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Investment in Demand-Responsive Transport (DRT) has emerged as a sustainable transport intervention option
for areas that are traditionally hard to serve by high frequency public transport. When used as a first- and
last-mile feeder, DRT has the potential to reduce car dependency and enhance access to the wider network.
However, many DRT schemes fail—often due to overly flexible, poorly targeted service areas that do not align
with actual travel patterns, making efficient pooling difficult. While planners may already have a general sense
of where DRT might be useful, there is limited guidance on how to identify precise operating zones based on
spatiotemporal demand. This paper presents a method for identifying potential DRT service areas using spatial
clustering of origin—destination (OD) flows. We apply the method in Leeds, UK, focusing on OD pairs with poor
public transport supply and low potential demand. The approach identifies spatial clusters where demand is
both underserved and sufficiently concentrated to support DRT operation. By narrowing service areas to zones
where pooling is more likely and where DRT complements rather than competes with fixed-route services, the
method helps address two key challenges in DRT planning. The results offer a reproducible, data-driven input
for delineating preliminary DRT service areas—supporting strategic planning, integration with downstream
agent-based models, and further refinement through local knowledge. The method provides a foundation
for future work on designing DRT services that complement the public transport network, particularly in
low-density urban peripheries.
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1. Introduction

Bus networks form the backbone of many public transport systems
across the world. They offer affordable mobility (an aspect that is
important for social inclusion), mitigate congestion, and reduce emis-
sions associated with car dependence. In many cities, bus services
have grown gradually to meet increasing demand from the expanding
urban core and peripheries, but the quality of service can suffer from
issues such as poor access between neighbourhoods, inefficient network
layouts, and poor route synchronisation (Ruiz et al., 2017). Existing
research has been conducted on strategic and tactical redesign of bus
networks to increase their attractiveness (Ibarra-Rojas et al., 2015;
Kepaptsoglou & Karlaftis, 2009; Liu et al., 2021). However, advanced
optimisation approaches cannot compensate for the fact that traditional
bus services are most suited to dense areas with consistently high
demand (Errico et al., 2013) and are inefficient for suburban areas,
villages, and low-demand interurban areas (Papanikolaou et al., 2017).

Flexible mobility services, such as Demand Responsive Transport
(DRT), have been proposed to serve such areas. We follow Davison
et al. (2014) in defining DRT: a service that is (a) available to the
general public, (b) provided by low capacity vehicles (relative to buses),
(c) responsive to changes in demand, and (d) charged per passenger,
not per vehicle. While DRT systems have a higher fixed cost per
passenger than traditional fixed bus routes (Currie & Fournier, 2020),
they aim to compensate for this by increasing passenger load factors
while minimising additional distance through route circuity (Ryley
et al., 2014). This balance is difficult to achieve, and even now as
technological improvements drive the re-emergence of DRT, failure
rates remain high and strongly correlated with operating costs (Currie
& Fournier, 2020). When well integrated with high-frequency public
transport, DRT may serve as an effective feeder mode—extending the
reach of fixed-route services and offering an alternative to private car
use in low-density areas.

b Funding: This work is part of a Ph.D. studentship funded by the Centre for Research into Energy Demand Solutions (CREDS). CREDS is funded by UK Research

and Innovation, United Kingdom, Grant agreement number EP/R035288/1.
* Corresponding author.
E-mail address: tshma@leeds.ac.uk (H. Mahfouz).

https://doi.org/10.1016/j.urbmob.2025.100135

Received 26 February 2025; Received in revised form 29 May 2025; Accepted 20 June 2025

Available online 17 July 2025

2667-0917/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/urbmob
https://www.elsevier.com/locate/urbmob
https://orcid.org/0000-0002-6043-8616
https://orcid.org/0000-0002-9488-9183
https://orcid.org/0000-0001-8428-5709
https://orcid.org/0000-0001-5679-6536
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
https://github.com/Hussein-Mahfouz/drt-potential
mailto:tshma@leeds.ac.uk
https://doi.org/10.1016/j.urbmob.2025.100135
https://doi.org/10.1016/j.urbmob.2025.100135
http://crossmark.crossref.org/dialog/?doi=10.1016/j.urbmob.2025.100135&domain=pdf
http://creativecommons.org/licenses/by/4.0/

H. Mahfouz et al.

Extensive research has been done on DRT planning, but the focus
is more on the tactical and operational level and less on the strategic
level (Papanikolaou et al., 2017). Strategic-level methods that help
identify potential DRT operating zones are important for two main
reasons. First, if DRT service areas are based on spatial concentrations
of demand, they are more likely to support efficient pooling—one of
the main determinants of DRT viability (Enoch et al., 2006). Second,
if DRT is to complement fixed-route services—as a feeder mode rather
than a competitor—then service areas must be designed to reinforce
integration rather than undermine it. While transport planners and
operators often have a good understanding of local mobility needs,
data-driven methods can complement this knowledge by helping iden-
tify specific service areas where travel demand is both concentrated and
underserved. Existing approaches define DRT zones based on public
transport accessibility gaps (Giuffrida et al., 2021; Rath et al., 2023)
or through incremental adjustments to the bus network (Pinto et al.,
2020; Zhao et al., 2021), but neither fully captures where DRT could
be most effective based on actual travel demand.

In this study, we make both conceptual and methodological con-
tributions to strategic DRT planning. Conceptually, we introduce a
demand-driven framework for defining DRT service areas, shifting the
focus from supply-based zoning to an approach that accounts for actual
travel demand patterns. Methodologically, we apply spatial clustering
of origin-destination (OD) flows and integrate it with an assessment
of transport supply and demand to identify natural concentrations of
travel demand that could be effectively served by DRT. The analysis
is repeated across multiple time periods to account for variation in
demand throughout the day, ensuring service areas reflect both spatial
and temporal concentration. The focus is on identifying feasible service
zones for DRT as a feeder to the fixed-route network in low-density
areas. This framework ensures that DRT is only proposed in areas where
(a) demand is sufficiently concentrated to support pooling, and (b)
improved fixed-route bus services are unlikely to be a more appropriate
solution. While spatial clustering of flow data is well-studied in spatial
data mining, to our knowledge, this is the first paper to apply these
methods for strategic DRT planning.

