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PRIMER

From genes to patterns: five key dynamical systems concepts to

decode developmental regulatory mechanisms
Usha Kadiyala1, David Sprinzak2, Nicholas A. M. Monk3,4, Shannon E. Taylor5, Berta Verd5,
Katharina F. Sonnen6, Lauren Moon7, Adrienne H. K. Roeder8,9,*, Ruben Perez-Carrasco10,* and
Pau Formosa-Jordan9,11,12,*

ABSTRACT

Developmental biology seeks to unravel the intricate regulatory

mechanisms orchestrating the transformation of a single cell into

a complex, multicellular organism. Dynamical systems theory provides a

powerful quantitative, visual and intuitive framework for understanding

this complexity. This Primer examines five core dynamical systems

theory concepts and their applications to pattern formation during

development: (1) analysis of phase portraits, (2) bistable switches,

(3) stochasticity, (4) response to time-dependent signals, and

(5) oscillations. We explore how these concepts shed light onto cell

fate decision making and provide insights into the dynamic nature of

developmental processes driven by signals and gradients, aswell as the

role of noise in shaping developmental outcomes. Selected examples

highlight how integrating dynamical systems with experimental

approaches has significantly advanced our understanding of the

regulatory logic underlying development across scales, from molecular

networks to tissue-level dynamics.

KEY WORDS: Developmental dynamics, Dynamical systems,
Modelling, Signalling, Waddington landscape

Introduction

Decoding the regulatory logic that guides the transformation of a

single cell into a complex multicellular organism remains a central

challenge in developmental biology. These processes require a

tightly controlled sequence of events in which cell division,

differentiation and morphogenesis occur in a coordinated fashion in

response to positional and temporal cues. Conrad Hal Waddington

represented these processes as a ‘landscape’ (see Glossary, Box 1),

in which the current state (see Glossary, Box 1) of a cell is

represented by a ball initially placed atop a hilly landscape

(Waddington, 1957) (Fig. 1A). As if pulled by gravity, this ball

rolls downhill representing how development progresses while

following the landscape’s valleys, which broadly represent the

various differentiation pathways available to this system. When the

ball arrives at a fork in its path, it will go down one valley and not

the other, committing to a developmental fate while leaving other

options behind. The topography of this landscape, therefore,

determines the developmental potential of the system, including

which phenotypes it can achieve and how. The topography of this

landscape is determined by the underlying biochemical networks.

These networks are remarkably sophisticated, exhibiting properties

that defy simple intuition, including multistability (see Glossary,

Box 1), which facilitates discrete cell fate decisions, oscillatory

dynamics driving rhythmic patterning events, and the ability to

integrate spatial and temporal information across scales from

molecular gradients and inductive signals.

Dynamical systems theory offers a powerful mathematical

framework to capture and analyse this inherent complexity

(Strogatz, 2019; Ferrell, 2012). This is achieved by representing

the interactions between key variables (see Glossary, Box 1), such

as gene expression levels or protein concentrations, as a system of

equations, which results in dynamical models that elucidate how

changes in these factors over time are encoded by specific rules in

the system. Such a quantitative abstraction distils the essence of

developmental regulatory networks into tractable models that

enable a systematic analysis of their behaviour. These models do

not recreate every nuanced aspect of the intricate networks they

represent; rather, they illuminate broad regulatory principles. For

example, when representing a cell fate decision dependent on a

morphogen, the model will incorporate the levels of morphogen and

the concentrations of key molecular species involved in the cell fate

decision. These species interact through prescribed rules that take

into account biophysical or biochemical parameters (see Glossary,

Box 1), such as synthesis and degradation rates, diffusion

coefficients, or the morphogen concentration threshold to activate

their corresponding cell surface receptors. Different modelling

approaches may involve distinct levels of granularity, so finer

details of the underlying biochemistry responsible for this

transduction may not necessarily be included.

For developmental biologists aiming to bridge biological

concepts with mathematical models using dynamical systems

theory, a series of guiding questions can provide an intuitive entry
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point (Box 2). These questions explore how variables can switch

between states, how outcomes depend on starting conditions, and

how oscillatory dynamics and extrinsic signals can be captured. It is

important to note that dynamical systems theory is a general

mathematical framework that can be applied to a wide range of

biological systems beyond developmental biology, such as

neuroscience, where it is used to model the dynamics of neural

networks; and ecology, where it is employed to study population

dynamics and species interactions (Jaeger and Monk, 2014; John

et al., 2022; Perez Montero et al., 2024; Rogers et al., 2022;

Säterberg and McCann, 2021).

The basis for successfully building a data-driven model of a

dynamic developmental process is a good working relationship

between modeller and experimentalist that extends all the way from

the model formulation and experimental design steps to model

validation (Fig. 2). It is commonplace that modellers are approached

once the data have been collected and a preliminary model has been

formulated. This can sometimes work well but often means that the

modeller has to work with what they have been provided instead of

working with the best data to model the problem at hand. It is crucial

that both parties are involved from the beginning to ensure that the

experiments performed are meaningful and provide the information

needed for modelling. This is also a training period for both

modeller and experimentalist, as both must understand the

limitations and feasibility of the experiments and the modelling,

respectively. For instance, validation of a data-driven model of a

dynamic developmental process places high demands on the

experimentalist. Dynamical modelling requires time series data

with high temporal resolution, as this allows the system’s dynamics

to be captured more accurately and enables a more precise model to

be formulated. Also, perturbations to challenge the model should be

performed with high resolution and with ranges of drug

concentrations. While the experimentalist has to understand the

importance of data collection for increasing the model accuracy, the

modeller has to comprehend the constraints and intricacies of the

experimental system and the amount of work that goes into

collecting the data that they are requesting. Thus, the process of

building a dynamical systems model is iterative in nature, requiring

constant feedback between modeller and experimentalists and

multiple rounds of modelling and experiments.

Box 1. Glossary (mathematical definitions with biological context)
Attractor. A set of states or a region in state space towards which nearby trajectories of a dynamical system converge or remain within proximity. Usually

associated with cell fates.

Autoactivator.Generic term used for referring to a gene that promotes its own induction (e.g. when the protein encoded by a given gene can enhance the

activity of that gene).

Basin of attraction. The range of initial conditions or states that lead to the convergence of trajectories towards a specific attractor in a biological system.

