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Abstract. Generating synthetic tabular data can be challenging, however evaluation of their quality is just as challenging, if not more.

This systematic review sheds light on the critical importance of rigorous evaluation of synthetic health data to ensure reliability,

relevance, and their appropriate use. Based on screening of 1766 papers and a detailed review of 101 papers we identified key challenges,

including lack of consensus on evaluation methods, improper use of evaluation metrics, limited input from domain experts, inadequate

reporting of dataset characteristics, and limited reproducibility of results. In response, we provide several guidelines on the generation

and evaluation of synthetic data, to allow the community to unlock and fully harness the transformative potential of synthetic data

and accelerate innovation.
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1 INTRODUCTION

Access to high-quality data is fundamental to advancing scientific research. In disciplines such as healthcare, data is

pivotal to enhance patient care, optimise resource management, and enable the discovery of new medical insights,

particularly with the rise of artificial intelligence. Structured health data, such as tabular electronic health records,

have been recognised as having one of the highest potential to provide timely and relevant information in clinical

decision-making [1]. However, complex data-sharing governance rules have resulted in health data being locked away

in isolated silos [2, 3], where they generally remain inaccessible except to a few researchers [4]. This inevitably hampers
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2 Nafis et al.

reproducible health research, hindering the advancement of patient care and impeding the future potential of clinical

artificial intelligence [5].

There is an urgent need to democratise access to health data [4] without losing sight of patient privacy and

confidentiality [6]. In this context, synthetic health data emerges as an attractive solution to address this challenge, and

institutions worldwide are increasingly recognising their potential. For example, the United States Department of Health

and Human Services has made available a Synthetic Health Data Generation Engine1 to accelerate patient-centred

outcomes research and “address the need for research-quality synthetic dataž. The United Kingdom’s National Health

Service (NHS) has rolled out an ‘Artificial Data Pilot’2 that aims to “provide users with large volumes of data that

share some of the characteristics of real data while protecting patient confidentialityž. Similar efforts are recorded in

Canada’s health economic hub Health City [7] and Germany’s Charité Lab3 for Artificial Intelligence in Medicine.

Research-quality synthetic data (the focus of our work) can be used to rapidly develop and test preliminary hypotheses

before applying them to real datasets [8]. They can also improve research pipeline by acting as a proxy for real-world

data [9]. Furthermore, the controlled generation of synthetic health data can include a balanced representation of

different demographic groups [10]. This would ensure that the previously underrepresented socio-demographic groups

are adequately represented, thereby mitigating biases in health research that arise from skewed real-world health

datasets and, in turn, address model fairness [11ś13].

However, despite the above-mentioned advantages of synthetic health data, major challenges remain with their

large-scale adoption. One of the major challenge is the lack of consensus on evaluating synthetically generated data

vis à vis the corresponding real data [14ś16]. This not only makes it difficult to track the state-of-the-art progress of

synthetic data generation methods but also poses barriers to trust and adoption, as well as presents regulatory and

compliance issues.

Fig. 1. There is an increasing lack of appropriate evaluation metrics (due to increasing difficul-
ties in computation and increasing difficulties in evaluation of the metrics), with the increase
in data complexity of the synthetic datasets.

To shed light on the evalua-

tion approaches of synthetic data

we have conducted a systematic

review of 1766 research articles

published in the last ten years.

This is the first review of

this type and size to understand

which approaches are being used

to evaluate the quality of syn-

thetic data, along with the asso-

ciated data generation methods

and their target application areas.

We focused on structured tabu-

lar and time-series health data

since this is one of the areas with

the highest potential in advanc-

ing healthcare [17] and present

1https://aspe.hhs.gov/synthetic-health-data-generation-engine-accelerate-patient-centered-outcomes-research
2https://digital.nhs.uk/services/artificial-data
3https://claim.charite.de/en/
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unique data challenges, such as

dealing with missingness. In addition, there is a higher consensus on the evaluation methods for other data modalities,

such as imaging and text, where the respective research communities have developed metrics such as Fréchet Inception

Distance (FID) [18] and BERTScore [19] respectively.

We observe that with the increasing complexity of the synthetic datasets (including dimensionality, multimodality,

and non-stationarity), there is growing lack of suitable evaluation metrics, as shown in Fig.1. This is manifested

in the increasing difficulties in the computation as well as evaluation of the metrics. Therefore, there’s a critical

need for the use of appropriate statistical evaluation metrics to critically evaluate complex synthetic data, including

involvement of expert stakeholders in: i) selection of appropriate evaluation metrics and, ii) interpretation of the

resulting outcomes.This type of collaboration between researchers and clinical practitioners can lead to development of

methods and metrics that implicitly incorporate domain knowledge, resulting in decreased need for expert knowledge in

evaluating future synthetic data. As a result, distilling domain knowledge into operational constraints and guaranteeing

that the underlying medical processes that govern the data generation are safeguarded, will open the door to novel

machine learning evaluation paradigms.

In the following section we show the results of our analysis, followed by guidelines in evaluating synthetic tabular

data.

2 RESULTS

Based on the screening of 1766 papers and a detailed review of 101, we present the following results, grouped into four

categories namely, evaluation, generation, purpose and impact of synthetic data, as well as reproducibility of the results.

2.1 Evaluation of Synthetic Data

We categorise the approaches used in the evaluation of synthetic data in: Direct vs Indirect approaches, and Quantitative

vs Qualitative methods.

Direct evaluation approaches involve using existing, standardised metrics to assess the quality of the synthetic

data. Indirect evaluation approaches include non-standardised, domain-specific methods (such as TSTR - Train on

Synthetic, Test on Real) to assess synthetic data in real-world applications. Indirect approaches extend beyond the

Fig. 2. (L) Breakdown of Evaluation Approaches into Direct vs Indirect Evaluation, and (R) Breakdown of Evaluation Methods into
Quantitative vs Qualitative Methods
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standard metrics and often include context-driven or subjective evaluations. We found that Direct approaches are the

most common at 58.4%. About 34.7% of the publications use Indirect approaches. Additionally, 6.93% use both Direct

and Indirect approaches in conjunction, to perform a holistic evaluation of their synthetic data (Fig. 2).

