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Abstract

Purpose Cardiac diffusion tensor imaging (cDTI) can investigate the microstructure of heart tissue.
At sufficiently high b-values, additional information on microstructure can be observed, but the data
require a representation such as diffusion kurtosis imaging (DKI). cDTI is prone to image corruption,
which is usually treated with shot-rejection but which can be handled more generally with robust estima-
tion. Unconstrained fitting allows DKI parameters to violate necessary constraints on signal behaviour,
causing errors in diffusion and kurtosis measures. Methods We developed robust constrained weighted
least squares (RCWLS) specifically for DKI. Using in vivo cardiac DKI data from 11 healthy volun-
teers collected with a Connectom scanner up to b-value 1350 s/mm2, we compared fitting techniques
with/without robustness and with/without constraints. Results Constraints, but not robustness, made
a significant difference on all measures. Robust fitting corrected large errors for some subjects. RCWLS
was the only technique that showed radial kurtosis to be larger than axial kurtosis for all subjects,
which is expected in myocardium due to increased restrictions to diffusion perpendicular to the pri-
mary myocyte direction. For b = 1350 s/mm2, RCWLS gave the following measures across subjects:
mean diffusivity (MD) 1.68± 0.050 ×10−3mm2/s, fractional anisotropy (FA) 0.30± 0.013, mean kurtosis
(MK) 0.36 ± 0.027, axial kurtosis (AK) 0.26 ± 0.027, radial kurtosis (RK) 0.42 ± 0.040, and RK/AK
1.65± 0.19. Conclusion Fitting techniques utilizing both robust estimation and convexity constraints,
such as RCWLS, are essential to obtain robust and feasible diffusion and kurtosis measures from in vivo
cardiac DKI.

1 Introduction

Cardiac diffusion weighted imaging (cDWI) is a magnetic resonance imaging (MRI) technique that can be
used to investigate cardiac tissue microstructure. Cardiac diffusion tensor imaging (cDTI) is the most com-
mon cDWI method used on the heart, from which measures such as mean diffusivity (MD) and fractional
anisotropy (FA) can be derived. However, the diffusion-weighted signal in tissue deviates from monoexpo-
nential decay at higher diffusion weighting (as expressed by the b-values) due to cell membranes and other
restrictions in biological tissue [1, 2, 3]. Diffusion kurtosis imaging (DKI) can quantify these deviations. Non-
Gaussian diffusion models (including DKI) have been shown to have a higher sensitivity for the detection of
hypertrophy in ex vivo rat hearts compared with DTI [3]. Kurtosis measures include mean kurtosis (average
kurtosis across all directions), axial kurtosis (kurtosis in the primary diffusion direction) and radial kurtosis
(average kurtosis in the plane perpendicular to axial kurtosis) [4, 5, 6, 7, 8, 9, 10, 11, 12]. Anisotropic and
isotropic kurtosis can be also distinguished with q-space trajectory imaging [13].

∗Published article: https://doi.org/10.1002/mrm.70037

1



Spin echo-based DKI in the human heart in vivo is challenging due to low SNR, a short myocardial
T2 (approximately 46 ms at 3.0 T [14]) and long echo-times (TE), required to achieve sufficient motion
compensation and b-values. Nonetheless, acquiring data with sufficiently high b-values for cardiac DKI has
been shown to be feasible in healthy volunteers in vivo using ultra-strong gradients (i.e. 300 mT/m) at echo
times and resolutions comparable to those commonly used for conventional cDTI [15, 16, 17]. However, even
for the brain, which has longer T2 and significantly less motion, DKI is challenging: fitting methods need to
handle data corruptions [18], but also need to yield a physically plausible signal if kurtosis measures are to
be meaningful [19].

Image corruption is a common problem in cDWI [20]. Furthermore, motion causes additional signal
variations sometimes referred to as physiological noise. In cDTI, shot-rejection is usually performed in an
attempt to handle corruptions where noticeably corrupted images are removed from datasets before fitting,
a method that is typically time-consuming and subjective. In our experience, the reduced signal at higher
b-values simultaneously causes a larger number of corruptions (including those from misregistration) and
a decreased ability to perform shot-rejection effectively. Robust estimation, in which outlier signals are
identified and removed at the voxel level, is an alternative to shot-rejection. Our recent work shows that
robust estimation is superior to shot-rejection in cDTI [21], so robust estimation in cardiac DKI is worth
investigating, but has not been done yet.