2. Literature review

DRT has become an umbrella term for flexible public transport. Ser-
vices are classified based on typologies (Enoch et al., 2004) or schedul-
ing and operational characteristics (D’este et al., 1994). Diagrammatic
descriptions of these characteristics can be found in Mageean and
Nelson (2003) and Pavanini et al. (2023).

The variety of service models and corresponding planning strategies
reflects the complexity of DRT implementation. On the one hand, flexi-
bility allows services to be tailored to local demand patterns. However,
overly complex services or are prone to failure (Enoch et al., 2006).
Inappropriate service selection could lead to poor user experience and
unnecessarily high operating costs.

2.1. Planning DRT systems

Public transport planning, particularly for conventional bus ser-
vices, follows a well-established sequential framework (Ceder & Wil-
son, 1986; Ibarra-Rojas et al., 2015) emcompassing strategic, tacti-
cal, and operational planning. The high failure rate of DRT services
has been attributed to the absence of a similarly structured planning
methodology (Papanikolaou et al., 2017).

In trying to map DRT research onto the above planning pillars,
Papanikolaou et al. (2017) classify studies into two categories. At
the strategic level, economic and econometric studies focus on area
selection and investment appraisal. This includes research on defin-
ing the potential market and operating model of DRT systems (Mul-
ley & Nelson, 2009) as well as cost comparisons between DRT and
traditional public transport using analytical models (Nourbakhsh &
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Ouyang, 2012). At the tactical and operational level, operations re-
search studies explore system typology and operational characteristics
(see Vansteenwegen et al., 2022 for a comprehensive review).

While tactical and operational aspects have been extensively stud-
ied, identifying suitable areas for DRT remains a research gap (Pa-
panikolaou et al., 2017). This gap has become increasingly relevant as
DRT transitions from a niche service catering to specific user groups
to an integrated component of public transport, aimed at improving
accessibility for entire communities (Nelson et al., 2010).

2.2. Existing approaches to DRT service area delineation

2.2.1. Analytical approaches

Analytical models assess whether an area should be served by fixed-
route or flexible (bus or DRT) services. These models often rely on
idealised representations at the route level with pre-defined service
areas (Li & Quadrifoglio, 2010; Quadrifoglio & Li, 2009; Sivakumaran
et al., 2012). Liu and Ouyang (2021) propose a framework that opti-
mises DRT zone size alongside public transport spacing and headways,
but its reliance on homogeneous travel demand in a grid network limits
real-world applicability. Wang et al. (2018) apply a similar model in
a real study area (Calgary, Canada), but their approach also assumes
uniform demand distribution and is focused on serving a single hub.
While these models offer valuable insights into service feasibility, they
rely on simplified demand assumptions and predefined service zones
that do not account for actual travel patterns in a real-world context.

2.2.2. Accessibility-based approaches

Accessibility based approaches delineate DRT service areas in real
city-level case studies. Some studies restrict DRT to areas with low
public transport accessibility to address network gaps (Giuffrida et al.,
2021; Réth et al., 2023). Others position DRT as a feeder service, serv-
ing buffer zones around rail stations (Oke et al., 2020). DRT investment
decisions are then evaluated using measures of social equity (Giuffrida
et al., 2021), or agent-based simulations (Oke et al., 2020; Réth et al.,
2023), with the latter showing that restricting DRT to specific areas can
mitigate mode shift from public transport. However, this approach faces
two limitations. First, travel demand is not considered in the initial
zoning configuration but is only used later on for network performance
evaluation. The variability in mode share results suggests that generic
accessibility rules do not generalise well across cities, making demand
integration important. Second, public transport networks are treated as
fixed constraints, with no reconfiguration being made to accommodate
DRT.

2.2.3. Network reconfiguration approaches

Network reconfiguration approaches have also been used to delin-
eate DRT service zones. Giuffrida et al. (2021) propose reallocating
buses to improve service frequency on key routes connecting to rail
stations, while adding DRT in areas with poor accessibility. While
this approach factors in demand conceptually, it does not incorporate
a structured approach to delineate zones based on actual demand
data. Shen et al. (2018) adopt a similar approach but use demand data
and opt to keep the busiest 90% of routes, replacing the remaining 10%
with a flexible service.

Optimisation algorithms have also been developed to determine
where to adjust public transport routes and introduce DRT. Pinto et al.
(2020) formulate an optimisation problem that minimises passenger
wait time by modifying route frequencies, removing routes, and adjust-
ing DRT fleet sizes. While this approach uses travel demand to inform
where to add DRT stops, it does not limit service areas, allowing DRT
fleets to operate across an entire area. This is not ideal as simulation
results have shown that competition with public transport, as well as
increases in congestion and system-wide total VMT are likely when
services are not constrained (Kagho et al., 2021; Oke et al., 2020;
Réth et al., 2023). Zhao et al. (2021) formulate a similar optimisation
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problem that aims to minimise both travel time and fleet size of public
transport and DRT by shortening bus routes and adjusting DRT service
areas, but their work is applied to a model network with 5 bus lines.

These models focus on incremental adjustments to existing public
transport networks rather than designing integrated public transport
and DRT systems from scratch. While this reflects practical
constraints—major bus network overhauls are rare—it also means
that DRT zones tend to be confined to network edges (Zhao et al.,
2021). However, DRT services could provide more flexible connectivity
beyond these edges, linking passengers to multiple points along bus
routes rather than just at terminals.

2.2.4. Advancing DRT service area delineation

While a number of studies have looked at strategic level DRT plan-
ning, existing methods do not fully integrate travel demand patterns
into the initial zoning process. Analytical models rely on simplified
demand assumptions and predefined zones, making them difficult to
apply to real-world networks. Accessibility-based approaches identify
DRT zones based on public transport accessibility gaps, but they do not
assess whether demand is sufficiently concentrated to make services
viable. Meanwhile, optimisation-based methods reconfigure bus net-
works based on demand, but they confine DRT to the ends of existing
bus routes, potentially overlooking other areas where demand is high
enough to support flexible services.

