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Dominant end-tunneling effect in two
distinct Luttinger liquids coexisting in one
quantum wire

Henok Weldeyesus 1,7, Pedro M. T. Vianez 2,3,7, Omid Sharifi Sedeh 1,7,

Wooi Kiat Tan2, Yiqing Jin2, María Moreno2,4, Christian P. Scheller 1,

Jonathan P. Griffiths2, Ian Farrer5, David A. Ritchie 2, Dominik M. Zumbühl 1 ,

Christopher J. B. Ford 2 & Oleksandr Tsyplyatyev 6

Luttinger liquids occupy a notable place in physics as one of the most

understood classes of quantum many-body systems. The experimental mis-

sion ofmeasuring itsmain prediction, power laws in observable quantities, has

already produced a body of exponents in different semiconductor and

metallic structures. Here, we combine tunneling spectroscopy with density-

dependent transport measurements in the same quantum wires over more

than two orders of magnitude in temperature to very low elec-

tron temperatures down to ∼40mK. This reveals that, when the second 1D

subband becomes populated, the temperature dependence splits into two

ranges with different exponents in the power-law dependence of the con-

ductance, both dominated by the finite-size effect of the end-tunneling pro-

cess. This result demonstrates the importance of measuring the Luttinger

parameters as well as the number of modes independently through spectro-

scopy in addition to the transport exponent in the characterization of Lut-

tinger liquids. This opens a pathway to unambiguous interpretation of the

exponents observed in quantum wires.

Out of all many-body phenomena in quantum physics, Luttinger

liquids occupy a paradigmatic place as one of the most established

cases of interactions changing entirely the basic properties of the

underlying particles. Such a strongly correlated state is realized in one-

dimensional (1D) systems and is theoretically described by the

hydrodynamic Tomonaga-Luttinger theory1–3. On the microscopic

level, the many interacting particles form density waves already at low

energy, producing interaction-dependent power laws in the correla-

tion functions4,5 and, therefore, in various observables, which is one of

the hallmark predictions of Luttinger-liquid physics. It was more

recently generalized to the whole, usually nonlinear, energy band6–8.

The other signature prediction of Luttinger liquids is separation of the

spin and charge degrees of freedom for particles with spin, i.e., the

velocities of spin and charge-density waves are different. This was

recently generalized to the whole nonlinear band9,10.

The experimental challenge of observing the Luttinger-liquid

behavior was first approached by measuring the power law in trans-

port experiments, where the tunneling conductance vanishes at small

voltages (called the zero-bias anomaly or ZBA) due to the vanishing of

the density of states for still gapless density-wave excitations at the

Fermi energy1,2. This was observed in carbon nanotubes11–13, in NbSe3
14

andMoSe15nanowires, inGaAs 2Delectrongases (2DEG)with electrons
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localized at the edgebymeans of thequantum-Hall effect16, and later in

quantumwires formed electrostatically17,18. However, interpretation of

the observed exponents in terms of the Luttinger-liquid theory was

always based on less reliable theoretical assumptions about the

interaction strength that is open to different interpretations since

different tunneling mechanisms such as bulk19,20, end19,21, and through-

a-barrier22 tunneling processes predict different exponents, and are

nearly impossible to discriminate between without independent

knowledge of the Luttinger-liquid parameters. Separately, the spin-

charge separation was observed as two (rather than one) linear modes

with different velocities around the Fermi energy using angle-resolved

photoemission spectroscopy in a strongly anisotropic organic con-

ductor TTF-TCNQ23, in a high-Tc superconductor SrCuO2
24 and also by

using magnetotunneling spectroscopy in GaAs heterostructures17,18. It

was also measured in time-of-flight experiments as two wavefronts

propagating with different velocities in cold 6Li atoms on an optical

lattice25–27 and in chiral quantum-Hall states in GaAs28. Such spectro-

scopy, in contrast to the power-lawmeasurements, gives independent

experimental access to the interaction parameters directly.

Here, we choose a semiconductor wire to 2DEG tunneling setup18

to measure transport and spectroscopy in the same quantum wire

simultaneously using the magnetotunneling technique. A highly opti-

mized and well-filtered dilution refrigerator gives us access to a wide

temperature range from about 5 K down to 8mK. By varying the

electronic density systematically, we find one or sometimes two

Luttinger-liquid exponents in over two decades of temperature. Then,

we measure spectroscopy for each electronic density at low tem-

perature to extract themicroscopic parameters of the Luttinger liquid

in our wires. By comparing our directly obtained exponents with the

predictions of the Luttinger-liquid theory, we find that the experi-

mental values are an order of magnitude larger than the theoretical

ones for the bulk-tunneling transport channel but are close to the

predicted values for the end-tunneling regime. Therefore, we associate

the appearance of the second exponent at higher densities with the

occupation of the second 1D subband, which is accessible in semi-

conductor wires and is indicated by the appearance of the second

Fermi point in the spectroscopic data. This measurement demon-

strates the coexistence of two fairly independent Luttinger liquidswith

two different sets of Luttinger parameters in the same wire,

which could offer a new setup for Coulomb-drag experiments in

1D29–32. This result shows that the challenge of measuring one of the

main fundamental predictions of Luttinger liquids (bulk power laws) in

semiconductor wires still remains open, and raises the question of

whether the ‘bulk’ exponents observed in some carbon nanotube

experiments11–13 are also due to a similarfinite-size effect, since they are

so large that it requires the assumption of very strong interaction

strength to interpret them as the bulk effect.

