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Efficient extraction of spectral-spatial features is essential for accurate hyperspectral image (HSI) 
classification, where capturing both local texture and global semantic relationships is critical. 
While Convolutional Neural Networks (CNNs) and Transformers have shown strong capabilities 
in modeling local and global dependencies, most existing architectures operate directly on raw 
spectral-spatial inputs and lack explicit mechanisms for frequency-domain decomposition thereby 
overlooking potentially discriminative phase and frequency components. To address this limitation, 
we propose a Spectral-Spatial Wave and Frequency Interactive Transformer for HSI classification, 
which integrates frequency-aware and phase-aware token representations into a unified Transformer 
framework. Specifically, our model first employs a CNN backbone to extract shallow spectral-spatial 
features. These are then processed by a novel Frequency Domain Transformer Encoder, composed 
of two complementary branches: (i) a Spectral-Spatial Frequency Generator that extracts multiscale 
frequency features, and (ii) a Spectral-Spatial Wave Generator that encodes phase and amplitude 
characteristics as complex-valued wave tokens. A Spectral-Spatial Interaction Module fuses these 
components, followed by a Local-Global Modulator that refines semantic representations from 
multiple perspectives. Extensive experiments on five benchmark HSI datasets, demonstrate 
the effectiveness of our approach. The proposed model achieves state-of-the-art classification 
performance, with Overall Accuracies of 98.49%, 98.60%, 99.07%, 98.29%, and 97.97%, consistently 
outperforming existing methods.

Keywords  Attention module, Convolutional neural network, Hyperspectral image classification, Frequency 
domain, Vision transformer

The hyperspectral image data has numerous narrow bands containing a substantial amount of information. 
HSI is a part of earth observation1 extensively used in agriculture2, mineralogy3, and environmental sciences. 
HSI data captures spectral information from numerous contiguous spectral bands of surface objects. Numerous 
approaches have been proposed in the last decade to address the challenges in HSI. This work proposes to solve 
the problem of feature extracting in the frequency domain. Initially, researchers devised traditional methods 
of machine learning for the categorization of HSI, such as k-nearest neighbor4, logistic regression5, Bayesian 
estimation6, and support vector machines7. Still, it has been noted that these traditional categorization models 
frequently lead to misclassification. Furthermore, other techniques have been devised to reduce dimensionality 
and retrieve spectrum information, including principal component analysis (PCA)8 and linear discriminative 
analysis (LDA)9.

However, these techniques often fail to consider the spatial correlation between pixels in a spatial dimension, 
which is essential for achieving effective spatial feature extraction. In order to tackle this problem, several 
mathematical operators have been devised, including the morphological profile10,11. Deep learning is well 

1School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China. 2School of Civil 
Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK. 3College of Information 
and Communication Engineering, Harbin Engineering University, Harbin 150001, China. 4Department of Information 
Systems, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Kingdom 
of Saudi Arabia. 5Department of Information Systems, College of Computer and Information Sciences, Princess 
Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh 11671, Saudi Arabia. email: sk.khan@psau.edu.sa

OPEN

Scientific Reports |        (2025) 15:27259 1| https://doi.org/10.1038/s41598-025-12489-3

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-12489-3&domain=pdf&date_stamp=2025-7-26


recognized and highly successful technique for extracting features in the context of hyperspectral classification12. 
For instance, a stacked autoencoder (SAE)13, a deep belief network (DBN)14 involves the extraction of depth 
and invariant characteristics from hyperspectral data. The obtained characteristics are then utilized in logistic 
regression to tackle the challenge of hyperspectral image categorization. However, it is crucial to acknowledge 
that both SAE and DBN encode spatial information as vectors during the pretraining phase, leading to the 
unavoidable loss of spatial information.

It is important to mention that a CNN15–17. In18,19 introduced a HybridSN network to simplify the net 
framework by integrating spectral-spatial information using 3D and 2D convolutions. The basic hybrid 
model outperforms both the 3D-CNN model and the 2D-CNN model in terms of computing efficiency, and 
it demonstrates superior performance in handling the issue of small sample size. A spectral–spatial capsule 
network proposed by Paoletti et al.20 to reduce the complexity of convolutional networks. some recent works21,22 
investigate distinctive methods to enhance the discrimination of spectral–spatial.

features. Utilizing the attribute profiles Aptoula et al.23 to provide the spectral and geometric features of HSI 
for the CNN. To address the issue of inadequately labelled samples, Li et al.21 proposed a data augmentation 
technique. Chen et al.22 proposed to combine a CNN with Gabor filters to enhance texture and edge information. 
Mei et al.24 utilized a CNN to identify sensor-specific features for HSI. Li et al.25 improved spectral spatial features 
by utilizing a PCA and a fully convolutional network. The attention mechanism is inspired by the human visual 
system to identify important regions from images for classification26. The attention recurrent convolutional 
network becomes excessively complex when combining long short term memory (LSTM) and CNN to extract 
attention features. a two branch attention module proposed by Haut et al.26 where one branch is utilized to 
generate an attention mask and the other branch is utilized to extract convolutional features. Then, by multiplying 
the attention mask with the convolutional attention features are obtained. Different from earlier methods an 
attention modules and interactive feature enhancement module that integrate into a simple component. In order 
to extract attention features, the suggested feature enhancement module takes use of the correlation between the 
hyperspectral pixels inside an HSI cube.

