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Abstract—In recent years, model interpretability has attracted
significantly increasing attention and research interests from
different backgrounds and perspectives. This paper focuses on
interpretation of machine learning models, aiming to propose a
new sparsity-aware feature extraction (SAFE) approach to
significantly improve the interpretability of neural network
models. The SAFE method includes the following two steps: 1) the
first step starts with a set of features used for training machine
learning models, to generate a significantly large number of new
features; 2) with the awareness that augmented feature space is
usually redundant, the second step is focused on dimensionality
reduction to identify the most important features. These
important features will then be used to train neural network
models, enabling much better interpretability of learning results,
as well as models themselves. The proposed method is referred to
as Sparsity-Aware Feature Extraction for Interpretable Machine
Learning (SAFE-IML). Two illustrative examples are provided to
demonstrate the applicability and efficacy of SAFE-IML.

Keywords—machine learning, model interpretability, feature
engineering, feature selection, neural network, sparse modelling

I INTRODUCTION

A. Why Is Model Interpretabilty Important?

Data driven modelling techniques based on sequentially or
non-sequentially observed data, are ubiquitously used in all
fields of science and technology. In many practical applications,
model interpretability is highly important and useful for
obtaining insights into physical or mechanistic understanding of
the mechanism or dynamics that govern the system or process
of interest. For example, in medicine and healthcare, machine
learning (ML) techniques have been widely used to solve
various data-driven modelling problems. Arguably, model
interpretability will be a key factor determining whether ML
technologies can fully achieve their promise of efficiency and
safety in solving challenging problems in medicine and
healthcare [1]-[3]. In weather and climate studies, the
application of ML techniques has quickly increased in recent
years (see e.g. [4],[5]). In these studies, the model prediction
accuracy is important, but the identification of important drivers
(variables) is equally important or even more desirable [6]-[10].
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The past few decades have witnessed the fast growth of ML and
its applications everywhere, but meanwhile there has been an
increasing interest and demand for exploring transparent and
interpretable ML models.

B. Model Sparsity

A wide class of ML modelling problems can be considered
as a multi-input single-output (MISO) or multi-input multi-
output (MIMO) modelling problem. For simplicity of notation,
take the MISO case as an example, where we have a system
whose response (output), y, is potentially determined by n input
variables: xi, x2, ..., x,. Assume that there exists a linear or
nonlinear functional relationship between the input x=[x1, x2, ...,
X»] and the output y, such that y = fire(x), where the true function
fire 18 in general unknown due to the lack of knowledge of the
system. Given an input-output dataset of a system, the central
task or objective of data-driven modelling is to induce a model f
from the data such that f{x) can approximate or represent the true
function fine(x) as close as possible.

Various modelling methods are available in the literature.
Many traditional models used for multiple linear regression,
linear and nonlinear system identification [11], [12] are
transparent and easy to explain. Models produced by classical
ML methods e.g. decision tree, logistic regression, support
vector machine and fuzzy logic are usually interpretable. On the
contrary, many other ML models including deep learning and
deep neural networks are unexplainable or difficult to interpret.

In many practical applications, models used may be either
oversimplified or overcomplicated. For example, assume a
system output y is determined by three input variables: xi, x2, x3.
If the true model structure of the system is y
=01x1+02x2+03x1x24+04x3%, then a linear model y = axi+bxo+cxs
would be too simplified to represent the system. On the contrary,
without any a priori knowledge of the system, the following
model structure may be used represent the system:

y=Bx+6x, + Bix, +ﬂ4x|2 + fixx, + Bixx, +ﬂ7x22 + fex,x, +ﬂ9x32 M

Clearly, model (1) is too complicated to well represent the
original system behaviour. Good ML algorithms should be able


mailto:w.hualiang@sheffield.ac.uk

to either correctly select the four true model terms, x1, x2, x1x2,
x3%, or effectively determine that the coefficients of the five
spurious model terms, x3, x12, x2%, X1x3, X2x3, to be zero, that is,
B3=B4=Ps=L7=Ps=0, leading to a sparse model: y = Bixi+ Saxz
+ Psxix2 + Poxs®. The procedure of reducing and refining an
overcomplicated model to a reasonably simpler one is referred
to as sparse model identification [13]-[15].