Results
Transport exponent
In our experiment, the differential conductance G is measured in an

out-of-wire tunneling setup in a GaAs/Al0.33Ga0.67As double-well het-

erostructure in Fig. 1, with a finite, in-plane magnetic field applied

perpendicular to the wires.

We start by setting the wire-gate voltage to Vg = −630mV, close to

pinch-off, so thatonly a single 1D subband in thewires in theupperwell

is expected to be populated. The conductancemap for a wide range of

interlayer voltages Vsd and magnetic fields B is presented in Fig. 2C; in

Fig. 2A and B derivatives of the same data with respect to Vsd and B are

shown to help visualize different features. The contribution to the

signal from thewires shows two separate features, both with parabolic

dispersions away from Vsd = 0, and a zero-bias anomaly (ZBA) around

the Vsd = 0 line, which is almost independent of B over a wide range.

The former is the nonlinear effect of the spin-charge separation of the

Fermi sea due to Coulomb interactions10, which we have shown can be

described by two parabolae using the Fermi-Hubbardmodel9, and the

latter is the linear effect of the vanishing density of states at the Fermi

level, which canbe described by the Tomonaga-Luttingermodel1,2. The

boundary between these two regimes can be found by inspecting the

conductance maps, e.g., ∣V sd∣=0:25mV in Fig. 2A. In this work we are

mostly interested in the low-energy physics, so we focus on the ZBA.

One of the predictions of the Tomonaga-Luttinger model is that

the conductance does not depend on voltage Vsd and temperature T

independently but is given by a universal scaling curve of their

ratio33,34,

GðV sd,TÞ=AT
α cosh

eV sd

2kBT

� �

Γ
1 +α

2
+
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2πkBT

� �
�

�

�

�

�

�

�

�

2

, ð1Þ

where A is a temperature- and voltage-independent constant, α is a

transport exponent predicted by the Tomonaga-Luttinger model at

T = 0 that depends on the interaction strength, Γ(x) is the gamma

function, kB is the Boltzmann constant, and a parameter describing the

voltage division between two tunnel junctions is not required since in

our setup almost all the voltage drops across the tunnel barrier

between two quantum wells. To check this prediction, we measure

voltage cuts in the whole map in Fig. 2A–C at a fixed magnetic field

around the Fermi point (where the signal is strongest) slowly

increasing the temperature step-wise from the base temperature of 8

mK to 600 mK to ensure sample thermalization throughout the

process. The temperature is controlled with a heater on the flange of

the mixing chamber and measured with a RuO2 thermometer. Further

details on the measurement setup are given in Methods.

The results are presented as a superposition of all the measured

voltage cuts at the samemagnetic field of B = 2 T for each temperature

Fig. 1 | Schematics of the device. AOptical micrograph of the device, showing the

very regular array of wire gates as a uniform blur in the center. The air bridges

provide electrical connections to the p and wire gates. B Top view with the upper

well (UW) and the electrostatic gates (color-coded). A narrow region (p-region) in

the upper well remains 2D and is covered by a gate `p' (labeled PG) to allow tuning

of its density. Lower panel shows depleted (white) and non-depleted (light blue)

regions of the upper 2DEG after all voltages are set.C Side views of the double-well

structure, showingwhere tunneling fromawireoccurs to the lower2DEG (■), and a

region between wires (●), corresponding to the dashed lines in (B). The centers of

the upper well (UW) and lower well (LW) are separated by d = 32 nm. The UW2DEG

beneath the wire gate is formed into an array of 1D quantum wires by the negative

voltage on the wire gate Vg, and Vsd is the source-drain voltage between two wells.