Quantitative evaluation methods give objective, measurable results and are crucial for ensuring that synthetic

data aligns statistically with real data. They include Statistical techniques which use quantifiable metrics to compare

synthetic data with the original data, and ML-based techniques which make use of classification and/or regression to

assess how well synthetic data performs when used for specific downstream tasks. We found that Statistical evaluation

is the most popular (54.5%), whereas ML-based techniques feature in 13.9% of all publications. About 24.8% publications

use both Statistical and ML-based evaluation techniques in conjunction. (Fig. 3).

Fig. 3. (L) Breakdown ofQuantitative Evaluation Methods into Statistical and ML-based methods, and (R) Breakdown ofQualitative
Evaluation Methods into Visualisation and Domain Expert Review

The popularity of Statistical evaluation techniques remains high, however, a trend can be seen in publications using

both Statistical and ML-based techniques together (Fig. 4).

Fig. 4. Popularity trend of Statistical and ML-based Evaluation methods over the last decade, as obtained from publications included
in this review. Dotted lines represent the overall polynomial trend.
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The most used quantitative evaluation metrics include Jensen-Shannon (JS) distance, Pearson Correlation coefficient,

and Maximum Mean Discrepancy (MMD), apart from the popular metrics such as AUC and F1-score for classification

tasks, and Mean Square Error (MSE) and Root Mean Square Error (RMSE) for regression tasks (Fig. 5). We also note

that the majority of the included papers (89.1%) use existing metrics, and only 10.9% of the publications use their own

Author-defined metric for evaluation of the synthetic data.

Fig. 5. (L) Most popular Evaluation Metrics, and (R) Breakdown of whether the metric is author-defined or not

Qualitative evaluation methods rely on subjective judgement and human interpretation to assess the quality

of synthetic data. In the majority of the cases (71.3%), they take the form of Visual Inspection of the graphical

representation of distributions of synthetic data (Fig. 3). We also note that despite its significance, use of Domain

Experts as a qualitative evaluation method is not yet widely used and present only in a handful of all papers (3.96%).

Quantitative methods by themselves are used in about 24.8% of all publications, whereas for qualitative, this value

is 5.93%. Most research (68.3%) uses a combination of both quantitative and qualitative methods. Fig. 6 gives a more

detailed depiction of the most popular evaluation metrics and the papers utilising them that have been included in this

review.

2.2 Generation of Synthetic Data

We categorise the models used for the generation of synthetic data into probabilistic and mechanistic models.

Probabilistic Models use statistical and probability distribution approaches to capture the statistical properties

(such as distribution, correlations, and relationships between variables) of the real data, to generate the synthetic data.

Mechanistic Models, on the other hand, use explicit rules, equations, or processes to simulate data based on how the

underlying systems work. The most popular generation models are based on GANs, SMOTE, VAEs, Markov Chains,

and Random Permutations (Fig. 7). Diffusion-based models are seeing a rise in popularity for longitudinal tabular data.
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6 Nafis et al.

Fig. 6. Sankey depicting the most popular Evaluation Metrics and the papers utilising them, as obtained from the publications
included in this review
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Fig. 7. (L) Breakdown of Generation Models into Probabilistic vs Mechanistic Models, and (R) Most popular Generation Models

We also observed a growing divergence between Probabilistic and Mechanistic models, with Probabilistic Models

increasingly being more frequently used (74.3%) and Mechanistic Models tending to be more referenced in older

publications only (Fig. 8).

Fig. 8. Popularity trend of Probabilistic and Mechanistic Generation Models over the last decade, as obtained from publications
included in this review. Dotted lines represent the overall polynomial trend.

2.3 Purpose and Impact of Synthetic Data

We found that privacy preservation, followed by predictive modelling and data-quality enhancement are the most

popular objectives for the use of synthetic tabular data in healthcare. The most common diseases within the set of

publications included in this review, for which synthetic health data is used, include those of the circulatory system, the

nervous system, and neoplasms (Fig. 9). This may be driven by the popularity of the datasets, with MIMIC III[20] and

MIMIC IV[21] being the most popular tabular and time-series health datasets.
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Fig. 9. Most common diseases ( grouped by their ICD-9 codes), as seen through the publica-
tions included in this review.

The widest-used repository is

Physionet4 where these datasets

are held, a testament to the value

this repository provides to the re-

search community. At the same

time, this also poses a risk of per-

petuating possible biases in the

Physionet resources itself (for ex-

ample, underrepresentation bias)

to a global user base.

While there is some evidence

to suggest that clinically oriented

journals are also beginning to

consider synthetic health data re-

search, the majority of the articles are published in journals and conferences with a primarily technical focus. Most

of the research in synthetic health data is carried out in North America, followed by Europe and Asia, which may be

influenced by the availability of health data and data protection regulations necessitating the use of synthetic data.

2.4 Reproducibility of Results

We define reproducibility as a factor of the use of publicly available datasets and the reporting of publicly accessible

source code of the research. We note that, despite being a crucial piece of information, reproducibility is often not

emphasised, and only 21.78% of all included publications were reproducible according to our definition. The majority of

the papers (63.36%) use publicly available real-world health datasets, whereas about 12.87% used paid real-world health

datasets for the creation of synthetic data. However, only 24.75% of the publications give details about their code along

with a link to the code repository, which affects the overall reproducibility. Reproducibility is essential for ensuring

the reliability and impact of scientific research. Particularly in healthcare where decisions can directly affect patient

outcomes, reproducibility helps prevent errors, biases, and misleading conclusions. However, we found that it is an

often overlooked aspect in most publications dealing with synthetic data.