Consider another example of model sparsity. Table I
presents eight samples of a multi-input system. Two algorithms
were applied to the data to build two models as follows:

y=—x, +x,—1.5xx, +2x,x; — X, X, (@)
y= 2x,+x,—0.5xx, 3)
While both models perfectly characterise the input-output
relationship between the input-output data, model (3) is clearly

more compact and parsimonious than model (2). Therefore,
model (3) is sparser than and more preferable to model (2).

TABLE L A SMALL DATASET FOR A 3-INPUT 1-OUTPUT SYSTEM
Inputs & output 1 2 3 4 5 6 7
X 0 0 0 1 1 2
X2 0 1 2 0 1 2 0 1
X3 0 1 4 1 2 5 4 5
y 0 1 2 2 3.5 5 4 6

A variety of methods and algorithms for sparse model
identification have been developed over the past years, including
orthogonal least squares (OLS) [16],[17] adaptive orthogonal
search (AOS) [18], orthogonal matching pursuit (OMP)
[19],[20], least absolute shrinkage and selection operator
(LASSO) [21],[22], and sparse Bayesian learning (SBL) [23]-
[28], among others. In comparison with other methods, OLS and
AOS have an attractive advantage in that they use a simple but
effective index [12],[16], called the error reduction ratio (ERR),
to measure the significance of model terms; this index gives a
clear assessment of the contribution made by each term included
in the model to explaining the variation in the response
[14],[16],[29].

C. Interpreting Machine Learning Models

Model interpretability is an important requirement for many
applications or even part of the essential requirements for the
development of trustworthy ML models used for real-life
problem solving. Most ML models are complicated and difficult
to understand due to their black-box architecture. Massive
efforts have been made to try and understand results produced
by complicated ML models, and a vast number of publications
on model interpretability have been added to the literature from
diverse communities in recent years.

A natural way to make machine learning interpretable is to
employ transparent models (see e.g. [12]-[15]). For complicated
opaque models, many methods have been developed for odel
interpretation, including the two most popular and widely
commonly used methods, Local Interpretable Model-agnostic
Explanations (LIME) [30] and SHapley Additive exPlanations
(SHAP) [31]-[34]. LIME has a major deficiency in that it uses a

kernel, whose parameters determine how accurate the ML
model interpretation is. The explanations given by LIME can be
instable and inconsistent, e.g., for two samples that are very
close to each other, the method may give very different
explanations [35]. One of the main disadvantages of SHAP is its
highly heavy computational workload. Another major drawback
is related to its theoretical limitations. For example, a concern
about the existing definitions of SHAP scores was raised
recently [36]-[38]. It was proven and shown that “the existing
definition will necessarily yield misleading information about
the relative importance of features for predictions.”

D. Contributions of This Work

This paper aims to propose a new feature engineering
enhanced interpretable machine learning (IML) framework that
shows better performance in terms of both model interpretability
and prediction capability, by taking advantage of sparsity-aware
feature extraction (SAFE) and neural network (NN) approaches.
The work makes a novel contribution through designing,
implementing and testing a two-stage NN modelling framework
as follows: (1) the first NN is used for feature generation,
selection and extraction; and (2) the second NN is implemented
using a regression neural network. The proposed method is
referred to as Sparsity-Aware Feature Extraction for
Interpretable Machine Learning (SAFE-IML).

II.  PROBLEM SPECIFICATION

A wide range of practical data-driven modelling problems
can be represented as an input-output data-based model
identification task as follows. There is an output y that depends
on an input vector of n variables denoted by x=[xi, ..., xa].
Assume a set of observation pairs are available, denoted by
{y(@),x(t)} with x(r) =[x, (?),...,x,(¢)] and (¢ =1,...,N). The
true quantitative representation of the relationship between the
output y and the input x is in general unknown or may never be
known. The central task of data modelling is to build a
mathematical model, y(7) = f(x()) + e(¢) (here e(?) is noise), that
can approximate or represent the true input-output relationship,
¥(1) = firue(X(1)), as accurate as possible.

