
This is a repository copy of Prediction of MGMT methylation status in glioblastoma 
patients based on radiomics feature extracted from intratumoral and peritumoral MRI 
imaging.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/229997/

Version: Published Version

Article:

Chen, W.-S., Fu, F.-X., Cai, Q.-L. et al. (4 more authors) (2025) Prediction of MGMT 
methylation status in glioblastoma patients based on radiomics feature extracted from 
intratumoral and peritumoral MRI imaging. Scientific Reports, 15 (1). 27533. ISSN: 2045-
2322

https://doi.org/10.1038/s41598-025-08608-9

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1038/s41598-025-08608-9
https://eprints.whiterose.ac.uk/id/eprint/229997/
https://eprints.whiterose.ac.uk/


Prediction of MGMT methylation 
status in glioblastoma patients 
based on radiomics feature 
extracted from intratumoral and 
peritumoral MRI imaging
Wang-Sheng Chen1,2,6, Fang-Xiong Fu1,3,6, Qin-Lei Cai1,6, Fei Wang1, Xue-Hua Wang1, 
Lan Hong4 & Li Su2,5

Assessing MGMT promoter methylation is crucial for determining appropriate glioblastoma therapy. 

Previous studies have focused on intratumoral regions, overlooking the peritumoral area. This study 
aimed to develop a radiomic model using MRI-derived features from both regions. We included 

96 glioblastoma patients randomly allocated to training and testing sets. Radiomic features were 
extracted from intratumoral and peritumoral regions. We constructed and compared radiomic models 

based on intratumoral, peritumoral, and combined features. Model performance was evaluated 
using the area under the receiver-operating characteristic curve (AUC). The combined radiomic model 

achieved an AUC of 0.814 (95% CI: 0.767–0.862) in the training set and 0.808 (95% CI: 0.736–0.859) in 
the testing set, outperforming models based on intratumoral or peritumoral features alone. Calibration 
and decision curve analyses demonstrated excellent model fit and clinical utility.  The radiomic model 
incorporating both intratumoral and peritumoral features shows promise in differentiating MGMT 
methylation status, potentially informing clinical treatment strategies for glioblastoma.

Keywords Glioblastoma, MGMT methylation, Radiomics, MRI imaging, Machine learning, Personalized 
treatment
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ROI  region of interest
GLCM  gray level co-occurrence matrix
PME  peritumor microenvironment
IDH  Isocitrate Dehydrogenase
IRB  Institutional Review Board

Glioblastoma presents a formidable challenge due to its aggressive nature, high proliferation rate, and resistance 
to conventional treatments, leading to a median survival time of around 15 months1. The heterogeneity of 
glioblastoma at genetic and cellular levels, along with the limitations posed by the blood-brain barrier, further 
complicate treatment strategies2,3. Of particular importance in precision medicine for glioblastoma is the status 
of O6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme that influences response to 
alkylating agents, such as temozolomide4,5. Tumor MGMT promoter methylation, its DNA repair activity is 
inhibited, making tumor cells more sensitive to TMZ’s cytotoxic effects, has been associated with improved 
response to temozolomide and prolonged survival in patients6. Therefore, accurate determination of MGMT 
status is crucial for guiding treatment decisions and optimizing therapeutic outcomes in glioblastoma patients6.

The current mainstream technique for determining MGMT status in glioblastoma is methylation-specific 
polymerase chain reaction (MS-PCR) analysis7. This method is widely used due to its sensitivity, specificity, and 
relatively low cost. However, it has several limitations that may impact its accuracy and reliability, such as low 
DNA quantity obtained from small biopsy specimens and DNA quality variations influenced by tissue fixation 
and processing6,8. Radiomics technology offers a promising alternative that could overcome the limitations of 
traditional methods. By utilizing quantitative features extracted from medical images like MRI9, a radiomics 
model can be used to determine MGMT status in glioblastoma with high accuracy and reproducibility. For 
instance, Doniselli et al. performed a meta-analysis on 26 published studies concerning MGMT promoter 
methylation prediction10, suggesting extensive attention paid on this issue. However, most of the previous reports 
only focus on intratumoral regions, excluding the peritumoral region that may contain valuable information11,12. 
We hypothesized that combining MRI-based intratumoral and peritumoral radiomics could better predict 
MGMT status.

