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      Abstract—Machine learning plays a vital role in healthcare, yet 

medical datasets pose challenges such as nonlinear relationships, 

high-dimensional features, and the needs for model and result 

interpretability. We propose an adaptive NARX-MLP classifier, 

combining NARX with MLP and an adaptive feature selection 

procedure using L1 regularization. The performance (e.g., accuracy, 

precision, recall, and F1-score.) of the proposed methods is tested on 

two datasets: Hepatitis (static) and EEG Eye State (dynamic), to show 

the superiority of the new method. The selected features by this 

method can review nonlinear and temporal dependencies and 

therefore guarantee the capture of complex patterns while 

maintaining interpretability. 

Keywords—Machine learning, NARX, MLP, Feature selection, 

Classification. 

I. INTRODUCTION 

Machine learning plays a crucial role in healthcare 
applications, enabling early diagnosis, disease classification, and 
patient monitoring. However, medical datasets pose unique 
challenges, such as nonlinear relationships, high-dimensional 
feature spaces, and the need for explainability. In particular, 
traditional machine learning methods often struggle to 
effectively capture complex dependencies in time-series data 
like electroencephalography and static datasets such as 
electronic health records, due to their inherent limitations in 
modeling nonlinear and high-dimensional relationships between 
time sequential data[1, 2]. 

A promising approach to handling nonlinear and time-
dependent data is the Nonlinear AutoRegressive with 
eXogenous inputs (NARX) model [3], which has been widely 
used in dynamical system modelling problems. NARX 
effectively captures long-term dependencies and nonlinear 
interactions by generating polynomial-based features from 
previous time steps and exogenous inputs. However, despite its 
success in dynamical regression tasks, its application in solving 
classification problems remains underexplored, particularly in 
the healthcare domain. One key challenge is that the expanded 
feature space introduced by NARX can lead to redundancy and 
high dimensionality, making it difficult to determine which 
features contribute meaningfully to classification tasks. 
Furthermore, feature selection mechanisms traditionally used in 

NARX-based modelling do not translate well to classification 
problems, as they are often designed to optimize continuous 
output rather than discrete decision boundaries. 

To address these limitations, we propose a novel approach 
that integrates NARX with neural networks for improved 
classification performance. Specifically, we introduce an 
adaptive NARX-MLP classifier, which combines NARX-based 
feature generation with a multi-layer perceptron (MLP) to 
enhance classification accuracy and feature selection. Given the 
high-dimensional feature space introduced by NARX, we 
incorporate L1 regularization for sparsity enforcement and 
introduce the Penalized Error-to-Signal Ratio (PESR) [4] as a 
stopping criterion to adaptively determine an optimal feature 
subset. This approach not only balances model complexity and 
classification accuracy but also reduces the need for extensive 
manual tuning, making it more practical for real-world 
healthcare applications. The contributions of this paper are as 
follows: 

 Adaptive Feature Selection—We developed a forward 
feature selection strategy using L1 regularization and the 
Penalized Error-to-Signal Ratio (PESR), which 
adaptively determines the optimal subset of features, 
reducing redundancy and improving interpretability. 

 Adaptive NARX-MLP Classifier—We introduce a novel 
classifier that extends NARX from regression to 
classification by integrating it with a multi-layer 
perceptron (MLP), enabling the effective modeling of 
nonlinear dependencies in medical datasets while 
addressing the challenges of high-dimensional feature 
spaces. 

 Improved Stability and Adaptability—Our approach 
ensures stable and automated feature selection across 
datasets and is applicable to both static and dynamic data, 
enhancing generalizability and practicality for real-world 
healthcare applications. 

The remainder of this paper is organized as follows. Section 
2 reviews related work on feature selection techniques and 
classification approaches in medical applications. Section 3 
presents the proposed methodology and framework. Section 4 
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provides experimental evaluations on both time-series and non-
time-series medical datasets, and Section 5 concludes the paper 
with future research directions. 

II. RELATED WORK 

Feature selection is usually a critical process in handing high-
dimensional medical datasets, with existing methods falling into 
filter, wrapper, and embedded categories [5]. Filter methods, 
such as mutual information and correlation-based selection, 
evaluate features independently of the classifier but may ignore 
feature interactions. Wrapper methods, including recursive 
feature elimination and genetic algorithms, optimize feature 
selection through iterative model evaluations but are 
computationally expensive. Embedded methods, like L1 
regularization, integrate selection within learning but can be 
unstable in correlated feature spaces. 