Recently vision transformers (ViT)27 architecture is based on self-attention mechanisms combined with 
multilayer perceptron’s (MLPs), which excel at capturing long-range dependencies between tokens in a sequence. 
Originally designed for machine translation tasks in natural language processing28, vision transformers have 
gained significant attention due to their remarkable success, prompting researchers to explore their application 
in image processing and computer vision. In contrast to convolutional networks, transformers offer a fresh 
perspective and new possibilities for improving performance at the attention level. The key factor behind the 
transformer’s success lies in its ability to effectively model long-range relationships, overcoming limitations faced 
by traditional architectures. The transformer has been recently introduced in HSI. Hong et al.29 and He et al.30 
treated HSI patches as sequential data from the spectral dimension, utilizing group-spectral embedding and 
a transformer encoder module to capture locally detailed spectral representations. Roy et al.31suggested An 
attention-based adaptive spectral–spatial kernel-improved residual network (A2S2K-ResNet) was proposed 
to adaptively select 3D convolutional kernels for effective extraction of salient spectral–spatial information, 
achieving superior performance compared to other methods on several HSI datasets. Roy et al.32 The attention 
mechanism was integrated with morphological operations to design the input patch for the Transformer, 
enriching the spectral–spatial information by incorporating morphological features and thereby enhancing 
classification performance. Zhao et al.33 designed lightweight network model called GSCViT was designed, which 
integrates groupwise separable convolution into the Transformer framework to effectively extract both local and 
global spatial features. Z. Meng et al.34introduced A Global–Local Multi-Granularity Transformer was proposed 
to capture both local and global features by employing a Multi-Granularity Spatial Feature Extraction (MGAFE) 
block for comprehensive spatial information extraction at various granularities, and a Multi-Granularity 
Spectral Feature Extraction (MGEFE) block to effectively leverage spectral information across multiple scales. 
Meng et al.35 introduced a spectral spatial MLP architecture to capture long range dependencies and enhanced 
the classification results. Fan et al.36 proposed a novel frequency topology interaction network to capture 
both spatial and frequency domain features This approach combines CNNs and self-attention mechanisms to 
capture local and global contextual information, enhancing feature representation and addressing challenges 
like spectral ambiguity and material heterogeneity. By integrating both global and local information, this 
approach significantly enhances the model’s perceptual capabilities. Sun et al. introduced the Spectral-Spatial 
Feature Tokenization Transformer (SSFTT)37, designed to capture both spectral-spatial and high-level semantic 
features. The model initially extracts shallow spectral and spatial features using a combination of 3D and 2D 
convolution layers. It then applies a Gaussian-weighted feature tokenizer for feature transformation, with the 
transformed features being fed into a transformer encoder for representation and learning. Ma et al.38 proposed 
a Vision Transformer incorporating a lightweight self-Gaussian attention (LSGA) mechanism to extract global 
deep semantic features. Yang et al.39 introduced a hyperspectral image transformer that incorporates two key 
modules: spectral adaptive 3D convolution projection and convolution permutator, designed to capture subtle 
spectral and spatial information. Bin Li et al.40 proposed a multi-granularity vision transformer using a semantic 
tokens transformer to learn multi-granularity features and enhance accuracy. They employed the LFE module 
to extract local features. E. Ouyang et al.41 developed the HybridFormer network, which combines CNNs for 
extracting shallow features with a spectral-spatial attention (SSA) based transformer encoder for learning 
semantic features. Transformers designed for HSI classification represent spatial patches or spectral bands as 
tokens. While these tokens enable the modelling of intricate relationships across spatial and spectral dimensions, 
the high token count results in substantial computational overhead. However, the aforementioned methods 
primarily focus on feature extraction from the spectral-spatial domain and do not fully leverage the information 
available in the frequency domain.
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While analysing images in the frequency domain is a well-established and efficient technique for natural 
images, most existing transformer-based classifiers focus on feature extraction from the spectral-spatial domain 
and overlook the potential of the frequency domain. This gap motivates the exploration of hyperspectral images 
from the frequency domain. The model proposed in42 is designed to extract both high- and low-frequency 
information. However, their approach, based on the CNN architecture, has limitations in capturing global 
contextual information. Qiao et al.43 proposed a novel hierarchical dual-frequency transformer network that 
captures high-frequency and low-frequency features through a dual-branch structure. Shi et al.44 proposed 
a multiscale conv aided Fourier transformer model to extract spectral spatial features in frequency domain. 
However, the aforementioned methods does not fully exploit the multiscale frequency features. Despite the 
effectiveness of deep learning methods in HSI classification, most existing approaches either focus on spatial 
textures or spectral signatures independently, while overlooking the crucial role of frequency- and phase-
based representations. However, both spectral frequency variations and spatial phase patterns are essential for 
distinguishing subtle material differences. To address this gap, we propose a unified framework consisting of 
four key modules, each designed to extract and integrate distinct aspects of frequency and phase information. 
To address this issue we proposed a spectral spatial phase frequency domain transformer encoder to fully exploit 
the multiscale spectral spatial features from HSI data.

The main contribution of this paper is the following:

•	 The proposed framework is designed for HSI. It utilizes a combination of spectral spatial feature extractor 
with frequency domain transformer encoder block to extract phase and frequency features.

•	 We used 3DConv and 2DConv layer to effectively capture the spectral spatial shallow frequency domain 
features from HSI cube. After that frequency domain transformer encoder block are proposed which consist 
of spectral spatial wave token generator and spectral spatial multiscale frequency token generator to learn fre-
quency domain features. The Spectral-Spatial Wave Generator models spatial frequency components through 
phase and amplitude modulation across spatial locations. While, the Multiscale Frequency Token Generator 
captures spectral frequency variations by decomposing features at multiple spectral resolutions.

•	 An efficient Spectral-Spatial Interaction Module is introduced to enable the effective fusion of phase, ampli-
tude, and frequency features, enhancing the model’s ability to capture complex spectral-spatial relationships. 
In addition, a Local-Global Modulator Module is proposed, consisting of two parallel branches designed to 
extract semantic features from multiple perspectives the local branch focuses on fine-grained spatial details, 
while the global branch captures broader contextual information. Together, these modules contribute to a 
more comprehensive and robust representation of hyperspectral data.

The rest of the paper is organized as follows: section II explains recent works; section III Proposed Methodology; 
section IV Dataset and Experiment Evaluation; section V Results and Discussion; and section VII Conclusion.

Related work
CNN based methods with attention-aided CNNs
Researchers have utilized CNNs for hyperspectral image classification due to their ability to automatically extract 
features, eliminating the need for complex image preprocessing. Compared to traditional methods, CNN-based 
approaches deliver superior classification performance. Based on the feature dimensions they process, CNN-
based methods can be classified into three categories: 1D-CNN, 2D-CNN, and 3D-CNN. In the early stages of 
HSI classification, 1D-CNNs were primarily utilized to extract feature vectors along the spectral dimension. For 
instance, Hu et al.15proposed an HSI classification model employing a 1D-CNN with five convolutional layers. 
Compared to 1D-CNNs, 2D-CNNs offer the advantage of capturing spatial context, effectively modeling spatial 
dependencies within HSI data. In11,45, 2D-CNN models were developed to extract spatial features, following a 
dimensionality reduction step using Principal Component Analysis. Additionally, in46, a dual-branch network 
was introduced, integrating both 2D-CNN and 1D-CNN architectures, where the 2D-CNN focused on spatial 
feature extraction while the 1D-CNN specialized in spectral feature extraction for enhanced HSI classification 
performance. To better utilize the intrinsic characteristics of HSI data, joint extraction of spatial and spectral 
information, rather than separate processing, is considered a more effective approach. Consequently, 3D-CNNs 
have been widely adopted for HSI classification. Chen et al.47 introduced a 3D-CNN framework incorporating 
virtual sample enhancement and regularization techniques, achieving promising classification results. 
Furthermore, inspired by the pyramidal hierarchical structures commonly used in CNNs, Rao et al.48 proposed 
the 3D Adaptive Spatial-Spectral Pyramidal Layer CNN model (ASSP-SCNN). This model leveraged multiscale 
samples during training to fully exploit spatial-spectral features while mitigating overfitting, thereby enhancing 
classification performance. Xu et al.46 were the first to propose feeding the entire image directly into the model, 
rather than inputting pixel patches one at a time, to learn global representations. Building on this idea, Wang 
et al.49 introduced FullyContNets, which also utilizes the full image and adaptively aggregates multiple features 
through a pyramid multi-scale structure. Experimental results demonstrated that leveraging the rich spatial 
information from the complete image can lead to excellent HSI classification performance. To further assist the 
CNN in learning better features, the attention mechanism is applied as an enhancement unit to the CNN-based 
HSI classification. Attention mechanism used in different fields like remote sensing50, medical image analysis51, 
image enhancement52 and natural language processing53.

