target dataset were removed.

Additionally, to investigate performance improvement based on

the amount of selected data, 8 and 32 hours of data were cho-

sen. To control the quantity of selected data, utterances were

sampled from {DW ∩ DS} in ascending order of WER esti-

mates.

For comparison, data were also selected using a random

strategy as well as a weighted confidence scoring method

(WCS). WCS calculates the average of softmax probabilities

produced by the seed model at the token level.

4. Results

4.1. A Seed Model

As a result of comparison of decoding strategies, Viterbi decod-

ing was adopted for better performance across multiple domains

on average. A HuBERT model trained on 32 hours of data was

selected as the seed model to confirm that further improvement

is possible with additional data as show in Figure 2.
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Supervised Learning

Figure 2: Performance of HuBERT fine-tuned on CH5 Training

4.2. Word Error Rate Estimation

To compare Fe-WER and MTR-ER’s performance on out-of-

domain datasets, results excluding CH5 were averaged. The

MTR-ER model achieved a lower RMSE of 0.2153 compared

to 0.2174 for the Fe-WER model, indicating a slight improve-

ment in error minimization. Additionally, MTR-ER obtained a

higher PCC of 0.6286, surpassing the Fe-WER model’s PCC of

0.6044. These results suggest that MTR-ER offers better gen-

eralisation on out-of-domain data, with improved accuracy and

correlation metrics.

Figure 3 shows that the cumulative mean of the WER refer-

ence continuously increases when ASR transcripts are selected

in ascending order of MTR-ER’s estimates. In contrast, the cu-

mulative mean of the WER reference initially spikes and then

decreases until reaching 8%, after which it gradually increases.

The spike in the low range of WER estimate could be critically

harmful on the ASR performance and is a weakness in selecting

a small amount of data. Based on these results, MTR-ER was

used to select low-WER transcripts for ASR training.
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Figure 3: Cumulative mean of reference WER according to a

threshold for WER estimate.

4.3. Acoustic Domain Similarity

The ADS distribution is plotted in Figure 4. The box plots show

the distribution of ADS values in the data pool when the target

data are CH5 Test and LSP Test. The mean ADS for CH5 is

the highest in Figure 4a, while the mean ADS for LSP is the

highest in Figure 4b. This observation indicates that the distri-

butions are influenced by the target data. Based on the mean

ADS, TL3 is the most similar to CH5, while WSJ is the most

dissimilar. This result is as expected because WSJ consists of

read speech recorded in studios, while CH5 comprises conver-

sational speech recorded during dinner.

(a) CH5 Test (b) LSP Test (clean)

Figure 4: ADS distributions when target data are CH5 Test and

LSP Test (clean).

The distribution of ADS in the data pool is relatively left-

skewed as shown in Figure 5. The majority of utterances have

ADS values below 1, which represents the mean ADS of the

utterances in the target data. The dotted line indicates the maxi-

mum value of the 10th percentile, used as a threshold to remove

dissimilar domain data.

Figure 5: Distribution of ADS in the data pool.

4.4. Data selection

The statistics of the data selected using random, WCS and the

proposed method are summarised in Table 2. The proposed

method yields the lowest average WER reference on all the

datasets. When data were selected using WCS, over twenty

thousands SWB utterances were chosen, in an average WER

reference of 76.21%. The proposed method selected fewer

SWB utterances than the other methods due to their high WER.

Additionally, it selected fewer WSJ utterances due to their low

ADS values, despite having the lowest average WER estimates.

Table 2: Statistics for 32 hours of selected data.

Data
Selection

Corpus # Utt. Dur. (h)

Avg.
WER
Ref.

Avg.
WER
Est.

Avg.
ADS

Random AMI 1557 1.13 36.23% - 0.63
LSP 4831 16.59 13.10% - 0.72
SWB 4190 5.24 56.95% - 0.56
TL3 4549 7.69 20.98% - 0.78
WSJ 617 1.34 14.78% - 0.44

WCS AMI 10071 5.30 35.34% - 0.65
LSP 1738 4.64 38.85% - 0.67
SWB 22282 13.86 76.21% - 0.55
TL3 9080 8.13 42.68% - 0.68
WSJ 49 0.07 18.31% - 0.37

WE & ADS AMI 424 0.61 7.43% 1.69% 0.82
LSP 2414 8.69 3.59% 1.88% 0.88
SWB 520 1.11 13.67% 1.72% 0.79
TL3 9901 21.57 5.87% 1.78% 0.87
WSJ 7 0.02 6.16% 1.88% 0.77

4.5. Automatic Speech Recognition Performance

The results in Table 3 show that the data selected using a random

strategy and WCS did not improve ASR performance; the WER

increased when 8 or 32 additional hours of selected data were

added to the 32-hour supervised baseline. In contrast, the WER

for the HuBERT based model on CH5 Test decreased to 22.86%

and 22.61% with 8 and 32 hours of selected data, respectively.

This WER reduction can be compared with the performance

extrapolated from the plot in Figure 2.

Table 3: Semi-supervised ASR performance on CH5 Test with 8

and 32 hours of data selected from the data pool.

Data Selection
Manu. + Auto.

(hours)
WER
(%)

WER
Recovery

Supervision 32 23.17

(extrapolation) 40 22.24 100%
random 32 + 8 23.32 -16.13%
WCS 32 + 8 23.48 -33.33%

ŴER & ADS 32 + 8 22.86 33.33%

(extrapolation) 64 21.07 100%
random 32 + 32 23.21 -1.90%
WCS 32 + 32 23.69 -24.76%

ŴER & ADS 32 + 32 22.61 26.66%

5. Conclusion

A novel approach to data selection for SSL in ASR is proposed

with an untranscribed multi-domain data pool, leveraging WE

and ADS. To obtain highly accurate ASR transcripts for train-

ing, their WER was estimated using MTR-ER, demonstrating

improved generalisation across multiple domains. Simultane-

ously, to reduce domain mismatch, ADS was defined and mea-

sured using noise-contrastive estimation. By combining these

two criteria, the data selection method gained 26.66% of the ex-

pected performance improvement by fully supervised training.
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