Although the DKI signal representation does not correspond to a valid diffusion propagator, the fitted
signal should still adhere to the physical principles governing the data-generating process. If it does not, the
fitted parameters and any measures derived from them will lack meaningful interpretation. For example,
the compartment model predicts that kurtosis should be non-negative [2, 4], and the diffusion tensor should
be positive definite as in DTI. For DKI, it is not known how to enforce constraints on kurtosis via repa-
rameterization of the fitting problem, so constraints must consider whether the predicted signal behavior is
valid, e.g., in [22], non-linear optimization is (infinitely) penalized if constraints are violated. Recently, linear
least squares methods have been developed for enforcing convexity constraints on the cumulant generating
function, leading to correction of significant errors in brain DKI [19]. These advantages should also apply to
cardiac DKI.

While preventing estimated parameters from violating constraints may be seen as a form of robustness,
constrained fitting itself is not inherently robust. This is because the constraints do not change the shape of
the fitting cost function in parameter space, which is entirely determined by the data. As a result, outliers
can still have a detrimental impact on parameter estimates. Furthermore, although robust fitting may reduce
the frequency and impact of constraint violations by removing outlier signals, it cannot guarantee that the
parameters that optimize the cost function will not violate the constraints. The objectives of this work are:
(1) to demonstrate a way of combining robust fitting [21] with convexity constraints [19] using iteratively
reweighted least squares (IRLS) to give robust constrained weighted least squares (RCWLS); (2) to test
various fitting methods (with/without robustness and with/without constraints) on in vivo cardiac DKI
data collected on a Connectom scanner to determine the effects on diffusion and kurtosis measures. To our
knowledge this is the first time that constrained estimation has been combined with robust estimation in
MRI.

2 Methods

We use the following notation: tensors are bold and upper-case; vectors are bold and lower-case; tensor and
vector elements are italicized and indexed.
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2.1 Diffusion Kurtosis Imaging

The DKI signal representation can be expressed as [2]:
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where q =
√
b · (n1, n2, n3) is the (rescaled) wave-vector (denoted this way for convenience in expressing the

constraints - see Sec 2.3), and i, j, k, l index physical space coordinates. The diffusion tensor D and kurtosis
tensor W are both symmetric, having 6 and 15 unique elements, respectively. The signal at b = 0 s/mm2

is denoted by scalar quantity S0. The DTI signal representation is the same as Eq (1) but without the
term containing W. Kurtosis is expressed in dimensionless form due to scaling by the mean diffusivity
D̄ = (D11 +D22 +D33) / 3.

Expanding Eq (1) accounting for the symmetry of D and W gives the following linear expression:
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T · x (2a)
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The 22 coefficients in θ are related to the original parameters as follows: 6 diffusion tensor parameters
(θ1, . . . , θ6) = (D11, D12, D22, D13, D23, D33), 15 kurtosis tensor parameters (θ7, . . . , θ21) = D̄2 · (W1111,
W2222,W3333,W1112,W1113,W1222,W2223,W1333,W2333,W1122,W1133,W2233,W1123,W1223,W1233), and inter-
cept θ22 = − lnS0. The DTI expression would include only terms depending on (θ1, . . . , θ6) and θ22.

2.2 Weighted Least Squares

Given N observations {qn, Sn|n = 1 . . . N}, the weighted least squares (WLS) estimate of the coefficients θ

in equation (2), denoted by θ̂WLS, is given by:

θ̂WLS = argmin
θ

N
∑

n=1

wn

(

fθ(qn)− lnSn

)2

(3)

The wavevectors qn of the nth observation can be converted to xn using equation (2c). Given design
matrix X = (x1,x2, . . . ,xN)T , observation vector y = (lnS1, lnS2, . . . , lnSN )T , and weights vector w =
(w1, w2, . . . , wN )T , a weighted design matrix and observation vector can be defined:

X′ = diag
(√

w
)

·X , y′ = diag
(√

w
)

· y (4)

The WLS estimate can then be written as:

θ̂WLS = argmin
θ

∣

∣

∣

∣X′ · θ−y′
∣

∣

∣

∣

2

= (X′T ·X′)−1 ·X′ · y′

(5)

For uniform weights wn = 1, Eq (5) gives the ordinary least squares (OLS) estimate θ̂OLS.
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2.3 Convexity Constraints

A useful constraint for DKI is to enforce convexity of the cumulant generating function C(q) [19]:

