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Abstract— Learning from data plays a major role in 

understanding complex natural and engineered systems. System 

identification (SysID), as a data-driven modelling technique, 

provides a powerful tool for building dynamical system models. 

Building models from noisy small data is a challenging research 

question in many practical problems.  This paper is concerned 

with parsimonious and transparent modelling of dynamical 

systems which are of high interest in many real applications. 

Sparse Bayesian learning (SBL), due to its ability to use prior 

information to generate sparse predictive models, is employed in 

this study to estimate models from small data. The performance 

of the proposed sparse Bayesian learning approach is tested 

using real-life data. Experimental results show that the SBL 

approach shows strong performance for solving small data 

modelling problems. 

Index Terms—dynamical system, interpretable modelling, 

nonlinear system, small sample size, small data, sparse Bayesian 

learning, system identification.  

I. INTRODUCTION 

System identification (SysID) is a methodology that is widely 
used for building mathematical models of dynamical systems 
from measured input and output data [1]. SysID and machine 
learning (ML) share many common aspects in their 
implementation procedures including data acquisition and 
processing; model structure selection; model training, 
parameter estimation; and model verification, validation and 
refinement [2],[3]. SysID was initially invented in the field of 
control engineering [1], but gradually it has been widely used 
in many other fields. Traditionally, the most important 
primary roles or tasks of SysID is to construct models that 
enable physical interpretability or mechanistic understanding 
of black-box systems of interest, so as to facilitate system 
design [4]-[6], system analysis and operation [7], forecasting 
and predictive analysis and so on [8]-[11]. To meet these 
requirements, many linear and nonlinear parametric models 
have been developed, including the commonly used ARX 
(AutoRegressive with eXogenous inputs) and ARMAX 
(AutoRegressive Moving Average with eXogenous inputs) [2], 
and NARX (Nonlinear ARX) and NARMAX (Nonlinear 
ARMAX) [3]. These models have several attractive 
advantages, for example, they are transparent, interpretable, 
and simulatable; allow analysis in both the time and frequency 

domains; and can well represent and approximate a wide 
range of linear and nonlinear dynamical systems in real world 
problems. Other types of models, e.g., neural networks [12] 
and deep learning [13],[14] have also been introduced and 
adapted for system identification where the primary objective 
is usually to make predictions, with less or little attention 
being paid to model explanation and interpretation. 

In many real applications, SysID is concerned with 
constructing transparent and interpretable models. For many 
real problems, especially those relating to complex nonlinear 
black-box systems, the initially specified full models can be 
very complex and highly redundant due to the inclusion of 
many irrelevant model terms (or regresors). This is 
particularly true for problems involving a great number of 
input and output variables. Model selection plays a crucial 
role for achieving best parsimonious models [3]. Many 
efficient sparse learning methods have been developed over 
the past years or decades, including greedy search methods 
such as orthogonal least squares (OLS) [15],[16] and 
orthogonal matching pursuit (OMP) [17],[18], least absolute 
shrinkage and selection operator (LASSO) [19],[20], L0-
regularisation [21],[22], sparse Bayesian learning (SBL) [23]-
[26], and randomised methods [27]-[29]. Each of these 
methods has its own strengths and limitations [30]-[31]. 

Building models with small data is an important and 
challenging issue in many practical applications, e.g. in 
seasonal weather and crop yield forecasting [32]. When the 
data are obtained under non-persistent excitation conditions 
(e.g., system inputs are not persistently exciting) [33], or the 
system to be modelled is highly nonlinear and has many 
inputs [8],[9], it is even more difficult and challenging to 
develop reliable models. 

This paper endeavours to build transparent, interpretable, 
parsimonious and simulatable (TIPS) models [11] from small 
data using sparse Bayesian learning techniques. The 
originality and contributions of the work are as follows: 1) it 
endeavours to tackle the challenge of small data modelling 
problem by introducing an SBL approach; 2) it incorporates 
two model selection schemes, i.e., the Bayesian Information 
Criterion (BIC) and a penalized error-to-signal ratio (PESR) 
metric, into the associated modelling procedure to reduce the 



 

 

model redundancy so as to refine the model and control the 
model complexity; and 3) the ability of the SBL model 
performance is benchmarked through solving a small data 
modelling problem in climate relating to annual iceberg 
prediction in the Northwest Atlantic. 