A variety of model structures and building blocks have been
proposed to construct the function f, including polynomials,
radial basis functions, wavelets, fuzzy sets, neural networks,
decision trees and random forests, support vector machine, deep
learning and deep neural networks (see e.g. [11], [39]-[41]).

A multivariate nonlinear function can often be decomposed
into a number of polynomial functional components as:

fx,x,x)=a,+ >, bx + D ;XX

1<i<n I<i<j<n

+ 2 dyxxx +..terror (4
I<i<j<k<n

where ay is a constant, b;, ¢y, djj, .. ., are coefficients of the linear,

quadratic and cubic terms. Previous experiences show that a

decomposition of up to quadratic or cubic terms can usually

provide sufficiently satisfactory approximation.

For a dynamical system, the input-output relationship can
also be represented using a similar decomposition. Taking the
following 2-input 1-output dynamical system as an example:



y@O) = f(yE-D, yt-2),u,(t-1),...,u,(-3),
u,(t—=1),....u,(t—3)) +e(t) o)
Define

(@) =yt-1, x@)=yt-2),
O =u@-1), x,@)=u-2), x,(t)=u,(t-3),
X @) =u,(t=1), x,(t)=u,(t—2), x,(t) =u,(-3),

Then model (5) can be written as:
y@) = f(x,(2), %, (0)s ..., x5 () +e(t) (6)

which can be decomposed into a set of polynomial elements.

Polynomial decomposition has several attractive properties,
e.g., (1) it is transparent and interpretable; (2) it can be arranged
to a linear-in-the-parameters form which is easy to compute and
manage; (3) for dynamical systems, it enables to perform
analysis not only in the time domain, but also in the frequency
domain where important insightful information hidden in the
time-domain signals can be revealed, allowing better
understanding of original physical systems [12],[42].

Like any other approach, polynomial decomposition has its
own shortcomings. For example, in comparison with
complicated neural networks, polynomial decomposition may
not be able to represent highly nonlinear complex behaviour.
However, the computational results produced by complicated
neural networks may be extremely hard to explain or understand,
especially when the modelling task potentially involves a very
large number of input variables.

The above observations motivate us to explore the
advantages and disadvantages of polynomial decomposition and
neural networks, to develop a SAFE-IML framework.

III. METHOD

This section introduces the proposed two-stage neural
network modelling framework, SAFE-IML.

A. The Structure of SAFE-IML

The diagram of SAFE-IML is shown in Fig. 1, where NN1is
a 3-layer neural network which is used for feature generation
and dimensionality reduction (feature selection and extraction),
and NN2 represents 4-layer regression neural network. Details
of these networks are given in the following section.

B. The First-Stage Network: NN1

1) Feature generation and augmentation

The input to the first-stage network is x=[x1, xo, ..., x4]. The
n variables are augmented to a higher feature space. The new
feature space is determined by Dy, D1, D> and D3, which are the
complete collection of constant, linear, quadratic and cubic
features (model terms), respectively, as follows:

D, ={x,} (xo=1);
D, ={x,x,,....,x,};

2 2 2
D, ={X, XX, c0s X, X, X3, X0 X500 X)X, oy X, (X, , X ]

) 3
D, ={x], XX, X, X, X, 5.0, X, X, X, , X, }.
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- Bl iege
AnEN Rl D"
5D

+
NN @ y(o) @

SN2)

Fig. 1. The diagram of the proposed SAFE-IML framework.

In this way, the original feature space is significantly
augmented. The error signal e™V as feedback is sent to the
augmented space layer to refine the parameter estimation of the
identified model in the feature reduced layer; this is very useful
in dynamical system modelling (e.g. when autoregressive
terms are included in the model).