Machine learning has been widely applied in medical 
classification, with traditional models such as support vector 
machines (SVMs), random forests, and XGBoost demonstrating 
strong predictive performance in static datasets [6, 7]. However, 
these models struggle with high-dimensional data and often 
require manual feature selection. Deep learning models, 
including multi-layer perceptrons (MLPs), convolutional neural 
networks (CNNs), and recurrent neural networks (RNNs), have 
shown promise in handling complex patterns in medical data [8]. 
While CNNs excel in image-based classification and RNNs 
effectively capture sequential dependencies, they typically 
require large labeled datasets and lack intrinsic feature selection 
mechanisms. Additionally, the interpretability of these models 
remains a significant challenge, especially in clinical settings 
where transparency is critical. 

The nonlinear autoregressive model with exogenous inputs 
(NARX) has been widely used in nonlinear system identification 
tasks such as time-series forecasting, due to its ability to capture 
nonlinear dependencies and long-term temporal patterns [9]. 
Unlike traditional classifiers, NARX can incorporate historical 
dependencies into feature representations, making it a promising 
tool for sequential data classification. However, applying NARX 
to classification introduces new challenges. Its feature expansion 
can lead to high-dimensional representations, increasing 
redundancy and complexity. Moreover, NARX lacks an 
effective feature selection mechanism for classification tasks, 
which is critical for identifying relevant features and improving 
interpretability. 

To address these challenges, we explore the potential of 
integrating NARX with neural networks, starting with a 
lightweight model. Multi-layer perceptrons (MLPs) provide a 
natural starting point due to their simplicity, efficiency, and 
ability to learn nonlinear decision boundaries while maintaining 
interpretability. By combining NARX-generated features with 
an MLP classifier, we aim to assess whether neural networks can 
effectively leverage the structured feature representation of 
NARX while avoiding the computational burden associated with 
more complex architectures. As the feature space expands, an 
effective feature selection mechanism becomes essential to 
prevent overfitting and enhance efficiency. This motivates our 
proposed adaptive NARX-MLP classifier, which incorporates 
L1 regularization and the Penalized Error-to-Signal Ratio (PESR) 

for adaptive and structured feature selection [4] and are 
presented in the next section. 

III. METHODOLOGY 

A. NARX 

NARX is widely used in modeling dynamic systems due to 
its ability to capture nonlinear dependencies and long-term 
interactions. NARX has many variants, including neural 
network-based NARX, autoregressive moving average NARX, 
and polynomial NARX etc. In this study, we adopt polynomial 
NARX, which models system dynamics using polynomial 
transformations of past inputs and outputs. 

Polynomial NARX is preferred due to its several attractive 
features, e.g., explicit feature representation, computational 
efficiency, and compatibility with structured feature selection. 
Unlike NN-NARX, which relies on hidden representations 
within a neural network, polynomial NARX produces 
interpretable polynomial terms that can be directly analyzed and 
selected. Additionally, it avoids the high computational cost of 
training deep architectures during feature generation, making it 
well-suited for structured classification tasks. 

Given an input sequence, polynomial NARX expands the 
feature space by incorporating past outputs and external inputs 
through polynomial transformations. The feature vector 𝜑(𝑘) at 
time step 𝑘 is defined as [10]: 𝜑(𝑘) = [𝑦(𝑘 − 1), … , 𝑦(𝑘 − 𝑛𝑦), 𝑢1(𝑘 − 𝑑), … , 𝑢1(𝑘 − 𝑑 − 𝑛𝑢), …,                  𝑢𝑟(𝑘 − 𝑑), … , 𝑢𝑟(𝑘 − 𝑑 − 𝑛𝑢)]                                          (1) 

where y and 𝑢𝑖 (i = 1,2…, r) are the system output and the 𝑖𝑡ℎ 
input; 𝑛y and 𝑛u are the maximum lags for the system output and 

inputs; and d is the response time delay between the system 
output and inputs (usually d = 0 or 1). 