C(q) := lnS(
√
−1q) ≡ fθ(

√
−1q) (6)

This constraint can be enforced by using sum of squares polynomials [19]; the mathematical background for
this can be found in [23]. The semi-definite program for solving the WLS problem subject to constraints,

thus yielding the constrained WLS estimate θ̂CWLS, can be written as follows:

θ̂CWLS = argmin
θ,α

∣
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(7a)

subject to eT ·
(

H(θ) + L(α)
)

· e = hθ(q, s) (7b)

H(θ) + L(α) ≽ 0 (7c)

where hθ(q, s) := sT ·HC(q) · s (7d)

eT ·H(θ) · e = hθ(q, s) (7e)

eT · L(α) · e = 0 (7f)

Importantly, we have written the problem in terms of the weighted design matrix X′ and observation vector
y′.

We will briefly explain Eq (7) for DKI, leaving details on the constraint matrices H(θ) and L(α) (pre-
sented here for the first time) for Appendix B. Eq (7d) defines hθ(q, s), where HC(q) is the Jacobian of C(q)
and the dummy variable s has the same dimensions as q. Then, hθ(q, s) is just a polynomial. Convexity
of C(q) requires that hθ(q, s) is non-negative, which can be enforced using a sum of squares polynomial
representation, i.e. Eq (7b) (see [23]). We can exactly represent hθ(q, s) using a relatively small monomial
basis for e (see Appendix B). The convexity constraint is satisfied when Eq (7c) holds i.e. when H(θ)+L(α)
is positive semi-definite (PSD). Note that Eq (7) involves optimizing over coefficients θ and slack parameters
α. Appendix C explains how the numerical complexity of the problem can be reduced.

2.4 Robust Fitting

In DTI/DKI, WLS usually refers to solving Eq (5) by weighting the (squared) residuals of the linearized
problem with the (squared) signal [24]:

wn =
(

exp fθ(qn)
)2

← θ̂OLS (8)

where an initial OLS estimate θ̂OLS is used to predict the signals (since the true signals are not known).
Henceforth, we will use “WLS” to refer to Eq (5) using the weights in Eq (8). Correspondingly, “CWLS”
will refer to constrained WLS, i.e. solving Eq (7) using the weights given by Eq (8).

Importantly, neither WLS or CWLS are intrinsically robust, and outlier data can have a detrimental
effect on the estimates θ̂WLS or θ̂CWLS. Robust estimation can be implemented using Iteratively Reweighted
Least Squeares (IRLS), using weights derived from a robust estimator [25, 18, 21]. Notably, for WLS in
DTI/DKI, these robust weight should be chosen so as to preserve the cost function implied by equations (3)
and (8) (see [21] for a derivation), such that IRLS solves the WLS/CWLS problem in a robust way. Robust
fitting in the DTI/DKI literature is usually done in order to remove the influence of outlier data on the
fitted signal, thus making it easier to identify outlier data so that the original problem can be solved without
robust weights but also without the outliers.

A robust weighting scheme accounting for the DTI/DKI weights in Eq (8), based on the Geman-McClure
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M-estimator, with K iterations, is [25, 21]:
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where θ̂
k

∗ corresponds to the estimated coefficients for iteration k (we define uk
n and σ̂k below). This scheme

requires at least 4 iterations (in which case, a single robustly weighted fit will have been performed for k = 2).
As with Eq (8), the symbol← in Eq (9) is used to mean that the quantities on the right are used to evaluate

the expression for the weights on the left, e.g., w2
n would be calculated using θ̂∗, un, and σ̂ from the first

iteration. The residuals of the WLS problem are defined as the difference between the log observed signal
and log predicted signal:

uk
n := yn − fθ(qn)← θ̂

k

∗ (10)

The noise level σ̂ is estimated at the kth iteration using a robust estimator designed for the WLS problem
[25]:

σ̂k =
1.4826 N

N −m
×MED

[∣

∣zn −MED
[

zn]
∣

∣

]

(11)

where zn ≡ exp (fθ(qn))un ← θ̂
k

∗, MED is the median operator and m is the number of regressors, i.e. m = 7
for DTI and m = 22 for DKI.

Set O contains log-signals defined as outliers by a 3-sigma rule, applied after the last robustly-weighted
fit:

yn ∈ O if
∣

∣ exp(yn)− exp (fθ(qn))
∣

∣ > 3σ̂K−2 (12)

such that the estimated coefficients θ̂∗ at iteration K − 2 are used to evaluate fθ(qn). If the n’th log-signal
yn is defined as an outlier, then it receives a weight of zero in the last two iterations in Eq (9).