In response to these results, we devise a set of reporting guidelines on the generation and evaluation of synthetic

data, which are henceforth described in Section 3.

3 EVALUATION GUIDELINES FOR SYNTHETIC DATA

(1) Standardised Evaluation of Synthetic data: We found that synthetic data are sometimes used without a

thorough assessment.When there is an assessment, we found that not only there is no consensus on the evaluation

methods, but the chosen evaluation metrics are inconsistently applied. This makes an operational assessment

of the entire process unreliable, thereby making it difficult to track state-of-the-art advancements and creates

barriers to trust and the adoption of synthetic data.

For example, using Mean Square Error (MSE) metric as a measure of distortion to assess the validity of a

synthetically generated waveform signal is appropriate but the validation needs to consider the particular

4https://physionet.org/
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features of the process. Two synthetic data generation methods with comparable MSE performances can still yield

qualitatively very different signal features. Given the averaging that is implicitly performed in the computation

of MSE, synthetic signals with uniformly distributed errors or distortions with respect to the real data will

obtain similar MSE scores in comparison to signals with localised distortion patterns such as those modelled as

impulsive noise. The signal characteristics in these two cases provide a stark contrast, and therefore, they will

yield different conclusions in general when applied for validation or predictive tasks.

(2) Better Reporting of Dataset Characteristics: Poor reporting of dataset details is a cause for concern since the

type of data (such as categorical or continuous) and their distribution, significantly impact the quality of the

generated synthetic data. Furthermore, potential biases may propagate in the synthetic data. We recommend

improved reporting of dataset characteristics used for the generation of synthetic data.

For example, in developing a novel method, one would expect to assess its performance using real data or

previously validated synthetic data. However, using synthetic data that has not been validated prior to the

assessment of the proposed method does not provide robust evidence towards the validity of the method.

Moreover, any claims about the validity of the synthetic data based on the performance of the proposed method

are inherently inconclusive as they incur a circular reference problem that compromises the generated evidence.

(3) Prioritisation of Reproducibility of Results:We emphasise the importance of clearly described evaluation

metrics used, normalisation and aggregation of real data that were used as training datasets, and the entire

experimental setup for the generation of synthetic data, including the chosen hyperparameters and the source

code where possible. Reproducibility allows other researchers to validate and verify the claims of a study, and

stakeholders, including clinicians and patients to develop trust in synthetic health data.

4 CONCLUSION

The potential of synthetic data to revolutionise Health AI research is immense, offering opportunities to address data

scarcity, enhance privacy, and enable more robust model development. However, realising this potential requires

a concerted effort to address critical challenges. Ensuring the applicability and fitness of synthetic data through

rigorous assessment is paramount for its responsible use. Additionally, transparent reporting of datasets and ensuring

reproducibility of results remain a cornerstone requirement of scientific progress.

Most importantly, the evaluation of synthetic health data must be guided by expert knowledge. As discussed earlier,

domain expertise is critical for understanding the nuances of healthcare data and ensuring that synthetic datasets are

technically sound, clinically relevant, and meaningful.

By adopting these guidelines and committing to ongoing collaboration, the health AI community can ensure that

synthetic data is leveraged effectively and ethically, ultimately driving innovation and improving patient outcomes.

5 METHODOLOGY

In this section, we expand on our methodology for carrying out the systematic review. The Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA) [22] statement provides a standardised framework for reporting

systematic reviews. It consists of updated instructions on identifying, selecting, praising, and synthesising publications.

Fig.10 outlines our methodology in accordance with the latest PRISMA guidelines.
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5.1 Search Strategy

To establish an unambiguous search strategy, we laid out the following: (i.) The relevant databases used to search within

a time frame, (ii.) The search terms to ensure comprehensive coverage of relevant studies, and, (iii.) The inclusion and

exclusion criteria.

5.1.1 Databases and Search Engines. For this systematic review, we looked for publications on the following five

databases: Scopus5, Web of Science6, PubMed7, IEEE Xplore8, and Association for Computing Machinery (ACM)9.

Additional publications were also manually selected using Google Scholar.

5.1.2 Search Terms and Additional Limits.

Search Terms. We began by identifying publications dealing with synthetic data generation or augmentation. The

focus was on finding publications that dealt with tabular or time-series data using wildcards in the search, and included

all similar words including plurals and noun and verb forms of words. Keywords such as ’patient’, ’health’, and ’clinical’

were also used to conduct the search within the health domain. As a result of the aforementioned considerations, the

following search string was designed: (synthe* OR augment*) AND generat* AND (time-series OR time* OR temporal*)

AND (tabular OR record*) AND (patient* OR medic* OR health* OR clinic* OR ehr*), to be searched in the title-abstract-

keywords or the topic field.

Additional Limits. We limited our search to publications in the last ten years, from January 1, 2014 to Jan 31, 2024.

We also limited the search to peer-reviewed conferences and journal articles, written in the English language.

5.1.3 Inclusion and Exclusion Criteria.

Inclusion Criteria. The publications that were included in this systematic review met the following conditions:

• Publications that deal with tabular or time-series data.

• Publications that describe a method of generation of synthetic data and its evaluation against real data, or

Publications that do not describe a method of generation of synthetic data but describe its evaluation vis a vis

real data.

• Publications that deal with the generation of complete new synthetic datasets as well as the ones which deal

with the augmentation of existing datasets with synthetic data.

• Peer-reviewed publications from journals and conferences. Strictly no pre-prints.

Exclusion Criteria. All possible publications that would be irrelevant to our study were excluded if they met any one

of the following conditions:

• Publications that are not in the health domain.

• Publications that deal with image-, audio-, video-, or text-only modalities of data.

• Publications which themselves are narrative or systematic reviews.

• Publications on synthetic data that neither describe a method of generation of synthetic data nor its evaluation

against real data.