Bifurcation. A crucial point or event in the behaviour of a biological system where small changes in conditions or parameters result in a change in the

number or stability of attractors in the system. This implies significant qualitative shifts, often associated with changes in pathway activity, developmental

trajectories, cellular fate decisions or ecosystem dynamics.

Bistability/multistability. Coexistence of two or more than one stable attractor in the phase space. In a deterministic system, the initial condition will

determine which attractor the system will follow.

Canalisation. The ability of a developmental system to produce a consistent outcome despite environmental or genetic variations.

Flow. The set of all trajectories of a continuous dynamical system, describing how points move through phase space over time.

Genetic oscillator. Gene regulatory network (GRN) in which genes present sustained oscillations over time.

Geometric analysis. A mathematical approach that studies shapes, curves and surfaces of the phase portrait to understand the qualitative behaviour of a

dynamical system.

Hysteresis. The dependence of a system’s current output on its past states, creating a memory effect.

Continuous versus discrete systems. Continuous systems evolve smoothly over time with infinitely many possible states, whereas discrete systems

change in distinct steps with countable states.

Initial condition. Specific state of a system at the starting point of observation, e.g. the concentrations of all relevant biomolecules at time zero.

Landscape.A conceptual representation of a system’s state across the phase space, often depicted as a topographical mapwith peaks, valleys and ridges.

The height of the landscape can be associated with the potential of an energy landscape or the fitness in an evolutionary system.

Limit cycle. An attractive closed orbit in the phase space, also referred to as a periodic orbit. It results in repetitive oscillations over time of the variables

involved. It is associated with sustained oscillations in biological processes and requires a negative feedback mechanism.

Network topology. The arrangement of interactions (edges) among the components (nodes) forming a network. In a gene regulatory network (GRN), this

refers to the set of genes (nodes) and the specific regulatory interactions (edges) between them, taking into account whether those interactions are

activating, repressing, or absent. The topology determines how signals and information flow through the network and strongly influences its dynamical

behaviour.

Ordinary differential equations (ODEs). In dynamical systems theory, a deterministic (i.e. non-stochastic) set of equations that describe the evolution of

the variables in the system by specifying their rates of change over time.

Parameter. A constant in an equation that represents a specific aspect or property of a biological system (biophysical constants, rates of reactions,

environmental factors, etc.) and controls its behaviour.

Phase portrait. A geometric representation of all possible trajectories of a dynamical system in its phase space, showing how variables evolve over time.

Phase space. Representation of all possible states of a system, with each dimension corresponding to one of the system’s variables. Every point in the phase

space defines a unique state of the system at a given time, and trajectories in this space depict how the system evolves over time.

Repellers. A set of states or a region in state space from which all nearby trajectories of a dynamical system diverge or migrate away.

Robustness. The ability of a system to withstand small fluctuations in the variables or parameters of the system without altering the broader trajectory

towards an attractor.

Saddle points. Crucial points in the phase space of a dynamical system where the behaviour of the system is stable in some directions and unstable in

others, resembling a saddle shape in the system’s landscape.

State. The particular condition (e.g. state of gene expression) or configuration of a biological system (e.g. cell types) at a given moment, typically

characterised by the values of its variables.

Stochasticity. The presence of randomness in the behaviour or evolution of a dynamical system, arising from internal or external processes.

Trajectory/orbit. The path followed by a dynamical system in its state space over time. In a biological system, it describes its temporal evolution.

Variable. A dynamic characteristic, property or factor that can be measured or observed.
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This Primer aims to elucidate how five core dynamical systems

concepts – phase space, bistable switches, stochasticity and time-

varying systems, which we discuss together, and oscillations – can

provide a unified conceptual framework for decoding developmental

patterning logic across scales, while highlighting the power of

dynamical systems theory in capturing and analysing complex

biological phenomena. We also provide interactive Python code to

the reader who wishes to investigate the presented concepts further

(see supplementary information).

(1) Phase space: the dynamics of cell fate trajectories and

robustness

At the heart of dynamical systems theory lies the concept of ‘phase

space’ (see Glossary, Box 1), a multidimensional abstract space

where each axis represents a system variable, such as transcription

factor concentrations, mRNA levels or the abundance of other

relevant biomolecules. For instance, in a simple two-gene network,

the phase space could be a two-dimensional (2D) plane with axes

representing the concentrations of the two interacting components

(variables 1 and 2 in Fig. 1B). The ‘state’ of the system at any given

time is represented by a point in this phase space. The ‘initial

condition’ refers to the specific state of the system at the starting

point of observation, determining where in phase space the system

begins its evolution. Given an initial condition and the underlying

flow, a unique trajectory of the system can be determined. As the

system evolves over time, the point traces out a trajectory reflecting

the changing concentrations of the biomolecules (Strogatz, 2019;

Manser and Perez-Carrasco, 2024). This is represented in Fig. 1B in

which blue and green arrows indicate two different resulting

trajectories starting at different initial conditions.

To visualise and analyse the system’s behaviour, we employ

phase portraits (see Glossary, Box 1), which are graphical

representations of the flow (see Glossary, Box 1) in the phase

space. The flow consists of vectors indicating the rate of change of

the system at every point (Fig. 1B, small arrows), determined by the

underlying structure of the gene regulatory network (GRN),

typically formulated as a system of ordinary differential equations

(ODEs; see Glossary, Box 1). These ODEs capture the biochemical

kinetics of the network, such as the rates of transcription, translation,

degradation and regulatory interactions between genes. By plotting

the flow vectors in the phase space, we can identify key features of

the system’s dynamics, such as steady states and the trajectories

leading to them.

Steady states, or fixed points, are equilibrium points where the

flow is zero, and the system remains unchanged. These steady states

can be classified through stability analysis as stable attractors

(Fig. 1B, filled circles), which draw nearby trajectories inward over

time; unstable repellers (see Glossary, Box 1) and saddle points (see

Glossary, Box 1) (Fig. 1B, unfilled circle), which push nearby

trajectories away in at least one direction. The stability of a steady

state is determined by its response to small perturbations. For

instance, if a system returns to its original steady state after a small

perturbation in any direction, the steady state is considered stable.