The main insight in this paper is that we can use IRLS with a robust weighting scheme designed specifi-
cally for DTI/DKI, i.e., Eq (9), but we are free to choose whether to estimate the coefficients at each iteration
using (unconstrained) WLS with Eq (5) or CWLS with Eqs (7). The constraints are independent of the
weights, which only enter the cost function Eq (7a) through Eq (4). We will refer to IRLS with weights
given by Eq (9) as Robust WLS (RWLS) if Eq (5) is used at each iteration, or as Robust Constrained WLS
(RCWLS) if Eq (7) is used at each iteration. The estimated coefficients obtained from the last iteration with

weights wK are denoted as θ̂RWLS for RWLS and θ̂RCWLS for RCWLS. For convenience, the unconstrained
OLS estimate θ̂OLS is used to define weights for the first iteration for both RWLS and RCWLS. We modified
DiPy [26] to be able to solve RWLS and RCWLS. These modifications have been incorporated in DiPy as
of v1.10.

2.5 Experimental setup and recruitment

Cardiac diffusion-weighted images (cDWI) were acquired on a Connectom 3T research-only MR imaging
system (Siemens Healthcare, Erlangen, Germany) with a maximum gradient strength of 300 mT/m and slew
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rate of 200 T/m/s. An 18-channel body receive coil was used in combination with a 32-channel spine receive
coil. Eleven healthy volunteers (with no known previous cardiac conditions) were recruited for this study:
age range 20.5±1.9 years (18−24 years), weight range 64.1±11.4 kg (54−94 kg), 7 females. The study was
approved by the local institutional review board (Cardiff University School of Psychology Research Ethics
Committee) and all subjects provided written consent.

A prototype pulse sequence was used that enables diffusion encoding with user-defined second-order
motion-compensated (M0M1M2) diffusion gradient waveforms, designed with the NOW toolbox [27, 28,
29, 30] (see Figure A1). The maximum gradient strength used in this study for the M0M1M2-waveform to
generate the b-value of 1350 s/mm2 was 285.4 mT/m and the maximum physiologically-limited slew-rate was
76.2 T/m/s [15]. The cDWI parameters were: TR = 3 RR-intervals, TE = 61ms, EPI readout, field-of-view
= 320× 120mm2 using ZOnally-magnified Oblique Multislice (ZOOM, tilted RF: excitation, tilt angle: 15◦,
tilted slice thickness: 20mm) [29, 31], in-plane resolution = 2.7×2.7mm2, slice thickness = 8mm, 3 short axis
slices (base, mid, and apical), partial Fourier factor = 7/8, no parallel imaging, bandwidth = 2354 Hz/pixel.
Each full data set comprised of 5 b-values (b = 100, 450, 900, 1200, 1350 s/mm2). For b ≥ 450 s/mm2,
30 directions per shell were acquired with 6 repetitions while b = 100 s/mm2 consisted of 3 directions with
12 repeats. Data were acquired with ECG-gating and under free-breathing (respiratory navigators were not
employed for this work). The trigger delay was adjusted for cDWI acquisition in mid-end systole. Saturation
bands were placed around the heart. Fat suppression was performed using the SPAIR method [32]. The scan
time for all the diffusion weighted images was around 40 minutes depending on subject heart rate. Including
cardiac planning, the total scan time was around one hour.

2.6 Post-processing

Post-processing was done using in-house tools [20], with rigid image registration utilizing SITK [33] and
fitting utilizing DiPy (with our updates) [26]. Image registration was performed by masking a suitable
b = 100 s/mm2 image, registering all b = 100 s/mm2 images to this reference image, then using the average
of registered b = 100 s/mm2 images to register the entire dataset. Correlation was used as the registration
metric, since it outperformed mutual information for high b-value images. The DTI signal representation
was then fit to b ≤ 450 s/mm2 images using RWLS, and the full image series was predicted. Each original
(unmodified) image was then registered to the corresponding predicted image. This method, similar to [34],
improved the registration.