5https://www.scopus.com
6https://www.webofscience.com
7https://pubmed.ncbi.nlm.nih.gov
8https://ieeexplore.ieee.org
9https://www.acm.org
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Fig. 10. Popularity trend of synthetic tabular health data over the last decade, as obtained from publications included in this review
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• Publications that describe a method of generation of synthetic data, but the synthetic data is not structurally

similar (and therefore, not comparable) to real data.

5.2 Search Queries

Table 3 lists the search queries used across five databases respectively, and the number of relevant results obtained from

each. Another set of limits on search engines were enforced via their graphical user interfaces (GUIs), hence they may

have not been fully captured in the queries themselves. They are being mentioned here for the sake of completeness.

• The search was limited to publications in the last ten years, from January 1, 2014, to January 31, 2024.

• The search was limited to peer-reviewed conferences and journal articles written in the English language.

5.3 Selection Process

Based on the search strategy discussed in Section 5.1, 1766 publications were obtained from five search engines. This

included 415 publications from Scopus, 1003 from the Web of Science, 202 from PubMed, 138 from IEEE Xplore, and

8 from ACM. Since many results were duplicated across databases, we carried out a deduplication process based on

the DOIs of publications. As a result, 848 results were excluded and 918 publications remained for the first stage of

assessment.

First Screening. The 918 publications obtained from search queries after deduplication, were divided among five

reviewers with approximately 184 publications per reviewer. Each reviewer labelled the publications assigned to them

Yes/No, signifying whether they thought the publication should be included or excluded along with the rationale for

their decision. This gave us 166 publications labelled Yes, and 752 publications labelled No. From the ’No’ set, we again

discarded some publications, the most common reasons for their exclusion being that the research was not in the human

health domain (n=161) or that the paper was a systematic review itself (n=109).

Next, we created a smaller subset of approximately 10% of the remaining No-labelled publications (482) and added it

to all the Yes-labelled set. This combined set of 214 publications was used to perform a ’spot check’ of labels: Publications

were grouped by their first-stage reviewers and divided among the rest of the reviewers for a second round of reviewing.

The first-stage reviewer’s decision to include or exclude any particular publication was preserved but kept hidden

from the view of the second-stage reviewers, to ensure that the reviewers’ cognitive biases do not creep in during the

labelling process, and that every publication gets assigned the correct label irrespective of who it was reviewed by in

either of the two reviewing stages.

Second Screening. As with the first stage, each reviewer in the second stage provided a Yes or a No label to each

publication in their set. No reviewer got to review the same publication in the second stage which they had already

reviewed in the first stage. At the end of this exercise, any ’discrepancies’ (cases where the labels given by the first-stage

reviewer and the second-stage reviewer did not match) were duly noted. Then, a round of ’discrepancy checks’ was

carried out, where all reviewers looked at all discrepancies and provided feedback as to which of the two labels they

agree with.

After a discussion on each occurrence of conflicting labels and resolving all discrepancies, we got the final labels for

each publication. This resulted in a set of 120 publications for which the consensus of the reviewers was to include

them in this systematic review.
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Category Data Items

Publication
Details

DOI, Authors, Title, Publication Year, Journal/Conference Title

Synthetic Data
Generation

Category of Generation Model (Mechanistic, Probabilistic),
Name of Generation Method used, Purpose of Generation of synthetic data
Disease/Disorder focused on, ICD-9 code

Synthetic Data
Evaluation

Category of Quantitative Evaluation Method (ML-based, Statistical,
Both, None), Category of Qualitative Evaluation Method (Visualisation,
Others, None), Name of Evaluation Method used

Training Dataset
Characteristics

Name, Size, Institution of Origin, Country of Origin,
Visibility (Public/Private), Cost of Dataset Access

Source Code Link to Source Code Repository
Table 1. Attributes against which data was collected for every publication

5.4 Data Items

For each of the 120 publications, an in-depth analysis was carried out. An additional 27 publications were excluded

from the study upon full-text analysis, based on their relevance to this research.

Then, data was collected for the final 101 publications for 18 attributes which included: (i.) details about the publication

including DOI, authors’ names, title and year of publication and the details about the venue (journal/conference),

(ii.) details specific to the generation of synthetic data such as the method (eg. WGAN-GP, Graph VAEs), its category

(mechanistic/probabilistic), and purpose (eg. privacy preservation, clinical trial simulation), (iii.) details about the

evaluation methods used, which includes the type of Quantitative evaluation (ML-based, Statistical or a combination),

the type of Qualitative evaluation (for eg. Visualisation), the name of the method (eg. Jensen-Shannon divergence,

Wasserstein distance) and the specific evaluation metrics used, (iv.) details about the dataset used in synthetic data

generation, including the dataset name, size, institution and country of origin, and cost of dataset access, and (v.) details

pertaining to the reproducibility of results including whether the dataset is openly accessible and if the source code has

been made available.

A complete list of all data items against which data was captured is available in Table 1.

5.5 Reporting

The reporting of this systematic review adheres to the PRISMA guidelines [22]. We undertook measures to ensure

transparency and reproducibility and facilitate critical appraisal and interpretation of the findings.

Risk of Bias Management: To establish the transparency of the findings and the results of this systematic review,

we: (i.) used multiple databases to ensure no platform-specific bias creeps in, (ii.) used value-neutral search terms in the

search query (iii.) got the publications reviewed by five reviewers in multiple screening stages (iv.) performed spot

checks and discrepancy checks to ensure no reviewer-induced bias creeps in.
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[119] Jakub Tomek, Rebecca A. B. Burton, and Gil Bub. Ccoffinn: Automated wave tracking in cultured cardiac monolayers. Biophysical journal, 111

8:1595ś1599, 2016.

[120] Matthew Squires, Xiaohui Tao, Soman Elangovan, Raj Gururajan, Xujuan Zhou, and Udyavara Rajendra Acharya. A novel genetic algorithm based

system for the scheduling of medical treatments. Expert Syst. Appl., 195:116464, 2022.