To ensure DRT service areas are optimally located, it is important to
base them on observed spatial and temporal demand patterns (Kagho
et al.,, 2021), rather than constrain them to the ends of existing bus
routes. A method to delineate service areas based on spatial concentra-
tions of travel demand could be useful in two ways: (a) as a simpler
alternative to current optimisation-based approaches, addressing root
causes of high DRT failure rates identified in the literature, or (b)
as a way to generate preliminary DRT zones that serve as inputs
for optimisation models. Starting with DRT zones informed by actual
demand may lead to more effective network configurations compared
to models that begin without predefined DRT zones.

The following section examines clustering techniques for identify-
ing these demand concentrations directly from OD data, offering a
data-driven foundation for DRT zone delineation.

2.3. Clustering techniques for identifying demand concentrations in travel
patterns

By analysing OD flow data, clustering reveals travel demand concen-
trations, enabling a demand-driven definition of DRT service areas. We
focus on clustering as standard methods for visualising OD data struggle
to capture spatial and temporal variations in demand due to the volume
of data being represented (Guo, 2009). Alternative methods like com-
munity detection (Guo, 2009) and edge bundling (Selassie et al., 2011)
help reduce visual clutter and salience bias but compromise spatial
information—community detection lowers spatial granularity, while
edge bundling obscures distinct OD patterns. Since both are crucial for
our analysis, we use clustering methods to identify patterns directly
from raw OD data without altering its spatial characteristics.

Clustering methods can be broadly categorised into two groups
(Song et al., 2019):

1. Spatial statistics-based methods, which identify anomalies in
spatial homogeneity using measures such as Moran’s I, Getis—
Ord G, and Ripley’s K. While effective for detecting presence of
clusters at different spatial scales, these methods do not group
data into clusters.

2. Hierarchical and density-based clustering methods, which group
OD flows based on distance measures, offering more actionable
insights for DRT planning.
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Density-based clustering is particularly effective for identifying spa-
tial clusters. Algorithms such as DBSCAN (Density-based spatial clustering
of applications with noise) (Ester et al., 1996), HDBSCAN (Hierarchical
DBSCAN) (Campello et al.,, 2013), and OPTICS (Ordering Points To
Identify the Clustering Structure) (Ankerst et al., 1999) are widely used.

These algorithms rely on distance calculations, which are straight-
forward for points but less so for multilocation geometries like lines.
Tao and Thill (2016a) developed methods to measure distances be-
tween lines, enabling their use in flow data (Fang et al., 2021; Tao
& Thill, 2016b.; Tao et al., 2017). Other approaches incorporate a
temporal dimension into cluster detection (Yao et al., 2018).

The ability of these algorithms to cluster OD ‘flow’ data without
loss of spatial information is invaluable for understanding the spatial
concentrations of demand that exist in a network. This research incor-
porates density-based clustering as part of a larger approach to identify
travel demand concentrations in travel demand that could be served by
DRT.

3. Methods

DRT services are most effective when aligned with actual travel de-
mand (DfT, 2020). However, there is no standardised method for iden-
tifying demand gaps suitable for DRT in a way that ensures seamless in-
tegration with existing public transport networks. This section presents
a novel approach to address this gap by identifying areas of unmet
demand and clustering them to inform potential DRT operating zones.

Our method involves two key steps: (1) identifying demand gaps
through a supply—demand analysis, and (2) clustering travel demand
within these gaps to delineate DRT service areas. First, we define
and measure public transport supply (Section 3.3.1) and potential
demand (Section 3.3.2) to identify areas with inadequate service. Next,
we introduce a clustering approach (Section 3.4) to reveal spatial
concentrations of travel demand. This clustering is applied to two
datasets prepared using the methods in Section 3.2: (1) OD pairs with
poor public transport supply, and (2) OD pairs with both poor public
transport supply and low potential demand.

The overall workflow is illustrated in Fig. 1. Our approach is applied
to a case study city, Leeds (Section 3.1), to demonstrate its practical
utility.

3.1. Case study

This research uses Leeds, UK, as a case study. As one of the largest
European cities without rapid transit, Leeds relies heavily on buses
(Fig. 2). The regional transport authority, West Yorkshire Combined
Authority (WYCA), has set a net-zero target for 2038, requiring a 52%
increase in bus mode share (WYCA, 2021a) —an ambitious goal given
the 15% decline in annual bus trips from 2009 to 2019 (WYCA, 2021b).

Under the Bus Services Act (UK-Parliament, 2017), WYCA’s Bus
Service Improvement Plan aims to enhance bus services and better
integrate multimodal transport (WYCA, 2021b). DRT is considered a
means to improve access in low-density areas, and a pilot service (Flex-
ibus) was trialled in East Leeds. However, during its 18-month pilot
phase, it struggled with low ridership, covering only 5% of operating
costs (WYCA, 2022). Its average of 1.38 passengers per trip reflected
a service design that failed to effectively pool demand. Services that
are informed by spatial concentrations in travel demand could improve
DRT viability.

3.2. Demand data

The origin—destination matrices used in this analysis are derived
from the GB Trip Database (GBTD),' a national dataset produced by

1 https://cp.catapult.org.uk/project/great-britain-trip-database-portal/
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Fig. 1. Workflow for generating potential DRT zones. The workflow is split into 3 separate steps, and the analysis components of each step are given alphabetical labels to show

the order they are carried out in.

Leeds City Region - Urban/Rural Classification

/Level of
Urbanisation

Rural hamlets and isolated dwellings
Rural town and fringe

Rural village

Urban city and town

Urban major conurbation

Buses/Hour
(Morning period)

20 40 80 120

Micklefield

Castleford

Urban / Rural Classificat:
DEFRA 2011

Fig. 2. Urban Rural Classification: Explained in the 2011 Rural-Urban Classification User Guide.

