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Abstract

Truss layout optimization and continuum topology optimization are both well-established methods, with each having a wide 

range of applications. Whereas truss layout optimization is best suited for low volume fraction problems (i.e. where the opti-

mal structure occupies a low proportion of the original design domain), continuum topology optimization is best suited for 

medium and high volume fraction problems. However, real-world design problems often include both high and low volume 

fraction regions. To address this, a two-step hybrid optimization approach is proposed. First, low and high volume fraction 

regions are identified within a problem. These are then populated with truss and continuum elements respectively, which 

are connected via suitable interfaces. The combined optimization formulation is conic, and can be efficiently solved using 

interior point solvers. Numerical examples are presented to demonstrate the efficacy of the proposed approach. The results 

show that the approach is capable of identifying structures which contain a mixture of length scales, incorporating both bulk 

continuum regions and fine truss elements.

Keywords Continuum topology optimization · Truss topology optimization · Ground structure method · Limit analysis

1 Introduction

With the need to use high embodied carbon structural mate-

rials more sparingly in light of the climate crisis, structural 

optimization methods are becoming increasingly popular for 

a wide range of application areas.

In cases where there is significant design freedom, the 

minimum volume structure usually takes the form of truss-

like continua (Michell 1904). However, obtaining these 

forms using analytical methods can be challenging, and so 

in practice the problem is usually considered to be one of 

finding the minimum volume truss containing a large, but 

finite, number of bars. The most common method used to 

obtain these optimal trusses is the ground structure method, 

also referred to as truss layout optimization or truss topol-

ogy optimization. This approach was first proposed by Dorn 

et al. (1964), with computational efficiency greatly increased 

using the adaptive member-adding method (Gilbert and Tyas 

2003). For practical purposes it is often preferable to iden-

tify structures that contain relatively few members; with the 

ground structure method, this is most easily achieved by 

using a coarse nodal grid. Whilst that restricts the possi-

ble joint positions, it can be overcome using the geometry 

optimization approach developed by He and Gilbert (2015).

When the structure occupies a significant proportion 

of the design domain, it is more appropriate to model the 

structure using a method that considers the more complex 

stress states likely to occur. Continuum-based optimization 

methods discretize the domain into a mesh of elements, and 

various methods are available to establish the presence or 

absence of material in each element.

The most direct formulation of this continuum approach 

results in a problem where the presence of material is repre-

sented by a continuous variable at each point; in two dimen-

sions, this is interpreted as the optimization of a variable 

thickness sheet (Rossow and Taylor 1973). Optimal solu-

tions to this problem can be found globally, however, the 

presence of intermediate material densities/thicknesses 

means that the solutions may not be physically applicable 

in many cases.
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To address this, it is common to penalise the intermedi-

ate material densities (Bendsøe 1989). Various microstruc-

ture and composite layouts have been suggested as physical 

interpretations for these penalisation functions, however, the 

overall goal is usually that the optimization problem princi-

pally generates solutions where each element is either solid 

or void. This limits the level of detail in the structure based 

on the resolution used for the mesh.

Free material design (Bendsoe et  al. 1994) takes an 

opposing approach, increasing the freedom of the design 

problem by allowing multiple material properties to vary 

independently (in the most general formulations, all com-

ponents of Hooke’s tensor are independently determined). 

Finding practical physical interpretations of these solutions 

can be a significant challenge, which is usually expressed as 

the problem of finding microstructures that can be homog-

enized to the required properties (Czarnecki et al. 2017). 

Despite these difficulties, Lewiński et al. (2017) used a con-

strained version of this approach to generate an optimized 

lattice structure that incorporates both areas of dense and 

reasonably sparse structure.

Within the field of continuum optimization, it is most 

common to pose the problem as one of compliance minimi-

zation; i.e. to identify the stiffest layout for a given quantity 

of material (Bendsoe and Sigmund 2003). As a sub-category 

of these problems, stress constraints are sometimes imposed 

alongside an elastic material model to ensure that the solu-

tion remains within the elastic range (Duysinx et al. 2008).

However, many structural materials allow significant 

plastic capacity to be developed beyond the elastic range. 

Therefore, there has been interest in directly addressing 

the limit state of a scenario, allowing the minimization of 

material volume, subject to supporting a given set of loads. 

Lower bound formulations were considered by Kammoun 

and Smaoui (2014) and Kammoun (2016) for problems with 

single and multiple load cases, respectively. Both continuous 

(i.e. variable thickness sheet) and discrete (i.e. solid/void) 

topologies were obtained, the latter by means of a power 

law penalisation approach solved via a sequential conic pro-

gramming approach. Conversely, Fin et al. (2019) employs 

a SIMP-style iterative update scheme to solve the discrete 

problem. A wider range of finite element types were con-

sidered by Herfelt et al. (2019), and Mourad et al. (2021) 

have explored the impact of alternative strength criteria. 

Recently, an extension to 3D problems has been proposed 

by Li et al. (2024). All these limit analysis approaches are 

capable of producing solutions with lower material usage 

than a comparable stress-constrained elastic approach, suc-

cessfully mobilising the additional capacity available beyond 

the elastic range.

Various approaches have been explored with the aim 

of increasing understanding of the solutions produced by 

continuum topology optimization, including by interpreting 

them as truss-like structures. The moving morphable compo-

nent (MMC) method proposed by Guo et al. (2014) provides 

an approach whereby the continuum topology optimization 

problem can directly provide a solution formed of discrete 

structural elements. This allows some of the clarity of truss 

optimization methods to be realized within a continuum 

framework. However, there are issues with the high resolu-

tion that is required to obtain solutions comparable to those 

which may be obtained from ground structure approaches, 

and the non-convexity of the problem.

Other studies have sought to interpret a truss-like struc-

ture through the post-processing of continuum optimization 

results. Larsen et al. (2018) extracted truss layouts from the 

directions of principal strains in a continuum-optimized 

solution, although significant post-processing was required 

to obtain satisfactory solutions. Notably, the centres of ele-

ment ‘fans’ were explicitly identified and the boundary 

conditions altered to a more typical truss setup with point 

supports. Ma et al. (2023) automates the post-processing 

required, but there are still many steps involved, including a 

separate frame optimization to finalise the extracted design.

The wider field of de-homogenization has gained traction 

due to the ability to produce results with very fine length 

scales using relatively coarse grids, and correspondingly 

modest computational requirements. Interested readers are 

referred to Wu et al. (2021, Section5.3.1) for a review, and 

to Woldseth et al. (2024) for an educational example code. 

More recent developments have also extended the applica-

bility to multiple load cases Jensen et al. (2022). The de-

homogenized structures generally display truss-like forms 

in 2D cases, with larger solid regions in areas where more 

material is required.

Conversely, it is sometimes desirable to manufacture the 

structure resulting from a truss optimization from a single 

component; e.g. by additive manufacturing or by CNC cut-

ting of a solid plate. It is often assumed that the joints in 

these cases should be thickened to prevent stress concentra-

tions and allow for the overlapping of members converging 

to a single point (Smith et al. 2016). Yet, when a number of 

optimized trusses cut from thick plate were tested by Decker 

et al. (2018), it was found that the expansion of joints made 

little difference to the ultimate load that the structure could 

support, and that the generation of a plastic hinge at the non-

expanded joints prevented buckling members forming more 

complex global modes.

Despite these challenges, it is frequently necessary in 

practice to combine monolithic, continuum-type struc-

tures with finer skeletal elements. A common structural 

application is the design of reinforced concrete. This has 

been the main focus of previous work on combining con-

tinuum and frame optimization. There have been several 

studies in which the well-known strut-and-tie approach has 

been guided by the results from topology optimization; 
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a review of these approaches can be found in Xia et al. 