Transformer based and related token generation
Recent breakthroughs in computer vision have been predominantly driven by deep neural networks, though 
recent work demonstrates that hybrid approaches incorporating classical methods like fast Fourier transform 
(FFT) can achieve superior spectral sensitivity while maintaining spatial awareness. Recent work54 introduced 
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Fast Fourier Convolution (FFC), a novel neural operator that synergistically integrates FFT with standard 
convolutions. This architecture enables simultaneous non-local feature propagation and multi-scale information 
fusion through a dual-branch design. In55 proposed in frequency-domain and spatial-domain feature fusion 
network (FSFF-Net) for HSI classification, which reduces computational complexity while capturing global 
features. He et al.56, proposed frequency domain network with multiscale learnable convolution attention 
to capture global spatial and frequency domain features. For instance57, applies FFT repeatedly within non-
hierarchical frameworks, resulting in redundant computational complexity without efficiently transitioning 
from shallow to deep feature representations. Hao et al.44, proposed MHCFormer for HSI classification which is 
CNN based transformer module uses fouriormixer module to capture long range dependencies.

While attention mechanisms serve as the predominant token mixer in standard transformer architectures, 
recent research has explored alternative mixing operations that offer complementary advantages. Tolstikhin et 
al.58 demonstrated that spatial MLPs can effectively serve as standalone token mixers, with their MLP-Mixer 
architecture achieving competitive performance compared to attention-based transformers. Subsequent 
research has advanced MLP-based architectures through both efficiency improvements and novel token-mixing 
strategies:59,60 enhanced MLP models via data-efficient training protocols and redesigned MLP modules, while 
alternative approaches replaced attention with spectral operations FNet61 employed Fourier transforms as token 
mixers for NLP, Global Filter Networks62 implemented depthwise global convolutions through learnable Fourier 
filters, and AFNO63 introduced adaptive Fourier neural operators for dynamic frequency-domain mixing. These 
developments collectively demonstrate the viability of non-attention token mixing across domains. While these 
architectures demonstrate strong performance in conventional computer vision tasks, their direct applicability 
to hyperspectral image classification remains suboptimal due to three domain-specific constraints: spectral 
spatial tradeoff, high dimensionality and limited training data. However the proposed model is relatively fixed 
in frequency domain to capture spectral spatial features from frequency domain.

Proposed methodology
Figure 1 depicts the proposed model, this section will elucidate the model’s structure and it’s functioning. The 
feature pre-processing stage begins by feeding HSI patches into 3D convolutional layer and 2D convolutional 
layer for low-level feature extraction after applying Feature Augmentation. Shallow feature maps generated by 
these layers are then processed using pixel operations to tokenize the features before passing them into the 

Fig. 1.  Illustration of the Proposed Model for HSI classification.
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transformer encoder Blocks. The core of the model lies in the transformer Blocks, which are repeated N times 
to enable interactions between tokens representing different spectral spatial locations in the frequency domain. 
Finally, a classification head, consisting of a Global Average Pooling (GAP) layer is employed to assign a label 
to each pixel.

Frequency domain token generation
HSI contain a large number of spectral bands, providing rich spectral information. However, this also results 
in redundant features and significant computational overhead. As a result, Principal Component Analysis is 
commonly employed as a dimensionality reduction technique to compress HSI data. To mitigate the risk of 
overlooking subtle spectral or spatial variations during early representation learning, we propose a dual-branch 
token generation strategy. The Spectral-Spatial Multiscale Frequency Token Generator extracts broad frequency 
features at multiple spectral resolutions, capturing both coarse and fine-grained spectral structures across bands. 
In parallel, the Spectral-Spatial Wave Token Generator models tokens as learnable complex-valued waves, 
where the amplitude encodes spectral energy distribution and the phase captures localized spatial transitions 
and material-specific structural patterns. By combining these two complementary mechanisms, our approach 
enables comprehensive modeling of both global frequency characteristics and local spatial dynamics, enhancing 
the expressiveness and robustness of hyperspectral feature representations. Let the HSI data be represented 
by a matrix Xhsi ∈ RH×W ×C , where H × W  indicate the height and width of the data, and C represents 
the spectral dimension. After applying PCA on the spectral dimension, the HSI data can be represented 
asXhsi ∈ RH×W ×B  suppose thatcontains N labelled pixel is a vectorX = {x1, x2 . . . , xN } ∈ R1×1×Band 
their corresponding one hot label vector Y = {y1, y2, . . . , yN } ∈ R1×1×Kwhere K represents the number of 
classes. The spatial sizeS × Saround center pixel can be defined as a spectral spatial vector. We begin by utilizing 
a 3D convolutional layer (3D Conv) and a 2D convolutional layer (2D Conv) to extract primary features from 
the input data. Each patch long with ReLU activation function enabling the extraction of joint spectral-spatial 
features. Within two 3D convolution layers, one convolution layer is used to preserve the spectral features. 
Additionally, the remaining 2D convolution layers are used for spatial features.

Spectral Spatial wave generation block
Figure 1 shows the spectral spatial wave generation process. This block generates the waveform representation 
for the given HSI patch p ∈ RS×S×B  S×S represents the patch size and B denotes the number of channels. 
Hyperspectral image data (HSI) is initially partitioned into many patches, commonly known as tokens. 
The characteristics of these tokens are subsequently recorded using two essential elements: the token fully 
connected (TFC) and the channel fully connected (CFC). Let the intermediate feature containing n tokens 
as vectorX = [x1, x2, x3, . . . , xn]each tokenxjrepresent a vector with d-dimension. The channel-FC 
mathematically expressed as:

	 CFC (xj , W c) = W cxj , j = 1, 2, 3, . . . , n� (1)

WhereW crepresent the learnable weights. To acquire the characteristics of each token, the channel-FC conducts 
a distinct process on its several channel fully connected layers, which are usually arranged in a stack with a non-
linear activation function. This results in the creation of a channel-mixing MLP, which enhances the ability to 
transform data. In order to merge data from different tokens, the token fully connected method is necessary and 
outlined by:

	
TFC (X, W m)j =

∑
k

W m
jk ⊙ xk, j = 1, 2, 3, . . . , n� (2)

WhereW mrepresent the token mixing, ⊙represent the element wise multiplication, and the output token jth 
determined by index j. The token fully connected seeks to obtain spatial information by integrating features 
from several tokens. By employing a basic token-mixing process with preset weights, we are constraining the 
capabilities of MLPs by neglecting the significant semantic information of tokens obtained from various input 
images. It is possible to consider each token as a wave action with two fundamental components: amplitude and 
phase. The primary characteristic is regarded as the magnitude, whereas the phase is computed as a multifaceted 
value that fluctuates depending on the semantic content of the input images. The overall result of these wave-like 
tokens is affected by the phase difference among them, particularly tokens that possess similar phases frequently 
exhibit mutual enhancement. A token represented asx̃jcan be seen as a wave and can be precisely defined as:

	 x̃j = |xj | ⊙ eiθj , j = 1, 2, 3, . . . , n� (3)

Where the imaginary part represent as i(i2 = −1). the real value defined as|xj |, whileeiθjdenotes a periodic 
action. The phase is denoted asθjwhich represent the location information of each token within a wave. 
Therefore, it is regarded as a complex-valued entity for each tokenx̃j ,which consists of amplitude and phase.

