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Abstract
Hydrogeological modelling requires the characterisation of hydrofacies and the representation of their spatial distribution. 
In this work, a workflow was developed to characterise heterogeneous unconsolidated glaciofluvial sediments in Northwest 
Cumbria (UK), which involved: (1) field sampling; (2) lithofacies classification; (3) in situ porosity measurements using the 
sand-replacement method; (4) determination of the particle size distribution (PSD); (5) hydrofacies definition via K-means 
cluster analysis using PSD data; (6) evaluation of empirical equations for predicting porosity using field measurements and 
regression analysis; and (7) estimation of hydraulic conductivity (K) using the Kozeny–Carman equation. Nine lithofacies 
were identified, including glaciofluvial silts, sands and gravels, and local till deposits. Three clusters were defined on the 
basis of PSD: fine-dominated (cluster-1), sand-dominated (cluster-2) and gravel-dominated (cluster-3). Cluster-1 exhibited 
the highest porosities (average 44%); cluster-2 showed intermediate to high porosities, with an average porosity of 40%; and 
cluster-3 had the lowest porosities (average 27%). The logarithm of d50 was the parameter with the highest correlation with 
measured porosities (R2 of 0.789). K values estimated using the Kozeny–Carman equation ranged between 0.06 and 0.2 m/d 
for cluster-1, 0.2–11 m/d for cluster 2, and 0.1–62 m/d for cluster 3. Measured porosities were higher than previously reported, 
while estimated K values were consistent with those from hydraulic tests. Comparison between lithofacies and clustering 
classification suggests that, for hydrofacies classification, the unsupervised cluster analysis approach is able to generate a 
classification that captures the hydrogeologically important details without creating an excessive number of categories.

Keywords Hydraulic properties · Heterogeneity · Glaciofluvial · Clustering analysis · Kozeny–Carman

Introduction

Understanding and representing sedimentary and petrophysi-
cal heterogeneities of geological media remain vital tasks in 
subsurface studies. The effects of sedimentary heterogeneity 
are shown in many studies (e.g. Anderson 1989; Koltermann 

and Gorelick 1996; de Marsily et al. 2005; Lee et al. 2007; 
Ronayne et al. 2010; Savoy et al. 2017; Tahmasebi 2018), 
including those on transport modelling in groundwater sys-
tems (e.g. Zappa et al. 2006; dell’Arciprete et al. 2012; He 
et al. 2013; Bianchi and Zheng 2016; Montero et al. 2021), 
hydrocarbon reservoir characterisation (e.g. Sweet et al. 
1996; El-Deek et al. 2017; Gray et al. 2022), and geother-
mal energy exploitation (e.g. Crooijmans et al. 2016; Liu 
et al. 2019).

In hydrogeological modelling, representing the spatial 
distribution of hydrogeological units and forecasting fluid 
flow and solute transport are activities that require good 
understanding of the geological media being modelled and 
its inherent heterogeneities (Koltermann and Gorelick 1996; 
Li et al. 2001; Savoy et al. 2017). Thus, it is paramount that 
simulations employ appropriate representations of the spa-
tial distribution of hydrogeological units and their hydrau-
lic properties, constrained by data obtained from relevant 
subsurface or analogue datasets. Model inputs need to be 
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detailed enough to account for the heterogeneities of inter-
est, but general enough to allow convergence to a solution 
of flow and transport equations. Particular challenges arise 
when heterogeneous media exhibit abrupt changes in petro-
physical and hydraulic properties, when fractures and faults 
are present, and/or when processes related to the lithologi-
cal composition of the aquifer occur, such as sorption and 
desorption, or reactions between the aquifer minerals and 
groundwater (Ronayne et al. 2010; Goltz and Huang 2017; 
Ewis et al. 2022). Failure to adequately represent heteroge-
neities can result in inaccurate estimations of flow and trans-
port (Zappa et al. 2006; He et al. 2013; Kawo et al. 2023).

Simulations of the spatial distribution of hydrogeologi-
cal units and their properties commonly use geostatistical—
and more generally stochastic—modelling methods. These 
include object-based algorithms (e.g. Ronayne et al. 2010; 
Colombera et al. 2019), and methods based on multiple point 
geostatistics (MPS; e.g. Montero et al. 2021; Kawo et al. 
2023) or transition probabilities (e.g. He et al. 2013; Bianchi 
and Zheng 2016), among others. Thanks to computational 
advances, it is becoming increasingly easier, faster and more 
efficient to run stochastic modelling algorithms. However, the 
required inputs to apply any of those methods need to be geo-
logically consistent and robust to obtain meaningful results.

Given that the permeability heterogeneity of sedimen-
tary aquifers depends on lithofacies distributions (Klingbeil 
et al. 1999; Zappa et al. 2006; Kawo et al. 2023), defining 
lithofacies types or operative facies types and then grouping 
them into hydrofacies (hydrogeologically relevant lithologi-
cal units) based on their estimated hydraulic conductivity is 
the first step in the construction of a groundwater model. To 
define and characterise those units, available geological data 
and hydraulic tests are regularly used.

Quaternary sedimentary successions, and particularly 
those containing glaciogenic deposits, represent a case in 
which sedimentological patterns are difficult to predict, 
given the high variability in lithology, geometry and topol-
ogy of sedimentary units (McMillan et al. 2000; Lee 2018; 
Kurjanski et al. 2020; Smith et al. 2023). Where only bore-
hole and outcrop data are available, other approaches are 
needed for site characterisation. Recent studies addressing 
this problem have followed a sedimentological approach 
founded on detailed facies and architectural-element analysis 
of outcropping deposits (Smith et al. 2023). This approach 
results in a conceptual model of aquifer heterogeneity that 
accounts for the processes involved in the formation of the 
deposits. However, an excessive level of detail is not ideal 
for hydrogeological modelling purposes (e.g. Hill 2006).

Modelling a heterogeneous sedimentary aquifer involves 
representing (1) the spatial distribution of hydrogeological 
units and (2) their hydraulic properties. To undertake these 
tasks, one option is to inform the categorization of the units 
and their petrophysical characterisation using the particle size 

distribution (PSD) of sedimentary deposits (Alyamani and 
Şen 1993; Arya et al. 1999; Odong 2008; Rosas et al. 2014; 
Bianchi and Zheng 2016; Chandel and Shankar 2022). In 
applications to classification problems, PSD data are espe-
cially useful for grouping samples collected for hydrogeologi-
cal characterisation (Simon et al. 2021; Nichols et al. 2023), 
given the role of sedimentological properties as controls on 
hydraulic characteristics (e.g. Anderson et al. 1999). Hydrau-
lic conductivity estimates using the PSD have been derived 
from empirical equations since the late 19th century (Hazen 
1892; Kozeny 1927; Fair et al. 1933; Carman 1937, 1956; 
Vuković and Soro 1992; Kasenow 2002; MacDonald et al. 
2012; Rosas et al. 2014; Wang et al. 2017; Sun et al. 2024).

The relationships between the grain-size distribution 
and the porosity have been studied by several authors (e.g. 
Vuković and Soro 1992; Wu and Wang 2006; Wooster et al. 
2008; Frings et al. 2011). However, empirical equations may 
not be readily applicable to sediments with different charac-
teristics and/or from different settings to those for which the 
relationships were defined. To partly address this problem, 
the grain-size parameter that best predicts the porosity of the 
studied glaciofluvial sequences can be identified comparing 
measured porosities with grain size data. In turn, aiming to 
obtain a reasonable number of hydrofacies, a comparison 
between a lithofacies classification, based on a detailed sedi-
mentological criteria, and a classification obtained from an 
unsupervised clustering approach using the grain-size distri-
bution can be carried out. Unsupervised clustering has the 
potential to generate groups from large datasets based on input 
variables, such as the grain size, without needing to label data 
in advance (Jain et al. 1999), hence generating data-driven 
labels and reducing subjectivity in the classification.