Stable attractors are of particular interest in developmental biology

because they represent the discrete cellular phenotypes arising

from the underlying GRN. This is essential for the concept of

‘canalisation’ (see Glossary, Box 1), which refers to the ability of a

developmental system to produce a consistent outcome despite

environmental or genetic variations (Hallgrimsson et al., 2019;

Panfilio and Roth, 2013; Siegal and Bergman, 2002). In the context

of GRNs, canalisation arises from the network topology (see

Glossary, Box 1), which constrains the system’s dynamics and

ensures that the steady states remain stable and attractive over a wide

range of conditions.

The ‘basin of attraction’ surrounding a stable attractor encompasses

all initial states that will eventually converge to that attractor,

regardless of the starting conditions within the basin. This concept

is visually represented in Fig. 1A, which shows Waddington’s

Variable 1

Variable 2

Potential

V
a
ri

a
b
le

 1

Variable 2
A B C

Cell state 1 Cell state 2 Cell state 3

Flow Separatrix Trajectories

Stable steady state Unstable steady state

Key

Fig. 1. Visualising phase space representations, steady states and potential landscapes. (A) Waddington’s landscape represents cell fate decisions,

with a cell (sphere) traversing downward towards three distinct cell states. (B) Phase portrait depicting interactions of variables, with small arrows showing

flow dynamics, the separatrix (dashed line) dividing basins of attraction, and stable/unstable steady states (filled/unfilled circles). (C) Three-dimensional

potential landscape representation with two stable states (wells), showing system trajectories (coloured arrows) converging to local minima (white wells). Blue

and green arrows in B and C illustrate two system trajectories, starting with different initial conditions.
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epigenetic landscape, envisioning the developmental process as a cell

(ball) rolling down a landscape with hills and valleys representing

distinct differentiation pathways. In this metaphor, the three basins of

attraction correspond to the valleys, and the stable attractors represent

the lowest points of these valleys. In Fig. 1B, two basins are separated

by a separatrix (the boundary between the two basins, dashed line),

and the blue and green arrows correspond to trajectories with initial

conditions located in each one of the basins of attractions. Similarly,

Fig. 1C shows them as valleys in the potential landscape. The

landscape’s topography dictates the system’s developmental potential,

determining the accessible phenotypes; the slope of the landscape

dictates the speed of change, and the depth of the valleys reflects the

resilience of a developmental pathway against perturbations and noise.

Noise, or stochasticity, i.e. fluctuations in gene expression, is

another important factor that can influence the behaviour of cellular

dynamics (Box 3). In biological systems, noise can arise from

various sources, such as the inherent stochasticity of biochemical

reactions, variations in the cellular environment, or external

perturbations (Ladbury and Arold, 2012; Tsimring, 2014). While

noise can introduce variability in gene expression patterns, the

architecture of GRNs sometimes seems to have evolved to be robust

to these fluctuations (Filippi et al., 2016; Uda et al., 2013). The

concept of robustness refers to the ability of a system to maintain its

function or output despite perturbations or noise. In the context of

GRNs, robustness is often achieved through feedback loops,

redundancy and the presence of stable, ‘deep’ steady states. Noise

can be implemented using different formalisms, ranging from an

exact and discrete approach – by enumerating the biochemical

reactions, which can be simulated numerically using the Gillespie

algorithm – to an approximate and continuous approach such as the

chemical Langevin equation, which is suitable when noise levels are

less pronounced (Gillespie, 2000, 2007; Wilkinson, 2009).

Analysis of phase portraits provides a powerful tool for

understanding the canalisation and robustness of GRNs (Lapidus

et al., 2008; Manu et al., 2009; Panfilio and Roth, 2013). By

examining the topology of the phase space, we can identify the

basins of attraction, the stability of steady states, and the transitions

between them (Jaeger and Monk, 2014). Thus, geometric analysis

(see Glossary, Box 1) reveals the dynamical repertoire of a GRN,

which refers to the collection of qualitatively different behaviours

that the system can exhibit under different conditions. In addition,

by varying the parameters of the equations representing the GRN,

we can explore how the topology of the phase space changes,

identifying ‘bifurcations’ – points at which small parameter changes

can transform one stable pattern into another or cause steady states to

emerge or disappear. This systematic exploration of parameter space

can be visualised through bifurcation diagrams, which map out how

the number and stability of steady states change as parameters are

varied, providing a comprehensive view of a system’s dynamical

repertoire across different conditions (Salvi et al., 2016). A detailed

example of such bifurcation analyses is provided in the context of

bistable switches and oscillators in the following sections. This

analysis can provide insights into the plasticity of the developmental

system, revealing how different environmental signals or genetic

perturbations can alter the landscape of cell fates and drive the

system towards alternative developmental trajectories.

Besides the qualitative investigation of phase portraits, more

quantitative geometric analysis can also provide information on the

robustness established by GRNs. The size and shape of the basins of

attraction (Fig. 1C) provide information about the robustness of the

corresponding cell states. Large, deep basins indicate highly stable

and robust states, whereas shallow or narrow basins suggest states

that are more sensitive to perturbations and noise. Moreover, the

presence of boundaries between basins can ensure that transitions

between states occur only in response to specific signals or

perturbations, thus maintaining the integrity of the developmental

process (Coomer et al., 2022; Exelby et al., 2021).

Analysis of the phase space can also be complemented with

numerical simulations to obtain trajectories of the dynamical system

that can be compared with experiments.

Biological examples
In embryonic stem cells in vertebrates, high-dimensional GRN

models have revealed attractor landscapes with basins

corresponding to the pluripotent and differentiated states. These

models capture how the core pluripotency factors, such as OCT4

(POU5F1), SOX2 and NANOG, interact to maintain the pluripotent

state, while perturbations to this network can trigger differentiation

trajectories (Hovland et al., 2022; Pfeuty et al., 2018). Models

incorporating additional regulatory factors, such as FGF4 and

GATA6, and external application of signalling molecules, such as

LIF, have further elucidated the complex dynamical landscape

Box 2. How to think about developmental processes as

dynamical systems
How can we represent developmental processes quantitatively?
A dynamical biological system is represented by mutually interacting

variables such as concentrations of gene products, their interactions and

how those depend on biophysical ‘parameters’, such as transcription/

translation and synthesis/degradation rates. By assigning these as

measurable variables or constants within one or more equations, it is

possible to geometrically plot how changes in each parameter influence

the trajectory (see Glossary, Box 1) of the system over time.

