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Abstract—In recent years, model interpretability has attracted 

significantly increasing attention and research interests from 

different backgrounds and perspectives. This paper focuses on 

interpretation of machine learning models, aiming to propose a 

new sparsity-aware feature extraction (SAFE) approach to 

significantly improve the interpretability of neural network 

models. The SAFE method includes the following two steps: 1) the 

first step starts with a set of features used for training machine 

learning models, to generate a significantly large number of new 

features; 2) with the awareness that augmented feature space is 

usually redundant, the second step is focused on dimensionality 

reduction to identify the most important features. These 

important features will then be used to train neural network 

models, enabling much better interpretability of learning results, 

as well as models themselves. The proposed method is referred to 

as Sparsity-Aware Feature Extraction for Interpretable Machine 

Learning (SAFE-IML). Two illustrative examples are provided to 

demonstrate the applicability and efficacy of SAFE-IML.        

Keywords—machine learning, model interpretability, feature 

engineering, feature selection, neural network, sparse modelling  

I. INTRODUCTION 

A. Why Is Model Interpretabilty Important?  

Data driven modelling techniques based on sequentially or 
non-sequentially observed data, are ubiquitously used in all 
fields of science and technology. In many practical applications, 
model interpretability is highly important and useful for 
obtaining insights into physical or mechanistic understanding of 
the mechanism or dynamics that govern the system or process 
of interest. For example, in medicine and healthcare, machine 
learning (ML) techniques have been widely used to solve 
various data-driven modelling problems. Arguably, model 
interpretability will be a key factor determining whether ML 
technologies can fully achieve their promise of efficiency and 
safety in solving challenging problems in medicine and 
healthcare [1]-[3]. In weather and climate studies, the 
application of ML techniques has quickly increased in recent 
years (see e.g. [4],[5]). In these studies, the model prediction 
accuracy is important, but the identification of important drivers 
(variables) is equally important or even more desirable [6]-[10]. 

The past few decades have witnessed the fast growth of ML and 
its applications everywhere, but meanwhile there has been an 
increasing interest and demand for exploring transparent and 
interpretable ML models.  

B. Model Sparsity 

A wide class of ML modelling problems can be considered 
as a multi-input single-output (MISO) or multi-input multi-
output (MIMO) modelling problem. For simplicity of notation, 
take the MISO case as an example, where we have a system 
whose response (output), y, is potentially determined by n input 
variables: x1, x2, …, xn. Assume that there exists a linear or 
nonlinear functional relationship between the input x=[x1, x2, …, 
xn] and the output y, such that y = ftrue(x), where the true function 
ftrue is in general unknown due to the lack of knowledge of the 
system. Given an input-output dataset of a system, the central 
task or objective of data-driven modelling is to induce a model f 
from the data such that f(x) can approximate or represent the true 
function ftrue(x) as close as possible.  

Various modelling methods are available in the literature. 
Many traditional models used for multiple linear regression, 
linear and nonlinear system identification [11], [12] are 
transparent and easy to explain. Models produced by classical 
ML methods e.g. decision tree, logistic regression, support 
vector machine and fuzzy logic are usually interpretable.  On the 
contrary, many other ML models including deep learning and 
deep neural networks are unexplainable or difficult to interpret.  

In many practical applications, models used may be either 
oversimplified or overcomplicated. For example, assume a 
system output y is determined by three input variables: x1, x2, x3. 
If the true model structure of the system is y 
=𝜃1x1+𝜃2x2+𝜃3x1x2+𝜃4x3

2, then a linear model y = ax1+bx2+cx3 
would be too simplified to represent the system. On the contrary, 
without any a priori knowledge of the system, the following 
model structure may be used represent the system: 

2 2 2
1 1 2 2 3 3 4 1 5 1 2 6 1 3 7 2 8 2 3 9 3y x x x x x x x x x x x x                 (1) 

Clearly, model (1) is too complicated to well represent the 
original system behaviour. Good ML algorithms should be able 
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to either correctly select the four true model terms, x1, x2, x1x2, 
x3

2, or effectively determine that the coefficients of the five 
spurious model terms, x3, x1

2, x2
2, x1x3, x2x3, to be zero, that is, 𝛽3=𝛽4=𝛽6=𝛽7=𝛽8=0, leading to a sparse model: y = 𝛽1x1 + 𝛽2x2 

+ 𝛽5x1x2 + 𝛽9x3
2. The procedure of reducing and refining an 

overcomplicated model to a reasonably simpler one is referred 
to as sparse model identification [13]-[15].  