In that context, the aim of this work is to develop a 
workflow for objective hydrofacies definition, applied to 
a heterogeneous unconsolidated glaciofluvial sequence in 
Northwest Cumbria (Fig. 1). Specific objectives include:

 (i) Field characterisation of lithofacies in coastal and 
quarry outcrops, including field porosity measure-
ments and sampling for laboratory analysis of PSD.

 (ii) Identification of an optimum approach to estimate 
porosity from grain-size parameters where porosity 
is not measured in the field, as is generally the case 
given the challenges in undertaking porosity meas-
urements.

 (iii) Application of a clustering algorithm to PSD data 
to identify the optimum number of hydrofacies, and 
comparison with field observation-based lithofacies 
classification.

 (iv) Definition of statistical hydraulic properties of the 
defined hydrofacies using estimates of the hydraulic 
conductivity based on PSD and porosity, and com-
parison to other data sources.
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Geological setting

The Quaternary geological history of northwest Cumbria 
(UK) was characterised by repeated advances and retreats of 
ice sheets during the Late Devensian (28–13 ka; Merritt and 
Auton 2000; Smith et al. 2020): main Late Devensian gla-
ciation, Gosforth Oscillation, Main Scottish Readvance and 
minor readvances periods (Merritt and Auton 2000). This led 
to the deposition of heterogeneous, glaciofluvial sequences 
that constitute today's superficial, unconsolidated aquifer in 
the area. These deposits overlie Permo-Triassic sandstones 
of the Sherwood Sandstone Group, Ordovician volcaniclastic 
rocks of the Borrowdale Volcanic Group near the foothills 
to the east, and, locally, older Paleozoic rocks (Akhurst et al. 
1997; McMillan et al. 2000; Merritt and Auton 2000).

Several studies have focused on the geological characteri-
sation of the exposed Quaternary sequences (Akhurst et al. 
1997; McMillan et al. 2000, 2011; Merritt and Auton 2000; 
Coleman et al. 2021; Smith et al. 2023), the past movement 
of ice sheets (Evans et al. 2005; Livingstone et al. 2012; 
Chiverrell et al. 2018), and the development of geological 

and hydrogeological models (McMillan et al. 2000; Smith 
et al. 2020, 2023; Coleman et al. 2021). Outwash gravel and 
sand deposits, of varying thickness, occur along the coast 
from Nethertown to Drigg Beach (Fig. 1). In the latter area, 
gravels are a subordinate component, and sands are domi-
nant. Glacial till layers have also been recognised along this 
coast. Smith et al. (2023) characterised 19 different lithofa-
cies that occur in five different facies associations (FA). The 
facies associations include sheet-like massive diamicts, grav-
elly confined flow and unconfined flow deposits, confined 
flow and lacustrine deposits, sand-dominated unconfined 
flow deposits and high-energy channelised flow deposits. The 
FAs map onto 11 types of architectural elements (AE). Gla-
ciotectonic deformation has also been documented in these 
deposits. Overall, the deposits are heterogeneous in terms 
of their grain-size and spatial distributions, and their lateral 
extent is typically limited; as such, traditional approaches 
of borehole correlation for subsurface characterisation are 
problematic (McMillan et al. 2000; Smith et al. 2023).

Understanding sedimentological controls on contaminant 
migration in this aquifer is desirable, in the light of past 

Fig. 1  Map of the study area, 
NW Cumbria, UK. Sampled 
localities are shown. Grid 
geodetic reference provided 
in the World Geodetic System 
1984 (WGS84) and Universal 
Transverse Mercator (UTM) 
coordinate system. Countries 
labeled following ISO-alpha3 
M49 codes
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leaks and spills of radionuclides into the subsurface of the 
Sellafield Nuclear Licenced site (Sellafield Ltd. 2023), and 
to support the safety case of the nearby UK Low Level Waste 
Repository (LLWR; LLW Repository Ltd. 2011). Sedimen-
tary heterogeneities in this area determine the occurrence 
of preferential flow, especially via high-permeability gravel 
layers, but also spatial variability in sorption processes of 
contaminants such as 90Sr, which interacts with clays and 
iron oxides (Barker et al. 2024).

Materials and methods

The identification and characterisation of lithofacies were 
undertaken through the following activities (the general 
workflow is shown in Fig. S1 of the electronic supplemen-
tary material, ESM): (1) field sampling at localities in the 
study area where fluvioglacial sequences are known to be 
exposed (Fig. 1); (2) lithofacies classification based on the 
visual characterisation of the deposits in the field; (3) in situ 
porosity measurements using the sand replacement method 
following British Standard BS1377-9 (British Standards 
Institution 1990); (4) determination of the particle size 
distribution (PSD) of the samples by combining mechani-
cal sieving (> 2 mm fraction) and an optical grain sizer 
equipment (< 2 mm fraction); (5) data processing and data 
analysis, including an evaluation of empirical equations for 
predicting porosity (e.g. Vuković and Soro 1992; Wu and 
Wang 2006; Wooster et al. 2008; Frings et al. 2011) and 
determination of hydrofacies units via cluster analysis using 
the sample PSD data; and (6) hydraulic conductivity estima-
tion using Kozeny–Carman equation (Kozeny 1927; Carman 
1937, 1956; Bear 1972; Riva et al. 2010). A detailed expla-
nation of each step is described in the following subsections.

Fieldwork

Field sampling was carried out at the coastal outcrops of 
Drigg Beach, Seascale and Nethertown, and at Peel Place 
Quarry and the bank of the River Calder upstream of Cal-
der Bridge (Fig. 1) following BS17892-4 (British Stand-
ards Institution 2016). Coastal outcrop sampling involved 
the systematic collection of sediment samples in vertical 
transects: four cliff sections were sampled at Drigg Beach 
and Seascale, and three at Nethertown (Table 1). Sampling 
intervals were identified on the basis of visual changes in 
the sedimentary composition of the sequence. The extent 
of vertical sampling was limited by outcrop accessibility. 
The steep nature of the outcrops precluded porosity meas-
urements at these coastal locations. At Peel Place Quarry 
site, the stable nature of the slopes allowed sampling along 
both horizontal and vertical directions, and in situ porosity 
measurements using the sand replacement method. Three 

additional samples were obtained from outcrops of the glaci-
ofluvial sequence along the Calder River, upstream of Calder 
Bridge. Pre-existing grain-size analyses from samples from 
two boreholes from the Sellafield site (9983 and  11 A), and 
Calder Bridge area, and of six further samples taken from 
Drigg Beach, Nethertown and Seascale Beach in March 
2021 were included in the analysed dataset.

Porosity measurements were performed by means of the 
sand replacement method. The process followed BS 1377–9 
(British Standards Institution 1990) with calibration sand 
characteristics 100% passage through a 600 μm sieve and 
100% retention on the 63 μm, large cylinder (200 mm diam-
eter). The calibration sand density was estimated in the 
laboratory before and after the field study, using a ± 0.05 g 
precision scale, from which an average value of 1.49 g/cm3 
was obtained (difference ± 0.01 between min and max val-
ues). A scale with a ± 100 g precision was used in the field 
to carry out the in situ weight measurements; the resulting 
error was < 1% porosity. A larger source of error arose from 
overestimation of the volume of the dug hole, resulting from 
loss of calibration sand between the cover plate and the sur-
face around the hole (due to irregularities in the surface). 
The average gap was estimated as 10 mm, and error bars 
of ± 2% porosity were estimated by assuming minimum and 
maximum gaps of 5 and 15 mm, respectively. Samples were 
collected at each porosity measurement location to charac-
terise moisture content and PSD.