What happens when biological variables influence their own
production?
Consider a gene that promotes its own expression through positive

feedback. Depending on the gene’s maximum transcription rate and

initial protein levels, the system will stabilise at either very low (‘off’) or

very high (‘on’) amounts. These stable states, called attractors (see

Glossary, Box 1), explain one way in which cells make decisive switches

between distinct fates during development. The ability to maintain two

stable states emerges when a gene’s product strengthens its own

expression either directly or indirectly.

How do broad starting conditions condense to a robust outcome?
When noise is negligible and no time-dependent signals are involved,

initial conditions (see Glossary, Box 1) determine which attractor a

system reaches. Each attractor has a ‘basin of attraction’ (see Glossary,

Box 1) around it: the set of starting conditions that evolve towards that

state. When noise or stochasticity (see Glossary, Box 1) is present, the

topography of the landscape (e.g. depth of the attractors) helps explain

developmental robustness (see Glossary, Box 1) to random fluctuations.

Random fluctuations in gene expression or time-dependent signals can

push the system across landscape barriers towards alternative fates.

How can oscillatory dynamics be captured and understood?
Oscillatory systems can arise, for instance, from delayed negative

feedback on molecular components. As a molecule’s concentration

increases, it triggers its own inhibition, either directly or indirectly,

causing a subsequent reduction in its levels. This weakens the inhibition,

allowing its concentration to then rise again, creating cyclical oscillations.

The resulting period and amplitude are captured through a dynamical

system formalism.

How can extrinsic signals be incorporated?
Extrinsic signals can be incorporated as a change of a parameter in the

model, and this change can depend on time.
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underlying embryonic stem cell fate decisions, revealing how

multiple feedback loops and regulatory circuits shape the stability

and accessibility of different cell states (Brackston et al., 2018).

Similarly, in the CDC25-WEE1 system, which governs cell cycle

progression, dynamical models expose the attractor basins of

quiescence and proliferation, demonstrating how extracellular

signals can modulate the stability of these states by altering the

balance of CDC25 and WEE1 activities (Li and Wang, 2014).

Geometric analysis of phase portraits enables the visualisation and

quantification of these developmental dynamics, providing a

rigorous yet intuitive approach to decode the regulatory logic that

transforms genetic networks into robust cellular identities.

(2) The bistable switch: binary cell signalling decisions

The bistable switch is a dynamical system, such as a single cell or

pathway, that can transition between two stable, steady states.

Bistable switches govern numerous binary cell fate decisions during

development, including stem cell differentiation and cellular

reprogramming (Chickarmane et al., 2006; Graf and Enver, 2009;

Graham et al., 2010). For instance, the mutual inhibition between

transcription factors driving alternative lineages can create bistability

(see Glossary, Box 1), with each stable attractor representing a

distinct cell identity or fate (Alon, 2007). The system’s initial

conditions, such as the levels of specific transcription factors,

determine which of the two stable states the cell will converge to and

commit to a particular developmental pathway.

A simple example that illustrates a bistable switch is a

transcriptional autoactivator (see Glossary, Box 1), which we

discuss in detail here to exemplify the application of dynamical

systems theory in biological research. In a transcriptional

autoactivator, a transcriptional activator, X, is produced (transcribed

and translated) under the control of X itself, either directly or

indirectly (Fig. 3A, top). The intuitive concept for a bistable switch is

that of a dynamical landscape with two basins of attraction separated

by a barrier, as shown in the potential landscape (Fig. 3A, middle).

Under this description, the system flows into either of the two steady

states, depending on the initial conditions. The transition between the

two steady states, termed ‘the switch’, can occur due to external noise

or changes in the underlying regulatory network. Significant external

noise, such as fluctuations in gene expression or signalling, can

perturb the system enough to push it over the boundary separating the

two states, causing it to transition to the alternative steady state.

Conversely, changes in the parameters governing the regulatory

network, such as alterations in transcription factor levels or binding

affinities, can modify the epigenetic landscape, potentially

eliminating one or more of the stable steady states and forcing the

system to transition to the remaining attractor states.

For simplicity, we consider a simple autoactivation circuit that

can be described by a one-dimensional dynamical system (Scott

et al., 2007; Tyson et al., 2008). The variable in the system is the

concentration of the transcriptional activator X and its dynamics can

be described by the balance of production and degradation,

following the equation:

dX

dt
¼ fðX Þ � gX ; ð1Þ

where f (X ) describes the rate of production of X (for simplicity,

transcription and translation are combined), which depends on X

itself; and γX is a linear degradation term with a degradation rate γ.

Since X is an activator, f (X ) should be an increasing function of X.

For the current example, we assume that f (X ) has the form:

fðX Þ ¼ βþ σ
X n

Kn þ X n
; ð2Þ

Parametrise

Formulate question

Model formulation

Phase space analysis

Identify steady states

Analyse stability

Bifurcations

Simulations

Experimental

observations

Experimental design

New understanding of the

developmental dynamics

New biological

understanding

New understanding of

the dynamical system

Fig. 2. Key steps for dynamical systems analysis in developmental biology. Flow diagram showing how experimentalists and modellers collaborate

iteratively to develop a dynamical systems model of a developmental process based upon and tested by experiments. A crucial step is formulating the

modelling and experimental designs together.
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where β is a constitutive production rate and σ is the maximal

increase in production rate due to the autoactivation. The

autoactivation is represented by a Hill function term, where K is

the concentration at which the Hill function adopts half its maximal

value, and n is the Hill coefficient, controlling the slope of the Hill

function. As a result, the production rate f (X ) follows a sigmoidal

function with minimal production β in the absence of X, and

saturates at β+σ in abundance of X.

The dynamics of variable X will be determined by the values of

the constant parameters β, γ, σ, K and n. For instance, the steady

states of the system can be found by calculating the values of X at

which the flow vanishes dX
dt
¼ 0. This is satisfied when f (X )=γX (see

Eqn 1). For certain parameters, this equation can result in three

steady states, which can be easily visualised graphically (Fig. 3A,

black and grey dashed lines). These steady states can be categorised

as stable and unstable steady states (corresponding to the minima

and maximum, respectively, of the potential shown in Fig. 3A).