After registration, we fit the DTI signal representation to the b ≤ 450 s/mm2 data using RWLS. MD, FA,
and Helix Angle (HA) (using a cylindrical coordinate system with origin on the LV blood-pool center) were
calculated. Segmentation of the LV contours was performed with care taken to exclude voxels exhibiting
strong partial-volume effects. For regions strongly affected by artifacts, such as aliasing or susceptibility-
induced warping, fitting results do not reliably represent tissue properties. Artifact masks were defined using
sectors centered on the LV blood-pool, in order to ignore these parts of the myocardium when calculating
voxel statistics. This masking was performed by considering the image series, as well as utilizing MD, FA,
HA, root-mean-square-error and coefficient of determination (R2) from the RWLS DTI fit to b ≤ 450 s/mm2

data. Across all subjects an average of 25% of voxels were excluded. We have not utilized DKI results
to identify artifacts in any way, since this would likely bias comparison between the fitting methods under
study.

Having registered the images and segmented the myocardium, we performed further fitting experiments
on myocardial voxels only. Defining bmax as the maximum b-value images that were utilized in a given
fit (such that all images with a lower b-value were also included), we performed the following: DTI using
WLS and RWLS for bmax = 450 s/mm2; DKI with WLS, RWLS, CWLS, and RCWLS, for bmax values
900 s/mm2, 1200 s/mm2, and 1350 s/mm2. For RWLS and RCWLS, we used K = 10 iterations. We
calculated the following measures in each voxel: mean diffusivity (MD), fractional anisotropy (FA), mean
kurtosis (MK), axial kurtosis (AK), radial kurtosis (RK), and radial / axial kurtosis (RK/AK) [2, 4]. We
then calculated the average of these measures over non-artifact myocardial voxels.
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2.7 Statistical methods

In order to make tractable comparisons between different fitting methods, and to isolate the specific effects
of constraints and robustness, we applied paired tests to measures obtained from different fitting methods
for the same bmax, and different bmax for the same fitting method. Specifically, we used the Wilcoxon signed-
rank test since non-robust methods often produced results that violate the assumption of normality (which
was tested with the Shapiro-Wilk test).

In this work, we potentially face the “multiple comparisons problem”, since we compare many diffusion
and kurtosis measures, for many bmax values and fitting methods. It is not obvious how to adjust significance
levels in the context of comparing multiple fitting methods on the same data (particularly given that multiple
different measures are calculated from the same set of estimated coefficients, and that higher bmax fits
included all data with lower b-values). Methods for adjustment of significance levels rely on independence
assumptions that do not seem to apply here, especially for a comparison of fitting methods. We therefore
take care to draw conclusions that are supported by the overall results.

3 Results

3.1 Group analysis

Figure 1 shows boxplots of the average DTI/DKI measures for all 11 subjects. All fitting methods are shown
for all bmax values. The black markers drawn along the bottom of each subplot indicate non-normality of
the data in each boxplot. Figures 2, 3, and 4 show the results of significance tests between measures from
the different fitting methods and different bmax shown in Figure 1. Figure 2 shows the p-values between
different methods within each bmax in order to demonstrate whether different methods make a significant
difference given the same bmax. Figure 3 shows the p-values between different bmax within each method, to
see whether bmax made a significant difference in measures given the method. Additionally, Figure 4 shows
p-values between DKI methods and DTI methods for MD and FA only, grouped by bmax of the DKI fits.
For b = 1350 s/mm2, RCWLS gave the following measures across subjects: MD 1.68± 0.050 ×10−3mm2/s,
FA 0.30± 0.013, MK 0.36± 0.027, AK 0.26± 0.027, RK 0.42± 0.040, and RK/AK 1.65± 0.19.

Constraints: (i) Adding constraints to a method, i.e., going from WLS to CWLS and from RWLS to
RCWLS, made a statistically significant difference on all measures, for all bmax values, as shown in Figure 2.
Figure 1 shows that constraints increased all kurtosis measures MK, AK, RK, and RK/AK, the latter results
showing that constraints result in increasing RK more than AK. Increased kurtosis is consistent with the
constraints ensuring that fitted parameters correspond to non-negative kurtosis. (ii) For constrained fitting,
MK, RK, and AK all decrease with bmax, with Figure 3 showing these changes are significant for both CWLS
and RCWLS. However, Figure 1 indicates that the ratio RK/AK appears to increase with bmax for both
constrained and unconstrained fitting, although this difference is not significant between bmax = 1200 s/mm2

and bmax = 1350 s/mm2.
Robustness: (i) Robust fitting by itself, i.e., going from WLS to RWLS, and CWLS to RCWLS, gave