[121] Guilherme C Oliveira, Quoc C Ngo, Leandro A Passos, Joao P Papa, Danilo S Jodas, and Dinesh Kumar. Tabular data augmentation for video-based

detection of hypomimia in parkinson’s disease. Computer Methods and Programs in Biomedicine, 240:107713, 2023.

A LIST OF PAPERS REVIEWED

An abridged version of the papers reviewed and their characteristics is provided in Table 2

Publication Evaluation Metrics Generation Methods Dataset Purpose

Jatoi et al, 2018

[23]

Custom method Negative variational free en-

ergy, Localization error

Statistical Parametric Mapping

- SPM12 software

Predictive mod-

elling

Farago et al,

2021 [24]

Autoregressive mod-

eling, Markov chain,

RNN

Morphology, Mean, Variance,

Autocorrelation, Power Spec-

tral Density (PSD), Probability

Distribution

Custom dataset Signal quality

analysis

Kuo et al, 2022

[25]

SAGAN Accuracy, Standard Deviation Custom dataset Improve personal-

isation of predic-

tion

Rafiei et al, 2023

[26]

CTGAN and SMOTE AUC, AUROC, Sensitiv-

ity, Specificity, PPV, NPV,

Bhattacharyya Distance

North Carolina Health Sys-

tem electronic medical record

(EMR)

Fluid overload
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DeOliveira et al,

2022 [27]

CTGAN and HAR-

CTGAN

Weighted Average F1-score,

Ambiguity score

ExtraSensory dataset Generating dis-

creet synthetic

data

Das et al, 2023

[28]

VAE Dimension-Wise Probability,

Bernoulli Success Probability,

Counterfactual Digital Twin

Evaluation, Presence Disclo-

sure, Attribute Disclosure,

Nearest Neighbor Adversarial

Accuracy Risk

Phase III breast cancer clinical

trial (NCT00174655), Small Cell

Lung Carcinoma clinical trial

dataset (NCT01439568),

Clinical trials

Bing et al, 2022

[29]

VAE KNN MIMIC-III Mitigating repre-

sentation bias

Bhanot et al,

2021 [30]

HealthGAN Root Mean Square Error

(RMSE), Pearson’s Correla-

tion Coefficient, Directional

Symmetry, Short Time-Series

Distance

American Time Use Survey

(ATUS), Medical claims Autism

Spectrum Disorder (ASD)

Privacy preserva-

tion, maintaining

utility

El Emam et al,

2020 [31]

Conditional trees Matching real with synthetic

samples

Washington State Inpatient

Database (SID) and Canadian

COVID-19 case dataset

Privacy preserva-

tion

Lu et al, 2023

[32]

SMOTE Precision, Recall, F1-score, Geo-

metric mean, Area under the

curve of the receiver operating

characteristic curve (AUROC),

Area under the precision-recall

curve (AUPRC)

Taipei Medical University Hos-

pital and Wan Fang Hospi-

tal (derivation), Taipei Medical

University Shuang Ho Hospital

(validation)

Predictive mod-

elling

Solinski et al,

2016 [33]

Detrended fluctuation

analysis (DFA)

Shannon Entropy, Poincare

Plots, Multiscale Multifractal

Analysis

Holter electrocardiogram

(ECG) database and Complete

electroencephalogram (EEG)

recordings

NA

Bhanot et al,

2021 [34]

HealthGAN Log Disparity, Time-Series Dis-

parity

MIMIC-III and Average Sleep

Time of Americans (ATUS)

Fairness

Shaked et al,

2016 [35]

Markovian Model Mean Similarity, Intersection MIMIC-III Privacy preserva-

tion

Bahador et al,

2021 [36]

DE-NLPCA Accuracy Activities of daily living (ADL)

dataset, and EEG / ECG dataset

from Northern Ostrobothnia

Hospital

Predictive mod-

elling

Weng et al, 2024

[37]

MVIIL-GAN Missing Values Reconstruction

Error

MIMIC-IV Dataset balancing

Bhanot et al,

2022[38]

Bootstrapping, Ran-

dom Permutation and

HealthGAN

Root Mean Square Error

(RMSE), Pearson’s Correlation

Coefficient, Short Time-Series

Distance (STS), Directional

Symmetry (DS)

American Time Use Survey

(ATUS) dataset and Autism

Spectrum Disorder (ASD)

claims dataset.

Addressing

Data unavail-

ability, Privacy

preservation
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Nikolentzos et

al, 2023 [39]

Variational Graph Au-

toencoder (VGAE)

Weisfeiler-Lehman Subtree

(WL) Graph Kernel, Shortest

Path (SP) Graph Kernel, Graph

Kernel-Maximum Mean Dis-

crepancy (GK-MMD), Pearson

Correlation Coefficient

MIMIC-IV Privacy preserva-

tion

Ricci et al, 2019

[40]

Custom method Poisson Sequence, Correlated

Heartbeatlike Sequence, Hénon

Map Sequence

Electronic oscillator sequence,

Heartbeat sequence, and Neu-

ral sequence

NA

Hodgkiss et al,

2021 [41]

Custom method AUC Normal Sinus Rhythm Dataset Cybersecurity

Chen et al, 2022

[42]

CTGAN Classifier CHB-MIT EEG dataset Dataset balancing

Xu et al, 2017

[43]

Custom method Markov Chain, Vector Auto-

Regressive Model, Continuous-

Time Markov Chain, Logistic

Regression, Hawkes Processes,

Modulated Poisson Processes,

Self-Correcting Process

MIMIC-II Dataset balancing

Mohammed et

al, 2017 [44]

ARMA F1-score, AUC, NOP Custom dataset Addressing Data

unavailability

Wang et al, 2023

[45]

AFE-GAN (Atrial

Fibrillation-like ECG

GAN)