The stability of the steady states can be formally calculated using

perturbation theory, but can be conveniently analysed graphically

by plotting the rate of change dX
dt
as a function of X. The graph for the

case of the autoactivation circuit is shown in Fig. 3A (bottom),

where f (X )−γX is plotted as a function of X. The crossing points of

this function with the X axis are the steady states (shown as circles).

Whenever the function is positive, it means that X is increasing with

time (since dX
dt
. 0). Whenever the function is negative, it means

that X is decreasing with time (since dX
dt
, 0). One can, therefore,

track the flows in the system in different regimes (marked by

arrows). We can conclude from these flows that the lowest and

highest steady states are stable (the flows are pointing towards the

steady states from both sides), whereas the middle steady state is

unstable (the flows are pointing away from the steady state). Thus,

the graphical analysis shows that there are two stable steady states

corresponding to low and high X values, and another steady state

between them, which is unstable.

The time evolution trajectories shown in Fig. 3B demonstrate how,

depending on the initial condition, the concentration of X will end up

in the high or low steady state (black dashed lines). In particular, initial

concentrations of X above the unstable state (grey dashed line) will

evolve to the stable steady state with high X, while those below the

unstable state will evolve to the low X steady state. Hence, the system

has two basins of attraction separated by the unstable state.

Finally, we can ask how the steady states and their stability

change as we vary the parameters (i.e. the landscape) of the system.

This can be visualised in a bifurcation diagram (Fig. 3Ca), which in

this case shows how the system exhibits different regimes as we vary

the fixed maximal production rate parameter β. The diagram maps

the behaviour of the system across a relevant parameter range and

shows where the bifurcations occur (purple circles). It also shows

another emergent property of bistable systems: ‘hysteresis’ (see

Glossary, Box 1) or irreversible behaviour with varying parameter

β. If one starts at low β values and increases it, the system will

remain at the low steady state until it reaches the right bifurcation

point and then switch to the high steady state. However, if one starts

at high β values and decreases it, the system will remain at the high

steady state until it reaches the left bifurcation point and only then

switch back to the low steady state.

These transitions can be visualised through the potential

landscapes in Fig. 3Cb. If we start with a low β value, we only

have a single steady state at a low X value (left). As we increase β, at

a specific parameter value the system will bifurcate and exhibit three

steady states (two stable and one unstable; as in Fig. 3A, middle).

Increasing β further results in another bifurcation, where the system

switches back to a single steady state, this time at high X values

(right). Thus, simply by changing one parameter, the dynamical

landscape of the system changes, dramatically affecting the

dynamics of the system. For the case of a bistable switch,

changing the constitutive production can take the system from one

low X state, to two co-existing low and high X states, to one high X

state. The system exhibits hysteretic or irreversible behaviour

depending on the previous state of the system and the direction in

which the parameter β is changing. It is worth noting that the type of

bifurcation described here is known as a saddle-node bifurcation

(Strogatz, 2019). Other types of bifurcations will be introduced in

the following sections.

A similar analysis can be performed on positive feedback circuits

that contain more than a single gene. For example, a classical two-

gene circuit that can form a bistable switch is the mutual inhibition

circuit where genes X and Y mutually inhibit each other. This mutual

inhibition forms a positive feedback circuit because the inhibition of

an inhibition results in an activation. A 2D dynamical systems

analysis extends the same concepts discussed here to flows in 2D

landscapes (Cherry and Adler, 2000; Gardner et al., 2000). More

generally, any feedback loop involving only positive interactions, or

an even number of negative interactions, introduces positive feedback,

and can give rise to bistability.

Box 3. Impact of noise on dynamical systems in

development
Attractor stability and transitions
Noise can perturb the state of the system in the ‘phase space’, changing

the ‘landscape’ and potentially pushing the cell out of the current ‘basin of

attraction’, triggering transitions between developmental states (Coomer

et al., 2022). This occurs in bistable and multistable systems, where

noise can induce switching and influence the transitions between states.

This has implications for understanding cell fate decisions in complex

developmental landscapes, such as during stem cell differentiation.

Bifurcations
Near bifurcation points (see Glossary, Box 1), small fluctuations can lead

to qualitative shifts in system behaviour, potentially inducing abrupt fate

changes during development. For instance, close to bifurcations, noise

can highly impact the signals at which cell transitions are observed and

their timing (Dalwadi and Pearce, 2023; Perez-Carrasco et al., 2016;

Weber and Buceta, 2013).

Emergence of noise-induced patterns
Stochastic fluctuations can give rise to spatial or temporal patterns that

are absent in deterministic models (Buceta et al., 2003). This may

contribute to the observed variability and robustness in developmental

patterning processes (Aoki et al., 2013; Kellogg and Tay, 2015).

Signal amplification via stochastic resonance
In some developmental contexts, noise can counterintuitively enhance

the system’s sensitivity to weak signals, a phenomenon known as

stochastic resonance, which might play a role in growth (Bhalerao, 2024;

Meroz and Bastien, 2014) and in precise spatial patterning (Perez-

Carrasco et al., 2018).

Temporal coordination
In oscillatory systems, such as the segmentation clock, noise can affect

the synchronisation of genetic oscillators (see Glossary, Box 1) across

cell populations, influencing the precision of periodic patterning events

(Delaune et al., 2012; Horikawa et al., 2006; Riedel-Kruse et al., 2007).

Understanding these noise-induced phenomena is crucial for

developing more realistic dynamical models of developmental

processes and for explaining the robustness and variability observed

in biological systems.
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Biological examples
In vertebrates, the interplay between core pluripotency factors such

as OCT4, SOX2 and NANOG forms a regulatory network that

contains a positive feedback loop, driving to a bistable switch in

embryonic stem cells, with the pluripotent state representing one

stable attractor and differentiation towards specific germ layers

(endoderm, mesoderm and ectoderm) corresponding to alternative

attractors (Chickarmane et al., 2006; Giri and Kar, 2024).

Morphogen gradients can induce bifurcations that destabilise the

pluripotent attractor, driving cells towards these lineage-specific

attractors (Brown et al., 2011). Similarly, in Arabidopsis, the

vernalization process, in which the cold exposure is epigenetically

stored to regulate flowering time, involves a bistable switch in the

expression of the floral repressor FLOWERING LOCUS C (FLC) at

the single-cell level (Angel et al., 2011; Satake and Iwasa, 2012),

enabling an irreversible transition to flowering upon sensing of the

appropriate seasonal cues. By encoding developmental potential as

discrete attractor states and facilitating precise, irreversible fate

transitions through parameter changes or signals, bistable switches

provide a fundamental mechanism for cell fate determination and

lineage commitment during embryogenesis.