(2020). Notably, Zhong et al. (2017) proposed two meth-

ods based on a solid continuum element and a micro-truss 

unit respectively; for the most challenging examples, these 

approaches were combined in manually selected regions to 

generate the most appropriate strut-and-tie model.

Perhaps a more interesting method is to directly com-

bine continuum approaches for the concrete phase and 

frame approaches for the reinforcement, with various for-

mulations proposed by Amir (2013); Gaynor et al. (2013); 

Yang et al. (2015); Mejías and Zegard (2023). By doing 

this, topology optimization of concrete structure can be 

identified simultaneously with the reinforcement distribu-

tion within. The effectiveness of these approaches has been 

demonstrated experimentally by Jewett and Carstensen 

(2019). Later this approach was expanded to consider pre-

stressed members in Amir and Shakour (2018). However, 

since overlapping between line and continuum elements is 

allowed, the application of this approach is limited to the 

design of reinforced concrete or other similar materials.

At a higher level, the overall design of buildings can 

also be considered as a combined continuum and skeletal 

structural design problem. Two or three-dimensional ele-

ments, most suited to continuum design approaches, may 

include shear walls, foundation slabs or architectural fea-

tures, typically constructed from concrete. These are usu-

ally complemented by skeletal elements such as columns, 

beams, or transfer trusses in a wider range of materials. 

Zakian and Kaveh (2020) considered continuum topology 

optimization of shear walls, combined with a pre-defined 

frame structure. Optimizing the position of the shear wall 

within a structure is a more challenging problem, which 

Zhang and Mueller (2017) studied using genetic algo-

rithms (although the impact on the surrounding frame was 

not considered in detail).

The aerospace and automotive sectors have, for some time 

now, been employing continuum optimization methods to 

provide high-performance and lightweight solutions for the 

design of individual components (Zhu et al. 2016). However, 

as the focus is now broadening towards the integrated design 

of whole vehicles, the continuum approach has become 

extremely computationally expensive. For example, to model 

a wing of an aeroplane at a reasonable resolution (voxels of 

up to 0.8cm dimensions), Aage et al. (2017) required up 

to 5 days using 8000 CPUs. Truss-based approaches have 

the potential to offset much of this computational difficulty. 

The results of Aage et al. (2017) are mostly composed of 

forms that could be well approximated by a frame model, 

even though there are also some shell or plate-like sections 

evident. Previous studies (e.g. Cavazzuti et al. 2011) have 

manually reinterpreted continuum topology optimization 

results into frame form, in order to improve manufactur-

ability and avoid indistinct parts of the continuum results.

The purpose of this paper is to propose a novel approach 

to addresses structural topology optimization problems that 

contain both regions of dense and sparse structure. The 

approach combines truss and continuum methods in differ-

ent regions of the design domain, and a simple heuristic 

approach is presented in order to define the division of the 

domain into truss and continuum areas.

The paper is structured as follows: in Sect. 2, a novel 

formulation with adjacent regions of skeletal and mono-

lithic structure is described. In Sect. 3, the approach is 

demonstrated in an example with a pre-defined division of 

monolithic and skeletal structural regions. A procedure for 

the automatic division of the domain is then described in 

Sect. 4, and tested on a number of examples in Sect. 5.

2  Formulations

In this section, the formulations used, both in areas of the 

domain solved using the truss model (Sect. 2.1) and the 

areas using the continuum model (Sect. 2.2), are described. 

Section 2.3 then proceeds to describe the interface between 

these two regions, allowing combined problems to be 

addressed.

2.1  Truss formulation

In the truss regions of the design domain, the formulation 

used is the classical plastic truss layout optimization prob-

lem (Dorn et al. 1964). The region is discretized with nodes, 

and each pair is joined by a potential truss element to give 

a fully connected ground structure. The minimum volume 

structure is then identified through the following linear pro-

gramming problem: 

 where l = [l1, l2,… , l
m
]T ,  a = [a1, a2,… , a

m
]T ,  and 

q = [q1, q2,… , q
m
]T denote the vectors of member lengths, 

cross-sectional areas, and axial forces, respectively, with m 

representing the number of members. B is the equilibrium 

matrix consisting of direction cosines. The external force 

vector f = [f x
1

, f
y

1
, f x

2
,… , f

y
n ]

T consists of the external forces 

at n nodes, with f x
j
 and f

y

j
 indicating the external forces at 

node j in the x and y directions, respectively. Where a degree 

of freedom is supported (i.e. the external/reaction force f can 

(1a)min
q, a

V = lTa

(1b)subject to Bq = f,

(1c)− �0a ≤ q ≤ �0a,

(1d)a ≥ 0,
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be freely chosen) then equilibrium will always be satisfied 

and the corresponding row of the constraint is removed from 

the problem. Finally, �
0
 denotes the ultimate stress of the 

material.

2.2  Continuum formulation

The continuum approach used in this study generally follows 

Kammoun and Smaoui (2014). For the sake of completeness, 

the optimization formulation is reviewed in this section.

In the continuum region, a lower bound formulation using 

triangular mesh elements is employed. In each element, 

stresses are permitted to vary linearly and optimization vari-

ables representing the components of the stress tensor at each 

corner of the element are required, �
x
, �

y
 and �

xy
 will denote 

the normal stresses in the x and y directions and the shear 

stress, respectively. For convenience, these will be represented 

within the stress tensor at a location i, si = [�x,i, �y,i, �xy,i]
T . 

Note that although the corners of multiple elements may meet 

at a single point, these different corners will have independ-

ent stress variables (Kammoun and Smaoui 2014). In this 

paper, the term corner will be used to describe these locations 

within the continuum part of the structure, whilst the term 

node will be reserved for the usual definition within truss lay-

out optimization.

For the arbitrary element, e, as shown in Fig. 1, the internal 

force equilibrium is given by:

where N
e
 is a matrix containing shape functions of element 

e, and �
e
= [sT

1
, s

T

2
, s

T

3
]T is a stress vector containing the 

stresses at the three corners of e, as shown in Fig. 1. Detailed 

values of N
e
 and �

e
 can be found in the appendix.

Along the edge joining two adjacent elements, statically 

admissible discontinuities in the stress field are permitted, thus 

(2)N
e
�

e
= 0,

the required constraints enforce the continuity of normal and 

shear stresses along the edge. As the stress field is linear within 

each element, these constraints need only be applied at the 

ends of the edge. Therefore, for an arbitrary pair of elements 

sharing a common edge, d, as shown in Fig. 2, the force equi-

librium at the edge is given by

where A
d
 is a transformation matrix containing sine and 

cosine values of the edge angle �
d
 , and �

d,I and �
d,II

 are 

stress vectors containing the stresses at relevant corners in 

element I (corners 1 and 2 in Fig. 2) and II (corners 3 and 4 

in Fig. 2). Detailed values of A
d
 , �

d,I and �
d,II

 can be found 

in the appendix.

For boundary edges, the stresses must equal zero unless the 

edge is applied with external force. For an arbitrary element 

with an edge located at the domain boundary, as shown in 

Fig. 3, the force equilibrium at the boundary edge is shown 

in (4):

(3)A
d
�

d,I = A
d
�

d,II,

(4)A
d
�

d
= t

d
,

Fig. 1  Stress components of a continuum element, showing the cor-

ners 1, 2, 3, at which the variables representing stress components, 

s
1
 , s

2
 , s

3
 , are defined. Within the element, the stresses have a linear 

distribution between these values

Fig. 2  Force equilibrium between two elements at a common edge, 

with �
d
 , �

n
 and � representing the edge orientation angle, the normal 

stress to the edge, and the shear stress along the edge, respectively

Fig. 3  Force equilibrium at a domain boundary edge, where t
n
 and t

s
 

represent the normal stress and shear stress, respectively. The applied 

stress is user-defined individually for each corner. Along each edge 

the applied stress varies linearly to give �
n
 and � , the intermediate 

normal stress to the edge, and the intermediate shear stress along the 

edge, respectively. �
d
 represents the edge orientation angle
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where �
d
 is a stress vector that contains the stresses at cor-

ners 1, 2 in Fig. 3, and the external load vector, t
d
 , contains 

the stresses applied at corner 1 and 2 in Fig. 3. Note that, 

due to the linear variation of the stress field within each ele-

ment, defining the stresses at the end-points is sufficient to 

define the applied stress distribution along the entire edge, 

see Kammoun and Smaoui (2014) for more information. 