Other gates: AB is an air bridge, BG is the barrier gate allowing current to flow only

by tunneling; SG is the split gate depleting both wells and MG is the mid-gate,

injecting current only into UW.
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over a wide range as a function of eV sd=kBT
0 in Fig. 2E. An effective

electron temperature T 0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T3
0 +T

33

q

18,35 with an electron saturation

temperature T0 = 65mKwas used in place of T to take into account the

saturation of the data at T ≲ T0, which we interpret as an effect of

electron-phonon decoupling. For low voltages, the curves collapse on

to the same universal curve as predicted by Eq. (1). However, they all

becomenon-universal beyond a certain voltage thatmarks a crossover

to the nonlinear regime. There the conductance needs rather to be

described by a different, nonlinear model6–10,36–41 dominated by the

spin-charge splitting of the Fermi sea9,10,41, which is characterised by an

essential dependence onmagnetic field (i.e., on the momentum of the

collective modes) and the absence of the particle-hole symmetry and

of the universal conductance scaling. To assess the crossover point to

the nonlinear regime in the voltage domain quantitatively, we select a

single voltage cut at an intermediate temperature and fit it with Eq. (1)

using the exponent α as a fitting parameter in Fig. 2D. In such a fit, we

use the particle-hole symmetry of the linear Tomonaga-Luttinger

model to restrict the fitting window at low voltages: the points where

the amplitudes of the signal for positive and negative voltages ± Vsd

start to deviate from each other marks the crossover, giving us

Vsd = 0.25mV as the range of validity of the low-energy regime. Note

that the data in Fig. 2E wasmeasured in the single-subband regime at a

density of n1D = 40 μm−1, see Supplementary Fig. 4, corresponding to a

chemical potential μ = 2−3meV that can be seen directly in the data in

Fig. 2A as e times the negative voltage needed to reach the bottom of

the green dashed parabola. For different densities in the wires, the

crossover point is different and is generally expected to be smaller

than Vsd = 0.25mV for lower densities.

Now we measure the zero-bias conductance as a function of

temperature, over awide range of about three decades, and for a range

of different Vg corresponding to different densities n1D (see Supple-

mentary Fig. 4) in the middle of the linear regime. The result is pre-

sented on a log-log scale in Fig. 3A. According to Eq. (1), the Luttinger-

liquid exponent α should be directly visible as a straight line in this

figure. What we in fact observe is two different exponents in the range

α = 0.3−0.6, summarized by the blue and magenta points in Fig. 3B. In

extracting the exponents, we exclude temperatures T > 1−3 K from the

analysis since the thermal energy is already in the nonlinear regime

corresponding to eVsd ≳ 0.25meV. For the lowest temperatures of

T < 35−65mK, the signal saturates within the accuracy of our experi-

ment, which we attribute to decoupling of electrons from phonons at

these temperatures, so that, below this point, the small residual heat

load heats the sample until the heat can be removed by the phonons.

We therefore use

GðV sd =0,TÞ=A T3
0 +T

3
� �α

3
, ð2Þ

instead of Eq. (1) to fit the lower-temperature exponents, α2 for

Vg > −670mV and α1 for Vg = −670mV. The higher-temperature

exponent α1 for Vg > −670mV starts at already high enough

temperatures that we can ignore the low-temperature saturation and

we use Eq. (1) to fit it, see the dashed lines in Fig. 3A.

Fig. 2 | Spectroscopic maps and universality of conductance at low energy.

A Tunneling conductanceG(B, Vsd) in the single-subband regime for Vg = − 630mV

at a lattice temperature of 8 mK presented as derivative of G with respect to the

voltage Vsd, dG/dVsd. The blackdashed lines around theVsd =0 linemark the extent

of the linear region around the Fermi energy, Vsd = ± 0.25mV, in which the con-

ductance ismostly independent ofmagnetic field (andmomentum). The green and

pink dashed lines on all panels mark the dispersions of the spin and charge Fermi

seas, respectively. The black dash-dotted line marks the dispersion of the 2DEG in

the bottom well measured by the Fermi edge of the quantum wire. The B± points

correspond to the ± k
1D
F points of the 1D electrons. The details offitting the features

are given in the text. B Derivative of G with respect to the magnetic field B, dG/dB

around the point labeled B+. The two solid lines mark the spin (vs) and charge (vc)

velocities around this point. C Map of the measured tunneling conductance

G(B, Vsd) showing howG vanishes at Vsd = 0.D Voltage cut at B = 2 T and T = 177mK

for Vg = − 650mV. The yellow rectangle marks the linear regime ∣Vsd∣ < 0.25mV.

E Rescaled conductance, GðeV sd=kBT
0Þ=G0, in the linear regime in the 8 to 670mK

range, in which the electronic temperature T 0 is used to take into account the

electron-phonon decoupling at T < 65mK. The colors of the points correspond to

the temperatures shown in the bar on the right, except that gray is used for points

outside the linear regime ∣Vsd∣ < 0.25mV. The data are measured in the single-

subband regime atVg = − 650mVand B = 2 T and the dashed-blue line is Eq. (1) with

α = 0.36 in (D, E).
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Magnetic-field dependence
The magnetic-field dependence of the tunneling exponents was

investigated separately, in a different dilution refrigeratorwith a base

temperature below 60mK, but with less noise filtering and hence

higher electron heating. Fig. 4A shows the rescaled conductance

GðeV sd=kBT
0Þ=G0 as in Fig. 2E for B = 2 T, from which we deduce a

minimum electron temperature of T0 = 130mK. From similar plots

and fits for different magnetic fields, the B dependence of α is

determined (see Fig. 4C). The transport Luttinger-liquid exponent α

remains largely momentum-independent within the field range B− to

B+ (B− = 0.70 T, B+ = 3.13 T for the value of Vg in this figure), i.e.,

between the ± kF points, as expected for the Tomonaga-Luttinger

theory42.