In this study, we aim to extract quantitative radiomics features from both intratumoral and peritumoral 
regions in MRI images. The features can be used to construct a radiomics model for predicting MGMT status 
in glioblastoma.

Materials and methods
Patients
As a retrospective study, a total of 96 patients with glioblastoma confirmed by histopathological biopsy from 
2000 to 2023 were consecutively enrolled from the Department of Radiology at the Hainan General Hospital. 
The inclusion criteria were as follows: (i) Adults with histologically confirmed primary glioblastoma of the 
central nervous system; (ii) Isocitrate Dehydrogenase (IDH) expression status testing performed; (iii) Complete 
preoperative axial T1-weighted contrast-enhanced (T1C), T2, and (T2-fluid attenuated inversion recovery)
T2-FLAIR data available; (iv) MR images obtained without artifacts affecting image observation and post-
processing; (v) No prior radiotherapy, chemotherapy, or other treatments before surgery; (vi) Measurable 
enhancing lesions evident on post-contrast Gd-enhanced T1-weighted MRI within the 80% isodose line 
range following concurrent chemoradiotherapy (CCRT). The exclusion criteria were as follows: (i)Presence of 
motion artifacts, metal artifacts, etc., affecting image quality; (ii) Preexisting history of other tumors, surgical 
history, include extracranial conditions. The detailed process of patient recruitment is presented in Fig. 1. This 
retrospective study was approved by the institutional review board of Hainan General Hospital. Due to the 
retrospective nature of the study, the requirement for informed consent was waived by Hainan General Hospital 
Medical Ethics Committe.

MRI image acquisition
We chose T1C sequence, which can better observe the enhancement degree of tumor itself, and included T2 and 
T2-FLAIR sequence, which can better evaluate the edema of peritumoral area.Axial T2-weighted imaging was 
performed on a 3.0T MRI scanner (Siemens, Verio) using a fast spin-echo sequence with TR/TE parameters of 
6000 ms/99 ms, a matrix of 320 × 192, a field of view (FOV) of 24 × 24 cm², and a voxel size of 0.4 × 0.4 × 6 mm³. 
The T2-FLAIR sequence had TR/TE parameters of 9000 ms/94 ms, a matrix of 320 × 192, an FOV of 24 × 24 cm², 
and a voxel size of 0.5 × 0.5 × 6 mm³. For contrast-enhanced T1-weighted imaging (T1C), a three-dimensional 
MPRAGE sequence was used with TR/TE parameters of 2100 ms/2.299 ms, a matrix of 512 × 512, an FOV 
of 23 × 23  cm², and a voxel size of 0.9 × 0.9 × 0.9  mm³. Before the examination, patients need to remove any 
metallic items, including dentures and metal bracelets. During the scan, it is crucial to remain as still as 
possible, particularly keeping the head immobile to avoid motion artifacts. The supine position is used for all 
examinations, with the head entering first. To ensure standardized scan alignment, the anterior commissure-
posterior commissure (AC-PC) line is typically used as the reference line.

ROI segmentation
The tumor MRI images were manually segmented using 3DSlicer software (version 5.2.2;https://www.slicer.org/), 
and the entire tumor region of interest (ROI) was delineated on the T1C sequence, including the significantly 
enhanced part and liquefied necrosis area, avoiding blood vessels and recognizable peritumoral edema; and 
the peritumoral ROI was delineated on the T2WI-FLAIR sequence, is the peritumoral T2 high-signal area. 
This was performed by a neuroradiologist with 5 years of experience in neuroradiology and was subsequently 
verified by another neuroradiologist with 5 years of experience in the field. Any differences between the two 
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neuroradiologists will be resolved by consensus. Neuroradiologists are unaware of other patient information 
when determining the region of interest. Finally, the tumor body and peri-tumor ROIs are automatically mapped 
to the corresponding positions on the remaining sequence images (Fig. 2) Radiomics featureselection.

Radiomics feature selection
Radiomics features were autonomously extracted from the delineated intratumoral or peritumoral ROI of each 
MRI sequence using the Pyradiomics package in the training set. The initial radiomics features spanned eight 
primary categories: shape, first order, gray level co-occurrence matrix (GLCM), gray level run length matrix 
(GLRLM), gray level size zone matrix (GLSZM), gray level dependence matrix (GLDM), and neighbouring gray 
tone difference matrix (NGTDM). To curate the multidimensional features and mitigate overfitting, those with 
zero variance were excluded, and a t-test was carried out to discern statistically significant features. Additionally, 
Pearson correlation coefficients (PCC) were calculated between each pair of radiomics features. The less 
significant feature in t-test was removed if the PCC exceeded the threshold of ± 0.9. Furthermore, following these 
steps, the application of the least absolute shrinkage and selection operator (LASSO) regression was applied for 
further feature refinement (Fig. 3).

