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Abstract—Machine learning plays a vital role in healthcare, yet
medical datasets pose challenges such as nonlinear relationships,
high-dimensional features, and the needs for model and result
interpretability. We propose an adaptive NARX-MLP classifier,
combining NARX with MLP and an adaptive feature selection
procedure using L1 regularization. The performance (e.g., accuracy,
precision, recall, and F1-score.) of the proposed methods is tested on
two datasets: Hepatitis (static) and EEG Eye State (dynamic), to show
the superiority of the new method. The selected features by this
method can review nonlinear and temporal dependencies and
therefore guarantee the capture of complex patterns while
maintaining interpretability.

Keywords—Machine learning, NARX, MLP, Feature selection,
Classification.

I. INTRODUCTION

Machine learning plays a crucial role in healthcare
applications, enabling early diagnosis, disease classification, and
patient monitoring. However, medical datasets pose unique
challenges, such as nonlinear relationships, high-dimensional
feature spaces, and the need for explainability. In particular,
traditional machine learning methods often struggle to
effectively capture complex dependencies in time-series data
like electroencephalography and static datasets such as
electronic health records, due to their inherent limitations in
modeling nonlinear and high-dimensional relationships between
time sequential data[1, 2].

A promising approach to handling nonlinear and time-
dependent data is the Nonlinear AutoRegressive with
eXogenous inputs (NARX) model [3], which has been widely
used in dynamical system modelling problems. NARX
effectively captures long-term dependencies and nonlinear
interactions by generating polynomial-based features from
previous time steps and exogenous inputs. However, despite its
success in dynamical regression tasks, its application in solving
classification problems remains underexplored, particularly in
the healthcare domain. One key challenge is that the expanded
feature space introduced by NARX can lead to redundancy and
high dimensionality, making it difficult to determine which
features contribute meaningfully to classification tasks.
Furthermore, feature selection mechanisms traditionally used in

NARX-based modelling do not translate well to classification
problems, as they are often designed to optimize continuous
output rather than discrete decision boundaries.

To address these limitations, we propose a novel approach
that integrates NARX with neural networks for improved
classification performance. Specifically, we introduce an
adaptive NARX-MLP classifier, which combines NARX-based
feature generation with a multi-layer perceptron (MLP) to
enhance classification accuracy and feature selection. Given the
high-dimensional feature space introduced by NARX, we
incorporate L1 regularization for sparsity enforcement and
introduce the Penalized Error-to-Signal Ratio (PESR) [4] as a
stopping criterion to adaptively determine an optimal feature
subset. This approach not only balances model complexity and
classification accuracy but also reduces the need for extensive
manual tuning, making it more practical for real-world
healthcare applications. The contributions of this paper are as
follows:

e Adaptive Feature Selection—We developed a forward
feature selection strategy using L1 regularization and the
Penalized Error-to-Signal Ratio (PESR), which
adaptively determines the optimal subset of features,
reducing redundancy and improving interpretability.

e Adaptive NARX-MLP Classifier—We introduce a novel
classifier that extends NARX from regression to
classification by integrating it with a multi-layer
perceptron (MLP), enabling the effective modeling of
nonlinear dependencies in medical datasets while
addressing the challenges of high-dimensional feature
spaces.

e Improved Stability and Adaptability—Our approach
ensures stable and automated feature selection across
datasets and is applicable to both static and dynamic data,
enhancing generalizability and practicality for real-world
healthcare applications.

The remainder of this paper is organized as follows. Section
2 reviews related work on feature selection techniques and
classification approaches in medical applications. Section 3
presents the proposed methodology and framework. Section 4
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provides experimental evaluations on both time-series and non-
time-series medical datasets, and Section 5 concludes the paper
with future research directions.