However, there appears to be a significant reduction of the

exponent α for B > B+, i.e., for k > kF. We have previously observed

signatures of this behavior in the exponent of the voltage depen-

dence in8. Such a reduction could be a hint of the spin-charge

separation of the whole Fermi sea beyond the linear regime10. The

emerging theory of nonlinear Luttinger liquids has already predicted

a second linear Luttinger liquid around the 3kF point as a result of the

spin-charge splitting of the Fermi surface9, with the second Luttinger

liquid consisting of only the charge (density-wave) modes. On the

qualitative level, this prediction implies a reduction of the transport

exponent calculated in Eq. (3) since only the charge modes (with the

same Luttinger parameters as around the kF point) contribute to it

under the sum over ν, which is in agreement with our observation in

Fig. 4C. We stress here that a transport theory still needs to be

developed to make a quantitative interpretation of such an effect in

our data.

Spectroscopy
Before we proceed to interpretation of the measured transport

exponents, we extract another piece of information from our data. In

the nonlinear regime away from the Vsd = 0 line, the spin- and charge-

density-wavemodes fill their corresponding Fermi seas9,10, manifesting

themselves as two parabolic dispersions with different masses, which

we also observe in our data—see the green and pink dashed lines in

Fig. 2A. Close to the Fermi points ± kF, these pairs of dispersive lines

converge in the linear low-energy region of Vsd = 0, allowing us to

extract the two microscopic parameters of the linear Luttinger liquid,

the renormalized velocities vν and hence the dimensionless Luttinger

parametersKνdirectly. Here, the spin-charge separation effectdoubles

the number of these parameters due to lifting of the degeneracy

between the charge (ν = c) and spin (ν = s) degrees of freedom.

Focusing our analysis around the + kF Fermi point now, we fit two

slopes in our data, see the twoblack lines converging on the B+ point in

Fig. 2B as an example. The spin line produces amaximum inG, which is

clearly visible as a white line in the hole sector (Vsd < 0) in the B-

derivative in Fig. 2B and in the Vsd-derivative in Fig. 2A. The charge line,

on the other hand, represents a drop in conductance, where many-

body excitations cease to be possible, and, being steeper, shows as a

clearminimumonly in the B-derivative in the hole sector, whichmakes

it less visible20. However, it still produces a maximum in G in the par-

ticle sector, which has a good visibility as a white line in the Vsd-deri-

vative in our experiment. From the slopes, we extract the twogradients

ΔEν/ΔB. They are converted to a pair of velocities as v
ν
=ΔE

ν
= edΔBð Þ

using the momentum shift edB in the electron tunneling between two

wells, see details in Methods, and the center-to-center separation

between the wavefunctions in each well d = 32 nm obtained from the

Fig. 3 | Temperature dependence of conductance and dependence of the Lut-

tinger parameters on electron density. A Conductance at Vsd = 0 as a function of

temperature on a logarithmic plot for the gate voltages Vg given in the legend. The

blue and magenta dashed lines are the power-law fits giving the values of the

exponents in (B). The details of the fitting procedure are given in the text. B The

values of two exponents α1 (blue squares) and α2 (magenta squares) as a function of

Vg extracted from the conductance data in (A) with the error bars showing the rms

error in the fit. Thebulk-transport exponentαbulk (black squares), the end-transport

exponent αend (green squares), and their error bars are evaluated for the Luttinger

parameters in D using Eq. (3) and Eq. (4), respectively. C The velocities of excita-

tions of spin (vs, green squares) and charge (vc, pink squares) extracted from the

spectroscopicmaps, e.g., Fig. 2A, as the linear slopes around theB+point, the Fermi

velocity vF extracted from the distance between the B± points, and the error bars

indicate the range of values that give an acceptable fit.D The Luttinger parameters

for spin (Ks, green squares), charge (Kc, pink squares), and their error bars obtained

from thedata in (C) usingKν= vF/vν. Theblue dashed line is the non-interacting limit

of these parameters, Ks,c = 1.
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band-structure calculation for the design of our double-well hetero-

structure, see details in ref. 43. The velocities obtained in this way for

the whole range of Vg that we used are presented in Fig. 3C. The error

bars there are reduced due to stability of the spin and chargemodes in

the whole band, so the fitting of two parabolas improves the accuracy

of extracting their slopes at the Fermi points. The data points on this

figure were always extracted for the first, highest-density 1D subband.