Fig. 2. Representative case of ROI segmentation. (A) Original MRI image of T2-FLAIR sequence. (B) 
Intratumoral ROI. (C) Peritumoral ROI.

 

Fig. 1. Flow chart of patient selection process.
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Model construction and performance evaluation
We calculated a radiomics feature score (Rad-score) for each patient based on the random forest (RF) model 
in the training set. To predict MGMT status, we evaluated the area under the receiver-operator characteristic 
(ROC) curve (AUC), classification accuracy, sensitivity, specificity, positive predictive value (PPV), and negative 
predictive value (NPV) in both the training and testing sets. Decision curve analysis (DCA) was performed to 
assess clinical utility. And calibration curve was constructed to evaluate the accuracy of the predictive results.

Data preparation
The radiomics feature dataset consists of 8 categorical attributes, which necessitate pre - processing prior to the 
testing and evaluation of machine - learning models. After loading the dataset into the Python console, data 
categorization is performed via Python commands. Each attribute of the feature vector has a unique command. 
A one - hot encoder is employed to fit and transform the categorical variables. Before finalizing the optimal 
model for the research data, cross - validation is carried out using logistic regression and support vector machine 
learning models to better optimize the model(Figure 1S).

Cross-validation of machine learning models
This study aims to validate the most effective machine - learning model by employing four widely recognized 
algorithms (logistic regression, support vector machine, k - nearest neighbors, and random forest). The study 
compares the baseline results with cross - validation using a standardized dataset. The dataset was uniquely 
resampled with different n - splits and tested on machine - learning models, including logistic regression, 
random forest, support vector machine, and k - nearest neighbors. The process begins with dataset preparation 
by applying a one - hot encoder to categorical variables and normalizing the data. Subsequently, the accuracy 
of individual models is predicted, and 5 - fold cross - validation is performed after splitting the pre - processed 
radiomics feature dataset into training and test sets. The output will be further plotted using a learning curve with 
the same cross - validation. The confusion matrix and ROC - AUC curve of each model are compared with their 
respective model summaries, in combination with the learning curve of each step. This study adopts a rigorous 
approach to data preparation and model validation. The dataset consists of 8 categorical attributes, which have 
undergone pre - processing and feature vectorization. An 80:20 training - to - test split is used to maintain class 
proportions, followed by a 5 - fold cross - validation procedure for robust evaluation. Additionally, 5 - fold cross 
- validation is employed to plot the learning curve, ensuring a comprehensive assessment of model performance. 
As a result, data scientists can obtain the optimal model selection for similar data samples(Fig. 2S).

Statistical analysis
The independent sample t-test was conducted to assess continuous variables in the clinical and pathological 
characteristics, while chi-square test was conducted to analyze categorical variables. A two-tailed p value < 0.05 
represented statistical significance. The statistical analyses and figure plotting were conducted using R software 
(version 4.3.1; https://www.r-project.org).

Results
Patient characteristics
The clinical information of the patients is shown in (Table 1). Of the 96 patients, 34 belonged to the MGMT 
methylated group and 62 patients belonged to the MGMT unmethylated group. No significant different were 
observed between the two groups regarding age, sex, and tumor characteristics. The patients were randomly 
assigned to either a training set (n = 75) and a testing set (n = 21), with details provided in(Table 2).

Fig. 3. Schematic representation of radiomics feature selection using LASSO regression. (A) The k-fold 
cross-validation technique, employed by varying the lambda (λ) parameters, identifies the optimal set of 
characteristic features. (B) The compression diagram illustrating the k-fold cross-validation approach for 
selecting characteristic features.
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Intratumoral and peritumoral analysis
Following the selection of the radiomics features, the features most strongly correlated with MGMT methylation 
status were identified in multiple MRI sequences of either intratumoral or peritumoral ROI (Table S1). Thus, 
a series of radiomics models were developed to calculate Rad-scores that measure the probability of MGMT 
methylation (Table 3). In the testing set, the intratumoral model yielded AUC values ranging from 0.489 to 
0.610, while the peritumoral model achieved AUC values ranging from 0.593 to 0.769.