Telefénica (02) in partnership with the UK Department for Transport.
The data are based on anonymised mobile phone events, filtered to
include only users with consistent daily activity over a 16-day win-
dow, and expanded to represent the wider population using area-level
weighting factors. These factors are calculated at the Middle Layer
Super Output Area (MSOA) level using comparisons with census com-
muting flows and travel survey data, helping to correct for demographic
and spatial bias.

Trips are inferred from sequences of handover events (signal trans-
fers between mobile cells) and dwell periods (extended time spent in
one location). Trips are assigned to origin and destination zones based

on users’ repeated activity patterns. While no mobile dataset is error-
free, the GBTD methodology offers a robust foundation for our OD
analysis, and has been used in a study to generate activity patterns for
an agent-based simulation (Franco et al., 2020).

For this study, we requested OD data for 2019 from Connected
Places Catapult, covering all motorised road and rail trips in Great
Britain. The request specified a date range and a zoning system based
on MSOA boundaries. The resulting dataset provides the average num-
ber of trips between each zone pair, disaggregated by hour of day
and weekday/weekend. To simplify the analysis, we aggregate the data
into five broad time periods: 5-8am, 8-11am, 1lam-—2 pm, 2-5 pm,
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Fig. 3. Flowchart for determining input to clustering algorithm.

and 5-8 pm. However, the clustering method is compatible with other
temporal resolutions and could be applied at finer levels where needed.

3.2.1. Disaggregating OD data

Our OD data is aggregated at the Middle Super Output Area (MSOA)
level, a geographical unit defined by the Office for National Statistics
(ONS) that represents areas with populations of 5000-15,000 people.
Our study area, Leeds, is divided into 107 MSOAs. However, this
aggregation level is too coarse for our clustering analysis. To address
this, we apply jittering (Lovelace et al., 2022) to disaggregate OD pairs
with high traveller counts into multiple smaller OD pairs. The start and
end points of the new ODs are constrained to their original MSOAs,
but are snapped probabilistically to subzones of 100 m? based on the
population density distribution within each MSOA. A disaggregation
threshold ensures no OD pair exceeds 100 people.

3.3. Preparing input data for clustering

After disaggregating the OD trip data, we need to decide which
OD pairs to use for clustering. If we were to pass all OD pairs to the
algorithm, then our clusters may include noise from OD pairs that are
well served by public transport. We would also generate DRT zones
that serve all demand, whereas our objective is to propose DRT zones
that complement bus routes and fill the gaps in the bus network, as
explained in Section 2.2. We identify gaps in public transport service
provision by trying two different inputs: (1) OD pairs with poor public
transport supply (OD,), and (2) OD pairs with poor public transport
supply and low potential demand (OD,,).

OD, is meant to suggest DRT zones that complement the existing
bus network by only including the OD demand that is not well served
by said network, as explained in Section 3.3.1. OD,, is similar, but also
excludes OD pairs that could be served by a better bus service. This
exclusion is based on criteria explained in Section 3.3.2. The workflow
for the supply and demand analysis is shown in Fig. 3. The number of
OD pairs in each approach is shown in Table 1.

3.3.1. Supply analysis

A supply analysis is carried out to determine the OD pairs that are
included in OD,. The main components of transport supply are the road
network, and the public transport timetables for buses and rail. We get
the updated road network from OpenStreetMap. Bus timetable data is
obtained in GTFS format from the Bus Open Data Service (BODS)? and
rail data is obtained from the Rail Delivery Group.®

The OSM road network and timetable data are fed into a multimodal
routing engine (Pereira et al., 2021) to calculate travel time between
zones. Euclidean distance between an OD pair is used to calculate travel
speed. OD pairs with speed below a defined speed cutoff threshold or
that require more than one transfer to be reached by public transport
are considered to have poor supply. We use the 50th percentile of OD
speeds as our threshold, but the distribution of OD speeds is shown in
Appendix A.1.

3.3.2. Demand analysis

Our transport demand analysis is meant to identify bus routes that
warrant an increase in route frequency. We calculate potential demand
on all routes, and identify routes that have sufficient potential demand
to warrant said increase in frequency. Potential demand is defined here
as the demand along a bus route that could theoretically be served
by the route (i.e. the route directly connects between the origin and
destination zones). We only look at existing travel patterns and do not
consider induced demand that could result from a better bus service.

To calculate potential demand on each public transport route, we
followed a three-step process. First, we identified which routes directly
serve each OD pair—defined as routes that pass through both the
origin and destination zones. An OD pair may be served by multiple
common lines. Second, we assigned demand from each OD pair to its
corresponding routes. As our flow data contains total trip volumes for
all MSOA pairs, we distributed demand equally across all common lines
serving each OD (see Dios Orttizar and Willumsen (2024) for overview

2 https://data.bus-data.dft.gov.uk/
3 https://data.atoc.org/
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Table 1
Number of OD pairs in after each step.
Name No. of OD pairs Description
oD, 50,301 (100%) All OD pairs in the study area
that have people travelling
between them
oD, 40,183 (80%) OD pairs with poor public

op,, 34,837 (68%)

transport supply (see Fig. 3)
OD pairs with poor public
transport supply and low
potential demand (see Fig. 3)

of methods). Although frequency-based assignment* may better reflect
current conditions, we opted for equal assignment to represent demand
potential under improved frequencies. Finally, we calculated the total
potential demand on each route by summing the contributions from all
relevant OD pairs.

We then excluded OD pairs from our target set OD,, if the potential
demand on the busiest direct route serving them exceeded our route
demand threshold (see Fig. 3). OD pairs with high potential demand
are not included in OD,, as there is sufficient demand to justify a high
frequency bus route, even if one does not currently exist. The heuristic
for calculating potential demand allows us to avoid serving areas with
DRT just because there is poor public transport supply; there must also
be insufficient demand to warrant a high frequency bus route.

We set a threshold of p75 which implies that service on the top 25%
of routes in terms of potential demand is sufficient to warrant higher-
frequency routes and should not be part of our DRT analysis. In reality,
this % could be edited based on the budget available for additional
buses or operator figures on the demand necessary to provide a service
with a certain headway. Appendix A.1 shows the number of OD pairs
retained for different supply and demand thresholds.