Facies analysis

A sedimentological lithofacies classification was carried out 
on the basis of field observations and photos taken from 
the sampling points, following the classification schemes by 
Tucker (2003) and Miall (2006) (Table 2). The facies codes 

Table 1  Locations of samples described and obtained from the field 
(Field), and total number of PSD analyses (Lab). Grid references are 
provided in the Ordnance Survey National Grid reference system 
(OSGB)

a Does not correspond to the exact borehole location but to a reference 
location of Sellafield site

Location Grid reference
(OSGB)

Number of 
samples

Field Lab

Borehole 11A NY 02304  04390a 1 4
Borehole 9983 NY 02304  04390a 2 8
Calder Bridge NY 04221 06052 4 9
Drigg Beach SD 04646 98646 37 88
Nethertown NX 98733 07488 12 47
Peel Place NY 06576 01310 18 51
Seascale NY 03981 00402 15 38
Total - 89 245
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and sedimentological terminology used are consistent with 
previous work on the same successions (e.g. Smith et al. 
2023). The different types of lithofacies were interpreted in 
terms of formative depositional processes, and their assem-
blages were classified into facies associations according to 
their spatial association and architectural features exhibited 
in outcrop. The facies associations are interpreted in terms 
of local depositional environments. Individual samples were 
linked to their lithofacies and facies association, enabling 
correlation of sedimentological characteristics and hydraulic 
properties.

Particle size distribution (PSD) analyses

To obtain the PSD (see detailed workflow in Fig. S2 of the 
ESM), sieving tests were carried out in accordance with BS 
1377–2 (British Standards Institution 2022a). Samples were 
first oven-dried at 105 °C for 48 h. Coarse-grained samples 
(coarse gravels or total sample weight > 5 kg) were manu-
ally quartered before drying. After drying, the coarse frac-
tion (> 2 mm) of each sample was separated from the fine 
fraction (< 2 mm) by mechanical sieving, and PSD analyses 
were performed separately on each fraction. The remain-
ing fine fraction (< 2 mm) was then quartered using a riffle 
splitter. At least two separate fine-grained subsamples were 
obtained for each field sample. Given the limited size of 
the manual riffle, when the weight of the under 2 mm frac-
tion was > 500 g, more pairs of subsamples were obtained. 
When the finer fraction was evidently poorly sorted and 
its weight was higher than ~500 g, an additional mechani-
cal sieving step was carried out to obtain the < 1 mm por-
tion. The resultant fine-fraction subsamples were analysed 
in the CAMSIZER® X2 optical sizer (Technology review 
2013; Arora et al. 2022; Microtrac MRB 2024), which is 
based on the dynamic image analysis principle as presented 
in BS13322-2 (British Standards Institution 2022b). This 
equipment allows fast PSD analysis from a teaspoon-sized 

sample (between 20 and 50 g), for grain sizes < 2 mm. For 
most samples, the X-FALL module (dry dispersion by grav-
ity - air; 10 μm to 3 mm) was used. For finest-grained sam-
ples, particularly those that agglomerated after drying, the 
X-JET module (dry dispersion by compressed air; 0.8 μm 
to 1.5 mm) was used as it deagglomerates the samples via 
a Venturi nozzle. Details on how each module work are 
explained in the manufacturer’s webpage (Technology 
review 2013; Microtrac MRB 2024). For each analysed sam-
ple, the CAMSIZER gives two PSD outputs: one consider-
ing the minimum diameter of each grain, and another one 
using the grain area. The former was used here as it is more 
comparable to mechanical sieving results.

Data processing and analysis

Compiled PSD data was used to obtain the percentage of fine 
(< 0.0625 mm), sand (0.0625–2 mm) and gravel (> 2 mm) 
of each sample. These thresholds are widely recognised as 
key thresholds (Miall 2006; British Standards Institution 
2018) and have been used for the sedimentological lithofa-
cies classification of this work. Given that the same sample 
was analysed more than once, average values were obtained. 
The three grain-size fractions were plotted on a 2D ternary 
plot by reducing them to two independent variables using 
Eqs. [1] and [2],

The resultant X and Y variables were used to classify the 
samples using the K-means algorithm. K-means is an unsu-
pervised iteration-based clustering algorithm that stands 
out for its simplicity and ability to classify data points into 
clusters based on similarity (Jain et al. 1999; Pedregosa 
et al. 2011). It has been used, for example, to obtain litho-
facies groups using seismic data (Troccoli et al. 2022) or 
geophysical logging (Newell et al. 2021) as input variables. 
It aims to minimise within-cluster distances and maximise 
between-cluster distances. It is initialised by setting the 
number of clusters then generating randomly positioned 
centroids to those clusters. Then, samples are assigned to 
their closest cluster (Euclidean distance), and centroids are 
recalculated. The algorithm iterates by reassigning sam-
ples their closest cluster considering the new centroids 
obtained. Finally, when no more samples are reassigned 
or centroids do not change anymore, the algorithm stops. 
To determine the optimum number of clusters, four meth-
ods were used. The elbow method plots the resultant sum 
squared error (SSE) against the number of clusters (the 

(1)X =
1

2
∙

2 ∙%Gravel + %Fine

%Gravel + %Sand + %Fine

(2)Y =

√

3

2
∙

%Fine

%Gravel +%Sand +%Fine

Table 2  Lithofacies codes for siliciclastic sediments (based on Miall 
2006 and Tucker 2003)

Parameter Code

Lithology G: gravel
S: sand
F: fines
D: diamicton

Depositional structure m: massive
p: planar cross-bedded
t: trough cross-bedded
r: ripple cross-laminated
h: horizontal bedding
l: laminated

Fabric c: clast supported
m: matrix supported
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SSE is zero where the number of clusters equals the num-
ber of data points). The optimum number of clusters is that 
where the rate of reduction in SSE with increasing cluster 
number reduces (elbow in the plot). The silhouette method 
analyses the distance between clusters and number of sam-
ples contained in each (Rousseeuw 1987; Pedregosa et al. 
2011). Plots are generated for different values of n (number 
of clusters) and a silhouette score is calculated. The opti-
mum number of clusters is that when the average silhouette 
score is the highest, i.e. the clusters maximum silhouette 
coefficients are all above the average score, and cluster 
sizes are similar. The Davies–Bouldin index measures the 
similarity between clusters as the ratio between average 
within-cluster and between-cluster distances (Davies and 
Bouldin 1979; Pedregosa et al. 2011). A lower number 
means clusters are more separate from one another and less 
dispersed internally, which indicates the number of clusters 
selected is better. Finally, the Calinski–Harabasz criteria 
is defined as the ratio between the overall between-cluster 
variance and the overall within-cluster variance (Calinski 
and Harabasz 1974; Pedregosa et al. 2011). The result is 
higher when clusters have a lower within-cluster variance, 
and individual clusters are more separate between each 
other. The value will usually increase as the number of 
clusters increases, so algorithms usually look for the first 
local maximum to decide for an optimum number of clus-
ters. Here, the Scikit-Learn Python package (Pedregosa 
et al. 2011) was used to run the K-means algorithm and 
obtain the elbow, silhouette, Davies–Bouldin and Calin-
ski–Harabasz scores, with the optimum cluster number 
being found manually by comparison of efficacy of these 
four approaches.