How can a system move between stable states?

(3) Stochasticity and (4) time-dependent dynamical systems

Stochasticity and time-dependent signals can both allow the system

to move between steady states. The effect of stochastic fluctuations

on bistable systems can be visualised through a potential landscape

representation (Fig. 4A), where noise can drive transitions from

one stable state to another. These noise-induced transitions

manifest as switching between low and high expression states

over time, as demonstrated by different stochastic trajectories

(Fig. 4B,C).

External signals can also cause systems to move between steady

states. Developmental processes are often modulated by biochemical

signals and environmental cues, referred to as signals hereafter. Such

modulation can be phenomenologically captured by effective

parameters of the underlying regulatory network that change over

time, which therefore confers a time-dependent nature to the

underlying dynamical system. When the timescales associated with

the signals are comparable to the characteristic timescale of the

developmental process, this time-dependent nature of the dynamical

system becomes more relevant, and transient, non-trivial dynamical

behaviours can arise (Morelli et al., 2009).
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Fig. 3. Dynamical systems analysis of bistable gene regulation. (A) Top: Simple autoregulatory circuit where protein X is constitutively expressed at rate

β and autoactivates itself, increasing the production rate (see Eqns 1 and 2). For the sake of simplicity, degradation is not represented. Bottom: Schematic of

the potential landscape and phase space representation showing two stable steady states (minima of the potential/black circles in the phase space)

separated by an unstable steady state (maximum of the potential/white circle in the phase space). Coloured arrows indicate directions of state changes,

pointing towards stable steady states. Orange gradient represents gene activation levels. (B) Time evolution of the system from different initial conditions

(grey spheres), showing that trajectories evolve away from the unstable state (grey dashed horizontal line), converging to either high or low stable steady

states (black dashed horizontal lines). (Ca) Bifurcation diagram revealing system behaviour as the constitutive production rate β varies. The shaded region

indicates a bistable regime bounded by bifurcation points (purple circles) where the system transitions between monostable and bistable regimes. In this

panel, solid lines (yellow, black) represent stable steady states; the grey dashed line shows the unstable steady state. Blue/red arrows indicate trajectory

directions. (Cb) Schematic indicating qualitative changes in potential landscape as β increases from left to right, showing the transition from monostable

(single well) through bistable (double well) back to monostable behaviour. Analysis and simulations correspond to the systems described in Eqn 2. Code for

reproducing this figure, along with the parameter values of the model, can be found in the supplementary information.
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Signals can be simulated as time-varying parameters that either

change over time in a discrete (two or more distinct levels) (Perez-

Carrasco et al., 2018; Verd et al., 2014) or continuous (see Glossary,

Box 1) fashion (Nandan and Koseska, 2023; Palau-Ortin et al.,

2015; Verd et al., 2019). Discrete signals change in discontinuous

steps, such as transcriptional regulators being active or inactive. A

continuous signal would be, for example, a morphogen gradient

changing concentration levels gradually over space and time. When

the dynamical system’s equations explicitly depend on time itself,

not just the state variables such as gene expression levels, the system

is classified as non-autonomous. Another option to incorporate

signals in a model is to have the signal as a modelled variable (Abley

et al., 2021), so the system does not explicitly depend on time. In

both cases, one can obtain an ‘instantaneous phase portrait’ of the

dynamical system throughout the studied time window by

computing the phase portrait at the values the signal acquires at

specific times of the simulation.

As an example, Eqn 1 can be turned into a time-dependent

bistable switch, such as:

dX

dt
¼ fðX ; SðtÞÞ � gX ; ð3Þ

where f (X, S(t)) is now defined as:

fðX ; SÞ ¼ SðtÞ þ bþ s
X n

Kn þ X n
; ð4Þ

and S(t) is the signal that changes over time (Fig. 4D). Compared

with the autonomous autoactivator (Eqn 2), we can see how, as S(t)

changes in time, the phase portrait changes accordingly. Therefore,

the state of the system, X(t), will experience a phase portrait that

changes over time, affecting its trajectory. Previous theoretical work

has proposed a classification of transient behaviours that can arise in

a time-dependent toggle switch model (Verd et al., 2014). The

most common and well-studied behaviour is the shift of the system

from one attractor to another when S(t) induces a bifurcation,

destabilising the steady state of the system.

Different temporal profiles of the input signal S(t) will alter the

potential landscape in distinct ways, leading to varying and

sometimes unexpected gene expression trajectories (Koch et al.,

2024; Verd et al., 2014). For instance, in Fig. 4E-G, we show how a

transient signal pulse can regulate the switching of X from a low to a

high state. In this case, a short, high-intensity pulse or a long, low-

intensity pulse fail to induce switching, whereas a pulse with

intermediate duration and intensity successfully activates gene X.

This dependency of the system trajectory on the input signal is

another example of hysteresis, whereby the system behaviour

depends on its own history.

Biological examples
The temporal modulation of bistability, coupled with stochastic

fluctuations in the network components, provides a powerful

mechanism for orchestrating precise yet flexible developmental

transitions, elucidating the mechanisms underlying the robustness

and adaptability of biological systems. In vertebrate neural tube

patterning, the dorsoventral gradient of sonic hedgehog (Shh)

activates the Gli pathway, which exhibits pulse-like signalling that

controls the spatiotemporal patterning of neural progenitors

(Balaskas et al., 2012; Cohen et al., 2014). In the same system,

the GRN downstream of Gli maximises barriers between steady

states to prevent cell-type switching inside each neural progenitor

domain, maximising the precision in the patterning of the tissue

(Exelby et al., 2021). In Arabidopsis seed germination, the

regulatory network involves the abscisic acid (ABA) and

gibberellic acid (GA) hormones, forming coupled positive

feedback loops that create a bistable switch between non-

germination and germination states (Abley et al., 2021; Topham

et al., 2017). An increase in GA biosynthesis during seed sowing

alters the phase portrait, destabilising the non-germination state. It

has been proposed that this developmental signal, together with the

intrinsic stochasticity of the GRN, is a plausible model to

understand variability of germination time across different

Arabidopsis accessions (Abley et al., 2021).