Model AUC Accuracy C-index F1-score NPV PPV Precision Sensitivity Specificity

Intratumoral T1C 0.582 0.700 0.700 0.250 0.684 1.000 1.000 0.143 1.000

Intratumoral T2 0.511 0.550 0.550 0.571 0.833 0.429 0.429 0.857 0.385

Intratumoral T2-FLAIR 0.489 0.650 0.650 0.000 0.650 —— 0.000 0.000 1.000

Intratumoral Merged 0.610 0.650 0.650 0.462 0.714 0.500 0.500 0.429 0.769

Peritumoral T1C 0.747 0.650 0.650 0.632 0.875 0.500 0.500 0.857 0.539

Peritumoral T2 0.593 0.700 0.700 0.250 0.684 1.000 1.000 0.143 1.000

Peritumoral T2-FLAIR 0.769 0.700 0.700 0.625 0.818 0.556 0.556 0.714 0.692

Peritumoral Merged 0.703 0.700 0.700 0.250 0.684 1.000 1.000 0.143 1.000

Table 3. The performance indicators of intratumoral and peritumoral models based on single or multiple MRI 
sequences.

 

Total Train Test

P-value(N = 96) (N = 75) (N = 21)

MGMT

Unmethylated 62 (64.6%) 49 (65.3%) 13 (61.9%) 0.974

Methylated 34 (35.4%) 26 (34.7%) 8 (38.1%)

gender

 F 32 (33.3%) 27 (36.0%) 5 (23.8%) 0.432

 M 64 (66.7%) 48 (64.0%) 16 (76.2%)

Age

 Mean (SD) 55.5 (13.4) 54.7 (14.2) 58.4 (10.0) 0.183

Tumor volume (mm3)

 Mean (SD) 32,100 (23100) 33,200 (23300) 28,400 (22600) 0.399

Slice thickness (mm)

 Mean (SD) 5.29 (0.845) 5.23 (0.872) 5.48 (0.728) 0.203

Spatial resolution (mm)

 Mean (SD) 0.795 (0.250) 0.787 (0.252) 0.824 (0.248) 0.549

Table 2. Clinical characteristics of patients in training and testing cohorts.

 

Total Unmethylated Methylated

P-value(N = 96) (N = 62) (N = 34)

Sex

F 32 (33.3%) 22 (35.5%) 10 (29.4%) 0.706

M 64 (66.7%) 40 (64.5%) 24 (70.6%)

Age

 Mean (SD) 55.5 (13.4) 55.0 (13.2) 56.5 (14.0) 0.614

Tumor volume (mm3)

 Mean (SD) 32,100 (23100) 35,400 (23300) 26,100 (21900) 0.0568

Slice thickness (mm)

 Mean (SD) 5.29 (0.845) 5.34 (0.580) 5.19 (1.19) 0.474

Spatial resolution (mm)

 Mean (SD) 0.795 (0.250) 0.773 (0.253) 0.836 (0.244) 0.236

Table 1. Clinical characteristics of patients grouped by MGMT methylation status.
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Integrated radiomics analysis
We further combined the intratumoral and peritumoral features to develop an integrated radiomics model, 
which calculated a Rad-score for each sample. As shown in Fig. 4, the mean Rad-score in the methylated group 
was significantly higher than in the unmethylated group. The integrated radiomics model demonstrated strong 
discriminative performance with an AUC of 0.814 (95% CI: 0.767–0.862) in the 5-fold cross-validation of the 
training cohort and 0.808 (95% CI: 0.736–0.859) in the testing cohort (Fig. 5).