Consider another example of model sparsity. Table I 
presents eight samples of a multi-input system. Two algorithms 
were applied to the data to build two models as follows: 

2 3 1 2 1 3 2 31.5 2y x x x x x x x x                                (2) 

1 2 1 2 2 0.5y x x x x                                                                    (3) 

While both models perfectly characterise the input-output 
relationship between the input-output data, model (3) is clearly 
more compact and parsimonious than model (2). Therefore, 
model (3) is sparser than and more preferable to model (2).   

TABLE I.  A SMALL DATASET FOR A 3-INPUT 1-OUTPUT SYSTEM 

Inputs & output 1 2 3 4 5 6 7 8 

x1 0 0 0 1 1 1 2 2 

x2 0 1 2 0 1 2 0 1 

x3 0 1 4 1 2 5 4 5 

y 0 1 2 2 3.5 5 4 6 

   

A variety of methods and algorithms for sparse model 
identification have been developed over the past years, including 
orthogonal least squares (OLS) [16],[17] adaptive orthogonal 
search (AOS) [18], orthogonal matching pursuit (OMP) 
[19],[20], least absolute shrinkage and selection operator 
(LASSO) [21],[22], and sparse Bayesian learning (SBL) [23]-
[28], among others. In comparison with other methods, OLS and 
AOS have an attractive advantage in that they use a simple but 
effective index [12],[16], called the error reduction ratio (ERR), 
to measure the significance of model terms; this index gives a 
clear assessment of the contribution made by each term included 
in the model to explaining the variation in the response 
[14],[16],[29].    

C.  Interpreting Machine Learning Models  

Model interpretability is an important requirement for many 
applications or even part of the essential requirements for the 
development of trustworthy ML models used for real-life 
problem solving. Most ML models are complicated and difficult 
to understand due to their black-box architecture. Massive 
efforts have been made to try and understand results produced 
by complicated ML models, and a vast number of publications 
on model interpretability have been added to the literature from 
diverse communities in recent years.    

A natural way to make machine learning interpretable is to 
employ transparent models (see e.g. [12]-[15]). For complicated 
opaque models, many methods have been developed for odel 
interpretation, including the two most popular and widely 
commonly used methods, Local Interpretable Model-agnostic 
Explanations (LIME) [30] and SHapley Additive exPlanations 
(SHAP) [31]-[34]. LIME has a major deficiency in that it uses a 

kernel, whose parameters determine how accurate the ML 
model interpretation is. The explanations given by LIME can be 
instable and inconsistent, e.g., for two samples that are very 
close to each other, the method may give very different 
explanations [35]. One of the main disadvantages of SHAP is its 
highly heavy computational workload. Another major drawback 
is related to its theoretical limitations. For example, a concern 
about the existing definitions of SHAP scores was raised 
recently [36]-[38]. It was proven and shown that “the existing 
definition will necessarily yield misleading information about 
the relative importance of features for predictions.”        

D. Contributions of This Work      

This paper aims to propose a new feature engineering 
enhanced interpretable machine learning (IML) framework that 
shows better performance in terms of both model interpretability 
and prediction capability, by taking advantage of sparsity-aware 
feature extraction (SAFE) and neural network (NN) approaches. 
The work makes a novel contribution through designing, 
implementing and testing a two-stage NN modelling framework 
as follows: (1) the first NN is used for feature generation, 
selection and extraction; and (2) the second NN is implemented 
using a regression neural network. The proposed method is 
referred to as Sparsity-Aware Feature Extraction for 
Interpretable Machine Learning (SAFE-IML).   