When examining two tokensx̃1andx̃2, the amplitude(xr) and phase(θr)can be precisely specified as:

	 |xr| =
√

|xi|2 + |xj |2 + 2 |xi| ⊙ |xj | ⊙ cos(θj − θi)� (4)

	 xr = θi + a tan 2(|xj | ⊙ sin(θj − θi), |xi| + |xj | ⊙ cos(θj − θi))� (5)
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The function atan2(x, y) represents a tangent operation between two variables. Therefore, the amplitude of the 
combined result(xr)is significantly influenced by the phase difference(θj − θi).

Assume that the output feature map of the feature extractorÂ = [â1, â2, â3, . . . , ân]as input of the wave 
generation block, and the amplitude ofxj is defined by:

	 xj = CFC(âj , W c), j = 1, 2, 3, . . . , n� (6)

A token can be expressed as a wave that consists of real values (amplitude) and complex values (phase). token-
mixing method can be used to aggregate the resultant complicated value output tokens.

	 õj = TFC (T̃ , W m)j , j = 1, 2, 3, . . . , n� (7)

The estimation of the actual valueojcan be achieved by summing the real and imaginary components of theõj , 
as stated by:

	
oj =

∑
k

wm
jkxk ⊙ cos(θk) + W i

jkxk ⊙ sin(θk), j = 1, 2, 3, . . . , n,� (8)

WhereW m, W irepresent the learnable weights, and phase represent asθk .

Multilevel spectral spatial frequency generation
To fully leverage the tokens generated by the token generation module, we introduce a spectral-spatial frequency 
generation module that extracts high, middle, and low-frequency features, addressing the limitations of 
traditional Transformers in capturing fine-grained local information. While Transformers excel at modeling 
long-range dependencies, they tend to amplify low-frequency representations and suppress high-frequency 
components, which are crucial for discriminative feature extraction in HSI. To overcome this, the input tokens 
are first divided along the channel dimension and processed through three specialized branches. The high-
frequency branch employs max pooling to preserve edge and boundary details, followed by a linear projection 
for adaptive feature weighting. The mid-frequency branch uses depthwise convolution to model transitional 
spectral features while retaining regional spatial context. The low-frequency branch performs a three-stage 
refinement: average pooling extracts stable, noise-suppressed base features; multi-head self-attention captures 
global contextual relationships; and upsampling restores spatial resolution, supported by skip connections to 
maintain phase alignment with other branches. This multiscale frequency-aware design allows the model to 
capture and fuse local and global patterns effectively, enhancing its ability to represent complex spectral-spatial 
variations in HSI data. From a technical perspective, the input feature maps can be represented as: x ∈ RS×S×B

and x decomposed into high frequency xh ∈ RS×S×Bh , middle frequency xm ∈ RS×S×Bm and low frequency 
feature map xl ∈ RS×S×Bl along the channel dimension, where B = Bh + Bm + Bl, where Bh = B ∗ rand 
r denotes the channel ratio.

Since the maximum filter is highly sensitive to prominent features and the convolution operation is equally 
adept at capturing detailed information, we used max-pooling and linear layer operation to extract high 
frequency features.

	 yh = FC (MaxPool (xh))� (9)

And for the middle frequency features linear and depthwise convolution layer is applied.

	 ym = DwConv (FC (xm))� (10)

We use Multi-Head Self-Attention (MHSA) in the low-frequency mixer to facilitate information exchange 
among all tokens, leveraging its exceptional ability to extract low-frequency features. While the self-attention 
mechanism excels at capturing global representations, it can be computationally expensive when applied to 
high-resolution feature maps at shallow levels. To address this, the spatial scale of xl is reduced by employing an 
average pooling layer before the self-attention operation and an upsampling layer afterward. These operations 
effectively lower computational costs while ensuring that the attention mechanism remains focused on 
embedding global information.

	 yl = Upsample (MHSA (AvgPool (xl)))� (11)

Finally, we adopted a feature fusion module to fuse the high, low and mid-level frequency features. Figure 2 
shows the frequency feature fusion module followed by 3 × 3 convolutional layer.

Spectral spatial interaction module
After integrating phase, amplitude, and frequency domain features, the Spectral-Spatial Interaction Module 
(SSIM) is employed to enhance spectral-spatial representation through a structurally efficient and functionally 
rich design. SSIM begins with a depth-wise convolution, which processes each spectral channel independently, 
preserving spectral semantics while capturing fine-grained spatial correlations essential for local sensitivity. This 
is followed by two 1 × 1 convolutions: the first enables spectral interaction by projecting and mixing spectral 
channels, and the second refines the joint representation. in the phase, spatial interaction models smooth 
transitions and structural coherence between spatial tokens, while spectral evolution maintains phase continuity 

Scientific Reports |        (2025) 15:27259 6| https://doi.org/10.1038/s41598-025-12489-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


across bands; in the amplitude, spectral correlation reinforces similarity across bands, and spatial correlation 
highlights salient regions based on amplitude variations; in the frequency, high-frequency components are 
emphasized via inductive biases to capture less-correlated, fine-grained details, while low-frequency context 
provides global support, ensuring unified and comprehensive spectral-spatial modeling. This design allows 
SSIM to achieve effective feature fusion without relying on computationally expensive attention mechanisms. 
As illustrated in Fig.  1, the Spectral-Spatial Interaction module consists of two main components. The first 
component employs a depth-wise conv 3 × 3 layer with DW (.)with the number of filters equal to the input 
channels. This design facilitates interactions among frequency tokens within the spatial neighborhood, effectively 
capturing local spatial relationships. The second component utilizes two conv 1 × 1layersconv (.), which enable 
individual frequencies to evolve across different spectral groups, thereby modeling spectral dependencies. This 
comprehensive interaction mechanism ensures that the SSIM not only preserves the fidelity of spectral-spatial 
features but also enhances their representation by leveraging the unique properties of the phase, amplitude, and 
frequency domains.