3.4. Clustering flow data

After filtering the OD trip data in the supply and demand analysis,
we apply a spatial clustering approach to identify spatial concentrations
in travel demand. Spatial statistics methods for cluster detection —
such as DBSCAN (Ester et al., 1996) — have mainly been developed
for point data. Recently custom distance metrics that account for the
multilocation nature of line data have allowed these methods to extend
to flow data (Tao & Thill, 2016a).

We use the DBSCAN algorithm which takes two parameters: epsilon
(the search radius to look for clusters) and minimum points (or minpts
— the minimum number of points required to be inside the specified
radius from a given point for a cluster to form around it). The distances
between OD flows are the values that are compared to epsilon. It is
calculated using the custom distance metric introduced by Tao and
Thill (2016a): let the flow process F; with origin O;(x;, y;) and D;(u;, v;
be modelled as a vector point with 4 coordinates F;(x;,y;,u;,v;). The
calculation for flow dissimilarity (FDS;;) between F; and F; is shown
in Eq. (1).

a[(xi - xj)z + (y,- - y/')Q] + ﬂ[(”i - uj)z + (Ui - Uj)z]
FDSij = LL,

@

where a« and p control the relative importance of the origins/
destinations: higher « means we focus more on origins and vice-versa
(e > 0; p > 0; « + p = 2). Dividing by the geometric mean of the
flow lengths (L; and L;) implies that, all else being equal, flow pairs
of longer length are considered closer than shorter ones. A parameter
sweep is done to determine feasible DBSCAN parameter combinations.
A sensitivity analysis is then carried out to determine if minor changes
to the parameters affect the clustering results.

4 Demand is distributed between the common lines (routes) in proportion
to the frequency of each route.

3.5. Clusters to potential DRT zones

Our clustering algorithm may return clusters that cover large ge-
ographical areas. These areas may, in turn, be partly served by high
frequency bus services. Having DRT cover the entirety of such areas
may not be optimal as it (a) may provide competition to these bus
services, and (b) may necessitate complex operations that make the
service more prone to failure (as mentioned in Section 2).

We therefore propose a subsequent step to extract potential DRT
zones from the obtained clusters. We get the spatial difference between
each cluster and the high frequency bus routes in the study area (routes
with at least 1 bus per hour), leaving us with polygons that extend to
but do not overlap with said routes. This is in line with a DRT service
that acts as a complimentary first/last mile connector.

4. Results

This section presents clustering results for the morning peak period.
As noted in Section 3.2, the analysis was conducted for all time periods,
but we use the morning peak to illustrate results in detail.

Section 4.1 focuses on clustering based solely on transport supply.
Section 4.2 extends this analysis by integrating transport demand,
allowing for a more targeted identification of underserved OD flows.
This section also includes a more detailed examination of individual
cluster composition, analysing trip homogeneity in terms of length and
directionality (see Section 4.2.1).

Finally, as part of the transport demand analysis, Section 4.2.2
presents a temporal extension of the clustering results, showing how
aggregate spatial patterns vary across different times of the day.

4.1. Clustering based on transport supply only

Fig. 4 and Fig. 5 present the clustering results based on OD; and
OD,, respectively. Each facet in the plots represents a cluster, with the
following components:

(a) OD pairs: Represented as straight lines, with colour indicating trip
volume. Endpoints are shown, scaled by the number of trips.

(b) Cluster areas: Defined by a concave hull around OD pairs, shown
with a black dotted border.

(c) Bus routes: High-frequency services (> 1 bus/hour during the
morning peak) are overlaid for reference (Section 3.3.1).

(d) Potential DRT zones: Areas within each cluster not covered by high-
frequency bus routes, visualised using the spatial difference between
cluster areas and bus routes (see Section 3.5). Colours indicate the total
trip volume of OD pairs making up the cluster.

The spatial clusters identified (based on OD;) in the analysis reveal
several distinct patterns of travel demand, both on the outskirts and
closer to the urban core Fig. 4. In the south and south-west, Clusters
8 and 10 capture trips from areas such as Batley and Kirkhamgate
to the city centre, where high-frequency public transport is largely
absent. Cluster 6 connects the south to locations just north of the urban
core, but public transport routes in this area are limited. Even where
services exist, they primarily connect to the city centre, and travellers
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Fig. 4. Clustering results — OD pairs with poor PT supply (OD,). Desire lines represent OD pairs making up each cluster, dashed black lines represent convex hull around desire
lines, coloured polygons represent part of cluster that does not overlap with existing high frequency bus routes (see Section 3.5).

are often subject to long transfer times at central interchanges. In
the west, Clusters 3 and 9 show vertical demand between Guiseley
and Yeadon in the north and Morley in the south, with destinations
concentrated around Pudsey. These trips are not well served by existing
public transport, as north—south routes are largely absent and users are
often forced to detour via the centre. The north-east (Clusters 1 and 5)

shows scattered demand from rural areas to the urban core. Only one
high-frequency bus route serves this region, meaning most trips would
require either a first-/last-mile drop-off, a transfer in the city centre, or
both. Cluster 2 similarly includes dispersed origins in the north with
very limited bus service, and most destinations lie just south of the
urban core. Finally, Cluster 7 shows a clear travel pattern from the
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Fig. 5. Clustering results — OD pairs with poor PT supply and low potential demand (OD,,) - Desire lines represent OD pairs making up each cluster, dashed black lines represent
convex hull around desire lines, coloured polygons represent part of cluster that does not overlap with existing high frequency bus routes (see Section 3.5).

south-east to Horsforth and nearby towns in the north-west, originating
in locations where there are no bus services.