Simultaneously, we measure the distance between the two points

(B+
− B−) at which the 1D dispersion crosses the Vsd = 0 line (see, e.g.,

Fig. 2A). This difference gives the Fermi velocity of the 1D system as

vF = ed B + � B�
� 	

= 2m0

� 	

, where we use the value of the single-particle

electron mass in GaAs, m0 = 0.0525me, that was recently measured

in ref. 43. The Fermi velocities for the first, highest-density 1D subband

for all measured values of Vg are presented as black squares in Fig. 3C.

They increase as Vg becomes less negative, since that increases the 1D

electron density n1D = 2vFm0/(πℏ).

Together with the pairs of values of vc and vs, this information is

sufficient to extract theotherdimensionless Luttingerparameters for a

Galilean-invariant system as Kν = vF/vν
44. The obtained values of these

dimensionless Luttinger parameters are presented in Fig. 3D. Formore

positive Vg, n1D increases, so the interaction parameter rs = 1= 2a0
Bn1D

� 	

decreases,wherea0
B is the Bohr radius of conduction electrons inGaAs.

Therefore, asVg becomesmore positive, weaker interactionsmake the

differencebetween thedimensionless LuttingerparametersKν smaller,

tending towards their non-interacting limit Kc = Ks = 1, in which vc and

vs become the same and equal to vF for free fermions42.

Discussion
We now interpret the transport data quantitatively, and start from the

conductancemeasured at zeroVsd in Fig. 3A. The low-temperaturepart

of these data is in the linear regime, where the Tomonaga-Luttinger

model is applicable. The extent of this region can be estimated from

the voltage that separates the linear from the nonlinear energy regions

in the single-subband regime in Fig. 2A, Vsd = 0.25mV, as T =0:25mV �

e= 3kB

� 	

’ 1 K, where the numerical factor of 3 between Vsd and T was

established phenomenologically in the experiment on semiconductor

wires in18.We ignoredata above a slightly higher temperature T > 2−3 K

in Fig. 3A since the chemical potential is larger at higher densities,

extending the linear regime to somewhat higher values of Vsd.

At Vg = −670 mV, which corresponds to the lowest electron den-

sity of n1D = 37 μm−1 in the wires that we measure, only the lowest 1D

subband is occupied and we observe only a single slope in con-

ductance, corresponding to a single power law with the exponent α1
going for well over a decade from T = 1 K down to about 60mK on the

log-log scale in Fig. 3A. BelowT≃60mK the conductance saturates at a

constant value that originates most likely from thermal coupling bot-

tlenecks common at millikelvin temperatures, making even small

parasitic heat sources balance out the limited cooling power and

keeping the electronic temperature above that of the cryostat. In order

to do a quantitative assessment in this regime, we construct phe-

nomenologically the formula G � Tn
0 +T

n
� 	α=n

, which describes

interpolation between the Luttinger-liquid power law G ∼ Tα at T ≫ T0
and a saturation tailG −G(T = 0)∼ Tn at T≪ T0. Using n and T0 asfitting

parameters, we find their values in Fig. 5A, B. The low signal-to-noise

ratio prevents us from performing this analysis in the single-subband

regime. However, as wemake Vg less negative, the current and thereby

the signal-to-noise ratio increase, allowing us to see the shape of the

bending from the power law to the constant for Vg≥ − 590mV.

The statistical error for n in Fig. 5A is smallest for the highest

density, since the low-temperature conductance becomes large

enough to see the onset of saturation move to well below 60 mK,

giving more reliably n = 3 for Vg = − 550mV, but the amplitude of the

signal decreases rapidly with decreasing density, giving a less-defined

n = 3 or 4 for Vg = −570 and −590mV. Altogether, the current data,

given the current state of the art, do not select a particular exponent

for the saturation tail but rather restrict it to the range n = 3−4. These

exponents are close to but systematically smaller than the n = 5 pre-

diction of the purely electron-phonon mechanism in 3D bulk45, which

suggests an additional cooling process such as out-diffusion of elec-

trons, i.e., Wiedemann-Franz cooling46,47. The fitted values of T0 in

Fig. 5B are well-defined for all Vg, showing a two-fold decrease when

the second subband is occupied, which could indicate additional

cooling due to the Wiedemann-Franz process since the higher elec-

tronic density in the wires also increases the conductance through the

whole structure somewhat. For the sake of concreteness, we use n = 3

in the formula for conductance in Eq. (2) and for the electronic tem-

perature in T 0 that we used to fit the Luttinger-liquid exponents

in Fig. 3A.

Continuing the analysis of the zero-voltage conductance in

Fig. 3A, we consider the whole temperature range for Vg > −670mV.

In this gate-voltage range a second exponent α2 appears below an

intermediate temperature of about 400mK, and both exponents

α1, α2 evolve with Vg, see the blue and magenta squares in Fig. 3B.