II. PROBLEM SPECIFICATION 

A wide range of practical data-driven modelling problems 
can be represented as an input-output data-based model 
identification task as follows. There is an output y that depends 
on an input vector of n variables denoted by x=[x1, …, xn]. 
Assume a set of observation pairs are available, denoted by 
{ ( ), ( )}y t tx with 

1( ) [ ( ),..., ( )]nt x t x tx  and (t =1,…,N).  The 

true quantitative representation of the relationship between the 
output y and the input x is in general unknown or may never be 
known. The central task of data modelling is to build a 
mathematical model, y(t) = f(x(t)) + e(t) (here e(t) is noise), that 
can approximate or represent the true input-output relationship, 
y(t) = ftrue(x(t)), as accurate as possible. 

A variety of model structures and building blocks have been 
proposed to construct the function f, including polynomials, 
radial basis functions, wavelets, fuzzy sets, neural networks, 
decision trees and random forests, support vector machine, deep 
learning and deep neural networks (see e.g. [11], [39]-[41]).  

  A multivariate nonlinear function can often be decomposed 
into a number of polynomial functional components as: 

       1 2 0
1 1

( , , , )
n i i ij i j

i n i j n

f x x x a b x c x x
    

         

1

+ ...
ijk i j k

i j k n

d x x x error
   

        (4) 

where a0 is a constant, bi, cij, dijk, …, are coefficients of the linear, 
quadratic and cubic terms. Previous experiences show that a 
decomposition of up to quadratic or cubic terms can usually 
provide sufficiently satisfactory approximation.   

For a dynamical system, the input-output relationship can 
also be represented using a similar decomposition. Taking the 
following 2-input 1-output dynamical system as an example: 



      
1 1( ) ( ( 1), ( 2), ( 1),..., ( 3),y t f y t y t u t u t      

 
2 2 ( 1),..., ( 3)) ( )u t u t e t                                 (5) 

Define 

     
1 2

3 1 4 1 5 1

6 2 7 2 8 2

( ) ( 1),     ( ) ( 2),

( ) ( 1),    ( ) ( 2),   ( ) ( 3),

( ) ( 1),    ( ) ( 2),  ( ) ( 3),

x t y t x t y t

x t u t x t u t x t u t

x t u t x t u t x t u t

   
     

     

                                                                   

Then model (5) can be written as: 

 1 2 8( ) ( ( ), ( ),..., ( )) ( )y t f x t x t x t e t                        (6) 

which can be decomposed into a set of polynomial elements.  

Polynomial decomposition has several attractive properties, 
e.g., (1) it is transparent and interpretable; (2) it can be arranged 
to a linear-in-the-parameters form which is easy to compute and 
manage; (3) for dynamical systems, it enables to perform 
analysis not only in the time domain, but also in the frequency 
domain where important insightful information hidden in the 
time-domain signals can be revealed, allowing better 
understanding of original physical systems [12],[42].         

Like any other approach, polynomial decomposition has its 
own shortcomings. For example, in comparison with 
complicated neural networks, polynomial decomposition may 
not be able to represent highly nonlinear complex behaviour. 
However, the computational results produced by complicated 
neural networks may be extremely hard to explain or understand, 
especially when the modelling task potentially involves a very 
large number of input variables.   

The above observations motivate us to explore the 
advantages and disadvantages of polynomial decomposition and 
neural networks, to develop a SAFE-IML framework.  

III. METHOD 

This section introduces the proposed two-stage neural 
network modelling framework, SAFE-IML.  

A. The Structure of SAFE-IML  

The diagram of SAFE-IML is shown in Fig. 1, where NN1is 
a 3-layer neural network which is used for feature generation 
and dimensionality reduction (feature selection and extraction), 
and NN2 represents 4-layer regression neural network. Details 
of these networks are given in the following section. 

B. The First-Stage Network: NN1 

1) Feature generation and augmentation 

The input to the first-stage network is x=[x1, x2, …, xn]. The 
n variables are augmented to a higher feature space. The new 
feature space is determined by D0, D1, D2 and D3, which are the 
complete collection of constant, linear, quadratic and cubic 
features (model terms), respectively, as follows: 

  
0 0{ }D x  (x0 ≡ 1); 

  1 1 2{ , ,..., }nD x x x ; 

  
2 2 2

2 1 1 2 1 2 2 3 2 1{ , ,..., , , ,..., ,..., , }
n n n n n

D x x x x x x x x x x x x x ; 

  
2 3

3 3 1 1 2 1 1 1{ , ,..., ,..., , }
n n n n n

D x x x x x x x x x x x . 