large changes in measures for some subjects (in particular, reducing MD and MK) but did not significantly
change the mean measure values over subjects. Robust fitting generally reduces the spread of the measures
over the group by correcting errors in measures for some subjects, as is visually clear in Figure 1. Non-
normality of measures was only found for non-robust methods (with the single exception, out of such 36
tests, being AK for RCWLS at bmax = 1350 s/mm2). (ii) Robustness may have an effect on RK/AK;
Figure 2 shows the following p-values comparing CWLS and RCWLS: bmax = 900 s/mm2 (p = 0.032),
bmax = 1200 s/mm2 (p = 0.068), and bmax = 1350 s/mm2 (p = 0.024). However, in the context of multiple
comparisons, where no effect of robustness was seen on other measures and a 0.05 significance threshold was
not met for all bmax, this result cannot be ascribed significance.

MD and FA: for RWLS DTI fits, we obtained MD 1.53 ± 0.074 ×10−3mm2/s and FA 0.31 ± 0.017.
When considering robust methods, (i) MD increases from DTI (bmax ≤ 450 s/mm2) to unconstrained DKI
(see Figure 4), and from unconstrained DKI to constrained DKI (see Figure 2); FA increases from DTI to
unconstrained DKI (see Figure 4) but constrained DKI results in lower FA than DTI fitting (see Figure 4).
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Figure 2: p-values from comparing DKI measures from different fitting methods given the same bmax (units
s/mm2).
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Figure 3: p-values from comparing DKI measures from different bmax (units s/mm2) given the same fitting
methods.
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Figure 4: p-values from comparing MD and FA from DKI fitting methods for each bmax used for DKI fitting
(units s/mm2) against DTI fitting methods (bmax = 450 s/mm2).

(ii) For constrained methods, as bmax increases MD decreases slightly but there is little change in FA (see
Figure 3).

3.2 Example maps

Figures 5, 6, 7, and 8 show example measure maps for 4 different subjects. The colormap ranges were chosen
based on the boxplots in Figure 1, in particular to emphasize whether values are above zero for MK or above
one for RK/AK.

Figure 5 shows basal-slice maps for bmax = 1350 s/mm2 for the subject with the second highest MD
and MK for non-robust fitting WLS/CWLS in Figure 1. Robust fitting gave large changes over the whole
myocardium, bringing measures into better agreement with other subjects, such that for robust fitting
methods this subject is no longer an outlier in the boxplots of Figure 1. MD and MK are reduced, and FA is
increased, for robust methods vs non-robust methods. Constraints increase MK and RK/AK, which is most
noticeable between RWLS and RCWLS. In particular for RCWLS, RK/AK > 1 in nearly every voxel and
is relatively homogeneous. This example shows that kurtosis can appear to be positive for non-constrained
methods, but these kurtosis measures can still be corrupted. Going from WLS to RWLS results in a large
reduction of MK, indicating that its consistently positive value for WLS was likely due to corruptions in the
data (which, in this case, also caused an inflation of MD). By adding constraints to robust fitting, i.e. going
from RWLS to RCWLS, consistently positive MK is recovered, but with much lower values than from the
WLS fit.

Figure 6 shows mid-slice maps for bmax = 1350 s/mm2 where robust fitting had large effects in a localized
region (around 2 to 6 o’clock) with low MD, high FA, and negative MK for WLS. Here, both robust fitting
and constraints independently increase MD, reduce FA, and increase MK, such that RCWLS gives the most
spatially uniform values. The regions where RK/AK is around 1 for RCWLS coincide with relatively lower
FA.

Figure 7 shows MK and RK/AK basal-slice maps for different bmax. Constraints give positive MK and
make RK/AK > 1 overall. Reading across the rows, constraints increase MK and RK / AK given the same
bmax. Differences between unconstrained and constrained fitting decrease with bmax. Reading down the
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Figure 5: Maps for the mid slice of a single subject, for bmax = 1350 s/mm2. The first column shows MD
and FA from DTI RWLS fitting (bmax = 450 s/mm2) for reference. All other columns show measures from
DKI fits. In this example, robust fitting decreases MK, while constrained fitting increases MK. Using robust
and constrained fitting (RCWLS) gives the most plausible results, with mostly RK/AK > 1 values.
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Figure 6: Measure maps for the mid slice of a single subject, for bmax = 1350 s/mm2. The first column
shows MD and FA from DTI RWLS fitting (bmax = 450 s/mm2) for reference. All other columns show
measures from DKI fits. Around 2 to 6 o’clock for the DKI fits is a region of implausibly low MD, high
FA, and negative MK, for unconstrained fits. Constraints correct this region towards plausible values, with
robust fitting visibly improving the region further in the same direction.
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RCWLS column, MK decreases with bmax for most voxels but increases between 8 and 12 o’clock. These
opposing effects result in RCWLS for bmax = 1350 s/mm2 having the most homogeneous MK.