These patterns reveal four major challenges for the current public
transport network: insufficient coverage in peripheral areas, lack of
north-south connectivity, poor accessibility in rural zones, and long
transfer times for cross-city trips. In the south-west and south-east

(Clusters 6, 7, 8, and 10), bus routes often terminate before reach-
ing areas of demand. In the west, Clusters 3 and 9 reflect unmet
demand for cross-city travel (between Morley, Pudsey, and Guise-
ley/Yeadon) not aligned with radial service patterns. In the rural
north and north-east (Clusters 1, 2, and 5), low-density development
makes fixed-route provision impractical. Finally, several clusters suf-
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Fig. 6. Distribution of trips (weighted OD pairs) in each cluster. Each column shows the bearing and length composition of a cluster. This includes histograms of the number of
trips (weighted OD pairs) in each (30 degree) bearing range (x-axis). The trips are also faceted by length ranges (10 km each).

fer from long transfer times, particularly those requiring city-centre
interchanges.

In these contexts, DRT services could help fill network gaps by
complementing existing bus services. In some cases, such as along
the Guiseley—Pudsey or Morley-Pudsey axes (Clusters 3 and 9), stan-
dalone DRT services could address entire trips. In others, especially
low-density rural areas (Clusters 1, 2, and 5), DRT could provide
first-/last-mile access to frequent bus routes. For clusters that rely on
city-centre transfers (e.g. Clusters 2 and 6), a combination of DRT and
improved transfer coordination may be needed. Here, DRT alone may
not suffice—schedule synchronisation would be necessary to improve
the overall passenger experience.

4.2. Clustering based on transport supply and demand

This section presents the results of clustering the remaining OD
pairs after conducting both the supply and demand analysis (OD,,)
(See Fig. 3). We compare these results to those of OD, (Section 4.1)
to assess the impact of incorporating potential demand. Section 4.2.1
examines cluster composition, and Section 4.2.2 presents aggregated
results across different time points.

The clustering results are similar to those in Section 4.1, with
some key differences. Cluster 9 in Fig. 5 is a combination of cluster
8 and 10 in Fig. 4. OD,; has fewer OD pairs (Table 1) as we exclude
those with sufficient demand for a bus service (see Section 3.3.2). The
clustering algorithm, which is based on a minimum threshold of OD

flows, requires a larger spatial coverage to reach the threshold given
fewer OD pairs.

Another important distinction is that cluster 5 from Fig. 4 does not
appear here. The high demand from the urban core to the North East
led the demand analysis (Section 3.3.2) to exclude many of the OD pairs
that were in that cluster, as they could be served by improved headways
on existing public transport routes. The remaining OD pairs, which lack
sufficient concentrated demand, do not form a separate cluster.

4.2.1. Examination of cluster homogeneity

To better interpret the clustering results, we examine the internal
homogeneity of OD flows within each cluster, focusing on trip direction
and length (Fig. 6). Greater homogeneity suggests that a DRT service
could pool passengers more effectively, as trips follow similar spatial
patterns.

Several clusters, such as 4 and 5, show strong directional alignment
and low variation in trip length. These clusters are made up of short
OD flows with consistent bearings, indicating tightly grouped demand
likely to support more direct services. In contrast, clusters with longer
OD flows—such as 1, 2, and 7—exhibit greater directional variance,
partly due to the normalisation in the flow distance metric (Eq. (1)),
which can group dissimilar long-distance flows together.

This analysis offers a way to assess the operational potential of
each cluster based on the consistency of travel patterns they contain.
Clusters with more homogeneous OD flows may be better suited to
pooled DRT operations, whereas those with more internal variation will



H. Mahfouz et al.

Potential DRT Operating Zones (Temporal Variation)

Journal of Urban Mobility 8 (2025) 100135

\ pt_wkday 06_30 | [ pt_wkday_09_30

[ pt wkday 12 30

| People / Km2

1to 10

10 to 100

100 to 1,000
1,000 to 10,000
10,000 to 100,000

Buses/Hour
10203040507090

— Potential DRT service area

Fig. 7. Aggregate DRT zones generated by combining individual DRT zones. Each facet shows the result for a different time of day. Analysis is based on weekday supply and

demand data.

require greater operating flexibility and may struggle to pool demand
as efficiently.

4.2.2. Aggregate result and temporal dimension

Fig. 7 shows how the potential DRT zones could look like if com-
bined together. This includes merging all the cluster areas after step 3
in Fig. 1. This visualisation is presented for five different times of day
(as described in Section 3.2) to capture temporal variations in transport
supply and travel demand.

The resulting DRT zones form a doughnut-shape around the pe-
riphery of the study area, with the city centre excluded due to the
concentration of high-frequency bus routes. The shape is more pro-
nounced and continuous outside of the morning peak (12:30, 15:30,
18:30), which aligns with the reduction in bus services during those
periods (visible as fewer and thinner red lines).

Aggregating the clusters into a single map highlights that potential
DRT zones are primarily located in the outskirts where population
densities are low.

5. Discussion

In this paper, we propose a method for delineating DRT operating
zones, responding to the need for strategic-level approaches that can
guide the design of DRT services. Despite growing interest in DRT, there
remains no well-defined methodology for identifying service areas that
effectively complement fixed-route public transport. Our method is
intended to support early-stage planning by identifying spatial concen-
trations of unmet demand. We see this as a tool to assist, rather than
replace, the work of transport planners and local stakeholders, whose
knowledge of context-specific travel needs is essential for refining and
validating potential service areas.

As DRT evolves into a service that aims to improve accessibility
for all, its integration with existing public transport systems becomes
increasingly important for offering multimodal alternatives to private
car use (Nelson et al., 2010). The success of DRT schemes is conditional
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on such integration and on their ability to serve spatial concentra-
tions of travel demand (Enoch et al., 2006). Using a density-based
clustering algorithm, our analysis identified groups of OD flows with
sufficiently similar patterns. This cluster identification can be used to
design distinct DRT fleets based on the needs of each cluster (or group
of similar clusters). Research has shown that assigning specific fleets to
serve defined routes, rather than operating across the entire study area,
improves system performance and fleet utilisation (Inturri et al., 2019).
This approach avoids the operational complexity that has historically
undermined many DRT services (Enoch et al., 2006).