Fig. 1.  The diagram of the proposed SAFE-IML framework.   

In this way, the original feature space is significantly 
augmented. The error signal e(NN1) as feedback is sent to the 
augmented space layer to refine the parameter estimation of the 
identified model in the feature reduced layer; this is very useful 
in dynamical system modelling (e.g. when autoregressive  
terms are included in the model). 

2) Feature subset selecton and dimentionality reduction 

Let D = D0 ∪ D1 ∪ D2 ∪ D3. It can be known that the set D 

includes a total of 3 ( 1)( 2) / 6
n

M C n n n    different 

elements. The feature library D can also be defined as D0 ∪ D1 ∪ D2 which can often work well for many practical applications. 
Given a set of samples, { ( ), ( )}y t tx ( t =1, 2,…, N), sparse 

learning algorithms, e.g. OLS [16], AOS [17], LASSO [21],[22], 
and sparse Bayesian learning [23]-[27], can be used to determine 
a small subset consisting of m (<< M) important features 

selected from D. Denote by z = [z1, z2, …, zm] the m selected 

features. The principle is that the subset z should sufficiently 
well represents the system output y in the sense that: 

a)  
1

ˆ( ) ( )
m

k k

k

y t z t


 , ˆ( )y t is the model prediction value. 

b)  The overall error
(o) 2ˆ|| ||y y is satisfactory small, where 

y(o) is the observation vector. 

C. The Second Neural Network: NN2 

The output of NN1, z = [z1, z2, …, zm], is the input of NN2. 
The main objective of the second-stage modelling is twofold: (1) 
to explore the significance of m features and the individual 

original variables involved in z; and (2) to explore the potential 
of improving the prediction performance obtained in NN1 
through NN2. For (1), an explanation of model prediction 
performance will be explored using SHAP values.   

Note that Fig. 1 only shows a simple case with two fully 
connected hidden layers and an output layer in NN2. In practical 
applications, more hidden layers may be added where necessary 
to achieve potentially strong and better prediction ability, but at 
the price of weakening model interpretability.  

 



The Shapley value was originally used in cooperative game 
theory [43], as a method for players to assess a priori how much 
they each would expect to befit from playing a game. The SHAP 
method has gradually become the most dominant and most 
commonly used approach for ML model interpretation since the 
breakthrough paper by Lundberg and Lee [32]. If a modelling 
task involves n different elements (variables, regressiors or 
terms), then each variable can be considered as a player in 
building a target model, and their contribution and importance 
can be assessed using the SHAP values. However, the 
determination of the contribution and importance does depend 
on the specific model type and model structure chosen and how 
the available model building elements are used to implement the 
target model [44].  

IV. EXAMPLES AND APPLICATIONS 

This section provides two examples to illustrate the 
applicability of the proposed SAFE-IML framework. All the 
numerical experiments were conducted using MATLAB 
R2024b. For each example, we report the following:  

1) Output results of NN1 

2) Output results of NN2 driven by the output of NN1 

3) Output results of NN2 driven by the origianl inputs, 

without using any output results of NN1 

A. Example 1: Hidimensional Linear Regression Model 

Consider the following model: 

1000

1 2 1000
1

( , ,..., ) k k
k

y f x x x x 


                        (7) 

where p =1000, xk (k=1, 2, …, p) are independent variables; 𝛽10 

= 1, 𝛽20 = 2, 𝛽30= ‒3, and 𝛽k = 0 if k ≠10, 20 or 30; ξ is noise. 
The model was simulated with the following settings: each of 
the p variables was independently set to be a zero-mean 

Gaussian process with standard deviation 
x = 1. The random 

noise ξ was set to be a zero-mean Gaussian process with 

standard deviation  = 0.5. A total of n=100 simulation 

samples, that is, output/input pairs{ ( ), ( )}y k kx (k=1,2,…,100), 
were recorded; each input sample has 1000 element values. The 
first 50 samples were used for model training and the remaining 
data were used for model testing.   