Following the analysis of the ternary plot and the cluster 
analysis results, the grain-size variables required for subse-
quent porosity and hydraulic conductivity estimates were 
extracted and included in a database; these variables include 
the d10, d25, d50 and d75 values; the uniformity coefficient 
( U = d60∕d10 ) and the geometric standard deviation (GSD) 
of Φ: (Φ = −log2(grain size)).

Porosity and hydraulic conductivity estimation

Relationships were evaluated between porosity and d50 (fol-
lowing Wu and Wang 2006), the uniformity coefficient (U; 
following Vuković and Soro ( 1992)) and the geometric 
standard deviation of Φ ( �Φ or GSD(Φ), following Frings 
et al. 2011; based on the equation by Wooster et al. 2008). 
A regression analysis was carried out and a site-specific cali-
bration was found for each variable from which the approach 
showing the narrowest confidence intervals (least uncertainty) 
was selected. Porosity values were then estimated for the sam-
ples from outcrops where no direct porosity measurements 
were available, using that approach. These statistical porosity 

characteristics for each cluster were then defined using meas-
ured porosities (where available) and estimated values.

Hydraulic conductivity was then estimated from porosity 
and PSD data using empirical approaches. One of the most 
widely used is the Kozeny–Carman equation (K-C; Eq. 3), 
which relies on the porosity and on the representative grain 
size, and which has proven as a good fit for sediments similar 
to the ones being studied (Vuković and Soro 1992; Odong 
2008; Chandel and Shankar 2022):

where � is the gravitational acceleration (9.81 m/s2), � the 
viscosity coefficient of water (1.002  m2/s at 20 °C), � the 
fractional porosity and de is the effective grain diameter (m). 
For this application, the characteristic grain size has been 
assumed to be d10 (following Vuković and Soro 1992; Kase-
now 2002; Riva et al. 2010; Chandel and Shankar 2022).

Results

Samples and geological characterisation

A total of 81 samples were collected in the field and 12 
different lithofacies have been identified (Table 3). A sum-
mary of the number of samples, locations and lithofacies is 
presented in Table 4.

Sands and gravels are overall dominant (28 and 26 sam-
ples classified as such, respectively), while fines are slightly 
less abundant, having been recognised mostly at Drigg 
Beach (Table 4). Diamicton-type deposits (Dmm; Fig. 2b 
and d) have been observed at Drigg Beach, Seascale and 
Nethertown areas.

Gravel facies are pebbly, poorly sorted, clast supported 
and polymictic (Gcm, Gh; Fig. 2b, e and g). Clasts sizes are 
mostly in the 0.2 cm to 20 cm range, locally reaching > 1 m 
in diameter (e.g. Nethertown) and are dominantly red sand-
stone (presumably Sherwood Sandstone) and igneous (vol-
canic and occasionally granitic). Sand facies are mostly very 
fine to medium grained, well-sorted, occasionally contain-
ing sparse gravel-sized clasts (Sm, Sp, Sh; Fig. 2a and c). 
Fine-grained facies are represented by silts, clayey silts and 
sandy-silts, occasionally presenting clasts of up to 0.5 cm 
diameter (Fm, Fl; Fig. 2a, e, f and g).

Most of the studied deposits demonstrate a massive struc-
ture (Gcm, Sm, Fm; Fig. 2a and f), although horizontal strat-
ification and cross-stratification are observed (Gh, Gp, Sh, 
Sp, Fl; Fig. 2b, c and e). Some gravel deposits show imbrica-
tion, with both a(t)b(i) (Fig. 2b) and a(p) fabrics (Fig. 2e).

Alternation of finer and coarser grained sized beds are 
observed at a scale of decimetres to metres (e.g. Fig. 2g); 

(3)K = 8.3 ∙ 10−3 ∙
�

�
∙

�
3

(1 − �)2
∙ d2

e
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fining- and coarsening-upwards trends within beds are 
observed, although the former are dominant (Fig. 2). At Peel 
Place, local centimetric to metric scale faulting and folding 
are observed in sand-prone deposits (Fig. 2c). Larger-scale 
folds, of the order of metres to decametres, are evident in 
all coastal areas. Smith et al. (2023) attributed deformation 
features as such to be of glaciotectonic origin.

At Drigg Beach, the studied vertical transects conform to 
two main fining-upwards successions. Laterally, the succes-
sion varies in terms of the abundance and relative position of 
the different facies (Figs. 3a and b, and 4). The main facies 
types recognised correspond to massive clast-supported 
gravels (Gcm), horizontal plane-bedded and massive sands 
(Sh, Sm) and massive silts (Fm). A laminated sandy silt (Fl) 
is observed at the top and bottom of the exposed sequence, 
and an up to 1 m thick diamicton layer (Dmm) is observed 

along the sequence exposed in the south (Figs. 3a and 4). In 
the north exposure, the bottom fining-upwards succession 
is represented by an intercalation of silts and sands. In the 
base of the facies sequence, a laminated silt is overlain by 
a thin (< 50 cm) gravel bed (Figs. 3b and 4), which then 
shows a continuous, non-erosional, normal-graded sequence 
(Fig. 3c). The observations are consistent with the facies 
sequence being deposited in a glaciofluvial context, suggest-
ing an origin related to stream-flow processes. The massive 
fine-grained deposits (Fm) with a predominance of silt and 
fine sand suggest the development of either loess, overbank 
or abandoned channel fill deposits. Smith et al. (2023) have 
characterised architectural elements in this area as sand-
prone unconfined flow deposits (facies Sh, Sm), intercalated 
with unconfined flow gravels. Their fine-grained sequences 

Table 3  Sedimentological lithofacies characteristics

Facies code Description Interpretation (cf. Smith et al. 2023)

Diamicton 
   Dmm
   (Fig. 2b, d)

Clayey-silt to gravelly silt diamicton. Polymictic, 
with subrounded to subangular clasts. Massive 
depositional structure. Brown colour. Very high 
stiffness

Subglacial till deposit (Evans et al. 2006; Smith et al. 
2023)

Laminated silts
   Fl
   (Fig. 2e)

Sandy silt. Orange-brown, horizontally laminated. 
Bed thickness up to 0.2 m. Minor presence 
(< 1%) of subrounded clasts of up to 0.5 cm

Very low or inexistent flow, slack water deposit. Depo-
sition from suspension (Bennett et al. 2002; Smith 
et al. 2023)

Massive silts
   Fm
   (Fig. 2a, f)

Silts and sandy silts. Occasional clasts (< 4%) up 
to 0.5 cm in size. Massive structure. Grey-brown 
to red-brown colour

Loess, overbank or abandoned channel fill deposits 
(Bennett et al. 2002; Miall 2006; Smith et al. 2023)

Massive sand
   Sm
   (Fig. 2a, b, e)

Very fine to coarse sands, well sorted. Massive, 
often normal graded. Occasionally with abrupt 
contacts between fine- and coarse-grained sands. 
Light brown to orange-brown colour. Occurs in 
units with thickness from 0.2 to 5 m

Deposition of sands out of suspension by energetic 
turbulent flows infilling channels (Smith et al. 2023)

Horizontally bedded sand
   Sh
   (Fig. 2c)

Fine to medium grained sand, well-sorted. Centi-
metric lamination. It is locally folded. It occurs 
in beds that have thickness from 0.5 to 2 m. Light 
brown to orange-brown colour

Unconfined flow events. Streamflow deposit under 
upper-flow regime conditions (Smith et al. 2023)

Planar cross-bedded sand
   Sp
   (Fig. 2c)

Very fine to medium sands. Planar cross-stratified. 
It shows intercalations of finer grained red-brown 
silty-sands. Mud drapes along the cross-stratified 
lamination. It may display centimetric scale fold-
ing. It occurs in units with thickness from 0.5 to 
1 m. Orange-brown to light brown colour