2) Feature subset selecton and dimentionality reduction
Let D =DyU DU D> U Ds. It can be known that the set D
includes a total of M =C =n(n—1)(n—2)/6 different

elements. The feature library D can also be defined as Do U D
U D, which can often work well for many practical applications.
Given a set of samples, {y(¢),x(¢)} ( ¢ =1, 2,..., N), sparse
learning algorithms, e.g. OLS [16], AOS [17], LASSO [21],[22],
and sparse Bayesian learning [23]-[27], can be used to determine
a small subset consisting of m (<< M) important features
selected from D. Denote by Z = [z1, 22, ..., Zu] the m selected

features. The principle is that the subset Z should sufficiently
well represents the system output y in the sense that:

a) $(t)=Y. Bz, (t)> Y(t)is the model prediction value.
k=1

b) The overall error|[y”’

— 73|I is satisfactory small, where
y©@ is the observation vector.

C. The Second Neural Network: NN2

The output of NN1, Z = [z1, 22, ..., Zm], is the input of NN2.
The main objective of the second-stage modelling is twofold: (1)
to explore the significance of m features and the individual
original variables involved in Z; and (2) to explore the potential
of improving the prediction performance obtained in NN1
through NN2. For (1), an explanation of model prediction
performance will be explored using SHAP values.

Note that Fig. 1 only shows a simple case with two fully
connected hidden layers and an output layer in NN2. In practical
applications, more hidden layers may be added where necessary
to achieve potentially strong and better prediction ability, but at
the price of weakening model interpretability.



The Shapley value was originally used in cooperative game
theory [43], as a method for players to assess a priori how much
they each would expect to befit from playing a game. The SHAP
method has gradually become the most dominant and most
commonly used approach for ML model interpretation since the
breakthrough paper by Lundberg and Lee [32]. If a modelling
task involves n different elements (variables, regressiors or
terms), then each variable can be considered as a player in
building a target model, and their contribution and importance
can be assessed using the SHAP values. However, the
determination of the contribution and importance does depend
on the specific model type and model structure chosen and how
the available model building elements are used to implement the
target model [44].

IV. EXAMPLES AND APPLICATIONS

This section provides two examples to illustrate the
applicability of the proposed SAFE-IML framework. All the
numerical experiments were conducted using MATLAB
R2024b. For each example, we report the following:

1) Output results of NN1
2) Output results of NN2 driven by the output of NNI

3) Output results of NN2 driven by the origianl inputs,
without using any output results of NN1

A. Example 1: Hidimensional Linear Regression Model
Consider the following model:

1000

y:f(xl,x2,...,x,000):;ﬂkxk+§ Q)

where p =1000, xx (k=1, 2, ..., p) are independent variables; 1o
=1, Bao= 2, B30= -3, and Br= 0 if k #10, 20 or 30; ¢ is noise.
The model was simulated with the following settings: each of
the p variables was independently set to be a zero-mean

Gaussian process with standard deviation o = 1. The random

noise ¢ was set to be a zero-mean Gaussian process with
standard deviation o, = 0.5. A total of n=100 simulation
samples, that is, output/input pairs { y(k), x(k) } (k=1,2,...,100),
were recorded; each input sample has 1000 element values. The

first 50 samples were used for model training and the remaining
data were used for model testing.

This is a very typical small sample size and “large p, small
n” problem. Under the assumption that no a priori knowledge is
available about the importance of the 1000 input variables, we
applied SAFE-IML to the available 100 samples.

1) Output results of NN1
Both AOS and SBL algorithms were performed in NN1, and
the output results are reported in Table II. Clearly, all the three
true variables were correctly determined and their importance
was well explained with the ERR values [14],[16],[29]. The
output of NN1 on the test dataset, y™, is shown in Fig. 2.

2) Output results of NN2 driven by the output of NNI

Driven by the output of NNI1, i.e., the three variables, z; =
X30, 22 = X20 and z3 = x10, the output of NN2, y™2_ ig shown in
Fig. 3. To save space and give a better visualisation, only the

predictions on the test data are shown here, but we also
calculated the MSE and R? values of y™?2), over the training
dataset, which are 9.7263e-07 and 1, respectively. These results
show that NN2 performed perfect on the training data, but its
performance on the test data is not as good as NN 1, meaning that
the overall performance of NN1 was not enhanced or improved
through NN2.