This is a very typical small sample size and “large p, small 
n” problem. Under the assumption that no a priori knowledge is 
available about the importance of the 1000 input variables, we 
applied SAFE-IML to the available 100 samples.  

1) Output results of NN1 

Both AOS and SBL algorithms were performed in NN1, and 
the output results are reported in Table II. Clearly, all the three 
true variables were correctly determined and their importance 
was well explained with the ERR values [14],[16],[29]. The 
output of NN1 on the test dataset, y(NN1), is shown in Fig. 2. 

2) Output results of NN2 driven by the output of NN1 

Driven by the output of NN1, i.e., the three variables, z1 = 
x30, z2 = x20 and z3 = x10, the output of NN2, y(NN2), is shown in 
Fig. 3. To save space and give a better visualisation, only the 

predictions on the test data are shown here, but we also 
calculated the MSE and R2 values of y(NN2), over the training 
dataset, which are 9.7263e-07 and 1, respectively. These results 
show that NN2 performed perfect on the training data, but its 
performance on the test data is not as good as NN1, meaning that 
the overall performance of NN1 was not enhanced or improved 
through NN2. 

TABLE II.  OUTPUT RESULTS OF NN1 FOR EXAMPLE 1 

Variable Coefficient Importance (ERR) 

z1 = 𝑥30 -2.9234 64.3447% 

 z2 = 𝑥20 2.0100 26.3311% 

z3 = 𝑥10 1.0064 7.4440% 

  ∑ = 98.1198% 

   

 

 

 

 

 

 

 

 

Fig. 2.  A comparison between the NN1 prediction and the actual observations 
on the test dataset (Example 1). 

 

Fig. 3.  A comparison between the NN1+NN2 prediction and the actual 
observations on the test dataset (Example 1). 

The SHAP values of the three variables z1, z2 and z3 are 
shown in Fig. 4. Clearly, the importance of three variables 
assessed by Shapley values is perfectly consistent with that 
measured by the ERR index. 

3) Output results of NN2 driven by the original inputs, 

without using any output results of NN1 

In this case, NN2 was trained using the original 1000 
variables as input. The prediction results on the training and test 
datasets, together with the distribution of the Shapley values of 
the 1000 input variables, are shown in Figs. 5 and 6, 
respectively. It can be observed that while the network 
performed good on the training data, it showed very pool 
generalisation ability on the tests dataset. From the Shapley 
distribution, it failed to identify the three important variables, 
x10, x20 and x30.   

 



 

 

 

 

 

 

 

Fig. 4.  Shapley values of the three variables z1=x30, z2=x20 and z3=x10. 

 

 

 

 

 

 

 

 

 

Fig. 5.  A comparison between the NN2 predictions and the actual observations 
without using the output of NN1 (Example 1). 

 

 

 

 

 

 

 

 

 

Fig. 6.  Shapley values of the 1000 original variables calculated based on NN2. 
These variables were used as input to NN2; the output of NN1 was not used. 

B. Example 2: Mutiple Nonlinear Regression Model 

In Example 1, all the true model terms are included in the 
augmented feature library. In Example 2, only one of the true 
model terms, i.e., x8, is included the augmented feature space 
and all the other true model terms are not included in the library, 
making the feature reduction procedure, i.e., the determination 
of important model terms, more challenging. The model used to 
generate data is as follows:   

21

20
1 21 2 5 8 13 13

4
( ,..., ) | | sin( )

1 x

x
y f x x x x x x x

e
     


   (8) 

where xk (k =1, 2, …, 21) are independent variables, each follows 
a continuous uniform distribution on (-1,1); ξ is noise, following 

a Gaussian distribution with standard deviation  = 0.1.  

Model (8) was simulated and 200 output/input pairs
{ ( ), ( )}y k kx (k=1,2,…,21) were recorded. The first 100 

samples were used for model training and the remaining samples 

were used for model testing. The size of the augmented feature 
space in NN1 is 2024. The main results are reported below.    

1) Output results of NN1 

The output of NN1, i.e., the selected important variables, zk 
(k=1,2, …,6) are listed in Table III, together with the values of 
the ERR index. The prediction, y(NN1), from the model reported 
in Table III is shown in Fig. 7. 