The remaining of the paper is organised as follows. 
Section 2 introduces SysID and NARX models.  Section 3  
presents the theory of the SBL framework for NARX model 
identification. Section 4 provides a case study to demonstrate 
the SBL efficacy for sparse model identification of a system 
driven by multiple inputs. A summary and suggestions for 
future work are provided in Section 5. 

II. IDENTIFICATION OF NONLINEAR DYNAMICAL SYSTEMS 

USING PARAMETRIC MODELS 

For a black-box system whose internal structure is completely 
unknown but whose inputs and outputs can be measured, we 
would usually have a variety of choices of models and 
modelling approaches to approximate the system input-output 
behaviour to some extent. In practice, the ultimate goal of 
SysID is to find a model or a set of models that can 
characterise the system input-output relationship as accurate 
as possible. Moreover, in many cases, model interpretability 
may be highly desirable or crucial [34]. Keeping these in 
mind and emphasizing the Occam’s razor from a means-ends 
perspective [35],[36], the focus of the paper is on transparent 
modelling to be achieved through sparse Bayesian learning. 

NARX models, which include many linear and nonlinear 
models as special cases, are among the most commonly used 
representations for nonlinear dynamical identification [3]. For 
a general multiple-input, single-output (MISO) system, the 
NARX model can be represented as: 
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where u1(t), u2(t), …, ur(t) are r input signals, y(t) is the output 
signal, and e(k) is noise signal; ny and nu are the associated 
maximum time lags; τ is the time delay between the response 
and the inputs, and usually τ = 0 or τ = 1; f[•] is an unknown 
function to be built from data. Note that e(t) is unobservable 
and can only be estimated based on an identified model; it is 
usually estimated using model prediction as ˆ( ) ( ) ( )e t y t y t 
where ˆ( )y t  represents a model predicted value. Eq. (1) can be 

easily extended to multi-input, multi-output (MIMO) cases in 
a straightforward way (see e.g. [3],[37],[38]). 

Define  
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Eq. (1) can then be rearranged to a linear-in-the-parameters 
(LIP) and nonlinear-in-the-variables (NIV) form as follows: 
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where n = ny + vnu, meaning that the values of the regressors 

m (m =1,2, …, M) are completely determined by the lagged 

variables defined in (2). Model (3) is usually referred to as an 
initial candidate full polynomial NARAX model, which is 
often represented in matrix format as: 

 y Φθ e                                                      (4) 

where 0 1[ , ,..., ]MΦ φ φ φ , with 0 [1,1,...,1]Tφ ; 

[ (1),..., ( )]T

m m m
t φ (m = 1, …, N),  

0[ ,..., ]T

M
 θ is a 

vector of unknown parameters. Eqs. (3) and (4) are referred to 
as Nonlinear Lagged Inputs and Outputs (NLIO) model [38], 
which is represented in a LIP-NIV form. 

The main objective of SysID is to find a sparse solution, 
amounting to finding the best subset model consisting of s 
elements (model terms/regressors) selected from the M 
candidates, such that the s elements can well characterise the 
response y. In many cases, the problems to be solved in 
nonlinear SysID are ill-conditioned as the number of 
regressors is far larger than the number of samples (s << M). 
Therefore, efficient methods for sparse model identification 
are very important and useful. The following section presents 
such a method. 

III. SPARSE BAYESIAN LEARNING FOR NARX IDENTIFICATION 

The central task of sparse model identification to significantly 
reduce the initial full models (3) and (4) through estimating 
and optimising the model parameters 𝜃m (m=0, 1, …, M).  To 
emphasise this, the LIP-NIV model (4) can also be written as 
y=f(x; θ)= Φθ + e.  In recent years, SBL methods have been 
employed to solve the model as well as multiple regression 
[39]-[42]. In the following, the theory of the SBL method 
proposed in [23]-[26] is briefly introduced. 