Detailed values for �
d
 and t

d
 can be found in the appendix.

The von Mises yield criterion is enforced at each corner 

of each mesh element, with the maximum von Mises stress 

linearly scaled according to the density (or depth, when con-

sidered as a variable thickness sheet problem) at that corner. 

This gives a conic constraint, which at each corner can be 

written as:

where � is the density at the relevant corner point, �
0
 is the 

ultimate stress of the material and the remaining stress vari-

ables are as previously defined.

Constraint (5) can be posed as a quadratic conic con-

straint, ensuring that solutions obtained are globally optimal 

and allowing the use of modern, computationally efficient 

solvers.

Similar to the truss optimization problem, the objective of 

the continuum optimization problem is to minimize the total 

volume that is equal to vT
� , where v is the volume vector of 

the elements, v =
1

3
[A1, A1, A1, A2, ..., A

n̄
]T . A

e
 is the area of 

element e, and � is the vector containing the density vari-

ables � for each corner of each element.

To sum up, the continuum optimization formulation is 

shown in Eqs. (6). The set ℂ contains all continuum elements, 

whilst set ℙ contains all corners of these elements (i.e. set ℙ is 

3 times the size of ℂ ). Note that, unlike in most compliance-

based formulations, here adjacent elements are connected by 

their edges, rather than by common nodes. The internal edges 

of the mesh are contained in set � , whilst unsupported bound-

ary edges are contained in set � . Finally, supported edges are 

contained in set � . On supported edges, equilibrium is auto-

matically satisfied (c.f. the truss formulation above) thus set � 

does not explicitly appear in any of the equilibrium constraints 

in (6).

(5)�
2

x
+ �

2

y
+

�

�
x
− �

y

�2
+

�
√

6�
xy

�2

≤

�
√

2�0�

�2

,

(6a)min
�,�

v
T
� Total volume

(6b)

subject to N
e
�

e
= 0, ∀e ∈ ℂ Continuum element equilibrium

(6c)

A
d
�

d,I − A
d
�

d,II = 0, ∀d ∈ � Continuum edge equilibrium

(6d)

A
d
�

d
= t

d
, ∀d ∈ � Continuum boundary equilibrium

2.3  Interfaces

This section discusses how truss and continuum formulations 

can be combined to form a single problem. For the purposes 

of this paper, it is assumed that truss elements connect to con-

tinuum elements only along a pre-defined set of edges that lie 

on the boundary of the continuum region.

2.3.1  One‑to‑many interface

This section describes the linkage between the continuum 

and truss regions. As illustrated in Fig. 4, a number of truss 

elements can connect to a single edge of a continuum ele-

ment. Due to the way external forces are applied in the con-

tinuum formulation, truss elements must connect to edges 

of continuum elements, rather than, e.g. the corner-points of 

the continuum discretization. It is most convenient to locate 

the end-point of the truss element at the midpoint of the rel-

evant continuum edge. When constructing a hybrid problem, 

this will be ensured by generating additional truss nodes as 

required along the edges of the continuum regions.

At the interface, the resultant forces Q
e
 integrated along the 

edge should be equal to the resultant forces Q
t
 from the truss 

elements. Thus for an edge d connecting corners 1 and 2 of the 

continuum element (e.g. Figure 4), the required constraint is

(6e)
�

2
x,j
+ �

2
y,j
+
�

�x,j − �y,j

�2
+

�
√

6�xy,j

�2

≤

�
√

2�0�j

�2

,

∀j ∈ ℙ Continuum VM yield

(7)Qe + Qt =

l
d

2

[

U
d

U
d

]

[

s1

s2

]

+ B
d
q =

[

0

0

]

,

Fig. 4  The interface T between a continuum element and three truss 

elements, where s
1
 and s

2
 represent the nodal stress vectors for the 

continuum element, and q denotes the axial force from the truss ele-

ments; �
d
 is the orientation angle of the interface edge; Q

t
 and Q

e
 are 

the resultant force vectors for the truss elements and the continuum 

element, respectively
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where l
d
 is the length of edge d, and si = [�x,i, �y,i, �xy,i]

T for 

a corner i; i.e. [s1, s2]
T = �

d
 . Finally, B

d
 is a sub-matrix of B 

containing only the rows corresponding to the node located 

at the centre of edge d, and

with �
d
 the angle between the edge and the positive x-axis. 

Note that this constraint replaces the rows of the truss equi-

librium constraint relevant to the node in the centre of edge 

d, and also replaces the continuum boundary constraints on 

edge d.

As Eq. (7) only constrain the integral of the stress 

along the element, an additional constraint is required to 

ensure moment equilibrium (to prevent cases where, e.g. 

‖s
1
‖ ≫ ‖s

2
‖ = 0 in Fig. 4). The simplest formulation of this 

is to take moments about the centre of the edge:

where M
d
= [sin

2
�

d
, cos2

�
d
,−2 cos �

d
sin �

i
].

There are now four sets of edge types in the continuum 

problem that need to be distinguished:

• As previously, set � contains the continuum edges that 

are internal to the continuum region,

• Set � contains supported edges (and does not explicitly 

appear in the final formulation).

• Set � contains edges that lie on the boundary of the con-

tinuum region, excluding those that are on the interface 

or that are supported.

• Set � contains continuum edges that lie on the boundary 

with the truss region.

For each edge d in � , B
d
 is also defined, which is the row 

of B corresponding to the truss node located on edge d. In 

addition, B
t
 is defined, which is the remaining rows of B 

once all the rows corresponding to nodes on the interface 

are removed. The external (truss) force vector f is similarly 

split into f
t
 and f

d
∀d ∈ � . The full hybrid formulation with 

one-to-many interfaces is shown in (10). 

(8)U
d
=

[

− sin �
d

0 cos �
d

0 cos �
d
− sin �

d

]

,

(9)
[

M
d
−M

d

]

[

s1

s2

]

= 0,

(10a)min
�,�,a,q

lTa + vT
� Total volume

(10b)subject to B
t
q = f

t
Truss equilibrium

(10c)

N
e
�

e
= 0, ∀e ∈ ℂ Continuum element equilibrium

(10d)

A
d
�

d,I − A
d
�

d,II = 0, ∀d ∈ � Continuum edge equilibrium

2.3.2  Many‑to‑many interface

In some cases, the force carried by a truss bar may be larger 

than the force that can be carried by a single element in the 

continuum region. Assuming that the continuum and truss 

areas are constructed from materials with similar permitted 

stresses, this implies that the cross-section of the truss bar 

will be larger than the edge of a single continuum element, 

and will be in contact with at least part of the adjacent ele-

ments. Therefore, the formulation is now extended to allow 

truss bars that connect to multiple continuum elements.

Figure 5a shows one end of three truss elements and three 

continuum edges to which they may connect. In this work, 

each truss element is able to connect to continuum edges 

whose centre points lie within a given distance of the truss 

node which is specified as part of the problem description. 

For each truss node, this therefore defines the set �
i
(⊂ �) 

of edges to which connections are possible. Note that the 

end-point of the truss element is no longer required to be 

co-incident to the centre of any continuum edge (but for the 

purposes of comparability, in this paper they usually are).