Figure 8 shows MD and FA maps in a basal slice for different bmax and for DTI fitting (bmax =
450 s/mm2). Robust fitting corrects elevated MD in the top-left (10 - 12 o’clock), but constraints are
needed to correct the reduced MD and elevated FA on the right (12 - 5 o’clock). The effects on MD and FA
are consistent with the overall group trends. RCWLS gives the most homogeneous MD and FA, with the
least variation with bmax.

4 Discussion

Our results show that both robust fitting and convexity constraints affect DTI/DKI measures in important
ways. Figure 5 helps to show that the RCWLS results are not just the robust result with the negative
kurtosis turned to zero - the kurtosis becomes convincingly positive, and all measures change when adding
constraints. In this case, robust fitting reduced inflated MK caused by corruptions, while adding constraints
increased MK. Figure 6 demonstrates a region where only robust fitting and constraints together appear to
fully resolve a region of corrupted measures. In theory, RCWLS provides advantages greater than the sum of
its parts: convexity constraints should make outlier identification easier, which should improve the weights
in the final WLS fit.

Constraints: Imposing convexity constraints resulted in statistically significant differences in all mea-
sures for all bmax values. The precise changes, notably increased MK and RK/AK, are important. Only
constrained fitting reliably shows RK > AK (for RCWLS bmax = 1350 s/mm2, RK/AK mean and median
are 1.65 and 1.70 respectively), despite this being expected in myocardium since there are fewer restrictions
to diffusion parallel to the long axes of cardiomyocytes [35, 3]. It is worth emphasizing that adding con-
straints does not just turn negative kurtosis into zero kurtosis in certain voxels (something that could be
trivially obtained in post-processing the fitting results), but fundamentally alters the optimum coefficient
vector (Figures 5 - 6).

Robustness: Robust fitting can have large overall and regional benefits on individual subjects, which is
invaluable for potential clinical applications. Variation between subjects within a group ought to represent
physiological variation (and non-gross measurement error) rather than the effects of image corruptions. In
the context of a study comparing different groups (e.g. healthy volunteers vs disease), the reduction in the
spread of measures from robust fitting can increase statistical power and lower the probability of a type 2
errors (false negatives) [21].

MD and FA: While it is known that MD and FA obtained from fitting the DKI signal representation
can be different compared to those obtained from the DTI signal representation [36], constraints further
modify these values: MD increases from DTI to DKI and from unconstrained to constrained fitting, but
while FA increases from DTI to DKI, it decreases from unconstrained to constrained fitting, resulting in
RCWLS giving the lowest FA values. This shows that the FA changes from DTI to DKI were largely in
the context of parameter fits that violated constraints. To the best of our knowledge, other works noting
differences in MD and FA between DTI and DKI have not utilized constraints or robust fitting.

bmax effect: Varying bmax allowed for investigating the importance of constraints and robustness for
different experimental designs: higher bmax data is more informative about kurtosis but has lower SNR.
While previous work has noted the dependence of the performance of (simplified models of) cardiac DKI
on bmax [3], it is noteworthy that MK and RK appear to increase with bmax for unconstrained fitting, but
decrease with bmax for constrained fitting. This only serves to emphasize the importance of using fitting
constraints. Due to these opposite trends, the differences between unconstrained and constrained fitting get
smaller as bmax increases, suggesting fewer and milder constraint violations as data become more informative
about kurtosis.
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Limitations

Although the differences between non-robust and robust methods were generally insignificant at the group
level, the errors from non-robust methods would make the detection of any actually existing differences quite
challenging, which is perhaps ironic. It is also true that summary statistics such as mean measures over all
voxels can be insensitive to the improvement in measure maps when using robust fitting, and yet post-hoc
statistical analysis of regions of interest (where measures were most changed by robust methods) would also
seem problematic. The only measure that indicated any potential effect (at the group level) from robust
fitting alone was RK/AK, particularly for bmax = 1350 s/mm2 (p = 0.024), but we cannot rule out a false
positive here due to multiple comparisons of many measures. The ratio RK/AK might be more sensitive
to changes from robust fitting, but more subjects would be required to have sufficient statistical power to
determine this.