Themain physical process behind these power laws can be assessed

by comparing the directly measured transport exponent with the

predictions of the Tomonaga-Luttinger theory. One of the two

possibilities is electrons tunneling at any point along the quantum

wire19,20, which is known as bulk tunneling and is expected to

Fig. 4 | Magnetic-field dependence of the transport exponent. A Rescaled con-

ductance, GðeV sd=kBT
0Þ=G0, between 130 and 310mK, where T 0 is the effective

electronic temperature allowing for electron heating, for T0 = 130mK, for mea-

surements in a cryostat with more noise heating. The points are colored according

to the temperature scale shown on the color bar on the right. The gray points are

outside of the linear regime, ∣Vsd∣ > 0.25mV, and are excluded from the fit. B Con-

ductance at Vsd = 0 as a function of temperature on a log-log plot. The dashed blue

line is a fit to Eq. (1) with α = 0.58, which has a relatively large uncertainty in the

parasitic background conductance of about ± 0.02μS, shown by the light blue

shading. The data in A and B were measured at B = 2 T. C The blue points show the

B-field dependence of α with large error bars derived from those in B and the

uncertainty in the relatively largeT0. Theorangepoint is the interpolated valueofα1

from Fig. 3B for the lower-temperature experimental run. All these data were

measured in the single-subband regime at Vg = −660 mV, for which B+ = 3.13 T.
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dominate in infinitely long wires. The other is local tunneling at an

end of the finite wire22,48, which is usually referred to as end tun-

neling and has Friedel oscillations mixed in on top of the Luttinger-

liquid density modes49,50. The conductance in both regimes is

evaluated within the framework of the Tomonaga-Luttinger model

relating the transport exponent to the microscopic Luttinger liquid

parameters as

αbulk =
X

ν = s, c

K
ν
+K�1

ν
� 2

4
, ð3Þ

αend =
K�1

c +K�1
s � 1

2
, ð4Þ

see details in Supplementary Note 1. The results of our comparison are

plotted as the black and green squares, respectively, in Fig. 3B. The

microscopic parameters vν and Kν for the Tomonaga-Luttinger model

are readily measured as a function of Vg using transport spectroscopy

in the same sample as used in Fig. 3C, E. Since both α1 and α2 are about

an order of magnitude larger than the predicted value of αbulk and are

of the same order as αend, we conclude that both transport exponents

originate mainly from the end-tunneling process.

Following this conclusion, we attribute the appearance of the

second exponent to occupation of the second 1D subband in the

quantum wire. A simple model describing the conductance measured

in our experiment at low energy can be constructed by treating two

subbands as a pair of conductors connected in parallel. The electrons

can enter either of the two subbands from the same 2DEG in the upper

well and tunnel from either of the subbands to the 2DEG in the bottom

well independently, see the sketch in Fig. 1. The total conductance,

then, is the sum of two individual conductances,

G=A1 min T ,T 1

� 	α0
1 +A2 min T ,T2

� 	α0
2 , ð5Þ

where the parameters Ai, α
0
i, and Ti are different for each of the two

subbands. Since α1 < α2 for each gate voltage in Fig. 3B, α0
2 has to be

attributed to the second subband, which has a smaller density and

therefore larger rs, leading to stronger interaction effects. The min

functions in this equation embody the applicability limit of the linear

Tomonaga-Luttinger theory. Beyond the energy kBTi, the power-law

increase of the conductance ceases and we model (very) crudely the

transport for the nonlinear theory at small momenta corresponding to

B = 2 T as a constant, motivated by our observation in the voltage cuts

in Fig. 2E, that the gray points in the nonlinear region lie systematically

below the blue dashed power-law curve. We have already estimated

T1 ≃ 1 K for the first subband. For the second subband, T2 ≃ 400mK is

somewhat smaller, owing to the lower density, which results in a

smaller chemical potential and therefore in a smaller extent of the

linear region.

The whole dataset in Fig. 3A can be explained with these values of

Ti, a pair of amplitudesA1<A2, and apair ofα0
1 >α1,α

0
2 >α2, inwhich the

latter is due to the total conductance in Eq. (5) always being a sum of

two contributions. At low temperatures T < T1, T2, the second con-

tribution, with the larger exponent α0
2, dominates, but the smaller

exponent α0
1 reduces the effective value α2 in G to α0

1 <α2 <α
0
2. At high

temperatures T2 < T < T1, the first contribution with the smaller

exponent α1 dominates in Eq. (5) but the second contribution is still a

constant, acting as the exponent α2 = 0, and reducing α1 inG to α1 <α
0
1.