TABLE II. OUTPUT RESULTS OF NN1 FOR EXAMPLE 1
Variable Coefficient Importance (ERR)
7] = X3 -2.9234 64.3447%
7y = Xy 2.0100 26.3311%
73 =Xqq 1.0064 7.4440%
> =98.1198%
10 [ MSE = 0.2548; R? =0.978£;
o 5-
2]
c
3
a 0
9]
he
5+
—True
10+ —Prediction
50 60 70 80 90 100

Sample Index

Fig. 2. A comparison between the NN1 prediction and the actual observations
on the test dataset (Example 1).

‘MSE =0.7077; R% = 0.9397

Response
o

—True
-10 - |—Prediction

50 60 70 80 90 100
Sampling Index

Fig. 3. A comparison between the NNI+NN2 prediction and the actual
observations on the test dataset (Example 1).

The SHAP values of the three variables zi, z> and z3 are
shown in Fig. 4. Clearly, the importance of three variables
assessed by Shapley values is perfectly consistent with that
measured by the ERR index.

3) Output results of NN2 driven by the original inputs,
without using any output results of NN1

In this case, NN2 was trained using the original 1000
variables as input. The prediction results on the training and test
datasets, together with the distribution of the Shapley values of
the 1000 input variables, are shown in Figs. 5 and 6,
respectively. It can be observed that while the network
performed good on the training data, it showed very pool
generalisation ability on the tests dataset. From the Shapley
distribution, it failed to identify the three important variables,
X10, X20 and X30.
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.
L
8
°

o
o

0 0.5 1 1.5 2 25 3
Mean of Absolute Shapley Values

Fig. 4. Shapley values of the three variables Z1=X30, 22=X20 and zz=x10.

15 MSE (traing) =0.0053; ’ MSE(test) = 33.3175; | ‘
10 | [R?(train) =0.9997. R?(test) = -1.8408. J
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Fig. 5. A comparison between the NN2 predictions and the actual observations
without using the output of NN1 (Example 1).
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Fig. 6. Shapley values of the 1000 original variables calculated based on NN2.
These variables were used as input to NN2; the output of NN1 was not used.

B. Example 2: Mutiple Nonlinear Regression Model

In Example 1, all the true model terms are included in the
augmented feature library. In Example 2, only one of the true
model terms, i.e., xg, is included the augmented feature space
and all the other true model terms are not included in the library,
making the feature reduction procedure, i.e., the determination
of important model terms, more challenging. The model used to
generate data is as follows:

4x,,

+& (8)

21

V= (X Xy) =X, | X5 |+ + x5 sI0(x,5) + Y

where xx(k=1, 2, ..., 21) are independent variables, each follows
a continuous uniform distribution on (-1,1); & is noise, following
a Gaussian distribution with standard deviation o £ = 0.1.

Model (8) was simulated and 200 output/input pairs
{y(k),x(k)} (k=1,2,...,21) were recorded. The first 100

samples were used for model training and the remaining samples

were used for model testing. The size of the augmented feature
space in NN1 is 2024. The main results are reported below.

1) Output results of NN1
The output of NNI1, i.e., the selected important variables, zx
(k=1,2, ...,6) are listed in Table III, together with the values of
the ERR index. The prediction, y™Y, from the model reported
in Table III is shown in Fig. 7.

TABLE IIL. OUTPUT RESULTS OF NN1 FOR EXAMPLE 2

Variable Coefficient Importance (ERR)
21 = Xy 20243 72.4367%
7= X 0.9977 11.2821%
7 =% 0.9230 6.6351%
74= Xp0%5 -0.9208 4.2885%
25 = xpx2 0.9158 4.4853%
Z6= X, 0.1843 0.2171%
Y =99.3447%
4

MSE = 0.0145; R? = 0.9932

Response
o

—True
—Prediction

100 120 140 160 180 200
Sampling Index

Fig. 7. A comparison between the NN1 prediction and the actual observations
on the test dataset (Example 2).