Expanding these terms using polynomial transformations 
results in the feature set 𝛷: 

 𝛷(𝑘) = [𝜙1(𝜑(𝑘)), 𝜙2(𝜑(𝑘)), … , 𝜙𝑀(𝜑(𝑘))] 

 𝑀 = (𝑛𝑦 + 𝑛𝑢 + 𝑙𝑙 ) = (𝑛𝑦+𝑛𝑢+𝑙)!(𝑛𝑦+𝑛𝑢)!∙𝑙!  

where 𝜙𝑚(𝜑(𝑘)) represents a polynomial term, 𝑙  is the 

nonlinear degree, and 𝑀  is the total number of polynomial 
features. This expansion enhances the expressive power of the 
model but introduces high dimensionality and redundancy, 
necessitating an effective feature selection mechanism. While 
originally designed for time-series modeling, polynomial NARX 
can also be applied to non-sequential data by considering feature 
interactions instead of temporal dependencies. 

B. MLP 

The NARX model uses expanded features to capture 
nonlinear dependencies and potential interactions between 
variables. However, these features can be high-dimensional and 
redundant, which may introduce unnecessary complexity into 



the classification process. To efficiently leverage these features 
while ensuring robust classification, we employ a multi-layer 
perception with L1 regularization as the classifiers. 

The expanded feature set 𝛷 serves as the input to the MLP 
classifier, the MLP input layer is formulated as. 

 𝑧(1) = 𝑤(1)𝛷 + 𝑏(1) 

where 𝑤(1) represents the weight matrix for the input layer and 𝑏(1)  is the bias vector. The hidden layers apply nonlinear 
transformations using activation functions such as the Rectified 
Linear Unit (ReLU), allowing the network to learn hierarchical 
feature representations [11]. The transformation at the lth hidden 
layer is defined as: 

 𝑧(𝑙) = 𝑓(𝑤(𝑙)𝑧(𝑙−1) + 𝑏(𝑙))  (4) 

where 𝑓 represents the activation function, 𝑤(𝑙) and 𝑏(𝑙) denote 
the weight matrix and bias vector at layer 𝑙, respectively. In an 
MLP network with 𝐿 layers, the final output layer employs the 
SoftMax function to compute class probabilities for multi-class 
classification, given by: 

 𝑦̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤(𝐿)𝑧(𝐿−1) + 𝑏(𝐿)  (5) 

To enhance feature selection, we apply L1 regularization 

exclusively on the input layer weights 𝑤(1)  [12]. This 
encourages sparsity in the feature space, allowing the MLP 
model to automatically eliminate less relevant NARX-generated 
features while retaining those that contribute most to 
classification. The loss function incorporating L1 regularization 
is formulated as: 

 𝐿 = 𝐿data + λL1 ∑  ∣ 𝑊i(1) ∣𝑀i=1   (6) 

where 𝐿data  is the cross-entropy loss, and λL1  controls the 
strength of L1 regularization. 

C. Forward Selection 

After applying L1 regularization, we obtain a reduced set of 
candidate features by removing those with minimal contribution. 
However, L1-based selection alone may retain redundant or 
weakly relevant features. To further refine the selection, we 
adopt forward feature selection [13], which iteratively evaluates 
the contribution of each feature using the Penalized Error-to-
Signal Ratio (PESR) [4]. PESR incorporates a penalty term to 
balance model complexity and prediction accuracy, where cross-
entropy loss serves as the evaluation metric for prediction error. 
The process terminates if adding a new feature fails to reduce 
PESR. The PESR is defined as: 

 𝑃𝐸𝑆𝑅𝑘 = ( 𝑁𝑁−𝜆𝑘)2 × 𝐿𝑜𝑠𝑠𝑘  

where 𝜆 is a parameter controlling the penalty term (which is 
usually chosen to be 𝜆 ≥ 1), and 𝐿𝑜𝑠𝑠𝑘   is the cross-entropy 
loss at the 𝑘𝑡ℎ iteration. 

D. Framework 

The proposed Adaptive NARX-MLP classifier integrates 
NARX-based feature expansion, adaptive feature selection, and 
MLP-based classification into a unified framework. A key 
innovation is the combination of NARX-generated polynomial 
features with structured feature selection, ensuring that only the 
most relevant features contribute to classification. While NARX 
effectively captures complex dependencies, its high-dimensional 
expansion can introduce redundancy. To address this, we apply 
L1 regularization to the MLP input layer, enforcing sparsity and 
identifying important features. Further optimization is achieved 
through forward selection with the PESR index, dynamically 
balancing model complexity and classification performance. 
This framework maintains interpretability and adaptability, 
making it particularly effective for medical classification tasks 
where feature importance and decision transparency are critical. 
The overall workflow is illustrated in Figure 1. 