Local global modulator module
To optimize the extraction of both local and global information within the Transformer block, we introduce a 
Local-Global Modulator (LGM). This novel design integrates two parallel multi-scale depth-wise convolution 
paths and a parallel global average pooling path, as illustrated in Fig. 1. LGM processes the input feature map ​ 
yc by dividing it into two parts: one part is directed to the depth-wise convolution paths, while the other part 
is processed through the global average pooling path. After applying layer normalization (LN), the first half 
of the channels are passed through two parallel branches, utilizing 3 × 3 and 5 × 5 depth-wise convolutions to 
enhance the extraction of multi-scale local information. Meanwhile, the second half of the channels are directed 
to the global average pooling block to capture global contextual information. For an input feature map, the LGM 
computation is formulated as follows:

	 ỹc = LN (yc) ,
[
ỹ1

c , ỹ2
c

]
= split (ỹc)� (12)

	 xg = GELU
(
GAP

(
ỹ2

c

))
∗ ỹ2

c � (13)

	 xl = GELU
(
fdwc

(
f1×1

(
ỹ1

c

)))
∗ fdwc

(
f1×1

(
ỹ1

c

))
� (14)

	 yc+1 = yc + concat (xg, xl)� (15)

Dataset and experimental evaluation
To verify the performance of proposed methodology five HSI classical dataset were selected for experiments, 
including the Xuzhou dataset, Indian Pines, Salinas, ZY1-02D Huanghekou (ZYHHK) dataset, GF-5 Yancheng 
(GFYC).

Characteristics of the datasets and information summarized in the Table  1. All the dataset preprocessed 
following the convention to remove noisy and water absorption bands. The application of the Salinas dataset 
in agriculture monitoring. The number of Training and testing samples for the experiments further shown in 
Table 2. The application of PU dataset in agriculture, urban planning, environment monitoring and material 
identification due to different classes. The mineral classification is conducted on Xuzhou dataset.

Fig. 2.  Frequency Feature Fusion Module.
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Experimental setup
For this experiment, we utilized the Adam optimizer and selected categorical cross entropy as the loss function 
to train the suggested model. Assign a learning rate of 0.001 and weight decay of 0.0001. The batch size and 
epoch for experiments are set to 64 and 100, respectively. We used principle component analysis64 for the 
dimensionality reduction method we select 30 spectral band after applying PCA. All experiments in this section 
implemented on NVIDIA GeForce RTX 3060 GPU and 64 RAM with python language framework. In order to 
better evaluate the classification result we choose three commonly used matrices overall accuracy (OA), average 
accuracy (AA) and Kappa coefficient (K).

Model parameter selection
This section examines the factors that influence classification accuracy, such as the varying patch size and PCA 
component.

Impact of patch size
In this experimental study, cubes of varying sizes are employed in the area of the central pixel input to maximize 
the utilization of spatial-spectral information in the hyperspectral Image. Classification accuracy can be 
influenced by the input cubes. Therefore, we conducted experiments using various patch sizes and defined the 
input patch size for four datasets. The overall accuracy (OA) of the proposed model increases consistently as 
the patch size increase for five datasets. The primary reason is the variation of the pixel distribution among 
the five datasets. For example, the ZYHHK dataset shows scattered land cover areas, resulting in a decrease in 
overall accuracy (OA) for patch size larger than 11 × 11. The smaller patch size capture local details well but may 
miss broader spatial context, leading to lower classification accuracy because the model does not have enough 
information about the surrounding area. The large patch size include more surrounding pixels, which helps the 
model understand the context better, increasing accuracy. Figure 3. Shows the different input patch size on five 
dataset.

Impact of principle component analysis
Prior to utilizing the feature extractor module, principle component analysis is applied to reduce the model 
parameters by decreasing the dimension of the data. Through experiments, it becomes evident that the number 
of principle components plays a significant role in extracting spectral spatial features. We are also conducting 

Class

Training Samples Testing Samples

GF-5 ZHHK XU IP SA GF-5 ZHHK XU IP SA

C1 10 31 263 5 20 350 1026 26,133 41 1989

C2 6 15 40 143 37 211 497 3987 1285 3689

C3 3 7 27 83 20 129 253 2756 747 1956

C4 24 12 52 24 14 808 400 5162 213 1380

C5 7 12 131 48 26 227 406 13,053 435 2652

C6 71 28 25 73 40 2324 913 2511 657 3919

C7 39 307 70 3 36 1266 9932 7060 25 3543

C8 – 7 48 48 112 – 241 4729 430 11,159

C9 – – 30 2 62 – – 3040 18 6141

C10 – – 97 32 – – – 875 3246

C11 – – 246 11 – – – 2209 1057

C12 – – 59 19 – – – 534 1908

C13 – – 21 9 – – – 184 907

C14 – – 127 10 – – – 1138 1060

C15 – – 39 72 – – – 347 7196

C16 – – 9 18 – – – 84 1789

Table 2.  Number of training and testing samples across all dataset.

 

Dataset Image size Band class Spatial Resolution Spectral Resolution

IP 145 × 145 200 16 20 m 0.4–2.5 μm

SA 512 × 217 224 16 3.7 m 0.4–2.5 μm

ZYHHK 1050 × 1219 108 8 30 m 0.4–2.5 μm

GF-5 1175 × 585 147 7 30 m 0.4–2.5 μm

XU 500 × 260 436 9 0.73 m 415–2508 nm

Table 1.  Dataset names and related information.
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experiments to investigate the relationship between the number of spectral bands and classification accuracy. 
The result is present in Fig. 4.

Result and discussion
To verify the effectiveness of the proposed model, experimental results of the state-of-the art model are presented: 
A2S2K-Res31, SpectralFormer29, SSFFT37, MorphFormer32, GSC-ViT33, GLMGT34, SSMLP35 and FTINet36. For 
a fair comparison, we use the same training samples and the same patch size for the comparison models. We 
conducted the experiments on f benchmark datasets, the details of which are listed in Tables 1 and 2.

Classification performance
For the Xuzhou dataset, the experimental results of each model, including OA, AA, and Kappa and class wise 
accuracy are shown in Table 3. Figure 5 represent the classification maps on Xuzhou dataset of each models. 
SpectralFormer and MorphFormer show weak performance as they fail to effectively learn Features under 1% 
training data, leading to clear errors in their classification maps. SSMLP and FTINet achieve high OA but exhibit 
low AA due to poor performance in specific classes, such as Class 6 and 7 for FTINet, which results in blocky 
errors. A2S2K-Res obtain > 95% in all classes which reveal that the combination of attention and CNN model 
extract low level features effectively. In general, SpectralFormer, MorphFormer, GLMGT, SSMLP and FTINet 
perform well, reducing noisy pixels in the maps; however, Our proposed model approach surpasses in category 
6, 7, and 9 than other advanced techniques, achieving the highest AA, OA, and KAPPA scores 98.48%, 98.75% 

Fig. 4.  OAs for five datasets with different PCA Components.