Migration of straight-crested mesoforms, such as 
alluvial dunes, or linguoid and transverse bars (Miall 
2006; Smith et al. 2023)

Massive clast-supported gravel
   Gcm

Sandy fine to coarse gravels. Poorly sorted, 
polymictic. Clasts size vary from 0.2 to 20 cm. 
Locally, clasts of up to 2 m size (Nethertown)

High energy mass flow and gravelly barforms (Miall 
2006; Smith et al. 2023)

Planar cross-bedded gravel
   Gp

Sandy medium to coarse gravels with clasts that 
are up to 10 cm in diameter. Clast supported, 
poorly sorted, polymictic. Planar cross-bedded

Migration of gravelly barforms (Miall 2006; Smith 
et al. 2023)

Horizontally bedded gravel
   Gh
   (Fig. 2b, e)

Gravel and sandy gravels, with gravel-clast sizes 
varying mostly from 0.2 to 10 cm, but locally 
up to 50 cm. Poorly sorted, with polymictic 
subrounded clasts. Horizontally graded, locally 
imbricated

Fluvial sheet gravel or channel floor sediments in a 
fluvial environment (Miall 2006; Smith et al. 2023)
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in the area were attributed to subaqueous deposition in a gla-
ciolacustrine environment, which could be consistent with 
the laminated silts and sandy silts observed. Diamictons 
observed by Smith et al. (2023) were interpreted as being 
deposited directly from glacier ice.

In Peel Place Quarry, the succession consists of 
coarse-grained, poorly channelized sand and gravelly 
deposits (Figs.  3d and 4). Facies recognised in this 
area include massive and horizontally laminated grav-
els (Gcm, Gh), and massive, horizontally bedded and 
planar cross-bedded sands (Sm, Sh, Sp). Smith et  al. 
(2023) have characterised these facies as unconfined 
flow elements, interbedded with channel bar confined 
flow deposits, and solitary sand/silt fills. In general, 
they interpreted this facies sequence as gravel and sand 
dominated outwash deposits that might have accumulated 
under confined to unconfined flow conditions. At Sea-
scale, the succession is dominated by gravels and sands, 
forming a facies association similar to that observed at 
Peel Place Quarry. However, massive and layered silts 
are also found along the facies sequence at Seascale. Lay-
ered silts are observed at the bottom of one of the verti-
cal sections on this site; a massive silt overlies a clast-
supported coarse gravel; and a massive fine-grained bed 
tops the succession. As there are no further exposures 
of the sediments on this site, it is unclear whether the 
overlying and underlying facies associations are similar 
to the one observed at Drigg Beach. Smith et al. (2023) 
interpret this sequence as being stratigraphically below 
the sequence observed in Peel Place Quarry.

Particle size distribution

The PSDs of 89 samples were obtained from a total of 
245 analyses (Table 1). The frequency distributions of the 
summary statistics (d10, d50, GSD(Φ) and U) are shown in 
Fig. 5a to d, after log-transformation (base 10) for ease 
of visualisation. Distributions are all positively skewed; 

some grade of bimodality is observed in the U, d10 and 
d50 distributions, while GSD(Φ) shows a wider and more 
uniform dispersion of values. The uniformity coefficient 
(U) shows a high positive skewness with a median value 
of 0.90 for log U (Fig. 5a; U ~ 8), consistent with sam-
ples being predominantly poorly sorted. D10 is mostly 
distributed in the 0.01–0.1 mm range (log d10 between 
−2.0 and −1.0; Fig. 5b), showing a lower positive skew-
ness. The mean and median values of log d10 are similar 
(−1.473 and −1.467, respectively) and the distribution 
can be approximated by a normal distribution, although 
a tendency to being bimodal is observed with a cluster 
of log d10 values between −2.5 and −2.0. In contrast, d50 
shows a clear bimodal distribution (Fig. 5c), which also 
suggests that the uniformity coefficient distribution is 
more dependent on d50 than d10. The high skewness and 
kurtosis values are consistent with a wider distribution of 
this parameter. GSD(Φ) is also more evenly distributed 
(Fig. 5d), although its distribution is much more uni-
form, concentrated between 1.2 and 2.4. A major peak is 
observed at GSD(Φ) ~ 2.0.

Analyses

Cluster analysis

The resultant proportions of fines, sand and gravel are pre-
sented in the ternary plot of Fig. 6a. Samples with limited 
gravel fractions (< 10%) collectively cover the entire spectrum 
of sand- to fine-dominated deposits. Samples with a higher 
gravel content form a separate group, visually distinguishable 
in the plot, in which the sand content is < 60% and the content 
of fines is < 20%. Only a small number of samples are seen to 
plot in intermediate ranges between those two major groups.

The four approaches described in the previous section 
were applied and their results manually compared to deter-
mine to optimum number of clusters. The elbow method 

Table 4  Number of identified 
sedimentological facies per 
location

Location Identified lithofacies Total

Dm F G S

m l m h m p h m p

Calder Bridge - - 1 - 2 - - - - 3
Nethertown 1 - 2 - 4 - 1 - 1 9
Peel Place - - 1 - 6 - 4 4 3 18
Seascale 1 1 3 3 3 - - 5 - 16
Drigg Beach 2 2 13 2 4 2 4 6 - 35
TOTAL 4 3 20 5 19 2 9 15 4 81
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Fig. 2  Outcrop photographs of facies characterised on the field. (a) 
Drigg beach, silt layer (Fm) overlying a massive sand (Sm). (b) Drigg 
beach, diamicton (Dmm) underlying a gravel layer with imbricated 
clasts (Gh), and a massive sand on top (Sm). (c) Peel Place quarry, 
horizontal and planar cross bedded sands (Sh and Sp), and a nor-
mal fault interrupting the continuity of the deposits. (d) Diamicton 

(Dmm). (e) Seascale, layered silt (Fl) overlain by an ~80 cm, fining-
upwards, horizontally bedded gravel (Gh). A massive sand overlies 
the whole sequence. (f) Peel Place quarry, clayey silt (Fm). (g) Sea-
scale, massive clast supported gravel (Gcm), folded, overlain by a 
massive silt (Fm). Photograph accreditation: Felipe Gallardo, Jared 
West
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suggested that three clusters are optimum (Fig. 6b). An 
optimum of three clusters is also supported by the sil-
houette and Davies–Bouldin maximum and minimum 
values, respectively (Fig. 7a and b). The Calinski–Hara-
basz score suggests five clusters as an optimum number, 
although three or four would also be acceptable. Given that 
three out of four methods strongly suggest three being the 

optimum number of clusters, three clusters were defined 
as follows: fine-dominated (32 samples; cluster 1), sand-
dominated (31 samples; cluster 2) and gravel-dominated 
(26 samples; cluster 3) clusters (Fig. 6a). A summary of 
key statistics of each cluster and sample is included in the 
Tables S1 and S2 of the ESM).