In this situation, the force and moment equilibrium equa-

tions at the interface would be:

where Q
e,d

 represent the resultant force vectors of the dth 

element edge; px,d and py,d denote x- and y-distances, respec-

tively, between the centre point of the dth edge and the inter-

face node (see, e.g., Fig. 5a).

As the force in the bar can be split into many com-

ponents, it is necessary to ensure that the optimizer 

(10e)

A
d
�

d
= t

d
, ∀d ∈ � Continuum boundary equilibrium

(10f)

B
d
q +

l
d

2

[

U
d

U
d

]

�
d
= f

d
, ∀d ∈ � Interface equilibrium

(10g)

[

M
d
−M

d

]

�
d
= 0, ∀d ∈ � Interface moment equilibrium

(10h)− �0a ≤ q ≤ �0a Truss yield

(10i)

�
2
x,j
+ �

2
y,j
+
�

�x,j − �y,j

�2
+

�
√

6�xy,j

�2

≤

�
√

2�0�j

�2

,

∀j ∈ ℙ Continuum VM yield

(11)Qt +

∑

∀d∈�
i

Qe,d =

[

0

0

]

,

(12)

∑

∀d∈�i

QT

e,d

[

px,d

py,d

]

= 0,



Combined truss and continuum topology optimization of structures  Page 7 of 21   142 

cannot use a combination of positive and negative 

forces which is not physically valid. An example of this 

would be Qt = [0, 0]T , Qe,1 = [0, 1]T , Qe,2 = [0,−2]T and 

Qe,3 = [0, 1]T in Fig. 5a, which satisfies constraints (11) 

and (12) but is not valid in the practical sense.

To address this issue, it is convenient to make use of non-

negative optimization variables, with the tensile and com-

pressive forces separated (the direction of each component 

indicated by the superscript + or −). Here it also becomes 

convenient to consider separate components for each truss 

element connecting at the node, rather than the overall 

resultant of all truss forces. The components, denoted as 

q̂±
i,d

 , are defined at each edge, d, that bar-end i, is permitted 

to connect to. Also, at the truss node itself q±

t,i
 components 

allow connected truss elements to directly transfer forces 

between themselves if necessary, using a standard truss equi-

librium constraint. All of these components are defined to 

be in line with the centre-line of the truss element, as shown 

in Fig.  5b. The equilibrium of the end plate in the direction 

perpendicular to the centre-line of the bar relevant to i is 

therefore trivially satisfied, as no forces act in this direction. 

Equilibrium parallel to the centre-line for the end-point of a 

bar-end i is enforced with the following constraint:

where the set �
i
 contains all edges to which bar-end i is 

permitted to connect.

(13)
qi + q+

t,i
+

∑

∀d∈�i

q̂+
i,d

= q−

t,i
+

∑

∀d∈�i

q̂−
i,d

,

Moment equilibrium of the end plate is enforced by 

taking moments about the truss node to give

where p̂i,d represents the distance perpendicular to truss 

bar i from the interface node T to the centre of the dth ele-

ment edge, as shown in Fig. 5b. Note that p̂i,d varies in sign 

depending on which side of the bar the centre point lies on.

With this approach, the invalid combination of positive 

and negative forces can be avoided by ensuring that the 

total magnitude of the component forces does not exceed 

the load carrying capacity of the truss element. For this, 

the following constraint will be used:

For the many-to-many interface, ideally, the compo-

nents closest to the truss end-point should be used first. To 

achieve this, the edges are first sorted based on p̂i,d , to give 

the ordered set �̇
i
 (note that this order may vary between 

different truss elements connected at the same node). The 

following constraints are then defined between each con-

secutive pair of edges drawn from �̇
i
:

(14)

∑

∀d∈�i

p̂i,d

(

q̂+
i,d

− q̂−

i,d

)

= 0,

(15)

∑

∀d∈�i

(q̂+

i,d
+ q̂−

i,d
) ≤ 𝜎0ai.

Fig. 5  The interface T between three truss elements and three con-

tinuum elements: a global equilibrium between the resultant force 

vectors Q
t
 of the truss elements and Qe,1 to Qe,3 of the continuum ele-

ments. This is comparable to the approach in Sect. 2.3.1; b localized 

equilibrium between one truss element, i, and three continuum ele-

ments, where q̂+
i,d

 and q̂−
i,d

 represent the positive and negative forces 

on the dth edge, parallel to the concerned truss element i; q+
t,i

 denotes 

the positive axial force of the concerned truss element. This is the 

approach required in Sect. 2.3.2
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where d denotes the edge index; the use of the sign func-

tion, sgn, allows the direction of inequality to be effectively 

reversed for elements with negative p̂i,d . There are therefore 

4 independent chains of inequalities for each truss element.

Finally, when calculating the volume of the truss element, 

the element length is adjusted to account for the misalign-

ment between the interface node and the corresponding ele-

ment edge, as shown in Fig. 6. Specifically, in Fig. 6a, the 

misalignment between the interface node T and the edge 

centre point requires the truss bar segment connecting them 

to be extended, parallel to the centreline, beyond the truss 

end-point, thereby increasing the length of that portion of 

the truss bar. In contrast, the reverse adjustment may apply 

in the situation depicted in Fig. 6(b). To compensate for this, 

the parallel distance from the truss element’s end-point to 

the continuum edge’s midpoint, denoted as r
i,d

 , is used. The 

value of r
i,d

 may be either positive or negative. Subsequently, 

terms of the form ri,d(q̂
+

i,d
+ q̂−

i,d
) are added to the objective 

function for each edge.

Equations (17) show the full formulation for the problem 

with many-to-many linkage, where the set of edges that may 

connect to bar-end i is given by �
i
 . For the purposes of this 

paper, set �
i
 is defined by a certain distance from the bar-end 

to the edge centre, which is specified in the problem descrip-

tion. The set of all bar-ends on the interface is defined as � , 

whilst set �  contains the truss nodes on the interface (each 

with multiple bar-ends from � attached). The vectors q̂±

d
 col-

lect all variables q̂±

i,d
 for each bar-end i which is permitted to 

connect to edge d. Meanwhile, q±

t,j
 collects the variables q±

t,i
 

for each bar-end i connected to (truss) node j.

(16)sgn(p̂i,d + p̂i,d+1)

[

q̂+
i,d

− q̂+
i,d+1

q̂−
i,d

− q̂−
i,d+1

]

≤

[

0

0

]

,∀d, d + 1 ∈ �̇i

(17a)

min
�,�,a,q

lTa + vT
� +

∑

∀i

∑

∀d∈�i

ri,d(q̂
+

i,d
+ q̂−

i,d
) Total volume

(17b)subject to Btq = f
t

Truss equilibrium

(17c)

Bj(q
+

t,j
− q−

t,j
) = fj,∀j ∈ � , Truss Equilibrium (interfaces)

(17d)

N
e
�

e
= 0, ∀e ∈ ℂ Continuum element equilibrium

(17e)

A
d
�

d,I − A
d
�

d,II = 0, ∀d ∈ � Continuum edge equilibrium

(17f)

A
d
�

d
= t

d
, ∀d ∈ � Continuum boundary equilibrium

(17g)
B

d
(q̂

+

d
− q̂

−

d
) +

l
i

2

[

U
d

U
d

]

�
d
= 0,

∀d ∈ � Interface edge equilibrium

3  Example with fixed regions of truss 
and continuum domain

To demonstrate the application of the hybrid optimiza-

tion problem described in the previous section, a simple 

cantilever problem is addressed, the geometry of which is 

described in Fig. 7a; the domain is split into two regions: 

the left half of the domain is to be filled with continuum 

material (i.e. a variable thickness plate), whilst the right 

half is to be filled with a truss structure.