A. Multiple Regression from a Bayesian Perspective 

Assume the values of the noise sequence e(k) in (4)  
independent and follow a Gaussian distribution with mean 
zero and limited variance σ2, i.e., e(t)~N(0,σ2). Thus, the 
distribution of the noise over the complete data is 
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
e [24], [26].  In practice, the true 

value of the variance σ2 is not known; it can and needs to be 
estimated from data. With this error model, the likelihood of 
the complete data of interest can be formulated as: 
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To effectively estimate the M+1 model parameters, a prior 
function involving M+1 independent hyperparameters is 
proposed in [24] which takes the form: 
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where 0 1[ , ,..., ]T

M
  α , each element individually 

controls the strength of the prior over its associated model 
parameter.  This function plays a major role in achieving 
sparse models by eliminating unimportant regressors.  

Following the Bayes’ rule, the posterior distribution over 
all the unknowns can be desired as follows: 

2 2 2( , , | ) ( | , , ) ( , | )p p p  θ α y θ y α α y             (7) 

where 2( | , , )p θ y α is the posterior distribution of the 

regression coefficients. Given α , this posterior distribution is 
tractable as follows [23]:    
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where  
2 1( )T   Σ Φ Φ A , 2 T  μ Φ y                  (9)  

with 
0 1diag( , ,..., )M  A . 

To facilitate Bayesian inference for sparsity determination 
and model parameter estimation, a most probable point (MPP) 
approach was proposed in [24],[25] using a type-II maximum 
likelihood procedure, through which sparse Bayesian learning 
is achieved by maximising (locally), with respect to α , the 
following logarithm-form marginal likelihood:    
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where 2 1 T  C I ΦA Φ . Denote by 
MPPα a solution 

obtained via the most probable point method. A point estimate 
2 T  MPP MPPμ Φ y can then be obtained as, leading to a 

final approximator ( ; )f x MPP MPPμ Φμ of y.  

The values of the M +1 hyperparameters can be updated 
using gradient-based approach. The update formulas can be 

obtained by differentiating 2log ( | , )p y α with respect to 

 m (m=0,1,…,M) and 2 . By setting the derivatives to zero 

and rearranging, we obtain the following updated as [26]: 
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where  1m m mm    , with  [0,1]m   being a measure of 

defining the characteristic of the automatic relevance 
determination (ARD) prior and evaluating how well the 
parameter 𝜃m is determined for the data. 

B. The Computational Procedure of SBL 

The procedure of the sparse Bayesian inference algorithm for 
NARX model identification is summarised below: 

1. Determine the regression matrix 𝚽 defined in (4). 
2. Estimate the variance 𝜎2 of the target signal y. 

3. Initialise the parameter vector 
m (m=0,1, …, M). 

4. Compute the posterior statisticsΣ andμ using (9). 

5. Compute  1m m mm   Σ  (m=0,1, …, M). 

6. Update 
m  and 𝜎2 using (11). 

7. Go to step 4 and repeat steps 4-6 until convergence. 
8. Remove the corresponding regressiors from the model 

described by (4) if the computed optimal αm = ∞ as 
this implies μm = 0 from (9). 

C. Model Identification Procedure with SBL 

In SBL, the importance or relevance of an individual 
regressors of the model is determined by the weight assigned 
to them: regressors with higher weights which are not 
penalised to zero are considered more important than those 
with relatively smaller weights. SBL determines the 
importance by maximising the marginal likelihood function 
with respect to all the hyperparameters αm (m=0,1, …, M).   

Our empirical experience shows that more than occasional 
SBL may include redundant regressors in the final determined 
models. To reduce the irrelevant regressors, we introduce two 
model selection schemes, i.e., the Bayesian Information 
Criterion (BIC) and a penalized error-to-signal ratio (PESR) 
metrics [43], into the associate modelling procedure to reduce 
the redundancy of the model produced by SBL. The 
procedure is as follows: 

1. Perform SBL. 
2. Rank the regressors based on their importance. 
3. Use BIC and a penalized ESR (PESR) [] to control 

the model complexity (model length): 
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where y is an observation vector on a dataset of interest, εm 
and MSEm are the model residual vector and mean square 
error related to the m-term model produced by the proposed 
sparse modelling approach. λ is an adjustable parameter; it is 
chosen to be 1 in this study. The metric PESR in (14) is a var-
iant of the metrics defined in [44], [45].      