Fig. 3  Facies associations 
observed in Drigg Beach (a, b 
and c) and Peel Place Quarry 
(d). Outcrops (a) and (b) are 
separated 100 m one from 
the other (south and north, 
respectively; Fig. 4). High-
lighted rectangle in (b) is the 
area zoomed in (c). Sampling 
points are represented by yellow 
circles. Photograph accredita-
tion: Felipe Gallardo
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Fine- and sand-dominated clusters are characterised by a 
low content of gravel-sized grains: 3% and 2% on average, 
respectively. These clusters have the lowest d10 (Fig. 8a) and 
d50 values (Fig. 8b), with a group of values exceeding 1.5 
times the interquartile range (IQR) observed in the fine-dom-
inated (d10), and in the sand-dominated cluster (d50). They 

also have the lowest uniformity coefficients, with an average 
of 5.6 in cluster 2 and 6.3 in cluster 1 (Fig. 8c). The gravel-
dominated cluster comprises the samples that were visually 
identified as a separate group (Fig. 6a). Fine-sized grains 
represent, on average, 10% of the samples belonging to the 
gravel-dominated cluster. In turn, the uniformity coefficient 

Fig. 4  Schematic stratigraphic 
columns representing the 
deposit distribution in Drigg 
Beach and Peel Place Quarry
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of this group is considerably higher than the other two, with 
an average of 175 and extreme values above 1000 (Fig. 8c). 
This is consistent with these samples being extremely poorly 
sorted. The GSD(Φ) shows a distribution more similar among 
the three clusters (Fig. 8d), although the sand-dominated 
cluster has lower values (average 1.4), and the gravel-domi-
nated cluster has the highest ones (average 2.1).

Porosity measurements and estimates

A total of 14 porosity measurements were obtained from 
deposits found at Peel Place Quarry site. These represent 
total porosities, which are equivalent to effective porosi-
ties when studying unconsolidated sediments (Woessner 
and Poeter 2020). Porosity from field measurements show 
a 35% average porosity, with a minimum value of 20% and 
a maximum value of 44.5%. Porosity measurements were 
plotted against the uniformity coefficient (U), the logarithm 
(base 10) of d10 (representative grain size used in hydraulic 
conductivity estimators); the logarithm of d50 and GSD(Φ). 
The regression analysis shows that log d50 has the highest 
correlation with measured porosity values (Fig. 9), which is 
supported by log d50 having the highest Pearson’s correla-
tion coefficient and coefficient of determination R2, and the 
lowest mean squared error and sum of squared errors (MSE 

and SSE; Table 5). In contrast, log d10 and GSD(Φ) show 
lower correlation with porosity. Overall, log d50 is identified 
as the variable that can be most confidently used to estimate 
the porosity of the remaining samples using equation [4]:

Porosity estimates using this relationship (Fig. 10) show 
that the fine-dominated cluster has the highest porosity 
range (average 44%, range 41–48%), consistent with it cor-
responding to well-sorted fine-grained sediments. The range 
is slightly lower in the sand-dominated cluster (average 40%, 
range 35–42%), whereas the gravel-dominated cluster shows 
the lowest porosities (average 27%, range 22–36%). This is 
also consistent with the latter being poorly sorted (high U).

Hydraulic conductivity estimates

The Kozeny–Carman equation was used to estimate the 
hydraulic conductivity (K) of the 89 samples. Figure 11 
shows the distribution of log(K) for each cluster. The gravel-
dominated cluster shows the highest median and geometric 
mean values of hydraulic conductivity (2.2 and 2.8 m/d, 
respectively) and the largest ranges of values (from 0.1 to 
62 m/d). The sand-dominated cluster has a lower median 

(4)n = −0.0773 ∙ log
(

d50

)

+ 0.3282

Fig. 6  (a) Ternary plot showing the percentage of fines 
(< 0.0625  mm), sand (0.0625–2  mm) and gravel (> 2  mm) for each 
sampled location. Field lithofacies classification has been included 
as symbols, and colours represent the cluster in which samples have 

been classified. (b) Elbow method graph. (c) Number of samples per 
location (BH Borehole; CR Calder river; DB Drigg Beach; NT Neth-
ertown; PPQ Peel Place Quarry; SS Seascale)
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and geometric mean than the gravel-dominated cluster (1.1 
and 1.4 m/d, respectively), and a narrower range, from 0.2 
to 11 m/d. The fine-dominated cluster shows a hydraulic 
conductivity range that is one order of magnitude lower, 
although six outlier samples have a K range overlapping 

with the second quartile of cluster 2 (sands). These outlier 
samples have relatively high d10 values (see outliers for fine-
dominated cluster in Fig. 8a), which explains their higher K 
estimates. This is consistent with these samples having been 
analysed using the X-FALL module instead of the X-JET, 
as was done with all the other fine-grained samples. Hence, 
they should be discounted in any characterisation of clus-
ters’ K-ranges. Treating these samples as outliers, K values 
for the fine-grained cluster are in the  10–2–10–1 m/d range 
(0.06–0.2 m/d; geometric mean of 0.1 m/d), while both sand- 
and gravel-dominated clusters have a range between  10–1 and 
 101 m/d, with the latter being closer to the  102 m/d limit. All 
the log(K) distributions show positive skewness.

Discussion

Cluster analysis and lithofacies

Clusters obtained from the PSD are consistent with field 
characterisation of lithofacies (Figs. 6 and 12). For instance, 
all the ‘G’ coded lithofacies fall into the gravel-dominated 
cluster, except for a single sample, identified as Gmm, which 
falls within cluster 1 (dark blue asterisk in the middle of 
the ternary plot; Fig. 6). Similarly, all of the ‘S’ coded 
lithofacies fall into cluster 2 (circles; Fig. 6) and all of ‘F’ 
coded and ‘D’ coded lithofacies fall into cluster 1 (dark blue 
crosses and squares; Fig. 6), with the exception of a single 
sample—coded F – light blue cross—which is close to the 
sand-fines midpoint on the ternary plot. This is an important 
finding because it highlights how the approach followed for 
lithofacies characterisation is based on objective observa-
tions made in the field, but that the statistical analysis based 
on laboratory PSD alone replicates the key lithotextural 
classes of fines/diamicton, sands and gravels without expert 
knowledge. Note that cluster analysis was unable to distin-
guish ‘D’ – diamicton, from ‘F’ – fines coded samples, as 
these plot relatively close together on the ternary plot. How-
ever, the  d10 and porosity values for ‘F’ and ‘D’ samples are 
relatively similar, as are their predicted hydraulic conduc-
tivities (Fig. 13). Hence, while the samples are geologically 
distinct, it is appropriate to treat them as a single hydrofacies 
unit. In this sense, the unsupervised cluster analysis proves 
itself useful and efficient to classify lithofacies using the 
PSD and focusing on hydrogeologically important details, 
without creating an excessive number of categories.

Additional measurements, such as geochemical analyses 
(Simon et al. 2021; Nichols et al. 2023) or geophysical log-
ging (Al-Mudhafar 2017; Kumar et al. 2022) could also be 
used for scopes of cluster analysis together with the PSD. 
Such data can help differentiate deposits. However, given 
the difficulty in obtaining these data from subsurface stud-
ies, using available grain size data in the manner explained 
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in this work remains a more practical and broadly appli-
cable approach to the characterisation of hydrogeological 
units.

The number of clusters used in the algorithm must align 
with the aim of the project rather than solely adhering to a 
specific criterion. For instance, the Calinski–Harabasz cri-
terion (Fig. 7a; Calinski and Harabasz 1974) suggests an 
optimum of five clusters from the dataset, instead of three 
as suggested by the elbow method, silhouette analysis and 
Davies–Bouldin score. However, increasing the number of 
clusters reduces the correspondence with lithofacies, and 
does not provide additional hydrogeological or sedimento-
logical distinction (the bottom-level lithofacies classes are 
not visually clustered, Fig. 6a). Notably, including log d50 
as an additional third variable in the cluster analysis makes 
the number of clusters recommended on the basis of the 
Calinski–Harabasz criterion decrease to three, aligning with 
the number selected.