Two of the four winning atrial

fibrillation detectors from the

2017 PhysioNet Challenge -

Hong detector, Datta detector

training set from the 2017 Phy-

sioNet Challenge

Addressing Data

unavailability

Imtiaz et al,

2021 [46]

BGAN (Boundary-

seeking GAN)

Visualisation only Custom dataset - from Fitbit

Charge 2 HR smartwatches

Privacy preserva-

tion

Ashrafi et al,

2023 [47]

simpleGAN,

medGAN, Dop-

pelGANger, DPGAN,

and PPGAN

F1-score, Precision, Recall,

Root Mean Square Error

(RMSE), AUC, Attacker

Advantage

(Patient interactions with a

tablet game (PflegeTab) )

Privacy preserva-

tion

Rafiei et al, 2024

[48]

SMOTE, CTGAN Jensen-Shannon Divergence

(JSD), Bhattacharyya Dis-

tance, Mann-Whitney U Test,

Benjamini-Hochberg (BH)

procedure

Custom dataset Predictive mod-

elling

Agliari et al,

2020 [49]

Custom method Power Spectrum Density (PSD) Custom dataset Method evalua-

tion
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Li et al, 2023 [50] EHR-M-GAN

and EHR-M-

GANconditional

Maximum Mean Discrepancy

(MMD), Dimension-Wise Prob-

ability, Discriminative Score,

Patient Trajectories, Pearson

pairwise correlations, Autocor-

relation function, Membership

Inference Attack, Differential

Privacy

MIMIC-III, eICU and HiRID Addressing

Data unavail-

ability, Privacy

preservation

Zhang et al,

2022 [51]

LS-EHR JensenśShannon Divergence

(JSD), AUC

Custom datasets (two) NA

Oh et al, 2023

[52]

Monte Carlo simula-

tions

Relative Bias, Confidence Limit

Ratios (CLRs), Mean Square Er-

ror (MSE)

Custom dataset (South Korea’s

patients’ healthcare resource

utilization database)

Checking bias

Burrello et al,

2022 [53]

DA techniques and DL

HR algorithms

Visualisation only PPGDalia Health monitor-

ing

Mendez et al,

2022 [54]

GAN Welch’s Test NA Health monitor-

ing and Data pri-

vacy

Yang et al, 2022

[55]

Physics-based models DFA PhysioNet Predictive mod-

elling

Vulpe-

Grigorasi et

al, 2022 [56]

GAN RMSSD, SDNN PhysioNet Increased diagno-

sis accuracy

Shamsuddin et

al, 2018 [57]

Virtual Patient Model NB, SVM and TB ARem and EEG Addressing Data

unavailability

Balasubramanian

et al, 2016 [58]

MDMs (Multidimen-

sional Motifs)

Graph Clustering Method Electromagnetic Articulogra-

phy and Motion Capture and

Muscle Activity

Personalised diag-

nosis and therapy

Tessier-

Larivière et

al, 2021 [59]

PNS-GAN Power Spectral Density, Eu-

clidean distance

BIOS-IT3 Dataset Data Augmenta-

tion

Vandendriessche

et al, 2017 [60]

MSE Classifier MIMIC-III (heart and sepsis) Predictive mod-

elling

Tasnim et al,

2022 [61]

SMOTE Classifier BCIAUT-P300 Addressing

Health inequality

Wang et al, 2023

[62]

SMOTE and WCGAN-

GP

Classifier ImmPort (Immunology Data-

base and Analysis Portal) data

Enhancing health

clinical data

García-Vicente

et al, 2023 [63]

SMOTE, CTGAN,

TVAE

LASSO, SVM, KNN, DT Norwegian Centre for E-health

Research

Data quality en-

hancement

Kuo et al, 2022

[64]

GAN Classifier MIMIC-III and EuResist23 Data quality

enhancement

and Privacy

preservation
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Yoon et al, 2023

[65]

Sequential encoder-

decoder methods and

GAN

Classifier MIMIC-III Privacy preserva-

tion

Mitra et al, 2023

[66]

CardioSim PC-based

system

Classifier mitdb Data quality en-

hancement

Khan et al, 2016

[67]

NA MEWMA accelerometer Health and well-

being assessment

Roonizi et al,

2015 [68]

SHVR Mean Square Error (MSE),

Wilcoxon Rank Test

synthetic ECG Predictive mod-

elling

Konak et al,

2023 [69]

TimeGAN and Anima-

tions

MMD PAMAP2 and SONAR-LAB Addressing Data

unavailability

Tan et al, 2023

[70]

TabGAN and SMOTE JensenśShannon Divergence

(JSD), Wasserstein Distance

(WD), Diff Corr

SUPPORT and METABRIC Predictive mod-

elling

Liu et al, 2020

[71]

Deep Sequential

Weighting (DSW)

LR, RF, KNN, PSM, CFR, CF,

BART

Custom dataset and MIMIC-III Predicitve mod-

elling

Atmadja et al,

2022 [72]

GAN CNN MIT-BIH Predictive mod-

elling

Hashemi et al,

2023 [73]

GAN PCA, t-SNE, pairwise correla-

tions,RNN

Sins, MIMIC-VI Privacy preserva-

tion

Wang et al, 2022

[74]

Markov Jump Process Domain Expert Review NA Predictive mod-

elling

Huerta et al,

2021 [75]

Standard Data

Augmentation Trans-

formations

McNemar test PhysioNet/CinC Challenge

2017 database

Addressing Data

unavailability

Ayilara et al,

2023 [76]

OSIM2 and ModOSIM Concordance Correlation Coef-

ficient

Population Research Data

Repository (PRDR)

Method evalua-

tion

Haleem et al,

2023 [77]