IV. NUMERICAL EXPERIMENTS 

This section provides an example to illustrate how SBL 
approach works for model identification of nonlinear 
dynamical with small data of the annual icebergs in the 
Northwest Atlantic. The dataset used in this work contains 40 
annual measurements of the period 1982 – 2021. The 
descriptions of the response (Iceberg counts) and the nine 
potential drivers are shown in Table I, and more details can be 
found in [46]. This is a very typical small sample size data 
modelling problem, for which most complicated machine 
learning methods may not work (see e.g. [32]).    

A. Experimental Settings  

The initial full NARX model includes 220 terms, composed 
of all the lagged variables, e.g. Winter_NAO(t-1), 



 

 

 

Fig 1.  A comparison between model predictions (based on Table II) 
and measurements.   

Air_Temp(t-1), and all their quadratic and cubic cross-product 
terms e.g. [Winter_NAO(t-1)]×[Sea_Ice(t-1)]×[Sea_Ice(t-1)]. 

 The 40 samples were separated to two parts: the first 30 
(1982-2011) were used for model training and validate, and 
the remaining 10 (2012-2021) were used for model testing. A 
leave-one-out (LOO) cross-validation was performed for 
model validation.    

TABLE I.   

DESCRIPTIONS OF THE RESPONSE AND POTENTIAL DRIVERS [46]. 

Icebergs and 

potential drivers 

Descriptions 

Iceberg count  Normalized anomalies of the number of icebergs 
crossing 48degN on the Grand Banks. 

Winter NAO Average North Atlantic Oscillation over the months 
of December to March. 

Air Temp Mean normalized anomalies of annual air 
temperature. 

Sea Ice Mean normalized anomalies of Sea ice maximum area 
and season duration for Northern Labrador, Southern 
Labrador and Newfoundland shelves. 

SST Mean normalized anomalies of Sea Surface 
Temperature over NAFO divisions 2HJ3KLNOP. 

S27 Temp Normalized anomalies of the vertically-averaged 
temperature at Station 27. 

S27 Sal Normalized anomalies of the vertically-averaged 
salinity at Station 27. 

S27 CIL Normalized anomalies of the summer (June-August) 
cold intermediate layer core temperature at Station 27. 

CIL area Mean normalized anomalies of the summer cold 
intermediate layer area over hydrographic sections 
Seal Island, Bonavista and Flemish Cap on the 
Newfoundland and Labrador shelf. 

Bottom Temp Mean normalized anomalies of the bottom 
temperature during spring (NAFO divisions 3LNOPs) 
and fall (NAFO divisions 2HJ3KLNO). 

  

B. Results  

The results produced by SBL are shown in Table II. For 
comparison purposes, the elastic-net LASSO method [20] was 
also performed to the same data, with the same model 
experimental settings. The results given by elastic-net are 

shown in Table III. The values of MSE and 2R  (coefficient of 
determination) of the models clearly show that SBL 
significantly outperforms elastic-net for the problem here. For 
graphical illustration purposes, a comparison between model 
predictions (based on Table I) and the corresponding 
measurements, on the training period (1982-2011) and the 
testing period (2012-2021), are shown in Fig. 1. 

It is worth mentioning that traditional Bayesian learning 
(TBL) does work for the data modelling problem here. For 
example, while a TBL algorithm performs perfect on the 

training data (1982-2011) with 2R 0.9876 , it does not show 
any prediction skill on the testing data (2012-2021) where 

2R 0.1520  .           

V. CONCLUSION 

In this study an SBL approach was presented for model 
identification of nonlinear dynamical systems with small data;  
the efficacy of the approach was tested on a real-life problem 
predicting annual icebergs in the Northwest Atlantic. The 
performance of SBL was analysed and compared with that of 
elastic-net LASSO and traditional non-sparse Bayesian 

learning. SBL showed promising performance for solving the 
small data modelling problem. However, SBL has some 
drawbacks, for example, our previous experience showed that 
it was less effective when data are contaminated by non-
Gaussian noise; the computational load of SBL could be very 
high when dealing with data modelling problems in high-
dimensional space, e.g. when the number of variables and 
model training samples are large.   