Note that the bulk-tunneling process is always present in our

Fig. 5 | Saturation of conductance at low temperatures and occupation of

higher subbands. A Saturation exponents n obtained from fitting the low-

temperature data in Fig. 3A to G / Tn
0 +T

n
� 	α

n for Vg = − 550, − 570 and − 590mV

with the error bars indicating the rms error in the fit. B Saturation temperatures T0

obtained in the same fit for the full range of Vg with the error bars indicating the

range of values that give an acceptable fit. C Voltage cut for Vg = − 590mVwith two

occupied subbands and low temperature, T = 120mK. The dashed lines are Eq. (1)

with two exponents α1 = 0.28 (blue line) and α2 = 0.46 (magenta line) obtained by

fitting the corresponding regions in the data in this voltage cut. The crossover

voltage between the two exponents is Vsd = 0.12mV. D–F Evolution of G(B, Vsd) as

the finger-gate voltage is decreased, for Vg = −630, −590 and − 550mV. The

negative of the second-order derivative of the conductance G with respect to the

magnetic field B is plotted, in which the maximum of the signal corresponds to the

centers of the lines. From (D–F), more subbands are populated, as can be seen by

the appearanceof additional crossings around kF,(1,2,3). The labels (c, s), (1, 2, 3)mark

the nonlinear spinon and holonmodes away from the linear region, which form the

Fermi points for each subband where they cross the Fermi level.
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experiment since the electrons can tunnel from any position in the

wire to the 2DEG in the bottom well through the same tunneling bar-

rier. This process occurs in parallel with the end-tunneling process, so

we always need to add its contributionAbulkT
αbulk to the conductance in

Eq. (5). However, since α1,2 ≫ αbulk the contribution from the bulk-

tunneling process (with much smaller exponent) is much smaller for

large enough T. We were unable to observe it independently down to

the smallest T0 ≃ 35mK seen in our experiment, although it is possible

that it explains some or all of the saturation itself.

By measuring a voltage cut (G as a function of Vsd) at a higher

electron density at Vg = −590mV and at an intermediate temperature

of T = 120mK above T0 but below T1, we find further evidence for the

two-subband interpretation. Fitting the data in Fig. 5C with Eq. (1) we

find two exponents in the linear regime of ∣V sd∣<0:25mV: α2 = 0.46 at

smaller Vsd and α1 = 0.28 for larger Vsd. Within the relatively large

uncertainty of this fit (of about 20%) these two exponents are the same

exponents α1 and α2 in Fig. 3B for Vg = − 590mV measured in G at

Vsd = 0 as a function of T. The crossover point in voltage at

Vsd = 0.12mVgives the same crossover temperature (within error bars)

of T2 =0:12mV � e= 3kB

� 	

’ 450mK that we observe in the

temperature-resolved measurements of G at Vsd = 0 in Fig. 3A.

In the spectroscopicmaps that wemeasure asG in a wide range of

Vsd and B covering the whole energy band for the same densities

corresponding to Vg = −630, −590, −550mV, the second (and third)

subband also appears in the form of the second (and third) pair of the

spin charge parabolae, see Fig. 5D–F. In this figure, the second (and

third) sets of parabolaemarked by (s, c), (1, 2, 3) define the second (and

third) Fermi points marked by kF,(1,2,3) that correspond to successively

smaller densities of the higher 1D subbands in our quantum wires.

While the appearance of the second transport exponent in the

temperature-resolved measurements in Fig. 3A generally correlates

with the appearance of the second subband in Fig. 5D–F, the second

subband in Fig. 5D–F appears at somewhat higher Vg than the second

exponent. This happens since the ZBA hinders the low-energy sector

up to a finite value ofVsd in the transport spectroscopymeasurements,

e.g., up to Vsd = 0.25mV in Fig. 2A. In order for the second subband to

be visible, the density has to become large enough for its chemical

potential to exceed this threshold. For the lowest Vg = −550mV that we

investigated, the crossover region in the transport exponent in Fig. 3A

around T =400mKwidens,which hints at a third exponent developing

in between α1 and α2, corresponding to the appearance of the third

subband in Fig. 5F. However, the extent of this region in Fig. 3A is still

too small (narrower than a decade in temperature) to draw a definitive

conclusion.

Methods
Sample preparation
All out-of-wire tunneling devices measured in this work were fabri-

cated using GaAs/AlGaAs heterostructures grown via molecular-beam

epitaxy (MBE), and composed of two identical 18 nm quantum wells

(QWs) separated by a 14 nm-thick GaAs/AlGaAs superlattice barrier. Si-

doped layers on the far side of each well lead to electron densities of

2.85(1.54) × 1015m−2 and mobilities of 191(55) m2V−1s−1 in the top (bot-

tom) wells, as measured by the Shubnikov–de-Haas effect at 1.4 K.

Ti/Au gates were patterned using a combination of photo- and

electron-beam lithography, see Fig. 1. Electrical contact to both wells

was achieved via standard AuGeNi ohmic contacts. Gates were then

biased to inject current from one ohmic contact through the 1D

channel defined only in the upper well by the split gates andmid-gate.

The current was then carried by electrons tunneling to or from the

lower well in the central array of 1D wires, and it then flowed out

beneath the barrier gate (which blocked the upper well) to the other

ohmic contact (see ref. 43 for further details).