II. RELATED WORK

Feature selection is usually a critical process in handing high-
dimensional medical datasets, with existing methods falling into
filter, wrapper, and embedded categories [5]. Filter methods,
such as mutual information and correlation-based selection,
evaluate features independently of the classifier but may ignore
feature interactions. Wrapper methods, including recursive
feature elimination and genetic algorithms, optimize feature
selection through iterative model evaluations but are
computationally expensive. Embedded methods, like L1
regularization, integrate selection within learning but can be
unstable in correlated feature spaces.

Machine learning has been widely applied in medical
classification, with traditional models such as support vector
machines (SVMs), random forests, and XGBoost demonstrating
strong predictive performance in static datasets [6, 7]. However,
these models struggle with high-dimensional data and often
require manual feature selection. Deep learning models,
including multi-layer perceptrons (MLPs), convolutional neural
networks (CNNSs), and recurrent neural networks (RNNs), have
shown promise in handling complex patterns in medical data [8].
While CNNs excel in image-based classification and RNNs
effectively capture sequential dependencies, they typically
require large labeled datasets and lack intrinsic feature selection
mechanisms. Additionally, the interpretability of these models
remains a significant challenge, especially in clinical settings
where transparency is critical.

The nonlinear autoregressive model with exogenous inputs
(NARX) has been widely used in nonlinear system identification
tasks such as time-series forecasting, due to its ability to capture
nonlinear dependencies and long-term temporal patterns [9].
Unlike traditional classifiers, NARX can incorporate historical
dependencies into feature representations, making it a promising
tool for sequential data classification. However, applying NARX
to classification introduces new challenges. Its feature expansion
can lead to high-dimensional representations, increasing
redundancy and complexity. Moreover, NARX lacks an
effective feature selection mechanism for classification tasks,
which is critical for identifying relevant features and improving
interpretability.

To address these challenges, we explore the potential of
integrating NARX with neural networks, starting with a
lightweight model. Multi-layer perceptrons (MLPs) provide a
natural starting point due to their simplicity, efficiency, and
ability to learn nonlinear decision boundaries while maintaining
interpretability. By combining NARX-generated features with
an MLP classifier, we aim to assess whether neural networks can
effectively leverage the structured feature representation of
NARX while avoiding the computational burden associated with
more complex architectures. As the feature space expands, an
effective feature selection mechanism becomes essential to
prevent overfitting and enhance efficiency. This motivates our
proposed adaptive NARX-MLP classifier, which incorporates
L1 regularization and the Penalized Error-to-Signal Ratio (PESR)

for adaptive and structured feature selection [4] and are
presented in the next section.

III. METHODOLOGY

A. NARX

NARX is widely used in modeling dynamic systems due to
its ability to capture nonlinear dependencies and long-term
interactions. NARX has many variants, including neural
network-based NARX, autoregressive moving average NARX,
and polynomial NARX etc. In this study, we adopt polynomial
NARX, which models system dynamics using polynomial
transformations of past inputs and outputs.

Polynomial NARX is preferred due to its several attractive
features, e.g., explicit feature representation, computational
efficiency, and compatibility with structured feature selection.
Unlike NN-NARX, which relies on hidden representations
within a neural network, polynomial NARX produces
interpretable polynomial terms that can be directly analyzed and
selected. Additionally, it avoids the high computational cost of
training deep architectures during feature generation, making it
well-suited for structured classification tasks.

Given an input sequence, polynomial NARX expands the
feature space by incorporating past outputs and external inputs
through polynomial transformations. The feature vector ¢ (k) at
time step k is defined as [10]:

o) =[ytk—1),...y(k—ny)uy(k =), .., uy (k —d — ), ...,
u(k—d), .., u.(k —d —ny)] (1)

where y and u; (i = 1,2..., r) are the system output and the ith
input; ny, and n, are the maximum lags for the system-output and
inputs; and d is the response time delay between the system
output and inputs (usually d =0 or 1).