TC-Multi GAN and

Document Sequence

Generator

Wasserstein Distance,

Kolmogorov-Smirnov Test,

Jensen-Shannon Distance,

Distance Pairwise Correla-

tion, Sample Kernel Density

Estimations

GATEKEEPER EU project Addressing Syn-

thetic Data feasi-

bility

Zama et al, 2023

[78]

Diffusion-based

model

Dynamic Time Warping, Maxi-

mum Mean Discrepancy

PTB-XL Privacy preserva-

tion

Mosquera et al,

2023 [79]

RNN with LTSM and

GRU

Hellinger’s Distance, Cox Re-

gression Hazard Ratios

Alberta Health’s administrative

dataset

Addressing Syn-

thetic Data feasi-

bility

Huang et al,

2019 [80]

Delete, update, switch

operations

Pairwise Similarity Score Rochester epidemiology

project

Predictive mod-

elling

Dahal et al, 2023

[81]

ECśWCGAN Precision, Recall, F1-score AHADB, VFDB and CUDB Dataset balancing

Setiawan et al,

2022 [82]

SMOTE Accuracy, Sensitivity, Speci-

ficity, ROC, Cross-Validation,

MSE, MAE

PhysioNet Apnea-ECG data-

base (PAED)

Dataset balancing
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Jurdana et al,

2023 [83]

Custom method MSE EEG, Royal Brisbane Predictive mod-

elling

Yang et al, 2023 TS-GAN LSTM-based Discriminator,

Discriminator loss, Maximum

Mean Discrepancy, Principal

Component Analysis, t-SNE,

Sequence diagrams, Accuracy

ECG_200, NonInvasiveFa-

talECG_Thorax1, and mHealth

Data augmenta-

tion

Mahey et al,

2023 [84]

Simulation Channel by Channel Covari-

ance, EOG, 1/f Function, Spatial

Covariance

NA Addressing Data

unavailability

Velasco et al,

2018 [85]

Evolutionary algo-

rithm

Wilcoxon Rank Sum Test

(Mann Whitney Wilcoxon)

(MWW)

Principe de Asturias Hospital Addressing Data

unavailability

Xiong et al, 2022

[86]

Custom method Mean Square Error (MSE), Av-

erage Standard Deviation, Fre-

quency Distribution

PhysioNet 2017 challenge

dataset

Dataset balancing

Krenmayr et al,

2022 [87]

GAN with bi-LSTM Euclidean Distance, Wasser-

stein Distance

NA Addressing Data

unavailability

Zaballa et al,

2023 [88]

Probabilistic genera-

tive model (HMM and

EM)

Average Log Likelihood NA Predictive mod-

elling

Wendland et al,

2022 [89]

Multimodal Neural

Ordinary Differential

Equations

Jensen-Shannon Divergence PPMI (Parkinson), and NACC

(Alzheimer)

Predictive mod-

elling

Kaleli et al, 2023

[90]

GAN with CNN and

Transformer

Percent Root Mean Square

Difference (PRD), Root Mean

Square Error (RMSE), Frechet

Distance (FD)

MIT-BIH dataset Privacy preserva-

tion, Predictive

modelling

Sun et al, 2021

[91]

Longitudinal GAN AUROC, AUPCR, AUC Cerner Health Facts database Predictive mod-

elling, Privacy

Preservation

Shilaskar et al,

2017 [92]

Resampling, modified

Particle Swarm Opti-

mization

Accuracy, Precision, Recall,

Sensitivity, F1-score

Vani Dataset, Thyroid Dataset,

PdA, Cleveland, Audiology,

SVD, Vertigo

Predictive mod-

elling

Foomani et al,

2022 [93]

GAN Jensen-Shannon Divergence,

AUC

EMR data from Vascular Cen-

ters, Milwaukee, WI

Predictive mod-

elling

Peng et al, 2022

[94]

Gaussian Kernels Root Mean Square Error

(RMSE)

NA Predictive mod-

elling

Geng et al, 2021

[95]

GAN AUC, F1-score NA Predictive mod-

elling

Mivalt et al,

2022 [96]

GAN Cohen’s Kappa, F1-score Multicenter Intracranial EEG

Dataset

NA

Pascual et al,

2021 [97]

GAN Cosine Similarity, Recall EPILEPSIAE Privacy preserva-

tion

Manuscript submitted to ACM



24 Nafis et al.

Lu et al, 2023

[98]

GAN Jensen-Shannon Divergence,

Normalised Distance, AUC,

F1-score

MIMIC-III and MIMIC-IV Privacy preserva-

tion

Ikuma et al,

2016[99]

Karhunen-Loeve

transformation,

Time-series model

perturbations

Correlation analysis relative vi-

bration power represented by a

synthetic waveform

NA Predictive mod-

elling

Zhang et al,

2021 [100]

GAN Diagnosis forecast analysis,

Kolmogorov-Smirnov Test

Synthetic Derivative at Vander-

bilt University Medical Center

Privacy preserva-

tion

Baowaly et al,

2019 [101]

GAN Dimension-Wise Average,

Kolmogorov-Smirnov (KS)

Test, Association Rule Mining

MIMIC-III and NHIRD Predictive mod-

elling

Abdelghaffar et

al, 2022 [102]

GAN Relative Entropy, Accuracy Wadsworth BCI Dataset from

the BCI competition III

Predictive mod-

elling

Al-Saad et al,

2021 [103]

DPGAN Dimension-Wise Average, AU-

ROC, Area under the Precision-

Recall Curve, Accuracy

Arizona State’s Kinesiology De-

partment

Predictive mod-

elling, Privacy

preservation

Yu et al, 2023

[104]

GAN AUC CHB-MIT dataset Predictive mod-

elling

Cenek et al,

2020 [105]

Frequency Domain

Model

NA CIRCADA-S Predictive mod-

elling

Yadav et al, 2023

[106]

GAN Mean Absolute Error (MAE),

MRLE, PCA, t-SNE

UNIMIB Predictive mod-

elling

Yu et al, 2024

[107]