Our spectroscopy technique allowsus to probe the dispersion of a

given system (e.g., a 1D array of wires) with respect to a known

standard (e.g., a 2D Fermi liquid) by measuring the tunnel current

between both. This is given by the convolution of the two spectral

functions as20

I B,V sd

� 	

=

Z

d
2
kdε f

UW
T ðε� eV sdÞ � f

LW
T ðεÞ

� �

AUW k, εð ÞALW k+ ed n×Bð Þ=ℏ, ε� eV sd

� 	

,

ð6Þ

where AUW=LW k, εð Þ and f
UW=LW
T ðεÞ are the spectral functions and the

Fermi distribution of the electrons in the upper/lower wells (UW/LW),

− e is the electron charge, d is the distance between the wells, n= ẑ is

the normal to the 2D plane. In order to map the full dispersion of each

system, we then measure the differential conductance G = dI/dV as a

function of both energy ε and momentum ℏk. This is achieved by

simultaneously applying a DC bias eVsd between the layers (i.e., off-

setting their Fermi energies) and varying the in-plane magnetic field B

applied in the direction perpendicular to the wires B= � Bŷ, so that

the momentum of the tunneling electrons is shifted by edB in the x-

direction.

Conductance measurements
In this work, wemeasure the differential conductance between the two

wells, G B,V sd

� 	

=∂V sd
I B,V sd

� 	

. In order to achieve low electron tem-

peratures, the measurement lines were filtered by a two-stage RC low-

pass filter and subsequently passed through inductive microwave fil-

ters. G was measured using a lock-in amplifier at low frequency

(17.77Hz) with a small ac excitation of 2–6 μV rms. The line resistance

was calibrated on the first conductance plateau of the split-gate

characteristic, and subsequently subtracted.

When the wires are completely pinched off (Vg < −700mV), the

transport is purely in the 2D–2D tunneling regime, since there is still a

non-negligible ‘parasitic’ area of 2DEG that takes current from the

injector to the 1D wires, see Fig. 1. The current in this regime is

described by the 2D Fermi liquid in both wells. Its spectral functions

AUW/LW(k, ε) = δ(ε − ε2D(k)) are centered on parabolae

ε2DðkÞ=
ℏ
2

k � k
2D
F, L=U

� �2

2m*
2D

, ð7Þ

with the effective massm*
2D renormalised by the Coulomb interaction

according to the Landau’s Fermi-liquid theory; the Fermi wave-vectors

are k
2D
F,U and k

2D
F, L, respectively. Substitution of these spectral functions

in Eq. (6) models two parabolic dispersions in the conductance. The

peaks in our data are fitted well by this model with d = 32 nm and

m*
2D =0:062me, whereme is the free-electronmass, in the sameway as

it was in ref. 10.

When reducing Vg, the tunnel current in our device has two con-

tributions. One is from the tunneling through the array of 1D wires to

the lower 2DEG (which we are interested in) and the other is from the

tunneling through the 2D ‘p’ region. This parasitic tunneling leads to

uncertainties in the extraction of the tunneling exponents and,

therefore, has to be accounted for. To do so, we measure the con-

ductance as a function of Vg past wire pinch-off and observe that the

remaining 2D–2D conductance is linear inVg.We therefore extrapolate

the linear dependence to the Vg of interest and subtract it from the

measured conductance. Such subtraction of the parasitic 2D–2D signal

is performed in all measurements of the wires, taking the uncertainties

into account in the overall error estimates.

Low-temperature setup
Except where noted, all measurements were carried out in a heavily

modifiedwet dilution refrigerator that is optimized for achieving ultra-

low temperatures35. Each lead is connected through a thermocoax

running down to the mixing chamber, which acts as an excellent
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microwave filter for frequencies above 3GHz. The leads are then

thermally anchored to the mixing chamber using silver-epoxy micro-

wave filters51 offering > 100 dB attenuation above 200MHz. A 2-pole

discrete component RC-filter board reduces the final bandwidth down

to a few kHz. Subsequently, each measurement wire runs through the

mixing chamber, where sintered-silver heat exchangers, each with an

effective surface area of 3m2, guarantee optimal lead thermalization

down to the lowest temperatures, thus allowing efficient electronic

Wiedemann-Franz cooling through the measurement leads on low-

impedance devices. For resistive devices, on the other hand, therma-

lization occurs predominantly by phonon cooling through the sample

substrate. Electronic sample temperatures down to 10mK have been

measured using quantum-dot thermometry in a GaAs 2DEG52. The

present device, mounted on a Kyocera leadless chip carrier with heat-

sunk gold backplane, is resistive enough that the latter process should

dominate.

Data availability
The Basel data generated in this study are available at Zenodo (https://

doi.org/10.5281/zenodo.15639288) and all the data are available at the

University of Cambridge data repository (https://doi.org/10.17863/

CAM.119078).
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