Porosity and hydraulic conductivity estimates

To determine the most accurate porosity estimation equa-
tion, a pairwise bivariate analysis was followed using meas-
ured porosities and separate parameters (log d10, log d50, log 
U and GSD(Φ)). The best-fit equation was obtained using 
 d50 (Eq. 4). As expected, a multiple linear regression (MLR) 
results in an even better fit than a bivariate one, which is 
achieved using log U, log d50 and GSD(Φ) together (equa-
tion [5]; R2 = 0.899, MSE = 0.0006, SSE = 0.008): 

However, the improvement in predictive power over the 
use of log d50 alone is marginal. When applying the MLR 
equation to the samples where porosity was not directly 
measured, some porosity estimates were significantly lower 
than any of the measured values. This happened in sam-
ples with high uniformity coefficient and d50 (exceeding 
80 and 4 mm, respectively). Furthermore, for a few sam-
ples predicted porosities exceeded 50%, which is physically 

(5)n = 0.53 − 0.04 ∙
(

log(U) + logd50 + 2 ∙ GSD(Φ)
)
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unrealistic for these sediment types. Given these considera-
tions, the relationship between porosity and log d50 (Fig. 9c) 
has been used for estimating the porosity where it was not 
measured.

Porosity estimates obtained using empirical equations 
proposed in earlier studies (Vuković and Soro 1992; Wu 
and Wang 2006; Wooster et al. 2008; Frings et al. 2011) 
reflect known relationships between porosity and the con-
sidered PSD variables (d10, d50, GSD(Φ) or U). However, the 

application of those equations did not accurately match the 
measured values in this study. This highlights how empiri-
cal best-fit equations derived from other areas may not be 
universally applicable.

Using empirical equations to estimate the permeability 
of hydrogeological units is commonly done in practice 
when data are limited. McMillan et al. (2000) used the 
equation by Fair and Hatch (Fair et al. 1933) to estimate 
K values on glaciofluvial and glaciolacustrine sediments 
from the Sellafield area, whereas Bianchi and Zheng 

Fig. 9  Scatter plots showing 
relationships between measured 
porosity (n) and particle size 
distribution parameters: (a) log 
U; (b) log d10; (c) log d50; (d) 
GSD(Φ). Blue lines indicate 
linear regressions (equation 
shown in each graph), whereas 
the light blue fields indicate the 
95% confidence intervals

Table 5  Correlation coefficients between measured porosity and log U, log d10, log d50 and GSD(Φ). �Φ : geometric standard deviation of Φ 

Statistic log U log d10 log d50 GSD(Φ)

Pearsons −0.885 −0.764 −0.888 −0.758
Spearmans −0.859 −0.644 −0.798 −0.767
Best fit equation n = −0.1453log(U) + 0.5004 n = −0.1097log

(

d10

)

+ 0.2177 n = −0.0773log
(

d50

)

+ 0.3282 n = 0.975e−0.562�Φ

SSE 0.0183 0.0352 0.0178 0.0356
MSE 0.0015 0.0025 0.0014 0.0025
R2 0.783 0.583 0.789 0.579
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(2016) used the Kozeny–Carman equation to estimate the 
hydraulic conductivity of their lithofacies and for mod-
elling a K field in glaciofluvial sediments from North 
America (MADE site, Mississippi, USA). As empirical 

approaches do not always result in a good match with 
measured values, it becomes important to know the 
applicability of different equations to different deposi-
tional environments (Rosas et al. 2014). In that sense, the 
Kozeny–Carman equation has proven to generate better 
estimates than other equations when used in sediments 
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similar to the ones being studied (Odong 2008; Rosas et al. 
2014; Chandel and Shankar 2022). To further support its 
usage, the applicability of the Kozeny–Carman equation 
was checked via comparison with hydraulic conductivities 
derived by other approaches and field data.

Several studies have reported K values for the study site 
(Nirex 1997a; McMillan et al. 2000; Smith et al. 2023). 
The ranges of these K values are summarised in Fig. 14 and 
tabulated in Table S3 of the ESM. The K estimates for the 
sand-dominated and gravel-dominated clusters using the 
Kozeny–Carman equation show a good correlation with K 
measurements made by Nirex (1997a; reported in McMillan 
et al. 2000) on sand and gravel deposits using cone pene-
trometer, slug and pumping tests. The fine-dominated cluster 
has a geometric mean K value of 0.1 m/d, which is less than 
one order of magnitude higher than the estimated geomet-
ric mean of Nirex (1997a) obtained through a pumping test 
on a silt channel facies (0.019 m/d). Estimates reported in 
McMillan et al. (2000) using Fair and Hatch equation (Fair 
et al. 1933) are 0.5 to 3 orders of magnitude lower than 
the estimates presented in this work, which are considered 
unrepresentative.

Smith et al. (2023) reports a range of K values for each 
lithofacies (following LEwis et al. 2006 rock-types ranges). 
The values are useful for comparisons between different units; 
notably, it is observed that the predictions from this study are 
contained in the ranges reported. However, these ranges are for 
a very broad variety of geological materials and therefore do not 

provide useful site-specific information. Purkis et al. (2023) have 
recently measured the permeability of gravel and sand samples 
from the Peel Place Quarry site using the constant head method. 
Their results are one to two orders of magnitude higher than the 
estimates in this study. This is likely because their samples were 
re-compacted from loose sediment and hence had much higher 
porosities than in situ sediments, as well as no sedimentary 
structures. K ranges can also be determined during tasks of con-
ceptual modelling and hydrogeological modelling calibration, 
when it is useful to have a reference range of values supported 
by appropriate analyses. Extensive hydrogeological flow model-
ling of the superficial aquifer from the Sellafield site produces 
overall hydraulic conductivities in the range 0.2 to 95 m/d (Nirex 
1997b), with a geometric mean of 1.9 m/d. This range is com-
parable to the values predicted in this work using the PSD and 
Kozeny–Carman equation, although closer to the ones estimated 
for the sand-dominated and gravel-dominated clusters. This find-
ing likely arises from the fact that modelled values represent the 
hydraulic conductivity of the sequence, which are dominated by 
the more permeable units (arithmetic weighted average).

Nevertheless, incorporation of the less permeable units rep-
resented by cluster 1 (fine-dominated) may be necessary to cor-
rectly model solute transport. Finally, MacDonald et al. (2012) 
measured the permeability of glacigenic deposits in Northern 
Scotland using a Guelph permeameter. Considering only the 
deposits they classified as glaciofluvial and glaciolacustrine, 
their estimated K ranges and median values for their sands 
(median ~2.5 m/d) and gravels (median ~5.5 m/d) are in the same 

Fig. 14  Ranges of values of log 
K (m/d) for different sediment 
sizes, according to different 
authors: (a) This work; (b) 
Nirex (1997b); (c) McMillan 
et al. (2011), including field 
measurements and PSD-based 
estimates as reported in Nirex 
(1997a); (d) MacDonald 
et al. (2012), including only 
measurements on glaciofluvial 
and glaciolacustrine deposits; 
(e) Purkis et al. (2023). Bars 
represent the whole range (min 
to max), while dots represent 
single measurements
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order of magnitude as those obtained in this work (Fig. 14). 
Their silt deposits show a median K one order of magnitude 
lower (median 0.02 m/d) than this work. However, only two 
samples, one glaciolacustrine and one glacial till, have been 
included in this estimate, and their sand and silt classification 
might not exactly fit the one obtained through cluster analysis.