 This study has its limitation, e.g., the experiments are far 
from comprehensive; more work needs to be done to further 
test and exploit the potentials of SBL.    

TABLE II.   

THE MODEL PRODUCED WITH SBL. 

 Model Term Coefficient 

1 Air_Temp(t-1)        0.9266 

2 Winter_NAO(t-1) × Sea_Ice(t-1) × Sea_Ice(t-1)        0.3139 

3 S27_CIL(t-1)       -0.4385 

4 S27_Temp(t-1) × S27_Temp(t-1)     0.4318 

5 Winter_NAO(t-1) × Sea_Ice(t-1)       0.0045 

6 Winter_NAO(t-1)× Winter_NAO (t-1)× Winter_NAO    -0.2196 

7 Winter_NAO(t-1)× S27_CIL(t-1)    -0.3274 

    MSE = 0.3505 on training data;    MSE = 0.5343 on testing data;  
R2 = 0.7098 on training data;         R2 = 0.4033 on testing data.    
 

TABLE III.   

THE MODEL PRODUCED WITH LASSO. 

 Model Term Coefficient 

1 Air_Temp(t-1)        0.3910 

2 Winter_NAO(t-1)× Sea_Ice(t-1)       -0.2246 

3 Winter_NAO(t-1) × Sea_Ice(t-1) × Sea_Ice(t-1)        0.2164 

4 Sea_Ice(t-1) × S27_Sal × S27_Sal    -0.0274 

5 S27_Sal(t-1) × CIL area(t-1) × Bottom Temp(t-1)     0.1779 

    MSE = 0.5169 on training data;    MSE = 0.7477 on testing data;  
    R2 = 0.6350 on training data;         R2 = 0.0549 on testing data.    

 

ACKNOWLEDGMENT 

The authors gratefully acknowledge that this work was 
supported in part by STFC (Ref. ST/Y001524/1), NERC (Ref. 
NE/W005875/1, Ref. NE/V001787/1, Ref. NE/Y503290/1 
and Ref. NE/V002511/1).  



 

 

REFERENCES 

[1] L. A. Zadeh, "From circuit theory to system theory," Proc. I.R.E., vol. 
50, pp. 856-865, May 1962. 

[2] L. Ljung, System Identification Toolbox User's Guide. The Math-
Works, Inc., 2022. 

[3] S. A. Billings, Nonlinear System Identification: NARMAX Methods in 
the Time, Frequency, and Spatio-Temporal Domains. Hoboken, NJ, 
USA: John Wiley & Sons, 2013. 

[4] C. Deiler, “Aerodynamic modeling, system identification, and analysis 
of iced aircraft configurations,” J. Aircr., vol. 55, pp.145–161. July 
2017. 

[5] P. Lichota, F. Dul, A. Karbowski, “System identification and LQR 
controller design with incomplete state observation for aircraft trajecto-
ry tracking,” Energies, vol. 13, 5354, Oct. 2020. 

[6] A. Simorgh, A. Razminia, and V. I. Shiryaev, “System identification 
and control design of a nonlinear continuously stirred tank reactor,” 
Math. Comput. Simul., vol. 173, pp. 16–31, Feb. 2020. 

[7] E. Reynders, “System identification methods for (operational) modal 
analysis: Review and comparison,” Arch. Comput. Methods Eng., vol. 
19, no. 1, pp. 51–124, Feb. 2012. 

[8] R.J. Hall, H.-L. Wei, and E. Hanna, “Complex systems modelling for 
statistical forecasting of winter North Atlantic atmospheric variability: 
A new approach to North Atlantic seasonal forecasting,” Q. J. R. Mete-

orol Soc., vol. 145, pp. 2568-2585, June 2019. 
[9] Y. Sun, I. Simpson, H. L. Wei, and E. Hanna, "Probabilistic seasonal 

forecasts of North Atlantic atmospheric circulation using complex sys-
tems modelling and comparison with dynamical models," Meteorol. 

Appl., vol. 31, no. 1, e2178, Feb. 2024. 
[10] Y. Gu et al., "System identification and data-driven forecasting of AE 

index and prediction uncertainty analysis using a new cloud-NARX 
model," J. Geophys. Res., vol. 124, pp. 248-263, Dec. 2018. 