2)  Output results of NN2 driven by the output of NN1

It followed that the output of NN2, y™2)_ driven by z; (k= 1,
2, ..., 6), is almost identical to y"ND, The MSE and R? values of
y™N2 on the test data are 0.0147 and 0.9931, respectively. The
SHAP values of the six variables, zi, 22, ..., Zs, are shown in Fig.
8, where it can be seen that the importance of six features
assessed by Shapley values is perfectly consistent with that
measured by the ERR index.

Shapley Importance Plot

z1
wz2
)
©oz4
® z3

st

z6

0 0.2 0.4 0.6 0.8 1
Mean of Absolute Shapley Values

Fig. 8. Shapley values of the six features, zi, z2, ..., Z, listed in Table IIL



It is interesting to know the importance of each of the model
terms for determining the prediction value of a specific point in
the response. For example, it is interesting to know the
importance of the six model terms, zi, 22, ..., zs, for predicting
the following three points: lowest peak, highest peak and the end
point of the test data, which are corresponding the 148" sample
with the prediction value -2.625, the 195" sample with the
prediction value 3.6431 and the 200% sample with the prediction
value -1.4171. Through NN2, we calculated the importance of
the six model terms for each of the three specific points, which
are shown in Fig. 9.

Shapley Explanation
Query Point Prediction: -2.625 Query Point Prediction: 3.6431 Query Point Prediction: -1.417~

z1 z1
z2: z4
jg z5; z2 ¢
®
& z4 z5 "
z6 z3 -
z3 | z6
-1 -0.5 0 0 1 2 -2 -1 0

Shapley Value Shapley Value Shapley Value

Fig. 9. Shapley values of the six features (model terms), zi, 2, ..., Z, for the
three specific points: the 145" sample with the prediction value -2.625, the 195"
sample with the prediction value 3.6431 and the 200" sample with the prediction
value -1.4171.

3) Output results of NN2 driven by the origianl inputs,
without using any output results of NN1

In this case, NN2 was trained using the original 21 variables
as input. The prediction results on the training and test datasets
are shown in Fig. 10, and the distribution of the Shapley values
of the 21 input variables is shown in Fig. 11. Clearly, while the
network performed good on the training data, it showed slightly
weak generalisation ability on the test dataset. From the Shapley
distribution, two variables, x2o and xg, which are important for
model (8), were correctly identified by the Shapley value, but
they failed to identify all the other important variables, such as
X2, X5, X13, and x2;.

4, :
g2
govf\
)

v‘MSE(tram) 0.0846; R2(tra|n) =0.9534 "
20 40 60 80 100

JMSE(test) 0.2676; R2(test) = 0.8748 \ |
100 120 140 160 180 200
Sampling Index

AN o

Fig. 10. A comparison between the NN2 prediction and the actual observations
without using the output of NN1 (Example 2). Blue curve: observations; red
curve: model predictions.
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2 4 6 8 10 12 14 16 18

20
Variable Index

Fig. 11. Shapley values of the 21orginal input variables calculated from NN2.
These variables were used as input to NN2; the output of NN1 was not used.

V. CONCLUSION

The paper investigated state-of-the-art quantitative methods
for model interpretability evaluation. It focused on exploring the
strengths and weaknesses of traditional feature engineering and
the popular SHAP methods. It showed, through two illustrative
examples, how the proposed SAFE-IML worked by using a
small number of explainable features obtained in the first NN to
train the second NN to acquire further explanation using SHAP
scores and meanwhile maintain the predictive ability of the
second NN. The strong interpretability of the second NN cannot
be achieved without using the information produced by the first
NN. While the results and findings are interesting and promising,
the proposed method still has a few limitations, e.g., for a
problem involves many variables, the number of features
generated by the polynomial-based approach may very large,
this potentially leads to heavy computational load in the
dimensionality reduction (subset selection) procedure. Another
limitation is to choose the second NN model. A simple model
structure is easy to interpret and takes less computation time but
it may not have enough learning ability, whereas a complex
network model may have strong learning ability but it requires
more computational time and lacks interpretability. Our future
work will be focusing on finding solutions to these issues.
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