 

Fig. 3.  OAs for five datasets with different patch sizes.
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Fig. 5.  Classification Maps obtained by different Models on Xuzhou Dataset. (a) Ground Truth. (b) A2S2K-
Res. (c) SpectralFormer. (d) SSFTT. (e) MorphFormer. (f) GSC_ViT. (g) GLMGT. (h) SSMLP. (j) FTINet. (k) 
Proposed.

 

Class A2S2K-Res31 SF29 SSFTT37 MorphForm32 GSC-ViT33 GLMGT34 SSMLP35 FTINet36 Proposed

C1 97.55(± 1.04) 96.23(± 0.03) 97.99(± 0.07) 97.82(± 0.09) 98.04(± 0.32) 97.35(± 0.06) 98.36(± 0.02) 98.43(± 0.06) 98.2(± 0.18)

C2 97.91(± 1.10) 97.61(± 0.6) 98.47(± 0.02) 97.79(± 0.31) 99.59(± 0.16) 99.34(± 0.03) 98.54(± 0.62) 99.09(± 0.03) 99.11(± 0.02)

C3 98.03(± 0.93) 92.41(± 0.3) 96.18(± 1.08) 94.41(± 0.05) 96.58(± 1.26) 89.98(± 5.01) 98.91(± 0.32) 98.98(± 1.02) 97.61(± 0.04)

C4 98.14(± 1.05) 94.69(± 0.7) 98.29(± 0.03) 97.84(± 0.22) 97.22(± 1.02) 99.65(± 0.05) 96.02(± 0.01) 95.37(± 0.05) 97.92(± 0.01)

C5 99.29(± 0.01) 99.34(± 0.08) 99.03(± 0.07) 98.88(± 0.13) 98.62(± 0.02) 99.77(± 0.03) 98.94(± 0.11) 99.13(± 0.03) 97.88(± 0.06)

C6 97.13(± 1.36) 92.08(± 0.5) 99.21(± 0.09) 98.09(± 0.09) 98.42(± 0.35) 97.92(± 0.37) 99.00(± 0.02) 98.75(± 0.37) 99.23(± 0.05)

C7 98.33(± 0.83) 98.54(± 0.4) 99.13(± 0.05) 95.75(± 0.04) 99.07(± 0.57) 99.29(± 0.05) 98.97(± 0.16) 99.14(± 0.05) 99.35(± 0.04)

C8 99.49(± 0.06) 97.56(± 0.3) 98.16(± 0.02) 99.32(± 0.16) 97.35(± 1.25) 100(± 0.00) 99.06(± 0.01) 99.72(± 0.01) 99.95(± 0.01)

C9 97.13(± 1.03) 95.95(± 0.25) 97.69(± 0.08) 90.22(± 4.18) 96.05(± 0.37) 96.57(± 0.20) 97.07(± 0.07) 97.07(± 0.20) 99.55(± 0.04)

OA 98.15(± 0.17) 96.80(± 0.32) 98.34(± 0.23) 97.45(± 0.25) 98.10(± 0.59) 98.19(± 0.13) 98.40(± 0.05) 98.31(± 0.03) 98.48(± 0.18)

AA 98.11(± 0.03) 96.04(± 0.74) 98.29(± 0.30) 96.68(± 0.11) 97.88(± 0.46) 97.76(± 0.02) 98.31(± 0.20) 98.40(± 0.02) 98.75(± 0.25)

K×100 97.65(± 0.08) 95.95(± 0.85) 97.90(± 0.42) 96.76(± 0.16) 97.60(± 0.20) 97.70(± 0.11) 97.98(± 0.15) 98.11(± 0.05) 98.08(± 0.31)

Param(K) 105.4 K 120.92 K 153.8 K 141.1 K 83.02 K 104.44 K 291.01 K 260.11 K 514.28 K

MACs(M) 35.22 M 3.42 M 6.99 M 5.97 M 9.43 M 12.39 M 34.06 M 31.16 M 2.45 M

TR Time(s) 71.98 39.78 36.50 101.15 116.94 91.38 72.08 90.02 162.32

TS Time(s) 8.33 37.00 10.05 36.10 22.38 9.26 7.50 9.2 15.87

Table 3.  Classification result (%) on Xuzhou Dataset.
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and 98.08%, with all class accuracies exceeding 98%. Additionally, the classification map generated by our 
method is the most precise and smooth, closely resembling the ground-truth image.

Table 4 shows the classification results for the ZYHHK dataset. The results revealed that the proposed model 
exhibits constant performance gain in all the classes. It can observed that the OA achieved by the SpectralFormer, 
MorphFormer and GLMGT model is slightly low. Focusing on the GSC-ViT and FTINet models outperformed 
and gained the highest overall accuracy. The proposed model obtained better classification results in class 2, 3, 
5 and 8 where the both wave generation and multilevel frequency generation layer helps to capture frequency 
features better. Compared to the second-best model, the proposed model achieved 0.35%, 4.4%, and 0.77% in 
terms of overall accuracy, average accuracy, and kappa coefficient. Figure 6. Shows the classification maps of 
different methods on the ZYHHK Dataset; as we can see, the FTINet model and proposed model have less noise. 
Our classification is almost near to the ground truth image. As the level of noise increases, the accuracy of the 
classification maps tends to decrease.

Table 5 shows the result of all metrics on Salinas dataset and Fig. 7 shows the classification maps obtained by 
all models on Salinas dataset. Our model demonstrates outstanding classification performance, achieving AA, 
OA, and KAPPA scores exceeding 99.07%, 98.93%, and 0.98, respectively—the highest among all compared 
methods. Specifically, the MorphFormer, SpectralFormer and GLMGT models continue to underperform due 

Fig. 6.  Classification Maps obtained by different Models on ZYHHK Dataset. (a) Ground Truth. (b) A2S2K-
Res. (c) SpectralFormer. (d) SSFTT. (e) MorphFormer. (f) GSC_ViT. (g) GLMGT. (h) SSMLP. (j) FTINet. (k) 
Proposed.