IV. CASE STUDIES 

A. Datasets 

To evaluate the effectiveness of the proposed Adaptive 
NARX-MLP classifier, we conduct experiments on two medical 
datasets: the Hepatitis dataset (static) [14] and the EEG Eye State 
dataset (time-series) [15]. The Hepatitis dataset, sourced from 
the UCI Machine Learning Repository, consists of 19 clinical 
features from 615 patients, categorized into five classes: blood 
donors, suspect blood donors, hepatitis, fibrosis, and cirrhosis. 
As a static dataset with well-defined clinical features, it serves as 
an ideal benchmark for evaluating feature selection and 
classification performance in non-temporal medical data. The 
EEG Eye State dataset contains EEG recordings from the 
Emotive EEG Neuroheadset, designed for binary classification 
of eye state (open or closed). The dataset includes signals from 
multiple EEG channels and follows a chronological order, 
making it well-suited for evaluating NARX’s ability to capture 
temporal dependencies. 

Our goal is to demonstrate that our approach generalizes 
effectively across both static and time-series medical 

 
Fig. 1. Framework of NARX-MLP 



classification tasks. The following sections describe the 
experimental setup and classification results in detail. 

B. Experimental Setup 

The datasets were randomly split into 80% training and 20% 
testing sets. To ensure robust evaluation, we applied 10-fold 
cross-validation. The NARX model was configured with a 
nonlinearity degree of 2 to capture higher-order interactions. For 
EEG Eye State dataset, we incorporated past time steps (lag = 3) 
to model short-term dependencies in EEG signals. 

We evaluated the classification performance using Accuracy, 
Precision, Recall, F1 Score, and specificity [16]. Accuracy 
measures overall correctness, while Precision and Recall assess 
classification reliability. The F1 Score provides a balanced 
evaluation by combining Precision and Recall, and specificity 
evaluates the model’s ability to correctly identify negative 
instances. 

We compared our Adaptive NARX-MLP Classifier against 
traditional and deep learning models, including k-nearest 
neighbors (KNN), support vector machine (SVM), random 
forest (RF), convolutional neural network (CNN) and long short-
term memory (LSTM). These baselines help assess the 
effectiveness of NARX-based feature expansion and PESR-
driven feature selection. 

C. Results 

Table 1 presents the classification performance of the 
proposed Adaptive NARX-MLP Classifier compared to baseline 
models on the Hepatitis (static) and EEG Eye State (dynamic) 
datasets. NARX-MLP consistently outperforms all baseline 
methods across accuracy, precision, recall, F1-score, and 
specificity. On the Hepatitis dataset, NARX-MLP achieves the 
highest accuracy (0.994), significantly outperforming CNN 
(0.983), LSTM (0.948), and traditional classifiers. The high 
recall (0.998) and specificity (0.998) highlight the effectiveness 
of L1-based feature selection and PESR optimization in 
identifying relevant features without compromising 
classification confidence. On the EEG Eye State dataset, NARX-
MLP achieves an accuracy of 0.862, outperforming CNN 
(0.741) and LSTM (0.758), demonstrating its ability to 
effectively model sequential patterns. These results confirm that 
integrating NARX with MLP and adaptive feature selection 
significantly improves medical classification performance 
across both static and dynamic datasets. 

To visually compare the performance of the proposed 
Adaptive NARX-MLP Classifier with baseline models, we 
present radar charts for the Hepatitis and EEG Eye State datasets 
(Fig. 2 and Fig. 3). These charts illustrate key metrics accuracy, 

precision, recall, F1-score, and specificity providing a 
comprehensive view of each model's performance. The radar 
charts highlight the superior and balanced performance of 
NARX-MLP across all metrics, demonstrating its effectiveness 
in handling both static and dynamic medical datasets. This 
visualization underscores the robustness of our approach in 
medical classification tasks. 