Our clustering results help highlight the different DRT services
that could operate across our study area, Leeds. In areas such as the
North-South axes in the West, DRT could serve as a standalone mode,
providing direct trips where fixed-route public transport is unavail-
able. In sparsely populated rural areas in the periphery, DRT is better
suited as a first/last-mile feeder service, connecting dispersed travellers
to high-frequency public transport routes and thereby improving the
accessibility and usability of the public transport system. Previous
research has highlighted the potential of DRT feeders that extend bus
services to rural areas (Schliiter et al., 2021; Sorensen et al., 2021).
However, DRT on its own is insufficient to improve the public transport
offering in some cases. Clusters that traverse the city centre are made up
of trips that may require a bus transfer, and the attractiveness of such
trips largely depends on improvements in public transport headways
and schedule synchronisation.

The representation of the aggregated results at different times of day
(Section 4.2.2) demonstrates conceptually that a temporal dimension
can be added to the analysis, and that temporal variations do exist. It
is important to note that while there may be little temporal variation
in these aggregated zones, this does not mean that the exact same
services are required throughout the day. The disaggregate results (Fig.
4 and Fig. 5) are essential for understanding the variation in the specific
clusters that make up each temporal snapshot. Such variation should
inform the number of services and the operational characteristics of
each service.
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While we have used Leeds as a case study, the approach is generalis-
able to any city or region with an existing public transport network. The
main requirements are public transport supply data and travel demand
matrices. We provide the code in a public repository® to facilitate
reproducibility and extension of the work.

5.1. Implications for strategic planning of DRT

The composition and spatial extent of our clusters inform the design
and operation of DRT services. Clusters vary in terms of the number and
characteristics of OD pairs they encompass, supporting the evidence
that DRT solutions need to be tailored to the area they are serving.
Clusters with a high concentration of trips in a small area may require
more direct services to one or two stops, while clusters with dis-
persed demand patterns may benefit from flexible, many-to-many DRT
services. Simulation frameworks that incorporate disaggregate travel
patterns and DRT routing—such as that of Melo et al. (2024) —can
be used to test operational feasibility within each zone under different
strategies.

Essential to our analysis is the use of DRT as part of an intermodal
transport offering. It is clear that our clusters often overlap with high-
frequency bus routes (Fig. 5), highlighting the potential for DRT to act
as a feeder service. By limiting DRT coverage to areas that are not
covered by a high-frequency bus routes (step 3 in Fig. 1), we aim to
minimise unnecessary mode shift (e.g. public transport to DRT) and
enhance the efficiency of public transport systems. Intermodal routing
has only recently become possible in agent-based transport simulations
(Haslebacher, 2018), with the integration of DRT into this intermodal
framework being a subsequent development (Chouaki, 2023). Such a
framework should be used to test the feasibility of our DRT zones in
facilitating intermodal trips, but it should be noted that the success of
such integration is dependent on other factors besides operating zones,
such as seamless transfers and fare structures that do not penalise the
use of multiple modes.

The candidate zones identified by the method vary in size, and a
follow up exercise would be necessary to validate them. Analytical
models mentioned in Section 2.1 could be used to determine more
precise service areas. They could identify whether the critical demand
density for a DRT service is met (Quadrifoglio & Li, 2009), look at
schedule coordination with bus network (Sivakumaran et al., 2012),
and predict DRT performance based on the street network layout in the
different zones (Chandra & Quadrifoglio, 2013). Future work could also
explore optimisation approaches — such as extensions to the Transit
Network Design and Frequency Setting Problem (TNDFSP) — that
can output both a bus network and DRT service areas. Future work
could also assess the financial viability of different DRT service mod-
els. A cost-benefit analysis—considering fares, vehicle costs, pooling
efficiency, expected mode share (based on mode choice modelling), and
potential subsidies—would offer further insight into which service con-
figurations are most appropriate in each zone. While beyond the scope
of this study, such analysis is important for evaluating the economic
sustainability of DRT deployments.

5.2. Comparison with alternative methods

Alternative methods have been used to identify DRT operating
areas. One approach is to focus on the supply side, and allow DRT
to operate in areas of poor public transport accessibility (Giuffrida
et al.,, 2021; Réth et al.,, 2023). While such extensive service pro-
vision is important from a transport equity perspective, the lack of

5 The code is in: github.com/Hussein-Mahfouz/drt-potential. In addition,
we have developed an R package, flowcluster (Mahfouz & Lovelace, 2025)
which implements the core clustering algorithm used in this study, enabling
its straightforward reuse in other contexts.
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focus on demand could lead to DRT services with low passenger load
factors (Creutzig et al., 2024). Areas with poor accessibility are also
normally spread out across a study area, and it is important to go
beyond just identifying these areas to seeing how they can be grouped
into similar demand patterns so as not to operate overly complex DRT
services that cannot pool travel demand (Enoch et al., 2006).

Optimisation models typically start with an existing public transport
network and focus on incremental adjustments, such as modifying
route frequencies, removing or trimming routes, or adjusting DRT fleet
sizes (Pinto et al., 2020; Zhao et al., 2021). While valuable for fine-
tuning service operations, these models either allow DRT to operate
across the entire network, or limit service areas to the edges of existing
bus routes. Our flexible approach to service area delineation, informed
by demand patterns, could serve as either a simpler alternative to
complex optimisation models or as a way to define initial DRT service
areas for further refinement through optimisation.

5.3. Limitations and future work

5.3.1. Input data and demand analysis

In the approach outlined in this paper, we conduct a supply and
demand analysis to ensure that we focus only on OD flows that are
not, or do not have the necessary demand to be, served by a high
frequency bus route. Our demand analysis is based on splitting OD
demand equally between its common lines. While this is justified by
our need to represent route demand given hypothetical improvements
in headway, more robust methods can be used for scenario modelling
of such improvements. Our results can be used as input for optimisation
frameworks that adjust route headways and DRT fleet sizes, given pre-
defined DRT service areas (Pinto et al., 2020). They could also be used
as an initial solution for optimisation frameworks that simultaneously
modify public transport routes and DRT service areas (Zhao et al.,
2021). Since the core novelty of our approach is the identification of
spatial concentrations in travel demand, we deliberately avoid adding
further layers of complexity. This allows the results to be useful as
an output in themselves, or as input to optimisation and agent-based
simulation frameworks for further refinements.