(5) Oscillatory dynamics: orchestrating periodic patterning

In addition to evolving towards a stable steady state, there are other

possible behaviours of dynamical systems; this is the case for

genetic oscillators. In a genetic oscillator, gene expression patterns

change in a periodic manner over time without ever reaching a fixed

steady gene expression (Monk, 2003). An example of a GRN that

oscillates is shown in Fig. 5A, consisting of an activating

transcription factor X and a repressing transcription factor Y.

Following the same logic as before, we can write a set of ODEs that

describe the regulatory interactions as increasing/decreasing

functions of X and Y, respectively (Guantes and Poyatos, 2006):

dX

dt
¼ sx

1þ Kx X
2

1þ X 2 þ Ky Y
2

� �

� gxX ð5Þ

dY

dt
¼ sy

1þ Kx X 2

1þ X 2

� �

� gyY ; ð6Þ

where σx and σy are the basal production rates of X and Y,

respectively; Kx and Ky control the interaction strength, and γx and

γy are degradation rates.

If we look at the oscillatory trajectories in the phase space, they

form closed orbits that receive the name of ‘limit cycles’ (see

Glossary, Box 1) (Strogatz, 2019). Stable limit cycles possess

analogous attracting properties to steady states, attracting

trajectories starting from different initial conditions. It is

interesting to realise that our Waddingtonian landscape intuition

starts to fail in this scenario, since it is impossible to have a ball

rolling downhill continuously and return to the initial state, as

illustrated by the Penrose stairs in Fig. 5B. This reaffirms the power

of the ODE description, which does not assume any landscape other

than stating the regulatory logic of the circuit.

Similar to a bistable switch, the system’s behaviour is sensitive to

changes in its parameters, which can affect the emergence of

oscillations, as shown in the bifurcation diagram in Fig. 5C. This

diagram highlights how non-intuitive combinations of parameters

control the behaviour of the system, which can exhibit either a

single, stable, attractive steady state (Fig. 5D), or an attractive limit

cycle surrounding a repeller (Fig. 5E). The resulting time

trajectories demonstrate how the system either converges to a

steady state (Fig. 5F) or develops sustained oscillations (Fig. 5G).

The emergence of oscillations can be understood intuitively. In the

proposed network (Fig. 5A), when the expression of gene X rises, it

sequentially leads to an increase in the expression of gene Y. As the

expression of gene Y builds up, it will feed back into gene X,

repressing its expression. Subsequently, with the suppression of gene

X, gene Y is no longer activated, which then allows the expression of

gene X to increase again. This cycle reinstates the oscillatory pattern.

Importantly, oscillations depend on an appropriate balance between

the timings of activating and repressive interactions in the network. In

the example, the autoactivation of gene X plays a crucial role in this

balance; in other models, delays in the negative feedback between X
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and Y are required to generate oscillations, which are therefore

promoted in feedback loops with several intermediate steps (Lev Bar-

Or et al., 2000; Page and Perez-Carrasco, 2018; Takashima et al.,

2011). For example, a well-known genetic oscillator that employs a

delayed repression, the repressilator, operates through a ring network

of three genes that sequentially repress each other (Elowitz and

Leibler, 2000). The introduction of more intermediate species

increases the complexity of the system, leading to a larger number

of parameters. In such cases, this delay can be effectively incorporated

into the description of the regulatory network using delay differential

equations, which include the delay explicitly in the flow of the

dynamical system (Monk, 2003). Models of genetic oscillations show
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Fig. 4. Dynamics of stochastic and time-dependent bistable switches. (A) Potential landscape showing noise-induced transitions between stable states,

where stochastic fluctuations can drive the system over the barrier. (B,C) Stochastic simulations showing switching between low (black) and high (orange)

expression states under different noise intensities for two different potentials. Insets at the top are cartoons of the potential; in C, the higher stable state is

shallower, making the system spend less time in it. (D-G) Analysis of signal-induced state transitions. (D) Circuit diagram showing autoactivating gene X

regulated by time-varying signal S(t). For the sake of simplicity, degradation is not represented in the diagram. (E) Different pulses of input signal S(t) that

modify the potential landscape (insets on the right). Horizontal dashed line represents the signal level at which the system switches from being bistable (below

the line) to monostable (above the line). (F) Numerical simulations of the resulting gene expression trajectories show how different signal profiles lead to
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signal profiles presented in E and F (line styles of the time axes represent the same as in E,F), demonstrating how temporal signal dynamics influence transition

paths between states. Code for reproducing this figure, along with the parameter values of the model, can be found in the supplementary information.
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clearly the importance of understanding the timescales of interactions

as well as their activating or repressive natures.

Finding limit cycles, analytically or numerically, is more

challenging than finding steady states. This complexity arises

because limit cycles do not follow the steady state condition

dX/dt=dY/dt=0. However, they can be identified through numerical

integration of the ODE system. Moreover, if we were to search for

steady states in Eqns 5 and 6, wewould find that inside the oscillating

limit cycle trajectory, there exists an unstable steady state acting as a

repeller (Fig. 5E). This repeller pushes trajectories away from it and
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illusions, such as the Penrose stairs. (C) Bifurcation diagram in a 2D parameter space showing that the resulting dynamical behaviour depends on the

parameters of the system, classified as sustained oscillations (blue) or stable steady constant expression (red). For the sake of simplicity, constitutive production

and degradation are not represented. Stars represent parameter sets used in D-G. (D) Phase portrait outside the oscillatory regime; a single attractive steady
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towards the surrounding stable limit cycle (Fig. 5E,G). The presence

of this repelling steady state paired with the stable oscillating limit

cycle, together known as a repeller-cycle pair, is a common feature

found in dynamical GRN models exhibiting oscillatory behaviours.

Similar to the bistable switch, we can tune external parameters to

change the dynamical regime of the system. For instance, in our

case, we can drive a system out of the oscillatory state by changing

the production rate of gene X (Fig. 5C). During this transition, we

would observe how the limit cycle shrinks and collides with the

repeller, leading to an ordinary stable steady state. This is another

example of bifurcation, called Hopf bifurcation (Strogatz, 2019),

and is one way by which oscillations emerge or vanish. In addition,

limit cycles can exist in more intricate landscapes, as occurs in the

AC/DC genetic circuit (Perez-Carrasco et al., 2018), a GRN found

in the gap gene network in Drosophila and in vertebrate neural tube

dorsoventral patterning. This landscape mirrors a bistable switch but

with a crucial difference: one of the steady states is substituted by a

cycle.