Higher bmax fits included all lower b-values, and so there is more data available for these fits. Our study
sought to determine how the results changed as more information about kurtosis was available, specifically
in the context of understanding the effects of robust fitting and constrained fitting, so the conflation from
having both higher b-value data (which has lower SNR) and more data overall was not of particular concern.
To perform an analysis about the suitability of different data designs, we believe many more subjects would
be required, as well as a more nuanced analysis of trends with bmax (rather than just paired tests). This
work could be restricted to robust and constrained fitting methods.

A limitation of signal representations, such as DTI and DKI, is a lack of clear insight into the specific
quantitative links to the underlying biology: differences in kurtosis measures between groups can be observed
and reasoned about, but the absolute values are not ascribed any particular meaning [3]. Nonetheless, we
can speculate that kurtosis measures (derived from appropriate fitting techniques) may be a way to increase
the biomarker space and gain insight into disease; further work is required.

5 Conclusion

In this work, we have developed robust constrained weighted least squares (RCWLS), the first robust estima-
tion technique for DKI that incorporates necessary constraints on the signal behavior. Using in vivo human
cardiac DKI data from healthy volunteers collected with a Connectom scanner, we determined that RCWLS
is the most suitable fitting technique compared with others that lack either robustness or constraints. For
b = 1350 s/mm2, RCWLS gave the following measures across subjects: MD 1.68± 0.050 ×10−3mm2/s, FA
0.30 ± 0.013, MK 0.36 ± 0.027, AK 0.26 ± 0.027, RK 0.42 ± 0.040, and RK/AK 1.65 ± 0.19. Constraints,
but not robustness, had a significant effect on all diffusion and kurtosis measures. However, robust fitting
corrected large errors for some subjects and generally improved diffusion and kurtosis maps. Only RCWLS
convincingly showed radial kurtosis to be larger than axial kurtosis for all subjects, something that is ex-
pected in myocardium due to increased restrictions to diffusion in the plane perpendicular to the primary
myocyte direction. RCWLS also showed the best correction of corrupted regions in diffusion parameter maps
for individual subjects. Future work on in vivo cardiac DKI should utilize fitting techniques that are both
robust and constrained, such as RCWLS.

A Gradient waveforms

Figure A1 shows the gradient waveforms used in this work. The timing of the diffusion encoding waveform
is 17, 8, and 17 ms for the pre-, pause- and post-duration, respectively.
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Figure A1: Numerically optimized second-order motion compensated waveform for bmax = 1350 s/mm2,
Gmax = 285.4mT/m and maximum slew rate 76.2T/m/s.

B Constraint matrices

Many basis elements can be excluded a priori because they cannot contribute, leaving:

e =
(

s1, s2, s3, q1s1, q1s2, q1s3,

q2s1, q2s2, q2s3, q3s1, q3s2, q3s3

)T (B1)

We can parameterize the matrix H(θ) as:
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The ‘slack matrix’ L(α) is determined by Eq (7f). We can write L(α) =
∑

u=1
αuLu, such that eT ·Lu ·e = 0.

There are 18 such matrices, so we parameterize L(α) as:
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0 α10 α11 0 0 0 0 β1 β2 0 β4 β5
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(B3)

where βij = −αij (where βij are only used here to assist with display, they are not additional parameters).
The reason for writing the sum of squares representation as matrix H(θ)+L(α) in Eq (7b), and therefore

introducing parameters α, can be understood by considering (7e): there are (infinitely) many choices for
H(θ) given basis Eq (B1), but we must implement a specific matrix H(θ) (e.g. Eq (B2)). The flexibility is
then explicitly parameterized via L(α).

C Reduced constrained problem

As explained in the appendix of [19], the size of the semidefinite programming problem can be reduced
(giving significant computational savings) by replacing Eq (7a) with

argmin
θ,α

∣

∣

∣

∣V′T · θ−V′T · θ̂WLS

∣

∣

∣

∣

2
(C1)

where θ̂WLS is the unconstrained WLS solution given by Eq (5) and V is given by the Cholesky factorization
(

X′T ·X′

)

= V ·VT . For RCWLS the problem is reduced at each iteration (the unconstrained fit result

θ̂WLS depends on the previous constrained fit). The semi-definite program Eq (7) only needs solving if the
WLS estimate violates the constraints.
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