Temporal Convolu-

tional Network

Dipole Localization Error

(DLE), Normalized Hamming

Distance, Sensitivity, Speci-

ficity, False Detection Rate,

F1-score, Pearson Correlation

NA Predictive mod-

elling

Walonoski et al,

2018 [108]

Markovian model

(PADARSER)

Prevalence Difference Error Multiple Predictive mod-

elling

Kulpa et al, 2022

[109]

Autoregressive model,

Markov chain, RNN

Power Spectral Density (PSD) MIT-BIH NSTDB Predictive mod-

elling

Kan et al, 2021

[110]

GAN Average Error Rate Temple University Hospital Ab-

normal EEG Corpus

Predictive mod-

elling

Naseer et al,

2023 [111]

Continuous-Time Dif-

fusion Models

Dimension-wise distribution,

Pairwise Correlation difference,

Log-cluster, Synthetic ranking

agreement, Membership Infer-

ence Attack, Blinded Clinician

Evaluation, Domain Expert Re-

view

MIMIC-III and ED-EHR

datasets

NA
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Qian et al, 2024

[112]

DPGAN, PATEGAN),

ADSGAN

Fidelity (Alpha-Precision),

Diversity (Beta-Recall),

Authenticity, Wasserstein

distance, Jensen-Shannon dis-

tance, Inverse Kullback-Leibler

divergence, Chi-Squared Tes,

Kolmogorov-Smirnov test,

k-anonymity, DOMIAS AUC

Ever-smokers in UK Biobank

Database

Privacy preserva-

tion

Lu et al, 2023

[32]

SMOTE Decision Tree, Random For-

est, Logistic Regression, Ex-

treme Gradient Boosting, Sup-

port Vector Machines

Custom data Dataset balancing

Sawant et al,

2021 [113]

SMOTE Sensitivity, Specificity, Overall

score (Average of Sensitivity

and Specificity)

PhysioNet / CinC challenge

2016, and PASCAL

Dataset balancing

Akter et al, 2021

[114]

SMOTENC (SMOTE

variant)

Classifier Quantitative Checklist for

Autism in Toddlers-10 (Q-

CHAT-10), and Autism

Spectrum Quotient-10 (AQ-10)

Predictive mod-

elling

Katekarn et al,

2023 [115]

Custom method Participant satisfaction ques-

tionnaire and SPSS

Custom dataset Method evalua-

tion

Vemuri et al,

2016 [116]

Custom method Custom evaluation metrics

(Measurement of Uncertainty,

Measuring Uncertainty in

Endoscope Tip)

NA Predictive mod-

elling

Valdano et al,

2015 [117]

Custom method Visualisation only NA Disease mod-

elling

Covioli et al,

2023 [118]

Simulation Visualisation only MIMIC-III and MIMIC-III wave-

form matched dataset

Method evalua-

tion

Tomek et al,

2016[119]

Cellular automata Median, p-value Custom dataset Method evalua-

tion

Squires et al,

2022 [120]

Python packages (ran-

dom and fake)

Custom evaluation metrics Custom dataset Addressing Data

unavailability

Oliveira et al,

2023 [121]

CGAN and CT-GAN False Positives, False Negatives,

Accuracy, Specificity, Sensitiv-

ity, AUC

PARK Facial Mimic Data Augmenta-

tion

B SEARCH QUERIES

The following is a list of search queries used across five databases, and the number of relevant results obtained. It

should be noted that additional filtering criteria were set on these databases, including the date of publication range

(2014-2024) and the language of the publication (English).
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Database Query #

Scopus

(synthe* OR augment*) AND generat* AND

(time-series OR time* OR temporal*)

AND (tabular OR record*) AND (patient*

OR medic* OR health* OR clinic* OR

ehr*)} on title-abstract-keywords

415

Web of Science

(synthe* OR augment*) AND generat* AND

(time-series OR time* OR temporal*)

AND (tabular OR record*) AND (patient* OR

medic* OR health* OR clinic* OR ehr*)} (Topic)

1003

PubMed

(synthe* [Title/Abstract] OR augment* [Title/

Abstract]) AND generat*[Title/Abstract]

AND ( time-series[Title/Abstract] OR time*[Title/

Abstract] OR temporal* [Title/Abstract])

AND ( tabular[Title/Abstract] OR record* [Title/

Abstract]) AND ( patient*[Title/Abstract]

OR medic*[Title/Abstract] OR health*[Title/

Abstract] OR clinic*[Title/Abstract] ) on

title-abstract}

202

IEEE Xplore

("All Metadata":synthe* OR "All Metadata"

:augment*) AND ("All Metadata":time*

OR "All Metadata":temporal*) AND ("All

Metadata":tabular OR "All Metadata":record*)

AND ("All Metadata":patient* OR "All

Metadata":medic* OR "All Metadata":health*

OR "All Metadata":clinic* OR "All Metadata"

:ehr*) AND ("All Metadata":generat*)

138

ACM

[Abstract: synthe*] AND [[Abstract: time*]

OR [Abstract: temporal*]] AND [[Abstract:

patient*] OR [Abstract: medic*] OR [Abstract:

health*] OR [Abstract: clinic*] OR [Abstract:

ehr*]] AND [E-Publication Date: (01/01/2014 TO

31/01/2024)]

8

Table 3. SearchQueries used, and the number of Results obtained from each Database

Manuscript submitted to ACM


	Abstract
	1 Introduction
	2 Results
	2.1 Evaluation of Synthetic Data
	2.2 Generation of Synthetic Data
	2.3 Purpose and Impact of Synthetic Data
	2.4 Reproducibility of Results

	3 Evaluation guidelines for synthetic data
	4 Conclusion
	5 Methodology
	5.1 Search Strategy
	5.2 Search Queries
	5.3 Selection Process
	5.4 Data Items
	5.5 Reporting

	References
	A List of papers reviewed
	B Search Queries