The adaptive feature selection process identified 11 
important features for the Hepatitis dataset and 20 for the EEG 
Eye State dataset, including nonlinear combinations and time-
lagged terms. As table 2 shows, for Hepatitis, key features such  

 

 

 

Dataset Metrics NARX-MLP KNN SVM RF CNN LSTM 

Hepatitis Accuracy 0.994 0.977 0.969 0.980 0.983 0.948 

Precision 0.983 0.946 0.867 0.949 0.898 0.907 

Recall 0.998 0.925 0.923 0.958 0.850 0.862 

F1-Score 0.990 0.924 0.875 0.952 0.837 0.852 

Specificity 0.998 0.979 0.994 0.996 0.982 0.989 

 

EEG Eye State Accuracy 0.862 0.770 0.649 0.784 0.741 0.758 

Precision 0.862 0.768 0.649 0.786 0.739 0.763 

Recall 0.859 0.768 0.628 0.777 0.738 0.750 

F1-Score 0.856 0.768 0.625 0.779 0.739 0.752 

Specificity 0.859 0.768 0.628 0.777 0.738 0.750 

TABLE I.  PERFORMANCE COMPARISON 

 
Fig. 2. Radar chart of performance on Hepatitis dataset  

 

Fig. 3. Radar chart of performance on EEG Eye State dataset. 



 

TABLE II.  IMPORTANT FEATURES SELECTED BY NARX-MLP 

 

as [AST], [CREA]×[GGT], and [ALB]×[CHOL] were selected, 
highlighting the significance of biochemical  interactions. In 
EEG Eye State, time-lagged features like [AF3]×[F8(t-1)] and 
[F4]×[F4(t-2)] were prioritized, demonstrating the model's 
ability to capture temporal dependencies in dynamic data. These 
results underscore the effectiveness of our adaptive feature 
selection mechanism in handling both static and dynamic 
medical datasets. 

D. Discussion 

The case studies on the Hepatitis and EEG Eye State datasets 
demonstrate the effectiveness of the Adaptive NARX-MLP 
Classifier in handling both static and dynamic medical data. For 
the Hepatitis dataset, the model successfully identified key 
biochemical interactions, achieving high accuracy and recall. 
For the EEG Eye State dataset, it effectively captured temporal 
dependencies through time-lagged features, outperforming 
traditional and deep learning baselines. These results highlight 
the robustness and adaptability of our approach, showcasing its 
potential for improving medical classification tasks.  

A key strength of our framework lies in its integration of 
NARX-based feature expansion with adaptive feature selection, 
enabling interpretable and efficient classification. However, the 
model's performance depends on the quality of input features, 
and the feature expansion process may introduce computational 
overhead for high-dimensional datasets. Future work will focus 
on extending the framework to multi-modal data and optimizing 
computational efficiency for real-time clinical applications. 

V. CONCLUSION 

In this study, we proposed the Adaptive NARX-MLP 
Classifier, a novel approach that integrates NARX-based feature 
expansion with neural networks to address the challenges of 
medical classification tasks. Our method demonstrated superior 
performance on both static and dynamic datasets, outperforming 
traditional and deep learning baselines across key metrics. The 
adaptive feature selection mechanism, leveraging L1 
regularization and PESR, effectively identified relevant features, 
including nonlinear combinations and temporal dependencies, 
enhancing model interpretability and robustness. While this 
work explores the potential of combining NARX with neural 
networks, several limitations remain, such as the need for further 

optimization of hyperparameters and scalability to larger 
datasets. Future work will focus on refining the model 
architecture such as attention mechanisms, extending its 
application to multi-modal datasets, and validating its 
performance in real-time clinical settings to enhance its 
practicality and generalizability. 
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Description Hepatitis EEG Eye State 

 

Important 

 Features 

(From top to 
bottom,  

the importance 
decreases) 

[AST] [AF3]×[F8(t-1)] 

[CREA]×[GGT] [F8(t-1)]×[F8(t-3)] 

[ALT]×[CREA] [F4]×[F4(t-2)] 

[ALP]×[CREA] [FC6] 

[ALB]×[CHOL] [O2(t-3)]×[P7(t-3)] 

[ALB]×[ALP] [O2]×[O2(t-1)] 

[AST]×[CHOL] … 

[ALP]×[CHE] [F3(t-2)]×[P8(t-2)] 

[Age]×[BIL] [AF4(t-1)]×[FC6(t-2)] 

[ALT]×[BIL] [O2(t-2)]×[P8(t-3)] 

[CHOL] [F3(t-1)]×[P8(t-1)] 
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