Expanding these terms using polynomial transformations
results in the feature set @:

D (k) = [p1(0(0)), p2(9 D)), -, pu (@) (1)

M= (ny +n, + l) _ (ny+ny+1)! @)

l (ny+ny)!-l!
where ¢, (o (k)) represents a polynomial term, [ is the
nonlinear degree, and M is the total number of polynomial
features. This expansion enhances the expressive power of the
model but introduces high dimensionality and redundancy,
necessitating an effective feature selection mechanism. While
originally designed for time-series modeling, polynomial NARX
can also be applied to non-sequential data by considering feature
interactions instead of temporal dependencies.

B. MLP

The NARX model uses expanded features to capture
nonlinear dependencies and potential interactions between
variables. However, these features can be high-dimensional and
redundant, which may introduce unnecessary complexity into



the classification process. To efficiently leverage these features
while ensuring robust classification, we employ a multi-layer
perception with L1 regularization as the classifiers.

The expanded feature set @ serves as the input to the MLP
classifier, the MLP input layer is formulated as.

70 = D 4 p@® 3)

where w represents the weight matrix for the input layer and
b® is the bias vector. The hidden layers apply nonlinear
transformations using activation functions such as the Rectified
Linear Unit (ReLU), allowing the network to learn hierarchical
feature representations [11]. The transformation at the Ith hidden
layer is defined as:

20 = Fw®z0-D 4 p®)y )

where f represents the activation function, w®¥ and b® denote
the weight matrix and bias vector at layer [, respectively. In an
MLP network with L layers, the final output layer employs the
SoftMax function to compute class probabilities for multi-class
classification, given by:

9 = softmax(wWzE-D + p®) (5)

To enhance feature selection, we apply L1 regularization
exclusively on the input layer weights w® [12]. This
encourages sparsity in the feature space, allowing the MLP
model to automatically eliminate less relevant NARX-generated
features while retaining those that contribute most to
classification. The loss function incorporating L1 regularization
is formulated as:

L = Lgata + ALz Zfi1 | VVi(l) | (6)

where Lgae, is the cross-entropy loss, and A;; controls the
strength of L1 regularization.

C. Forward Selection

After applying L1 regularization, we obtain a reduced set of
candidate features by removing those with minimal contribution.
However, L1-based selection alone may retain redundant or
weakly relevant features. To further refine the selection, we
adopt forward feature selection [13], which iteratively evaluates
the contribution of each feature using the Penalized Error-to-
Signal Ratio (PESR) [4]. PESR incorporates a penalty term to
balance model complexity and prediction accuracy, where cross-
entropy loss serves as the evaluation metric for prediction error.
The process terminates if adding a new feature fails to reduce
PESR. The PESR is defined as:

2
PESR, = (N_LM) X Lossy, @)

where A is a parameter controlling the penalty term (which is
usually chosen to be A > 1), and Loss;, is the cross-entropy
loss at the kth iteration.
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Fig. 1. Framework of NARX-MLP

D. Framework

The proposed Adaptive NARX-MLP classifier integrates
NARX-based feature expansion, adaptive feature selection, and
MLP-based classification into a unified framework. A key
innovation is the combination of NARX-generated polynomial
features with structured feature selection, ensuring that only the
most relevant features contribute to classification. While NARX
effectively captures complex dependencies, its high-dimensional
expansion can introduce redundancy. To address this, we apply
L1 regularization to the MLP input layer, enforcing sparsity and
identifying important features. Further optimization is achieved
through forward selection with the PESR index, dynamically
balancing model complexity and classification performance.
This framework maintains interpretability and adaptability,
making it particularly effective for medical classification tasks
where feature importance and decision transparency are critical.
The overall workflow is illustrated in Figure 1.