 

Class A2S2K-Res31 SF29 SSFTT37 MorphFormer32 GSC-ViT33 GLMGT34 SSMLP35 FTINet36 Proposed

C1 92.68(± 1.80) 96.58(± 3.14) 96.58(± 2.30) 95.41(± 3.11) 97.07(± 0.46) 98.92(± 1.01) 97.17(± 1.02) 96.87(± 3.90) 88.1(± 3.90)

C2 83.90(± 5.04) 72.63(± 3.91) 89.93(± 10.02) 82.69(± 10.89) 98.99(± 0.77) 94.76(± 1.60) 91.34(± 5.10) 98.18(± 0.39) 100(± 0.00)

C3 82.93(± 4.02) 69.84(± 12.25) 81.74(± 8.05) 76.58(± 11.07) 82.93(± 10.4) 74.60(± 12.63) 81.34(± 6.63) 87.30(± 6.10) 95.58(± 4.12)

C4 100(± 0.00) 95.25(± 3.06) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00)

C5 72.59(± 12.2) 62.22(± 7.50) 72.09(± 14.0) 75.80(± 9.05) 71.35(± 8.94) 55.06(± 13.80) 69.62(± 9.30) 68.64(± 3.01) 93.98(± 4.92)

C6 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00)

C7 99.90(± 0.10) 100(± 0.00) 99.97(± 0.03) 99.53(± 0.47) 100(± 0.00) 99.81(± 0.19) 100(± 0.00) 100(± 0.00) 99.82(± 0.18)

C8 81.32(± 11.2) 52.69(± 13.60) 87.55(± 10.08) 80.49(± 5.60) 89.21(± 9.09) 87.96(± 9.42) 83.40(± 8.03) 84.23(± 1.19) 92.98(± 0.11)

OA 97.34(± 0.60) 96.09(± 3.61) 97.98(± 0.26) 97.19(± 1.32) 98.39(± 0.40) 97.58(± 2.11) 97.93(± 0.7) 98.25(± 5.36) 98.6(± 1.80)

AA 89.16(± 1.30) 81.15(± 11.10) 90.98(± 5.84) 88.81(± 3.81) 92.44(± 5.94) 88.89(± 8.74) 90.36(± 2.65) 91.90(± 8.03) 96.3(± 3.30)

K×100 94.18(± 2.90) 91.17(± 5.06) 95.57(± 3.89) 93.85(± 0.56) 96.46(± 3.52) 94.72(± 1.46) 95.47(± 3.76) 96.17(± 3.75) 96.94(± 0.05)

Param(K) 105.37 K 120.85 K 153.7 K 141.03 K 82.89 K 104.4 K 291.72 K 260.11 K 498.37 K

MACs(M) 35.22 M 3.42 M 6.99 M 5.97 M 9.43 M 12.39 M 34.06 M 31.16 M 1.39 M

TR Time(s) 93.26 42.06 47.73 134.70 153.21 64.37 53.86 59.74 174.36

TS Time(s) 3.47 5.09 2.37 5.92 6.45 4.88 2.42 2.36 10.51

Table 4.  Classification result (%) on ZYHHK dataset.
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to using only 1% of labeled samples for training. The basic reason for this is because spectralFormer model 
do not fully exploit the three- dimensional nature of the data, and it is challenging to implicitly represent the 
spatial relationship with a limited number of training samples. Out of many comparative algorithms, GSC-ViT, 
SSMLP, GLMGT and FTINet are particularly well suited for hyperspectral image data and shows the superior 
performance since they employ convolutional layers. Hybrid CNN and transformer approaches outperform 
transformer approaches. This implies that the combination of two architectures can be advantageous, but it 
requires more refinement. Furthermore, the proposed model effectively extracts spectral spatial frequency 
features specifically designed for hyperspectral image data. It successfully extracts both local and high-level 
frequency features by combining the strength of the convolutional neural network and transformer-based 
frequency domain learning module. As a result, it outperforms other transformer-based classification models, 
providing a significant advantage. Comparison models may exhibit poor performance while hyperspectral 
image classification using limited number of samples.

The classification results of GF-5 dataset are shown in Table 6. Hybrid CNN and transformer approaches 
outperform transformer approaches. This implies that the combination of two architectures can be advantageous 
to extract features, but it requires more refinement. It successfully extracts both local and high-level features 
by combining the strength of the convolutional neural network and transformer-based attention module. 
As a result, it outperforms other transformer-based classification models, providing a significant advantage. 
Comparison models may exhibit poor performance. The proposed model achieves the best classification result 
in all classes specifically in class 3 and 5 achieved best classification results. Figure 8. Shows the classification 
maps on the GF-5 dataset. As one can see, SSMLP and FTINet obtain excellent classification results with less 
noise and intra-class smoothness. Furthermore, it is evident that the classification performance of proposed 
model surpasses that of the four global-local models (i.e. SSFTT, GSC_ViT GLMGT and FTINet) across all five 
datasets. For instance, on the IP dataset Table 7; Fig. 9, proposed model achieves an OA value that is 0.8% higher 
than FTINet and 1.09% higher than SSMLP.

Model complexity analysis
Tables 3, 4, 5, 6 and 7 shows the model complexity, revealing that the proposed model is less complex in terms 
of FLOPs the parameters of the proposed model is higher than GLMGT, SSMLP and FTINet model. as we 
can see the training time of the proposed model is lower than other transformer based models except SSFTT, 
in terms of testing time SSMLP and A2S2K-Res model is perform well the parameters of this model are also 
very low. We also report the training and testing time obtained by different models on five datasets. As shown 
in Tables  3, 4, 5, 6 and 7 the proposed model has highest parameters than other models but also achieving 
significantly shorter training and testing time than some other models MorphFormer, GSC_ViT, SSMLP and 
FTINet model. SpectralFormer and HybridSN models demonstrated that the faster speed while maintaining 
performance ≥ 90%. On the GF-5 dataset the proposed model complete training in 91.24 s.

Class A2S2K-Res31 SF29 SSFTT37 MorphFormer32 GSC-ViT33 GLMGT34 SSMLP35 FTINet36 Proposed

C1 100(± 0.00) 98.79(± 0.90) 100(± 0.00) 99.94(± 0.06) 100(± 0.00) 98.03(± 0.84) 100(± 0.00) 99.94(± 0.06) 99.32(± 0.06)

C2 100(± 0.00) 100(± 0.00) 99.91(± 0.08) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 99.97(± 0.03)

C3 100(± 0.00) 99.59(± 0.06) 99.79(± 0.21) 99.84(± 0.16) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 99.84(± 0.16)

C4 99.92(± 0.08) 95.0(± 3.03) 99.63(± 0.14) 96.66(± 0.16) 99.56(± 0.44) 75.14(± 6.99) 99.56(± 0.44) 99.63(± 0.02) 93.46(± 1.46)

C5 98.22(± 0.06) 96.30(± 1.40) 96.60(± 2.57) 99.32(± 0.10) 96.26(± 0.33) 100(± 0.00) 99.96(± 0.04) 99.54(± 0.06) 99.65(± 0.35)

C6 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00)

C7 100(± 0.00) 99.88(± 0.06) 99.97(± 0.03) 99.94(± 0.06) 99.88(± 0.22) 100(± 0.00) 100(± 0.00) 99.94(± 0.06) 99.75(± 0.25)

C8 99.50(± 0.12) 92.15(± 4.36) 98.17(± 0.44) 97.52(± 1.12) 98.37(± 0.02) 97.19(± 1.10) 94.44(± 1.00) 93.81(± 0.35) 99.88(± 0.12)

C9 100(± 0.00) 100(± 0.00) 100(± 0.00) 99.90(± 0.10) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00)

C10 99.19(± 0.26) 97.04(± 1.25) 99.38(± 0.04) 99.32(± 0.68) 99.50(± 0.50) 99.16(± 0.55) 99.16(± 0.84) 99.22(± 0.28) 96.67(± 1.28)