The continuum region is discretized using 10000 con-

tinuum elements, a mesh of diagonally quartered squares 

with edge length 
L

50
 . The truss region is discretized using 

a Cartesian grid of nodes with spacing 
L

10
 , plus additional 

nodes at the midpoints of each continuum edge along the 

central interface line. Truss bars connecting to the inter-

face have been permitted to connect to continuum edges 

(17h)

l
d

2

[

M
d
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d

]

�
d
= 0,

∀d ∈ � Moment equilibrium of interface edge

(17i)
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(17j)
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within a distance of 
L

20
 , thus, most truss bars at the inter-

face are connected to five continuum edges.

The problem has been solved for various magnitudes 

of the force F and the resulting structures are shown in 

Fig. 7b–d. It can be seen that for larger force magnitudes, 

the continuum region must extend its solid (black) regions 

inwards from the boundaries. This also forces the truss 

bars to connect at nodes inset from the boundaries of the 

domain. The many-to-many interface is shown to be effec-

tive at rationalising the solution in this case; the result 

using the one-to-many interface in Fig. 8 displays a large 

number of overlapping bars around the heavily loaded reg

ions.

At lower force magnitudes, such as in Fig. 7d, the inte-

rior of the continuum region is almost white, represent-

ing a very low-density region, or a very thin section of a 

variable thickness sheet. This is unlikely to be practical or 

desirable in a solution, but the truss forms in these sparse 

regions are far more interpretable and potentially builda-

ble. Therefore, the next section describes a procedure used 

to automatically partition the design domain into regions 

for continuum and truss structures.

4  Procedure for infill generation

The combined formulation described in Sect.  2 can be 

applied to any required division of continuum and truss 

structure, as demonstrated in Sect. 3. However, for a more 

automated workflow, it is desirable to combine this with a 

method that automatically obtains an appropriate division of 

the domain into continuum and truss regions.

The approach used in this paper is demonstrated graphi-

cally in Fig. 9, using a coarse discretization in both the truss 

and continuum regions for clarity. The following steps are 

employed: 

(a) Firstly, the design domain, loading and support condi-

tions are defined by the user (Fig. 9a).

(b) The domain is discretized for the continuum problem, 

and problem (6) is solved (Fig. 9b).

(c) Regions of solid structure are identified and retained as 

the continuum region (Fig. 9c).

(d) The remainder of the domain is re-discretized with 

nodes for the truss optimization problem (Fig. 9d).

(e) The ground structure is generated, with any poten-

tial elements which intersect the continuum region 

removed (Fig. 9e).

(f) The hybrid problem, (6) or (10), is solved for the com-

bined continuum and truss problem (Fig. 9f).

In this paper, step (c) is implemented by defining solid con-

tinuum elements as those where the average value of � across 

the three corners is greater than a threshold, which is taken 

as 90% of the maximum value. Individual mesh cells that 

would be surrounded on all sides by the truss region are 

removed for clarity. Finally, mesh cells that have an applied 

stress on any edges are kept, to avoid the need to re-define 

boundary conditions. More complex approaches could be 

used to interpolate the boundary of the continuum region, 

but they are beyond the scope of this paper.

In step (d), the truss regions are first discretized using 

a regular Cartesian grid of nodes at a pre-defined spacing; 

nodes lying within the continuum regions are removed. To 

ensure adequate detail can be resolved in the most congested 

areas of the truss regions, additional nodes are added in 

regions found to have nearly solid structure in the initial con-

tinuum solution (shown as green dots in Fig. 9(d)). Nearly 

solid structure is here defined as elements where the average 

value of � across the three corners of the element are in the 

range 80% to 90%. For these cells, the corner point locations 

are added as additional nodes in the truss problem. Interface 

nodes are also added along the boundary of the continuum 

region as described above.

Fig. 6  Truss element length 

adjustment to compensate for 

misalignment between the inter-

face node T and the concerned 

edge: a a positive value of 

r
i,3 > 0 is required between the 

highlighted truss element and 

continuum element 3; b a nega-

tive value of r
i,1 < 0 is required 

between the highlighted truss 

element and continuum element 

1
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In solving the hybrid problem in step (f), continuum 

densities are allowed to vary, as in the example in Sect. 3. 

This provides maximum flexibility, but can sometimes cause 

small sections of grey structure. Section 6.1 discusses how 

this can be avoided, and shows that this makes minimal dif-

ference to the optimal volumes.

5  Examples

This section applies the procedure described above to a num-

ber of examples. Firstly, problems common in the literature 

are addressed (Sects. 5.1, 5.2 and 5.3). Then, in sections 5.4 

and 5.5, some problems are presented which demonstrate 

the efficacy of the proposed approach in particularly chal-

lenging scenarios. Throughout, the meshes in the continuum 

regions are defined using diagonally quartered squares, as 

visible in the low resolution results in Fig. 9. Note that for 

visualisation purposes, each continuum element is displayed 

using the average value of � at its three corners, however in 

the formulation each element has a linearly varying density 

as described in Kammoun and Smaoui (2014).

Solver times given in the following refer to the time taken 

by the software (ApS 2020) to solve either (1), (6), (10) or 

(17) as appropriate. Note that solutions to the hybrid prob-

lem rely on the use of a solution for the continuum problem, 

and so this time should be added to the solver time of the 

hybrid formulation to give the total requirement.

For illustrative purposes, two renderings of physical mod-

els have been created based on optimized hybrid structures. 

The truss parts of the solid models are created using the 

nodal expansion approach in Smith et al. (2016). For these 

results the geometry optimization of (He and Gilbert 2015) 

has been used to rationalize the truss.
Fig. 7  Cantilever with fixed domain division and many-to-many 

interface: a problem specification; b–d results for different load mag-

nitudes: b F = 0.12�L ; c F = 0.06�L ; d F = 0.3�L

Fig. 8  Cantilever with fixed division: result using one-to-many inter-

face with F = 0.12�L
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5.1  Cantilever problem

The cantilever problem in Fig. 9 is studied with a higher 

resolution in this section. Two sets of results with differ-

ent loading magnitudes are shown in Fig. 10. For the truss 

solutions, as the load increases from 0.040�L to 0.066�L , 

the layout of the truss structures remain unchanged and all 

the member sizes are scaled up by 165%. In Fig. 10(a) and 

(b), some truss members are located on the top and bottom 

edges, with their centre lines coinciding with the domain 

edge. Consequently, half of the members’ volume is located 

outside the design domain, violating the space constraint. 

In Fig. 10(a), the space violation is minor but the violation 

increases as the load magnitude is scaled up, as shown in 

Fig. 10(d).

Unlike the truss result, the layout of the optimized con-

tinuum solution varies as the load magnitude varies. Since 

the forces are eventually transmitted to the supports, and 

the elements directly linked to the supports cannot take 

infinite forces, the solid (black) area at the support bound-

ary expands from the corner positions towards the middle 

as the load increases. However, since density penalization 

(Bendsøe 1989) is not used in the continuum approach, the 

continuum solutions contain many grey elements, violating 

the ‘black-and-white’ constraint.

By taking advantage of both the discrete and continuum 

solutions, the hybrid solution satisfies both the space con-

straint and the ‘black-and-white’ constraint. The correspond-

ing results are shown in Fig. 10c, f. Here and in Fig 9 the 

one-to-many interface has been used. In these solutions, 

the continuum region is located near the top and bottom 

boundary, which is similar to Fig. 10b, e. In addition, the 

grey areas in Fig. 10b, e are replaced by truss members in 

Fig. 10c, f.

5.2  MBB beam

Figure 11 shows results for the well-known MBB beam 

problem. The design domain has a width of L and a height 

of 
L

6
 . A force of total magnitude F is applied at the centre of 

the top edge of the domain, spread over a total width of 
2

45
L 

such that the total axial stress applied to the domain is equal 

to the yield stress � . The domain is supported at the outer 

corners of the base of the domain, with vertical-only support 

permitted for a distance of 
1

45
L in each corner; i.e. the same 

total distance as the load is applied over.