[11] H.-L. Wei and S. A. Billinsg, "Modelling COVID-19 pandemic dy-
namics using transparent, interpretable, parsimonious and simulatable 
(TIPS) machine learning models: A case study from systems thinking 
and system identification perspectives," in Recent Advances in AI-

enabled Automated Medical Diagnosis, R. Jiang et. al, eds., New York: 
CRC Press, 2022, pp. 13-28. 

[12] O. Nelles, Nonlinear System Identification: From Classical Approaches 
to Neural Networks and Fuzzy Models. Berlin: Springer-Verlag, 2020. 

[13] H. Zhou, C. Ibrahim, W. X. Zheng, and W. Pan, “Sparse Bayesian deep 
learning for dynamic system identification,” Automatica, vol. 144, p. 
110489, Oct. 2022. 

[14] R. Sasaki et al., "A deep neural network with module architecture for 
model reduction and its application to nonlinear system identification," 
IFAC PapersOnLine, vol. 56, no.2, pp.10650–10655, Nov. 2023. 

[15] S. Chen, S. A. Billings, and W. Luo, “Orthogonal least squares meth-
ods and their application to non-linear system identification,” Int. J. 

Control, vol. 50, no. 5, pp. 1873–1896, Nov. 1989. 
[16] S. A. Billings and H.-L. Wei, "An adaptive orthogonal search algo-

rithm for model subset selection and non-linear system identification," 
Int. J. Control, vol. 81, no. 5, pp. 714-724, April 2008. 

[17] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal match-
ing pursuit: Recursive function approximation with applications to 
wavelet decomposition,” in Proc. 27th Asilomar Conf. Signals, Syst. 

Comput., vol. 1. Pacific Grove, CA, USA, 1993, pp. 40–44. 
[18] J. A. Tropp and A. C. Gilbert, ‘‘Signal recovery from random meas-

urements via orthogonal matching pursuit,’’ IEEE Trans. Inf. Theory, 
vol. 53, no. 12, pp. 4655–4666, Dec. 2007. 

[19] R. Tibshirani, “Regression shrinkage and selection via the LASSO,” J. 

Roy. Stat. Soc., Ser. B (Methodol.), vol. 58, no. 1, pp. 267–288, 1996. 
[20] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical 

Learning, 2nd ed. New York: Springer, 2009. 
[21] D. Bertsimas et al., "Best subset selection via a modern optimization 

lens," Ann. Statist., vol. 44, no. 2, pp. 813-852, April 2016. 
[22] J. Huang, Y. Jiao, Y. Liu, X. Lu, "A constructive approach to l0 penal-

ized regression," J. Mach. Learn. Res. vol. 19, no. 10, pp. 1–37, 2018. 
[23] M. E. Tipping, “Sparse Bayesian learning and the relevance vector 

machine,” J. Mach. Learn. Res., vol. 1, pp. 211–244, Jun. 2001. 

[24] M. E. Tipping, “Bayesian inference: an introduction to principles and 
practice in machine learning,” in Proc. 9th International Workshop on 

Artificial Intelligence and Statistics, C. Bishop et al., eds., Key West, 
FL, USA, 3–6 Jan. 2003, pp. 276–283. 

[25] A. C. Faul and M. E. Tipping, “Analysis of sparse Bayesian learning,” 
in Proc. Adv. Neural Inf. Process. Syst., Cambridge, MA, USA, MIT 
Press, Jan. 2001, pp. 383–389. 

[26] M. E. Tipping, "Bayesian inference: an introduction to principles and 
practice in machine learning," in Advanced Lectures on Machine 

Learning, O. Bousquet et al. eds., Berlin, Heidelberg, Germany: 
Springer, 2004, pp. 41–62. 

[27] A. Falsone et al., “A randomized algorithm for nonlinear model struc-
ture selection,” Automatica, vol. 60, pp. 227–238, Oct. 2015. 

[28] P. E. L. Retes and L.A. Aguirre, “NARMAX model identification 
using a randomized approach,” Int. J. Model. Identif. Control, vol. 31, 
no. 3, pp. 205–216, March 2019. 