Figure 6A presents the calibration curve of the model. The blue classifier curve closely follows the orange 
perfect calibration line, especially within most prediction probability intervals, indicating favorable calibration 
performance. The Hosmer-Lemeshow (H-L) test yields a P-value of 0.08, exceeding the 0.05 significance level, 
suggesting no significant calibration bias and supporting the model’s calibration reliability. This demonstrates 
the model’s good calibration, with predicted probabilities aligning well with actual observations, accurately 
reflecting real-event likelihoods. Figure B shows the decision curve. The model’s net benefit surpasses the “treat 
all” and “treat none” strategies when the threshold probability is below 0.4, particularly between 0.1 and 0.3, 
indicating a clinical decision advantage. As the threshold probability rises, the net benefit declines, matching 
or falling below the “treat all” strategy beyond 0.4. This highlights the model’s high clinical applicability in the 
low-to-moderate threshold probability range, offering superior decision support. Furthermore, the calibration 
curve for the radiomics model demonstrated good fitness in the testing set (Fig. 6A). Decision curve analysis 
(Fig. 6B) also indicated that using the radiomics model to predict MGMT status provided more net benefit for 
treatment decisions across the entire threshold probability range of 0.0 to 1.0 compared to the ‘treat all’ and ‘treat 
none’ clinical models.

Baseline machine learning models without cross-validation
In the model, four default machine - learning models with different machine - learning model parameters were 
designed (logistic regression with a maximum number of iterations n = 1000, SVC with a kernel, k - nearest 
neighbors, and random forest). Then, a loop was used. After fitting the model, the model was employed to 
calculate its accuracy score. This process involved splitting the data into training and test sets, having the model 
make predictions on the test data, and calculating the accuracy score of each model. The workflow included 
using the model fitted to the training set and then predicting the accuracy of the model. The console output 
indicated that the logistic regression and k - nearest neighbors models achieved the highest accuracy (81.9%), 
followed by the SVM with a linear kernel, which scored 78.6%. Specifically, logistic regression scored 81.9%, 
k - nearest neighbors scored 81.9%, the SVM with a linear kernel scored 78.6%, and the random forest scored 
78.6%. These accuracy scores used the default settings to demonstrate the performance of the models. Moreover, 
the classification accuracy score in the multi - label problem was calculated based on the training set samples, 
where the true labels exactly matched the predicted labels. This measure effectively highlighted the differences 
among the models when dealing with the given dataset. Compared with the support vector machine and 

Fig. 4. Boxplots of Rad-score distribution in MGMT methylated and unmethylated groups.(A) Training set. 
(B) Testing set. ***, p < 0.001; *, p < 0.05.
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random forest models, the logistic regression and k - nearest neighbors models exhibited the highest prediction 
accuracy (81.9%). However, when evaluating macro - average metrics such as precision, recall, and F1 - score, 
the random forest model excelled, achieving a true - match accuracy range of 93–97%. This indicates that while 
logistic regression is more preferable when accuracy is the primary consideration, the random forest model is 
more suitable for scenarios where overall performance (including precision, recall, and F1 - score) is crucial for 
decision - making.

Machine learning models using cross-validation
Another approach for resampling radiological datasets in machine learning is to utilize cross - validation 
techniques. Cross - validation is essentially a process of evaluating all sample models by training each training/
test model on the dataset. The final majority vote is determined after evaluating complementary subsets of the 
data. This process is highly effective when designing cross - validation to detect overfitting issues and generalize 
patterns. Each model is individually evaluated and fitted, and its accuracy score is calculated using cross - 
validation and an accuracy function. Table 2S outlines the average accuracy achieved through 5 - fold cross 
- validation. The random forest and k - nearest neighbors models achieved the highest accuracy of 84.15%. This 

Fig. 6. Additional evaluation on radiomics model performance. (A) Calibration curve and 20 (B) decision 
curve for radiomics model in testing cohort.

 

Fig. 5. Receiver operating characteristic curves of radiomics model in the (A) training cohort and (B) testing 
cohort.
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is because these models can accommodate both datasets by applying decision - tree separation in a tree - like 
structure. Closely following, the logistic regression model reached an accuracy of 83.81%, while the support 
vector machine model achieved an accuracy of 82.49% on the normalized data samples. Notably, the random 
forest algorithm recorded a maximum accuracy of 90% in certain cases. Using the upgraded data samples, a 5 
- fold cross - validation process was carried out to evaluate and compare machine - learning models, including 
logistic regression with a maximum iteration of n = 1000, SVM, k - nearest neighbors, and the random forest 
algorithm. For each model, the cross - validation score was computed using 5 - fold cross - validation scores. 
The average accuracy was calculated as the mean of the cross - validation scores and presented as a percentage 
with two decimal places. The generated table highlights the accuracy of each fold and the average accuracy of 
the sample data.