IV. CASE STUDIES

A. Datasets

To evaluate the effectiveness of the proposed Adaptive
NARX-MLP classifier, we conduct experiments on two medical
datasets: the Hepatitis dataset (static) [14] and the EEG Eye State
dataset (time-series) [15]. The Hepatitis dataset, sourced from
the UCI Machine Learning Repository, consists of 19 clinical
features from 615 patients, categorized into five classes: blood
donors, suspect blood donors, hepatitis, fibrosis, and cirrhosis.
As a static dataset with well-defined clinical features, it serves as
an ideal benchmark for evaluating feature selection and
classification performance in non-temporal medical data. The
EEG Eye State dataset contains EEG recordings from the
Emotive EEG Neuroheadset, designed for binary classification
of eye state (open or closed). The dataset includes signals from
multiple EEG channels and follows a chronological order,
making it well-suited for evaluating NARX’s ability to capture
temporal dependencies.

Our goal is to demonstrate that our approach generalizes
effectively across both static and time-series medical



TABLE L

PERFORMANCE COMPARISON

Dataset Metrics NARX-MLP KNN SVM RF CNN LSTM
Hepatitis Accuracy 0.994 0.977 0.969 0.980 0.983 0.948
Precision 0.983 0.946 0.867 0.949 0.898 0.907

Recall 0.998 0.925 0.923 0.958 0.850 0.862

F1-Score 0.990 0.924 0.875 0.952 0.837 0.852

Specificity 0.998 0.979 0.994 0.996 0.982 0.989

EEG Eye State Accuracy 0.862 0.770 0.649 0.784 0.741 0.758
Precision 0.862 0.768 0.649 0.786 0.739 0.763

Recall 0.859 0.768 0.628 0.777 0.738 0.750

F1-Score 0.856 0.768 0.625 0.779 0.739 0.752

Specificity 0.859 0.768 0.628 0.777 0.738 0.750

classification tasks. The following sections describe the  precision, recall, Fl-score, and specificity providing a

experimental setup and classification results in detail.

B. Experimental Setup

The datasets were randomly split into 80% training and 20%
testing sets. To ensure robust evaluation, we applied 10-fold
cross-validation. The NARX model was configured with a
nonlinearity degree of 2 to capture higher-order interactions. For
EEG Eye State dataset, we incorporated past time steps (lag = 3)
to model short-term dependencies in EEG signals.

We evaluated the classification performance using Accuracy,
Precision, Recall, F1 Score, and specificity [16]. Accuracy
measures overall correctness, while Precision and Recall assess
classification reliability. The F1 Score provides a balanced
evaluation by combining Precision and Recall, and specificity
evaluates the model’s ability to correctly identify negative
instances.

We compared our Adaptive NARX-MLP Classifier against
traditional and deep learning models, including k-nearest
neighbors (KNN), support vector machine (SVM), random
forest (RF), convolutional neural network (CNN) and long short-
term memory (LSTM). These baselines help assess the
effectiveness of NARX-based feature expansion and PESR-
driven feature selection.

C. Results

Table 1 presents the classification performance of the
proposed Adaptive NARX-MLP Classifier compared to baseline
models on the Hepatitis (static) and EEG Eye State (dynamic)
datasets. NARX-MLP consistently outperforms all baseline
methods across accuracy, precision, recall, Fl-score, and
specificity. On the Hepatitis dataset, NARX-MLP achieves the
highest accuracy (0.994), significantly outperforming CNN
(0.983), LSTM (0.948), and traditional classifiers. The high
recall (0.998) and specificity (0.998) highlight the effectiveness
of Ll-based feature selection and PESR optimization in
identifying  relevant  features  without  compromising
classification confidence. On the EEG Eye State dataset, NARX-
MLP achieves an accuracy of 0.862, outperforming CNN
(0.741) and LSTM (0.758), demonstrating its ability to
effectively model sequential patterns. These results confirm that
integrating NARX with MLP and adaptive feature selection
significantly improves medical classification performance
across both static and dynamic datasets.