Moreover, our current method is based on trip matrices at MSOA
level with little information besides number of people. Datasets that
have complete travel patterns of a population, such as activity-based
models (Rasouli & Timmermans, 2014) would give us a more repre-
sentative picture of travel demand and trip chains throughout the day.
They would also enable linking travel patterns to sociodemographic
characteristics and analysing for which categories of people and trip
purposes DRT can improve accessibility.

5.3.2. Refinements to clustering algorithm

The clustering algorithm used (DBSCAN) requires the input of two
parameters: epsilon (the search radius) and minpts (the minimum
number of points inside the radius necessary for a cluster to form). In
the absence of established theoretical framework for this approach, we
adopt an iterative and exploratory method to parameter setting. Future
work could explore algorithms that simultaneously identify clusters at
different scales (Fang et al., 2021; Tao et al., 2017) to avoid having
results based on one fixed radius.

Another component of the clustering algorithm worth exploring
further is the metric used to calculate distance between flows. Our clus-
tering algorithm relies on distances between OD flows when creating
clusters. Given the large study area, and the variation in trip distances,
we use a distance metric (Tao & Thill, 2016a) that normalises distances
so that the values cover a smaller range. This is useful for DBSCAN,
which takes one value for the search radius. If we do not normalise
the flows, our distance metric will have a wider range, but we would
not be able to choose a search radius that accommodates all the flows
(a smaller radius would produce better results for shorter flows, and
a larger search radius would produce distorted clusters that group the
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shorter flows with the longer ones). However, this normalisation is not
perfect, as can be seen in Fig. 6 where some clusters have OD flows of
various lengths.

To address the challenges of clustering OD flows of varying lengths,
several research directions could be pursued. One approach is to im-
prove the current distance metric by applying transformations that
reduce the influence of OD length—such as log transformations to the
denominator of the similarity function. Incorporating a parameter that
explicitly represents OD flow bearing could also help minimise circular
variance within clusters. An alternative direction is to use different
distance metrics altogether. For example, the Fréchet distance (Eiter
& Mannila, 1994) could be applied, as it measures the similarity
between curves by identifying the minimum “leash” length required to
traverse them simultaneously. Another strategy is to explore clustering
at different scales, rather than modifying the distance metric itself. This
could involve partitioning the data by OD length and running DBSCAN
separately for each group. Alternatively, algorithms such as HDBSCAN
(Tao et al., 2017) or OPTICS (Fang et al., 2021) may be better suited to
this task. These methods are capable of detecting clusters at multiple
scales and can extract clusters of different lengths without requiring
manual distance normalisation.

6. Conclusion

The need to decarbonise the transport sector, improvements in
real-time routing technology, and the proliferation of app-based ser-
vices have all contributed to a surge in DRT research and real-world
schemes (Castellanos et al., 2022). However DRT services continue to
suffer from the lack of robust strategic level planning, and many fail
to capture sufficient passenger demand to make them economically
viable (Creutzig et al., 2024; Enoch et al.,, 2006). The OD cluster-
ing approach presented in this paper seeks to address this challenge
by identifying potential DRT operating zones that align with spatial
concentrations of unmet travel demand. While we do not claim that
these delineated zones will, on their own, guarantee high ridership,
they provide a data-driven foundation for more targeted and effective
service design. In particular, the method can support planning for
DRT as a feeder to public transport where appropriate, while also
accommodating the possibility of standalone services in areas with
limited transit access. This framing reflects a broader environmental
objective: to reduce car dependency and support more sustainable,
integrated mobility systems.

Strategic planning of DRT that accounts for its integration with
more traditional public transport systems presents a promising avenue
for improved mobility in areas with pockets of concentrated travel
demand that are difficult to serve cost-effectively by fixed-route public
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transport. The approach presented in this paper offers both conceptual
and methodological contributions that can help realise this promise.
Conceptually, we borrow methods from spatial data mining and argue
that they are well suited to filling gaps in the current approaches for
strategic planning of DRT services. We build on this concept method-
ologically by embedding a clustering algorithm into a larger transport
planning pipeline with more traditional supply and demand compo-
nents. Our findings show that spatial clustering of OD flow data can
contribute to delineating operating zones in strategic DRT planning, but
that more research should be done on improving distance metrics that
are core to clustering and on refining the supply and demand analysis
used to extract the OD flows to be clustered.

The approach can be adopted by practitioners in early stage strate-
gic planning of DRT, and the outputs can be tested in agent-based
simulations to understand how a service could perform in one of the
suggested zones, the operational characteristics required, and the asso-
ciated mode shift and VMT on the network under different scenarios.
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Appendix A

A.1. Sensitivity analysis for speed and demand thresholds

In Section 3.3, we filter ODs based on supply and demand thresh-
olds. Below we show the distribution plots and sensitivity analysis
that are used to inform these thresholds. For the speed and demand
distributions (Fig. A.1(a) and Fig. A.1(b)), we do not include OD pairs
with 0 values (OD pairs with no PT connection) as these dominate the
distribution and skew the percentile results.

The sensitivity analysis (Fig. A.2) shows the number of OD pairs
retained at different speed and demand thresholds. We can see that 60%
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Fig. A.1. Speed and demand distributions of OD pairs.

12



H. Mahfouz et al.
Sensitivity Analysis of OD Filtering
OD pairs retained at different speed
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Fig. A.2. Sensitivity analysis showing the number of OD pairs retained at different
speed and demand thresholds.

of OD pairs are retained no matter how low our threshold is set. These
OD pairs have no direct PT connection and so their values for speed
and demand are 0. The number of OD pairs retained is more sensitive
to the speed cutoff threshold than the demand cutoff threshold.

Data availability

Data sources used throughout this paper are publicly available and
can be found as referenced in the text, with the exception of the OD
demand data which requires requesting access from Connected Places
Catapult. The code used for this work can be found at: https://github.
com/Hussein-Mahfouz/drt-potential.
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