In Table 3S above, the combined machine - learning models with various parameters show the accuracy 
scores of each model. The k - nearest neighbors model has the highest accuracy of 84.15%, followed by the 
Logistic regression and random forest models, which have the second - lowest accuracy of 83.83%. The support 
vector machine model has the lowest accuracy, scoring 82.2%. Therefore, researchers may use the highest or 
lowest scores to evaluate model accuracy. Since the max/min values are obtained from the accuracies of five cross 
- validations, this approach to model evaluation may cause confusion. The accuracy scores using the max/min 
of the return values of each model depend on the settings of the normalization parameters. When researchers 
consider sample reshuffling during cross - validation iterations, the samples reshuffled using stratified values 
become true. For the high accuracy of large models in correctly classifying samples, the differences between each 
model are significant.

From Fig. 3S, the best-tuned models tested with predicted values and inverse parameter tuning yielded the 
following accuracy scores: logistic regression (81%), random forest (80.8%), support vector machine (83.1%), 
and k-nearest neighbors (slightly lower). All models demonstrated accuracy scores exceeding 90%, indicating 
satisfactory classification performance when combined and tested.

The accuracy scores of each model are compared against the highest and lowest scores, including scenarios 
with and without cyclical accuracy considerations (Fig. 4S, ). The logistic regression and support vector machine 
(SVM) models exhibited substantial discrepancies between non-cross-validated and cross-validated results, 
with SVM showing the largest difference. Conversely, the k-nearest neighbors (k-NN) model yielded the most 
consistent and optimal results among the four models. Similarly, when comparing a single independent model to 
multiple models with validation-supported SVM, the accuracy differed by 14% from the k-NN model. The closest 
model accuracy was within a 5% lower margin (Fig. 5S). Due to standard resampling using n-fold during model 
optimization, the baseline accuracy of machine learning models became lower than that of cross-validation.

Discussion
In this radiomics analysis, feature extraction was performed using T1C, T2, and T2-FLAIR MRI sequences. 
Three distinct radiomics approaches were developed to predict MGMT methylation status, including one based 
on intratumoral features, one on peritumoral features, and one on combined intra- and peritumoral features. 
The results showed that the rad-scores constructed from the combined intra- and peritumoral features yielded 
the highest AUCs in both the training and validation cohorts.

In numerous research endeavors focused on quantitative image feature assessment for glioblastoma, the 
utilization of only one MRI sequence has been a prevalent approach13,14. This single-sequence strategy often 
results in a constrained dataset, providing limited information that may not fully capture the complexity and 
heterogeneity of glioblastoma tumors. Recognizing this limitation, we assessed the efficacy of a multi-sequence 
model, which integrates data from various MRI sequences, in differentiating between MGMT methylated and 
MGMT unmethylated glioblastomas. In this study, the multi-sequence models showed better performance in 
most cases, but in the models of the region around the tumor, some single-sequence models may have performed 
better in some respects due to their specific imaging characteristics. This phenomenon suggests that we need to 
analyze and compare the performance of different models in various situations in more detail in future studies to 
determine the model that is most suitable for specific clinical tasks. This enhanced performance can be attributed 
to the richer and more comprehensive set of features available when multiple sequences are combined, allowing 
for a more nuanced and accurate classification. Our findings are consistent with a series of prior studies that have 
highlighted the advantages of utilizing multi-sequence MRI data15–17.

Recently, radiomics has gained recognition as an effective method for extensively quantifying tumor phenotypes 
through the application of numerous quantitative imaging features. Numerous studies have concentrated on 
distinguishing between MGMT methylated and unmethylated glioblastomas prior to surgery using multimodal 
MRI images, with most research emphasizing features within intratumoral regions18. Nevertheless, several 
studies have shown that peritumoral region features also hold vital information19,20, evidenced by changes in 
the surrounding area of tumors, including peritumoral lymphatic vessel invasion, lymphocytic infiltration, and 
edema. Therefore, in this study, we extracted radiomic features from both intratumoral and peritumoral regions. 
The integrated model exhibited enhanced performance and substantially boosted its predictive capability. Hence, 
analyzing peritumoral radiomics might be useful for predicting MGMT status.