TABLE III.  OUTPUT RESULTS OF NN1 FOR EXAMPLE 2 

Variable Coefficient Importance (ERR) 

  z1 = 𝑥20     2.0243 72.4367% 

  z2 = 𝑥8 
    0.9977 11.2821% 

  z3 = 𝑥132
 

    0.9230 6.6351% 

  z4 = 𝑥20𝑥21    -0.9208 4.2885% 

  z5 = 𝑥2𝑥52     0.9158 4.4853% 

  z6 = 𝑥2     0.1843 0.2171% 

  ∑ = 99.3447% 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  A comparison between the NN1 prediction and the actual observations 
on the test dataset (Example 2). 

2)  Output results of NN2 driven by the output of NN1 

It followed that the output of NN2, y(NN2), driven by zk (k= 1, 
2, ..., 6), is almost identical to y(NN1). The MSE and R2 values of 
y(NN2) on the test data are 0.0147 and 0.9931, respectively. The 
SHAP values of the six variables, z1, z2, …, z6, are shown in Fig. 
8, where it can be seen that the importance of six features 
assessed by Shapley values is perfectly consistent with that 
measured by the ERR index. 

 

 

 

 

 

 

 

 

Fig. 8.  Shapley values of the six features, z1, z2, …, z6, listed in Table III. 

 



It is interesting to know the importance of each of the model 
terms for determining the prediction value of a specific point in 
the response. For example, it is interesting to know the 
importance of the six model terms, z1, z2, …, z6, for predicting 
the following three points: lowest peak, highest peak and the end 
point of the test data, which are corresponding the 148th sample 
with the prediction value -2.625, the 195th sample with the 
prediction value 3.6431 and the 200th sample with the prediction 
value -1.4171. Through NN2, we calculated the importance of 
the six model terms for each of the three specific points, which 
are shown in Fig. 9.    

 

Fig. 9.  Shapley values of the six features (model terms), z1, z2, …, z6, for the 
three specific points: the 145th sample with the prediction value -2.625, the 195th 
sample with the prediction value 3.6431 and the 200th sample with the prediction 
value -1.4171. 

3) Output results of NN2 driven by the origianl inputs, 

without using any output results of NN1 

In this case, NN2 was trained using the original 21 variables 
as input. The prediction results on the training and test datasets 
are shown in Fig. 10, and the distribution of the Shapley values 
of the 21 input variables is shown in Fig. 11. Clearly, while the 
network performed good on the training data, it showed slightly 
weak generalisation ability on the test dataset. From the Shapley 
distribution, two variables, x20 and x8, which are important for 
model (8), were correctly identified by the Shapley value, but 
they failed to identify all the other important variables, such as 
x2, x5, x13, and x21.  

 

Fig. 10.  A comparison between the NN2 prediction and the actual observations 
without using the output of NN1 (Example 2). Blue curve: observations; red 
curve: model predictions. 

 

Fig. 11.  Shapley values of the 21orginal input variables calculated from NN2. 
These variables were used as input to NN2; the output of NN1 was not used.        

V. CONCLUSION 

The paper investigated state-of-the-art quantitative methods 
for model interpretability evaluation. It focused on exploring the 
strengths and weaknesses of traditional feature engineering and 
the popular SHAP methods. It showed, through two illustrative 
examples, how the proposed SAFE-IML worked by using a 
small number of explainable features obtained in the first NN to 
train the second NN to acquire further explanation using SHAP 
scores and meanwhile maintain the predictive ability of the 
second NN. The strong interpretability of the second NN cannot 
be achieved without using the information produced by the first 
NN. While the results and findings are interesting and promising, 
the proposed method still has a few limitations, e.g., for a 
problem involves many variables, the number of features 
generated by the polynomial-based approach may very large, 
this potentially leads to heavy computational load in the 
dimensionality reduction (subset selection) procedure. Another 
limitation is to choose the second NN model. A simple model 
structure is easy to interpret and takes less computation time but 
it may not have enough learning ability, whereas a complex 
network model may have strong learning ability but it requires 
more computational time and lacks interpretability. Our future 
work will be focusing on finding solutions to these issues.      
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