In Fig.  11a, the problem is solved using the truss 

approach, with support points located only in the centre of 

the region used for the continuum problem. The top and 

bottom chords in this solution extend outside the design 

domain. Furthermore, the fan-type regions result in many 

overlapping elements in the region of the loaded point. Solv-

ing the truss-only problems took approximately 7 s.

Figure 11b shows the continuum result, where the top 

and bottom chords are moved inside the constraints of the 

domain, thereby reducing the structural depth available and 

increasing the material required from 2.3195
FL

�

 for the truss 

solution to 2.48975
FL

�

 for the continuum solution, an increase 

of 7.3%. However, the areas between the chords are grey and 

indistinct. Solving the continuum problem took 38 s.

Fig. 9  Infill generation procedure example: a case description; b 

solve the problem with continuum optimization approach; c filter out 

elements with a density less than the threshold; d add additional truss 

nodes in potentially congested areas; e construct truss ground struc-

ture; f solve the hybrid formulation
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Fig. 10  Cantilever problem: a truss result with load = 0.040�L ; b continuum result with load = 0.040�L ; c hybrid result with load =0.040�L ; d 

truss result with load = 0.066�L ; e continuum result with load = 0.066�L ; f hybrid result with load = 0.066�L

Fig. 11  MBB beam: a truss 

solution; b continuum solution; 

c hybrid solution (with many-to-

many linking and max distance 

= 0.21); d rendered solid model 

of (c)
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Figure 11c shows the hybrid result with one-to-many 

interface, preserving the top and bottom chords identified by 

the continuum problem whilst using truss regions to resolve 

the detail in the web members. This is able to resolve the 

fan areas around mid-span, although the continuum region 

spreads the very centre of the fan to avoid overlapping truss 

members. The hybrid solution has a volume of 2.5978
FL

�

 , 

and the hybrid conic problem was solved in 491 s (8:11).

Figure 11d shows a solid model of the hybrid MBB beam. 

For the sake of clarity, a relatively coarse nodal grid is used 

for this model ( 180 × 60 continuum elements and 37 × 13 

truss nodes are used in Fig. 11c; 45 × 30 continuum ele-

ments and 19 × 7 truss nodes are used in Fig. 11d).

5.3  Spanning example with point load

Figure 12a shows an example with the supports located 

at the bottom left and right corners, with loads applied at 

the centre of the bottom boundary. The results are shown 

in Fig. 12(b–d) for increasing magnitudes of force F. The 

many-to-many linking is used for this example and for 

each bar-end i, the set �
i
 contains edges within a distance 

of 0.04L. For the sake of completeness, Fig. 12d has been 

transformed into a solid model, as shown in Fig. 12e.

At reasonably small loads (Fig. 12b), the structure resem-

bles the well-known truss form for a point load midway 

between two pinned supports. It contains a central region 

of radial members and an outer arc, subtending an angle 

of approximately 90
◦ . Beyond this, straight lines connect 

to the supports at an inclination of around 45◦ . The varia-

tion between the classical truss solution and the solution in 

Fig. 12b is mainly due to the alteration of the loading from a 

single point force to distributed loading along the continuum 

elements.

As the load increases (Fig.  12c,d), the fan structure 

expands from the middle towards the sides, with the outer 

rib of the elements becoming almost semi-circular. This 

result (particularly in Fig. 12d) more closely resembles the 

truss result for a problem where the supports are vertical 

only (as in Michell 1904, Figure3).

The reason for this can be understood by considering the 

continuum material along the supported edges. This mate-

rial can carry only a limited force, which is controlled by the 

constraint on the Von Mises stress (5). This effectively limits 

both the horizontal and vertical reaction forces. At lower 

loading levels (e.g. Fig. 12b), there is sufficient capacity 

to carry both the required vertical reactions and horizontal 

components of similar magnitudes. However, as the load 

is increased, the required vertical reactions also increase, 

and there is no longer sufficient capacity to support large 

horizontal reaction forces. Note that this effect would not 

Fig. 12  Spanning example: a case description; b hybrid solution with 

F = 0.060�L ; c hybrid solution with F = 0.090 �L ; d hybrid solution 

with F = 0.115�L ; e rendered solid model of (d)
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be observed in the pure truss solution, where the layout is 

independent of force magnitudes.

5.4  Cantilever with constriction

The next example concerns a cantilever, similar to that used 

in Sect. 5.1. However, in this section the design domain is 

substantially constrained midway between the load and the 

supports; the full geometry is shown in Fig. 13.

The problem has been solved for varying magnitudes 

of the force F, and the volumes of the resulting structures 

are shown in Fig. 14 using the continuum, truss and hybrid 

approaches. Figure 14 shows that the volumes of the truss 

solutions are, as expected, linearly related to the force mag-

nitude F. The truss result for F = 0.0175�L is shown in 

Fig. 15a, and other values of F give the same layout but 

with bar thicknesses scaled proportionally. Figure 15a also 

shows that the bars at the top and bottom of the constriction 

lie partly outside the design domain; i.e. their centre-lines lie 

on the boundary line, thus the truss solution does not actu-

ally fulfil the requirements of the problem set. The truss-only 

problem required approximately 3 s to solve.

The volume of the continuum solution lies close to, but 

slightly above that of the truss solution at low values of F 

(Fig. 14); in this case, the material in the constriction is 

slightly closer together to ensure it lies strictly within the 

domain, but at low forces, the overall form is similar to 

the truss solution. As the force increases, the proportion 

of the constriction filled with material increases, meaning 

that any further increase is carried by material much closer 

to the centre-line of the domain. This compounding effect 

causes the volume to increase above that predicted by the 

truss model until, at F ≈ 0.0177�L , the cross-section close 

to the left side of the constriction becomes entirely filled 

with material and forces larger than this cannot be sup-

ported. An example solution using the continuum approach 

for F = 0.0175�L is shown in Fig. 15b; in addition to the 

significant regions of solid material (black), there are also 

substantial areas of grey, intermediate density material. 

The continuum-only problem took around 11 s to solve.

The hybrid solutions have larger volumes than either the 

continuum or truss solutions (Fig. 14). This is because it 

combines the restrictions of both of the other approaches 

to provide the most realistic problem modelling. The 

example structure for F = 0.175�L is shown in Fig. 15c; 

it shows that the domain constraints are obeyed strictly, 

with continuum regions present inside the constriction. 

Furthermore, the indistinct grey regions from the contin-

uum solution are now represented with a clear structure, 

showing how the forces flow through the form. The pres-

ence of continuum regions also mitigates the ‘overlapping 

members’ problem at the centre of fans: in Fig. 15a there 

are many overlapping members at the re-entrant corners in 

the left of the constriction; in 15c, the continuum regions 

expand to accommodate this. The hybrid problems took 

between 18 and 25 s to solve, with the more heavily loaded 

scenarios and their larger continuum regions taking the 

longest.

In practice, the problem shown in Fig. 13 may be made 

more amenable to standard designs by limiting the whole 

domain to the vertical range permitted through the con-

striction. Figure 14 also shows (in blue) results for such a 

case using each of the three approaches. From the truss-

only problems, reducing the design domain in this way 

implies an increase in volume of 28%. However, the truss 

forms, again, significantly violate the domain constraints, 

as shown in Fig. 16a. The continuum and hybrid results fur-

ther increase the volume of the optimal structure in order to 

ensure it lies wholly within the domain, eventually leading to Fig. 13  Cantilever with constriction problem: definition

Fig. 14  Cantilever with constriction problem: structure volume using 

different approaches. Blue lines represent solutions for the problem 

with a reduced height across the whole domain (volume still given as 

% of the original domain)
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a maximum load for this problem of just over 0.0095�L . At 

F = 0.0095�L , the reduction in the design domain actually 

implies an increase in volume of 42%.