Using the Fair and Hatch equation (Fair et al. 1933; Rosas 
et al. 2014) instead of Kozeny–Carman, with the dataset here 
presented, leads to lower K estimates. Sand and gravel hydrau-
lic conductivities are one to three orders of magnitude lower 
(Fair and Hatch ranges 2 ×  10–3 to 3 ×  10–1 m/d and 4 ×  10–4 to 
4 ×  10–1 m/d, respectively). Estimates for the fine-dominated 
cluster are also lower than Kozeny–Carman estimates and 
better match other authors’ ranges, with values in the  10–3 to 
 10–2 m/d range. However, the method relies on the sum of the 
ratio between the percentage of grains retained between adja-
cent sieves and the geometric mean of the sieve’s sizes, and 
changing the number of sieves used can affect the hydraulic 
conductivity by up to one order of magnitude.

Implications for hydrogeological modelling 
in heterogeneous porous media

Hydrogeological modelling requires definition of hydrofa-
cies on a scale appropriate for the problem. For all but the 
smallest site-scale problems, a lithofacies classification that 
is too detailed might not be optimal for definition of hydrofa-
cies, and some generalisation might be preferable whereby 
lithofacies units that have similar hydrogeological charac-
teristics are grouped together into a single hydrofacies. A 
methodology that uses PSD data only is presented here to 
define hydrofacies using an unsupervised cluster-analysis 
approach. This methodology was tested against conventional 
classification based entirely on field outcrop observations. 
The agreement between cluster analysis and top-level litho-
facies characteristics (F, S, G, D) was necessarily only par-
tial, since the cluster analysis grouped D (diamict) together 
with F (fines). However, given that the predicted hydraulic 
characteristics of the latter two categories are similar, it is 
entirely appropriate to group them as a single hydrofacies for 
the purpose of hydrogeological modelling. Using the PSD 
data thus allowed solving two problems simultaneously: 
defining hydrofacies units and characterising their hydraulic 
properties. Such an approach has the advantage that it could 
be based entirely on borehole sampling, where, as is usu-
ally the case, no outcrop evidence is available. In this case 
study, no significant grouping pattern was observed between 
hydrogeological parameters and  bottom level lithofacies 
indicators groups (m, c, p; i.e. those based on sedimentary 
structure within the top-level—particle size based—group-
ings F, S, G, D). However, it is possible that this may be an 
effect of the approach used to predict hydraulic conductivity, 
which used only d10 and porosity. Where there are additional 

variations in sediment texture and structure that may influ-
ence the hydraulic conductivity, additional variables needed 
to capture such features should be included in the cluster 
analysis. Using PSD data remains, however, a critical step, 
in view of the strong relationships between this and other 
petrophysical properties, sedimentological facies and depo-
sitional context.

The results presented in this work can be used as in 
dell’Arciprete et al. (2012) and Bianchi and Zheng (2016). 
They conducted a lithofacies characterisation of a heterogene-
ous porous media. Then, they used it as an input to generate 
realisations of the spatial distribution of the lithofacies and 
their hydraulic conductivity using the Markov chain/transi-
tion probability method (MC/TP; TPROGS code from Carle 
1999). That same approach is suitable to the Sellafield site 
given the heterogeneous nature of the sediments at this site. 
Following this approach, several realisations can be generated 
to represent the spatial distribution of the lithofacies while 
keeping their connectivity as well as their heterogeneous dis-
tribution. PSD data from Sellafield site boreholes can be used 
to assign samples to the clusters identified in this work, which 
represent the appropriate hydrofacies to be used as an input for 
such geostatistical methods. Additionally, given that K ranges 
obtained for cluster 2 (sand-dominated) are contained within 
the range of those for cluster 3 (gravel-dominated), a potential 
bimodal hydrofacies definition could be tested on a hydrogeo-
logical model, as has been done by Bianchi and Zheng (2016).

Analogously, the workflow presented in this study is 
widely applicable to other sites in which sedimentary het-
erogeneities impact groundwater flow and contaminant trans-
port, where inputs for hydrogeological modelling are needed, 
and where particle size distribution data are available. Het-
erogeneous fluvial sediments are widespread in terms of 
resource geology contexts, and simulations for hydrocarbon 
extraction, carbon capture and storage, hydrothermal poten-
tial, and general groundwater contaminant transport would 
potentially benefit from the approach described. Using the 
Kozeny–Carman equation to obtain hydraulic conductivity 
ideally requires either porosity data, or a site-specific evalua-
tion of the relationship between PSD and porosity so that the 
latter variable can be inferred. Other empirical equations such 
as Hazen’s rule, the Terzaghi or Beyer equations, which do 
not need porosity, may be applied instead of Kozeny–Carman 
where this can be justified in terms of the grain-size charac-
teristics of the sediment (Rosas et al. 2014).

Conclusion

An unsupervised hydrofacies identification approach was 
evaluated on a heterogeneous unconsolidated glaciofluvial 
sequence. The approach used the particle size distribution 
(PSD) with K-means unsupervised clustering algorithm. 
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Sedimentological facies were defined from field observa-
tions and compared against the identified hydrofacies from 
cluster classification. Three clusters—fines/diamicts, sands 
and gravels—were defined using the K-means algorithm. 
Results showed excellent correlation between sedimentologi-
cal lithofacies and cluster analysis. Although each cluster 
typically contained multiple sedimentary facies, these had 
essentially similar predicted hydrogeological parameters. For 
instance, both fines-only and diamicton facies fell within the 
fine-dominated cluster, but these lithofacies had similar d10 
grain size and, therefore, similar predicted hydraulic conduc-
tivities. For hydrogeological classification, this unsupervised 
cluster analysis approach is simpler to apply than lithofacies 
classification; it captures hydrogeologically important details 
without creating an excessive number of categories, does 
not require the same level of expert knowledge to apply and 
reduces observational bias while remaining consistent with 
a sedimentological lithofacies classification.

The workflow developed here used a limited number of 
field porosity measurements (using the sand replacement 
method) to correlate those porosities to various grain-size 
characteristics (d10, d50, U, geometric standard deviation of 
Φ). From these, log d50 showed the best correlation with the 
measured porosities. Porosities are higher than previously 
reported by Nirex (1997a) and used in subsequent works 
(e.g. McMillan et al. 2000), with the gravel cluster having 
the lowest porosity (average 27%; range 22–36%), sand clus-
ter intermediate (average 40%; range 35–42%) and fines/
diamicts cluster highest (average 44%; range 41–48%).

Hydraulic conductivity ranges for each cluster were 
estimated using the Kozeny–Carman equation. Gravel 
and sand clusters have higher K values (geometric means 
of 2.8 and 1.4 m/d, respectively) than fines/diamicts 
(geometric mean of 0.1 m/d). These results are consist-
ent with previously measured values from pumping and 
slug tests. As the sand cluster K range is contained in 
the gravel cluster range, a potential bimodal hydrofacies 
definition may be appropriate when generating realiza-
tions of hydrofacies distributions for groundwater model-
ling, as has been suggested in other similar studies (e.g. 
Bianchi and Zheng 2016).

The methodology developed here is useful for classifying 
heterogeneous sediments for hydrogeological purposes when 
the particle size distribution can be measured, and facilitates 
consistent hydrogeological parameter assignment compared 
to a more traditional approach. Specifically, the clustering 
approach can be used to optimise hydrofacies definitions for 
the purposes of generating realisations for hydrogeological 
modelling using geostatistical methods. Site-specific condi-
tions should be considered to adequately decide on the num-
ber of clusters and empirical relationships needed to infer 
hydraulic conductivity. Further studies should focus on (1) 
the comparison between different empirical equations and 

other methods by which K can be estimated, either in situ 
or laboratory based; and (2) the use of other easily measur-
able parameters, such as those obtained through geophysi-
cal measurements, to complement hydrofacies classifications 
and hydraulic conductivity estimates.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10040- 025- 02933-z.
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