[29] F. Hafiz, A. Swain, and E. Mendes, “Multi-objective evolutionary 
framework for non-linear system identification: A comprehensive in-
vestigation,” Neurocomputing, vol. 386, pp. 257–280, April 2020. 

[30] X. Liu and X. Yang, “Exploiting spike-and-slab prior for variational 
estimation of nonlinear systems,” IEEE Trans. Ind. Informat., vol. 19, 
no. 11, pp. 11275-11285, Feb. 2023. 

[31] X. Liu et al., "Joint parameter and time-delay estimation for a class of 
Wiener models based on a new orthogonal least squares algorithm," 
Nonlinear Dyn., vol. 112, pp. 12159–12170, June 2024. 

[32] R.J. Hall et al. “Complex systems modelling of UK winter wheat 
yield,” Comput. Electr. Agric., 209, 107855, June 2023. 

[33] Y. Guo et al. "An iterative orthogonal forward regression algorithm," 
Int. J. Syst. Sci., vol. 46, no. 5, pp. 776-789, April 2015. 

[34] D. Materassi, et al., "Explaining complex systems: a tutorial on trans-
parency and interpretability in machine learning models (part II)," 
IFAC-PapersOnLine, vol. 58, no. 15, pp. 497-501, 2024. 

[35] F. Petropoulos et al., "Wielding Occam’s razor: Fast and frugal retail 
forecasting," J. Oper. Res. Soc., Nov. 2024.  

[36] T. F. Sterkenburg, “Statistical learning theory and Occam’s razor: The 
core argument,” Minds and Machines, vol. 35, no. 3, pp. 1–28, 2025. 

[37] S. A. Billings and Q. M. Zhu, “Model validation tests for multivariable 
nonlinear models including neural networks,” Int. J. Control, vol. 62, 
no. 4, pp. 749–766, Oct. 1995. 

[38] H.-L. Wei, “System identification-informed transparent and explaina-
ble machine learning with application to power consumption forecast-
ing,” in Proc. 3rd International Conference on Electrical, Computer, 

Communications and Mechatronics Engineering (ICECCME), Tene-
rife, Spain, 19-21 July 2023, pp. 1-6. 

[39] C. Lu et al., ‘‘Bagging linear sparse Bayesian learning models for 
variable selection in cancer diagnosis,’’ IEEE Trans. Inf. Technol. Bi-

omed., vol. 11, no. 3, pp. 338–347, May 2007. 
[40] W. R. Jacobs, T. Baldacchino, and S. R. Anderson, “Sparse Bayesian 

identification of polynomial NARX models,” IFAC-PapersOnLine, 
vol. 48, no. 28, pp. 172–177, Dec. 2015. 

[41] S. E. Ament and C. P. Gomes, “Sparse Bayesian learning via stepwise 
regression,” In Proc. 38th International Conference on Machine 

Learning, PMLR, Virtual, July 2021, pp. 264–274. 
[42] N. Zheng, Y. Li, W. Shi, and Q. Xie, "Sparse Bayesian based NARX 

modeling of cortical response: Introducing information entropy for en-
hancing the stability," Neurocomputing, vol. 626, 129569, April 2025. 

[43] H.-L. Wei, “Boosting wavelet neural networks using evolutionary 
algorithms for short-term wind speed time series forecasting,” in Adv. 

Comput. Intell. IWANN 2019. Lecture Notes in Computer Science, vol. 
11506. Springer, Cham. 

[44] H.-L. Wei et al., “An adaptive wavelet neural network for spatio-
temporal system identification,” Neural Netw., vol. 23, no. 10, pp. 
1286–1299, Dec. 2010. 

[45] Y. Zhao et al., “Tracking time-varying causality and directionality of 
information flow using an error reduction ratio test with applications to 
electroencephalography data,” Phys. Rev. E, Stat. Phys., vol. 86, no. 5, 
Nov. 2012. 

[46] F. Cyr and P. S. Galbraith, “A climate index for the Newfoundland and 
Labrador shelf,” Earth Syst. Sci. Data, 13. Pp. 1807–1828, May 2021.

 