5.5  Tower

This example involves the simple transmission of a vertical 

force, F, directed towards a line of support. The domain is 

shown in Fig. 17a, where there are forbidden regions intrud-

ing up to the line of action of the force, but not beyond. 

Thus, a simple truss model results in the force being trans-

mitted through a bar whose centre-line lies along the bound-

ary of the domain; i.e. half of the width of the bar is outside 

the permitted domain (Fig. 17b,e). To correct this, the bar 

would need to be moved, leading to eccentricity of the load-

ing and thus generating additional moments.

To consider the problem using the continuum 

approach, the point loading and supports are both dis-

tributed over the same short width 
�

F
 , chosen such that 

the stress imposed by the force is equal to the yield stress 

� . Note that merely spreading the force in this manner 

does not ameliorate the problems with the truss results, as 

the forces are simply brought back together using smaller 

members converging at the top of the first constriction, 

where they join to form a larger member identical to the 

ones in Fig. 17b, e.

The continuum results in Fig. 17d, h show the cen-

tral column being correctly deviated to remain wholly 

within the design domain. To support the moments result-

ing from this eccentricity, additional support structure 

Fig. 15  Cantilever with constriction problem—results for 

F = 0.0175�L : a truss-only result; b continuum-only result; c hybrid 

result

Fig. 16  Cantilever with constriction problem - results for 

F = 0.0095�L with fully constricted domain: a truss-only result; b 

continuum-only result; c hybrid result
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is required. However, this additional structure is very 

fine compared to the central column especially when the 

imposed force is small; for example, in Fig. 17c much of 

the supporting structure cannot be visibly distinguished 

from void, leading to the appearance of floating areas of 

material.

By using the hybrid approach proposed here, both of 

these issues can be dealt with. The continuum stage first 

Fig. 17  Tower example: a problem definition; b–d optimal forms 

with F = 0.1�L ; e–g optimal forms with F = 0.4�L : b and e truss 

approach with single point load; c and f continuum approach; d and g 

hybrid approach. The domain boundary has been removed from (c) to 

better show the outlying areas of the structure
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ensures that the central column is entirely within the 

design domain, and then the truss representation allows 

for a useful depiction of the finer support structure. The 

hybrid solutions use a continuum mesh with 0.025L spac-

ing and a truss nodal grid at 0.125L spacing, the many-

to-many interface is used, and for each bar-end i, the set 

�
i
 contains edges within a distance of 0.03L. At lower 

loading levels, the continuum region is maintained only 

along the central column line, whilst at larger loading 

levels, continuum regions are also required on the outside 

of the domain as part of the supporting structure.

For the results shown in Figs.  17 and 18, the time 

required to solve the truss-only problems was up to three 

seconds, whilst the continuum problems took between 

40 and 50 s. The hybrid problems took between 98 and 

221 s to solve, with longer times required for the more 

heavily loaded structures, where a larger proportion of the 

continuum region is maintained.

6  Discussion and outlook

This paper has presented an approach to combine both 

truss and continuum parametrisations in order to address 

optimization problems with both high and low volume 

fraction regions. Here, the formulation has been derived 

and tested based on a single type of problem – limit 

design under a single loading case. Nonetheless, the basic 

principle of combining truss and continuum approaches 

is one which could be explored in a wide range of sce-

narios. This section will discuss where there is scope for 

variation within the framework and suggest avenues for 

future work.

6.1  Variations to the optimization problem

In this paper, the continuum density variables � have been 

allowed to vary whilst solving the hybrid problems, as for 

the continuum-only problem. However, this does mean that 

there is the possibility that some grey elements may persist 

in the final solutions.

A simple approach to counter this possibility is to fix 

the values of � to 1 in the hybrid stage. Across the hybrid 

examples presented herein (Figs 10, 11, 12, 15,  16, 17) this 

makes less than 0.5% difference in the optimal volume for all 

examples except that shown in Fig. 17d, where the volume 

increase is 1.1%; This example is shown in more detail in 

Fig. 19.

In Fig. 19, fixing � = 1 increases the volume of the con-

tinuum regions by 6.9%, but also allows the volume in the 

truss region to reduce by 5.8%, giving the overall change of 

around 1.1%. This therefore suggests that there are regions 

where either a truss or continuum load-path would give very 

similar material usage. Generally, the issue of grey elements 

is seen around the boundaries of the continuum regions (see 

also Fig. 10c/f) which further supports this conclusion.

The reason why this example should be particularly 

affected can be understood by considering the continuum 

solution in Fig. 17c. This shows sections where the cen-

tral tower should be close to (but not exactly) vertical. 

This boundary cannot be well represented by the vertical 

and 45o edges in the continuum mesh used here, and so 

the boundary in the hybrid problem is quite irregular. 

Therefore neither the truss or continuum region is fully 

capable of containing the required load-path. This is fur-

ther supported by the form of Fig. 17d, where a large 

number of truss elements run alongside the continuum 

region, especially in the non-vertical parts.

Based on this, it is likely that a more sophisticated 

approach to dividing the continuum and truss regions 

would be a promising avenue for further investigation. 

For example, this could be approached by re-meshing to 

ensure smoother boundaries between the truss and con-

tinuum regions when converting the continuum result to 

hybrid problem, or by allowing the boundary between 

regions to be refined as part of a shape/geometry opti-

mization stage.

In both the continuum and truss optimization fields it 

is common to refine the structures obtained from topol-

ogy optimization via geometry or shape optimization 

stages. The rendered figures presented here (Fig. 11d 

and 12e) partially implement this via the approach of He 

and Gilbert (2015). However, in those cases only nodes 

entirely in the truss domain (not on the interface) were 

Fig. 18  Tower example: structure volume using different approaches
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permitted to move, thus requiring no particular modifica-

tions to the approach of He and Gilbert (2015).

To apply shape optimization to the continuum part 

of the structure, there are a huge range of possible 

approaches which have been developed. A review of avail-

able methods may be found in Upadhyay et al. (2021). Of 

these, parameter-free approaches seem most attractive 

for this task due to the conceptual similarity with truss 

geometry optimization approaches and the lack of manual 

reparametrization required. However, shape optimization 

approaches have not yet been applied in the context of 

plastic limit analysis, and it is recommended that such 

approaches should be tested on the continuum problems 

first for simplicity before being applied within the hybrid 

formulation proposed here.

The final consideration in considering shape optimi-

zation of these hybrid structures is how to address the 

interface between the continuum and hybrid regions. 

Various possibilities exist, such as directly linking con-

tinuum nodes to the relevant end-points, or adopting con-

cepts from the MMC approaches to project truss elements 

into continuum meshes. Further work will be required to 

assess the efficacy and computational efficiency of these 

possibilities.

As an alternative to post-processing the hybrid solu-

tion, it may be possible to incorporate de-homogeniza-

tion principles to immediately generate preferable nodal 

locations in the truss region; for example, by applying 

the principles of Larsen et al. (2018). By maintaining 

an explicit continuum parametrisation in heavily loaded 

regions, the interventions required to, e.g. create nodes 

at fan centres and the possibility of elements extending 

outside of the domain would be negated.

6.2  Extension to a wider range of structural 
problems

Here, single load-case formulations have been considered for 

simplicity. However, the formulations presented here can be 

easily extended to multiple load-case problems. The required 

modifications to the plastic limit analysis continuum for-

mulation can be found in Kammoun (2016), and essentially 

require that the stress variables and equilibrium/yield con-

straints are duplicated for each case, whilst the density vari-

ables are common to all cases. Similarly, in the truss for-

mulation, multiple load cases are addressed by defining the 

force variables and equilibrium/yield constraints separately 

for each load case, with the area variables common across 

all cases Dorn et al. (1964).