To visually compare the performance of the proposed
Adaptive NARX-MLP Classifier with baseline models, we
present radar charts for the Hepatitis and EEG Eye State datasets
(Fig. 2 and Fig. 3). These charts illustrate key metrics accuracy,

comprehensive view of each model's performance. The radar
charts highlight the superior and balanced performance of
NARX-MLP across all metrics, demonstrating its effectiveness
in handling both static and dynamic medical datasets. This
visualization underscores the robustness of our approach in
medical classification tasks.

The adaptive feature selection process identified 11
important features for the Hepatitis dataset and 20 for the EEG
Eye State dataset, including nonlinear combinations and time-
lagged terms. As table 2 shows, for Hepatitis, key features such

Accuracy

@ NARX-MLP
=@ KNN

SVM
=—@®= CNN

: : =@ LSTM

Fig. 2. Radar chart of performance on Hepatitis dataset
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-Precision
9

—@— NARX-MLP
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Fig. 3. Radar chart of performance on EEG Eye State dataset.




TABLE IL IMPORTANT FEATURES SELECTED BY NARX-MLP
Description Hepatitis EEG Eye State
[AST] [AF3]x[F8(t-1)]
Important [CREA]X[GGT] [F8(t-1)]x[F8(t-3)]
Features [ALT]x[CREA] [FA]x[F4(t-2)]
(From top to [ALP]x[CREA] [FC6]
bottom, [ALB]x[CHOL] [02(t-3)]x[P7(t-3)]
the importance [ALB]x[ALP] [02]x[02(t-1)]
decreases) [AST]x[CHOL] .
[ALP]x[CHE] [F3(t-2)]x[P8(t-2)]
[Age]x[BIL] [AF4(t-1)]x[FC6(t-2)]
[ALT]x[BIL] [02(t-2)]x[P8(t-3)]
[CHOL] [F3(t-1)]x[P8(t-1)]

as [AST], [CREA]x[GGT], and [ALB]x[CHOL] were selected,
highlighting the significance of biochemical interactions. In
EEG Eye State, time-lagged features like [AF3]x[F8(t-1)] and
[F4]x[F4(t-2)] were prioritized, demonstrating the model's
ability to capture temporal dependencies in dynamic data. These
results underscore the effectiveness of our adaptive feature
selection mechanism in handling both static and dynamic
medical datasets.

D. Discussion

The case studies on the Hepatitis and EEG Eye State datasets
demonstrate the effectiveness of the Adaptive NARX-MLP
Classifier in handling both static and dynamic medical data. For
the Hepatitis dataset, the model successfully identified key
biochemical interactions, achieving high accuracy and recall.
For the EEG Eye State dataset, it effectively captured temporal
dependencies through time-lagged features, outperforming
traditional and deep learning baselines. These results highlight
the robustness and adaptability of our approach, showcasing its
potential for improving medical classification tasks.

A key strength of our framework lies in its integration of
NARX-based feature expansion with adaptive feature selection,
enabling interpretable and efficient classification. However, the
model's performance depends on the quality of input features,
and the feature expansion process may introduce computational
overhead for high-dimensional datasets. Future work will focus
on extending the framework to multi-modal data and optimizing
computational efficiency for real-time clinical applications.

V. CONCLUSION

In this study, we proposed the Adaptive NARX-MLP
Classifier, a novel approach that integrates NARX-based feature
expansion with neural networks to address the challenges of
medical classification tasks. Our method demonstrated superior
performance on both static and dynamic datasets, outperforming
traditional and deep learning baselines across key metrics. The
adaptive feature selection mechanism, leveraging L1
regularization and PESR, effectively identified relevant features,
including nonlinear combinations and temporal dependencies,
enhancing model interpretability and robustness. While this
work explores the potential of combining NARX with neural
networks, several limitations remain, such as the need for further

optimization of hyperparameters and scalability to larger
datasets. Future work will focus on refining the model
architecture such as attention mechanisms, extending its
application to multi-modal datasets, and validating its
performance in real-time clinical settings to enhance its
practicality and generalizability.
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