Biological examples
In Drosophila neurogenesis, a genetic oscillator driven by the

transcription factors Hunchback (Hb) and Krüppel (Kr) couples

with Notch signalling components to create a ‘salt-and-pepper’

pattern of neuroblasts (Li et al., 2013). Similarly, the segmentation

clock, essential for periodic somite formation during vertebrate

embryogenesis, is driven by the oscillatory expression of cyclic

genes regulated by Notch, fibroblast growth factor and Wnt

signalling pathways (Dequéant et al., 2006; Niwa et al., 2011;

Sonnen et al., 2018). The interplay between these oscillators and

morphogen gradients determines the timing and spatial organisation

of developmental events (Dubrulle and Pourquié, 2004; Yamanaka

et al., 2023). By modelling these oscillatory systems using coupled

differential equations, researchers can explore the feedback loops,

time delays and spatial coupling mechanisms that give rise to robust

and synchronised oscillatory behaviour, providing insights into the

complex dynamics underlying pattern formation and developmental

transitions (Cooke and Zeeman, 1976; François and Mochulska,

2024; Klepstad and Marcon, 2024; Morelli et al., 2009).

Further material

We provide interactive Python code to allow the reader to investigate

further the presented dynamical systems (see supplementary

information). Specifically, the code is presented in the form of two

Jupyter notebooks, one for the bistable switch, and one for the

oscillations. For readers less familiar with Python and coding, we

have also implemented these Jupyter notebooks as applets using the

Google Colab platform, which does not require prior coding

experience:

• Bistable switch Colab notebook: https://colab.research.google.

com/drive/1u8kRrqaWmc5utEgJKiu0yohfaD8nd4PU?

usp=sharing;

• Oscillations Colab notebook: https://colab.research.google.

com/drive/1IMMwyNg0d2FkAzNL_tLBOYgkPbYjQFvz?

usp=sharing.

To run the applets with Colab, load each applet in theweb browser and

press the triangles on the left to run each segment of the code in the

browser. Be sure to run the code in order from top to bottom. The code

will generate interactive graphs in which parameters can be adjusted.

Conclusion

The examples highlighted throughout this Primer illustrate the

immense power of dynamical systems theory for decoding the

regulatory complexity underlying embryogenesis and multicellular

patterning. By abstracting the intricate molecular networks into

quantitativemodels amenable tomathematical analysis, this approach

has yielded key insights into how gene regulatory dynamics facilitate

pivotal developmental processes, such as cell fate specification,

rhythmic patterning, and irreversible fate transitions.

Notably, the ability to visualise and analytically characterise the

epigenetic landscapes constraining cellular trajectories has

illuminated foundational principles. The existence of discrete

attractor states corresponding to specific cell fates or oscillatory

patterns accounts for the discreteness and robustness observed

experimentally. Crucially, dynamical models elucidate how the

architecture of regulatory networks encodes this patterning potential

through features such as multistability, oscillations and signal

integration, which allows the bridging of genotypes to phenotypes

in a predictive framework.

As experimental techniques rapidly advance, the quantitative data

obtainable from developmental systems is becoming increasingly

high-resolution and comprehensive. Live-imaging approaches can

now be used to visualise dynamic reporters in space and time,

enabling accurate characterisation of gene expression dynamics,

morphogen gradients and cellular behaviours during

embryogenesis. Coupled with advanced image analysis pipelines,

this capability holds potential for unprecedented detailed mapping

of developmental trajectories and attractor landscapes governing

cells as they navigate bifurcation points. In parallel, genomic and

single-cell technologies are unveiling regulatory architectures at

ever-finer resolution, facilitating the construction of predictive

dynamical models for diverse patterning phenomena.

The quantitative power of dynamical landscapes has also enabled

new modelling approaches in which, rather than deriving the

landscape from a detailed set of biochemical reactions, the landscape

is inferred directly from observed dynamics. In these approaches, the

inferred landscape becomes the foundational element of the model

and allows the use of the same suite of dynamical systems theory

tools discussed in this Primer (Camacho-Aguilar et al., 2021; Corson

and Siggia, 2012, 2017; Corson et al., 2017; Raju and Siggia, 2024;

Sáez et al., 2022). For many biological systems, this approach can be

used to represent the form of the dynamics formally on a 2D

landscape that captures the behaviour of the associated higher-

dimensional dynamical system model (Rand et al., 2021).

However, despite these opportunities, significant challenges remain

in leveraging dynamical systems theory to unravel developmental

programmes. Model construction remains laborious, requiring

comprehensive knowledge of underlying network components and

their regulation. Scalability to higher dimensions poses analytical and

computational hurdles. Systematic approaches integrating experimental

data-driven modelling with mathematical analysis frameworks are

needed. Additionally, many developmental processes remain

inadequately captured in deterministic ODEs, necessitating

integration of stochasticity, spatial transport and other mechanisms to

reflect biological reality accurately.

Importantly, there are knowledge gaps about how the properties of

dynamical systems map to specific developmental outcomes.

Although multistability represents discrete cell fates, the precise

trajectories and timescales by which cells transition between attractor

states remain unresolved. Oscillation models elucidate molecular

clock architectures, but how tissue-level oscillations robustly pattern

embryonic fields lacks a unified mechanistic framework.

Understanding how attractors and their manifolds are modulated

by dynamic signals and morphogen gradients during inductive

events is key to modelling cellular reprogramming comprehensively.
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Looking ahead, dynamical systems theory will be pivotal for

addressing frontiers, such as the encoding of positional information

during body patterning, the developmental hourglass phenomenon

of increasing and decreasing complexity, and principles of

evolution’s ability to flexibly tinker with embryonic regulatory

architectures. Integrating dynamical modelling across multiple

scales, from molecular networks to tissues and regenerating

systems, holds transformative potential. Ultimately, realising this

potential will hinge on cultivating interdisciplinary synergies

between experimental and theoretical developmental biology.
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