Extension of the hybrid formulation here would follow a 

similar pattern. In the one-to-many interface problem (10), 

the only changes required would be as in the existing for-

mulations; to define separate continuum stress/truss force 

variables for each load-case, coupled by common density/

area variables, and to impose the equilibrium and yield con-

straints for each load-case. For the many-to-many interface 

problem, (17), an additional change would be required; the 

direct use of the component forces, q̂i,d in the objective func-

tion would need to be replaced with corresponding com-

ponent area variables to correctly combine the forces from 

different cases.

When multiple load cases are present, the optimal elastic 

and plastic designs diverge. Therefore it may become attrac-

tive to consider compliance optimization (as is more com-

mon within the continuum optimization field), rather than 

the plastic optimization here (which is more common in the 

truss optimization field). Either or both may correspond to 

the design requirements in a real scenario.

For compliance optimization, conic formulations are also 

available for both the truss and continuum problems (Mak-

rodimopoulos et al. 2010), and therefore implementation of 

the a hybrid approach would follow similar principles to that 

laid out here. The biggest difference in implementation will 

depend on whether the continuum formulation used requires 

forces to be applied on edges (as in the plastic formulation 

used here) or at nodes (more common in compliance optimi-

zation problems). Nonetheless, particularly when the many-

to-many interface is used, this difference essentially amounts 

only to altering the point of action for the component forces 

(Fig. 5b).

Here, the heuristic division between continuum and truss 

regions has led to relatively fine truss elements being pre-

sent in the examples considered in Sect. 5. Even when the 

one-to-many interface was employed, the truss elements are 

Fig. 19  Tower example: breakdown of volume within continuum and 

truss regions for case F = 0.1�L , highlighting the impact of solving 

with fixed continuum densities � in the hybrid problem
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still rather slender and therefore a truss model is likely to be 

applicable. If the many-to-many formulation was applied in 

scenarios where thicker elements exist in the truss section 

(e.g. Fig. 7), it may be necessary to consider whether the ele-

ments in the truss region would be better modelled as beam 

elements. The modelling of beam elements is challenging 

within the ground structure framework as it generally results 

in a non-convex problem, although some approximations 

are possible to mitigate this (Lu et al. 2025). There may 

also be scope to adopt this paradigm for pure bending-type 

problems, e.g. combining continuum shells with discrete 

grillage elements.

6.3  Comparison with other available approaches

The approach proposed here achieves similar aims to those 

of other methods which aim to reconstruct detailed black-

and-white structures from low resolution continuous solu-

tions. The closest analogy is to de-homogenization, although 

some comparisons with other multi-scale approaches are 

also possible (Wu et al. 2021). As with de-homogenization, 

the structures produced here are generally seen to display a 

moderate range of length scales (as opposed to the wildly 

different length scales exhibited in, e.g. Rank-N laminates). 

This variation in length scale is wide enough to permit much 

greater detail than is practical to obtain via direct density-

based methods, whilst still falling within what is reasonably 

manufacturable. In this subsection, comparisons between 

this approach and other multi-scale strategies will be briefly 

reviewed.

The principal advantage of explicitly using a truss 

approach to parametrize low-density regions is in removing 

issues relating to ensuring connectivity and re-interpreting 

locations where there are multiple possible microstructures 

which can represent the required properties. In particular, 

de-homogenization methods can struggle when there are 

sudden changes in orientation or density of the optimal lines 

of force – a truss-based approach has no such limitations. 

Also, de-homogenization requires that different microstruc-

tures are defined depending on, e.g. whether the problem 

has just one or multiple load cases, whereas the truss-based 

approach can freely construct the microstructure form from 

the individual elements.

The main drawbacks of using a truss-based approach mir-

ror those of the stand-alone truss formulation. For example, 

possible overlapping or gaps between elements at connec-

tions, or difficulties with creating pinned connections dur-

ing manufacturing. It is notable that both of these issues 

are lessened when the thickness of elements is reduced, e.g. 

when the truss region is located in a region with low volume 

fraction. A minor issue is related to explicit control of length 

scales in the final structure, in the formulation presented 

here it is not possible to explicitly specify a minimum feature 

size, although this can be indirectly addressed by altering the 

nodal discretization (where finer discretizations generally 

lead to a greater number of thinner elements).

At the time of writing, multi-scale topology optimization 

is much more mature than the approach we propose here and 

has been adapted to a wider range of scenario types. None-

theless, it is worthwhile to point out that most additional 

structural considerations which have a viable treatment in 

both the continuum and ground structure fields individu-

ally, will likely be amenable to adaptation in the manner 

presented here.

7  Conclusions

The hybrid approach presented can overcome the limita-

tions observed in continuum and truss-based optimization 

approaches, respectively. Specifically, the approach has been 

shown to mitigate the existence of truss bars that extend 

outside of the domain due to their thickness, and of con-

gested regions caused by converging truss bars. Meanwhile, 

clarity is improved through the use of trusses in areas of 

sparse structure, where continuum approaches would pro-

duce indiscernible areas of pale grey.

The interface required to connect the continuum and 

hybrid regions maintains the convexity of the ground struc-

ture formulation and the variable thickness sheet continuum 

approaches. This allows globally optimal solutions to be 

obtained for a given division of continuum and truss regions. 

To achieve this for cases where truss bars may become larger 

than a single continuum element, some approximations are 

required, with the effect of these limited by a user-defined 

distance.

To obtain a suitable division of truss and continuum 

regions, a simple two-stage heuristic has been demonstrated. 

This requires only a small number of easily interpretable 

parameters to be specified, principally the cut-off values for 

solid and congested (additional truss node) regions.

As the approach requires only two stages, the computa-

tional effort required is relatively low, particularly compared 

to the iterative approaches often used to drive continuum 

topology optimization results to pure solid/void solutions. 

Nonetheless, the computational effort required is signifi-

cantly greater for the hybrid approach compared to the pure 

truss solution.

Overall, this approach provides a conceptually simple and 

computationally efficient approach to generate optimal struc-

tural designs where both fine detail and free-form heavily 

loaded regions are required.
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Appendix

This appendix provides details of the values for the matrices 

required in the formulations used herein.

In the continuum approach of Kammoun and Smaoui 

(2014). Stresses vary linearly within an element, thus the nor-

mal and shear stresses can be represented as

where N
i
 are linear shape functions given by

As already stated in Sect. 2.2, three types of equilibrium 

constraints are used in the continuum optimization formula-

tion. The details of the transformation matrices and the stress 

vectors can be found as follows.

For the continuum element constraint, the shape function 

matrix N
e
 is defined for each element e.

To construct the edge constraints (both internal to the con-

tinuum mesh and those lying on its boundary) a transforma-

tion matrix, A
d
 is defined based on the angle �

d
 , the angle 

between edge i and the positive x-axis.

For boundary edges, the internal stresses are defined at the 

end-points 1 and 2 of the edge.

(18)�x =

3
∑

i=1

Ni�xi; �y =

3
∑

i=1

Ni�yi; �xy =

3
∑

i=1

Ni�xyi

(19)Ni =(�i + �ix + �iy)∕2A

(20)�1 =x2y3 − x3y2; �1 = y2 − y3; �1 = x3 − x2

(21)�2 =x3y1 − x1y3; �2 = y3 − y1; �2 = x1 − x3

(22)�3 =x1y2 − x2y1; �3 = y1 − y2; �3 = x2 − x1
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(28)�d =
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]T

The external tractions (normal and tangent to the edge) are 

also defined at points 1 and 2, and are found in the matrix t
d
:

where q describes the applied stress normal to the edge, and 

t describes the applied shear stress.

Meanwhile, for edges within the continuum mesh, the 

internal stresses are defined at each end and within each of 

the two connected elements. These points are numbered as 

shown in Fig. 2, and assembled into separate vectors for each 

of the two elements:
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