The radiomics features identified in this study can be roughly divided into three categories: (I) first-order 
statistical features; (III) second-order texture features; and (III) higher-order features: based on wavelet 
transform. These characteristics are objective quantitative tumor-related information that is difficult to detect 
with the naked eye, and usually reflect the pathophysiological information of the complex microcirculation and 
microenvironment inherent in the tumor. The tumor features extracted in this study mainly included texture 
features and baud signs, followed by statistical features. The extracted perinodular features mainly included 
statistical features and Baud signs, followed by texture features.
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Whether in tumor features or peritumoral features, high-order features based on wavelet transform are 
common, which may be related to the fact that wavelet features decompose high-frequency and low-frequency 
areas and can reflect more microscopic information of the tumor. The first-order statistical characteristics reflect 
the changes in the symmetry, homogeneity and intensity of voxels, and further reflect the basic characteristics 
of tumors, such as signal intensity; while the second-order texture characteristics reflect the spatial arrangement 
between voxels gray levels. The relationship reveals internal information such as tumor heterogeneity. The higher 
the value, the greater the texture contrast of the image, and the higher the heterogeneity of the tumor.

The better predictive performance of the peritumoral model compared to the intratumoral model in this 
study may be related to the strong invasiveness of glioblastoma cells, resulting in significant heterogeneity of 
the peritumoral microenvironment compared to the tumor itself, which is also consistent with some previous 
studies21.There were no statistical differences between clinical and imaging features such as gender, age, and 
tumor volume and methylation of MGMT promoter, suggesting that methylation status of MGMT promoter 
is more closely related to microscopic features of tumor and mid-week.Taking a step forward, the efficacy of 
our radiomic model showed relatively good performance compared to some previous studies on the MGMT 
status prediction. As summarized in a prior meta-analysis, the pooled AUC of the 15 studies was estimated to 
be equal to 0.778, with more than half of them yielded AUC lower than 0.80010. This comparison underscores 
the incremental advancement achieved by our model. While the enhancement in AUC is not exceptionally 
large, it nonetheless signifies a step forward in predictive accuracy and robustness, suggesting that our approach 
integrating multiple MRI sequences as well as intratumoral and peritumoral ROIs may offer a more efficient tool 
for the intended application.

There are also some limitations to this study that must be addressed. Firstly, its retrospective design may have 
introduced selection bias. A prospective study, if feasible, would provide more robust insights. Secondly, the 
study was conducted at a single center with a limited patient cohort, which hindered the application of advanced 
data analysis methods. Therefore, the findings need external validation with a larger patient population, which 
allows for the development of deep learning model. Additionally, ROI was manually delineated slice-by-slice, 
which may introduce variability among radiologists. Moreover, the manual drawing of ROI is a laborious 
process. Future research could benefit from implementing automated glioblastoma segmentation methods22.

In this study, the radiomic model of the region around the tumor performed better than the radiomic model 
inside the tumor, which may be closely related to the characteristics of the tumor microenvironment. The 
radiomic characteristics of the surrounding area of the tumor can more effectively reflect the dynamic changes 
of the tumor microenvironment, which are closely related to the metastasis and progression of the tumor. In 
addition, there may be cystic areas and frequent necrosis within the tumor, which can degrade the performance 
of the internal tumor model. The characteristics of the region surrounding the tumor may provide more specific 
insights into tumor properties, thereby improving the predictive power of the model.

This model has certain universality in the future similar research. With the deepening understanding of the 
role of the tumor microenvironment in cancer progression and metastasis, more and more studies have begun to 
focus on the radiomic characteristics of the region around the tumor. These studies have consistently shown that 
the radiomic characteristics of the peritumor area are of great value in predicting the therapeutic response and 
prognosis of the tumor. Therefore, incorporating the radiomic characteristics of the region around the tumor 
into the model construction can provide a more comprehensive and accurate prediction tool for future studies, 
and help realize precision medicine for cancer.

In conclusion, we developed and validated an MRI radiomics model based on machine learning to 
differentiate MGMT methylation status in glioblastoma patients. This model offers a non-invasive, stable, 
and relatively accurate method for predicting MGMT methylation, which has significant potential to assist 
in clinical decision-making for personalized treatment. Our study demonstrates that peritumoral radiomics 
features provide unique biological insights and enhance the model’s performance, suggesting that incorporating 
peritumoral radiomics could serve as a valuable adjunct to traditional biopsy-based methods. Future research 
should focus on validating these findings in larger cohorts and exploring how peritumoral radiomics can be 
optimally integrated into clinical workflows for maximum benefit.

Data availability
All data generated or analysed during this study are included in this article. Further enquiries can be directed to 
the corresponding author.
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