C11 99.71(± 0.05) 93.94(± 0.27) 99.90(± 0.10) 91.20(± 5.19) 99.43(± 0.57) 99.90(± 0.10) 99.90(± 0.10) 99.81(± 0.19) 100(± 0.00)

C12 100(± 0.00) 99.63(± 0.20) 100(± 0.00) 99.10(± 0.90) 99.84(± 0.10) 100(± 0.00) 100(± 0.00) 100(± 0.00) 99.27(± 0.73)

C13 82.02(± 0.28) 97.24(± 0.11) 94.92(± 1.65) 85.44(± 6.58) 82.24(± 5.89) 3.30(± 9.81) 95.03(± 2.60) 94.92(± 1.03) 99.88(± 0.12)

C14 98.01(± 1.08) 96.22(± 1.81) 98.86(± 1.26) 93.86(± 2.09) 99.62(± 0.38) 77.14(± 8.73) 98.58(± 1.30) 98.39(± 1.79) 98.39(± 0.13)

C15 93.71(± 2.03) 84.54(± 4.84) 93.41(± 5.27) 93.03(± 4.34) 99.58(± 0.17) 91.95(± 6.66) 94.94(± 3.50) 95.70(± 4.38) 96.74(± 0.56)

C16 99.44(± 0.09) 98.65(± 1.13) 99.44(± 0.56) 99.67(± 0.33) 99.70(± 0.30) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00)

OA 98.54(± 0.18) 95.43(± 1.56) 98.37(± 0.79) 97.78(± 1.00) 99.02(± 0.06) 95.48(± 0.34) 97.98(± 2.01) 97.93(± 1.60) 99.07(± 0.06)

AA 98.11(± 1.31) 96.81(± 2.06) 98.75(± 0.61) 97.08(± 2.35) 98.31(± 0.55) 90.11(± 1.85) 98.85(± 0.06) 98.81(± 0.73) 98.93(± 0.26)

K×100 98.38(± 0.63) 94.91(± 3.16) 98.19(± 0.13) 97.53(± 3.15) 98.93(± 0.41) 94.96(± 3.05) 97.75(± 0.08) 97.69(± 1.90) 98.96(± 0.34)

Param(K) 105.57 K 121.7 K 154.26 K 141.55 K 83.25 K 104.67 K 291.72 K 189.45 K 505.75 K

MACs(M) 35.22 M 3.42 M 6.99 M 5.98 M 9.43 M 12.39 M 34.06 M 12.58 M 1.35 M

TR Time(s) 116.13 35.19 58.51 174.54 178.56 38.55 72.26 74.61 258.61

TS Time(s) 8.33 13.45 5.40 19.30 19.68 9.84 5.74 5.35 32.45

Table 5.  Classification result (%) on Salinas dataset.

 

Scientific Reports |        (2025) 15:27259 12| https://doi.org/10.1038/s41598-025-12489-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Ablation experiments
To comprehensively highlight the efficacy of each module, we conducted various combinations on the four 
dataset using patch size 11 × 11, and same training samples. Our analysis focuses on the wave generation, 
multilevel frequency generation SSIM module and LGM module, accessed through OA, AA and Kappa metrics. 
The outcomes of these experiments are presented in Table 8. Overall, the proposed network can achieve the best 
performance results. In Case 1, directly input the HSI data into transformer which utilizes wave generation, 
frequency generation, SSIM and LGM module, yields a relatively low Overall Accuracy (OA) value due to 
not using feature extraction module. In contrast, Cases 2 and 3 demonstrate significant improvements in OA 
accuracy by incorporating token generation module, respectively and wave generation module are not using. 
Notably, Case 4 and 5 further enhances performance by combining features from both branches using an additive 
approach. These improvement highlight the effectiveness of the wave generation and frequency generation 
module in enhancing the model capability to capture spectral spatial complexities of hyperspectral data in the 
frequency domain, resulting in better classification performance. In conclusion, the ablation experiments clearly 
demonstrate the substantial impact of each module in improving the model performance, especially activate in 
addressing spatial complexities and enhancing overall classification accuracy.

Fig. 7.  Classification Maps obtained by different Models on Salinas Dataset. (a) Ground Truth. (b) A2S2K-
Res. (c) SpectralFormer. (d) SSFTT. (e) MorphFormer. (f) GSC_ViT. (g) GLMGT. (h) SSMLP. (j) FTINet. (k) 
Proposed.
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Figure  10(a) and 10(b) illustrate that increasing PCA component values result in exponential growth in 
computational time and parameter requirements. Consequently, we selected 30PCA component as the optimal 
PCA dimensionality reduction parameter for our proposed method, striking a balance between performance 
and computational efficiency.

Fig. 8.  Classification Maps obtained by different Models on GF-5 Dataset. (a) Ground Truth. (b) A2S2K-
Res. (c) SpectralFormer. (d) SSFTT. (e) MorphFormer. (f) GSC_ViT. (g) GLMGT. (h) SSMLP. (j) FTINet. (k) 
Proposed.

 

Class A2S2K-Res31 SF29 SSFTT37 MorphFor32 GSC-ViT33 GLMGT34 SSMLP35 FTINet36 Proposed

C1 100(± 0.00) 77.65(± 10.55) 98.85(± 1.40) 92.55(± 2.3) 98.85(± 0.17) 100(± 0.00) 97.99(± 2.01) 99.14(± 0.86) 98.65(± 0.03)

C2 41.70(± 10.20) 45.97(± 13.51) 78.19(± 10.03) 45.97(± 11.25) 81.04(± 9.0) 52.60(± 30.16) 85.78(± 7.8) 77.25(± 14.02) 67.8(± 10.37)

C3 53.125(± 15.8) 63.28(± 12.36) 66.40(± 20.6) 56.25(± 10.82) 57.03(± 13.02) 57.03(± 24.32) 65.62(± 19.95) 66.40(± 21.31) 100(± 0.00)

C4 99.13(± 0.7) 98.88(± 0.83) 99.62(± 0.3) 98.88(± 0.84) 97.89(± 0.08) 100(± 0.00) 99.87(± 0.03) 99.25(± 1.85) 97.78(± 0.05)

C5 74.88(± 8.76) 62.99(± 10.76) 94.27(± 0.7) 86.78(± 0.95) 87.66(± 0.23) 56.82(± 18.16) 96.47(± 1.07) 94.71(± 0.06) 100(± 0.00)

C6 99.78(± 0.22) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00)

C7 100(± 0.00) 100(± 0.00) 100(± 0.00) 99.44(± 0.07) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00)

OA 95.25(± 1.04) 93.74(± 1.03) 97.94(± 0.48) 95.44(± 0.02) 97.28(± 0.30) 95.23(± 1.26) 98.10(± 0.05) 97.89(± 0.03) 98.29(± 0.01)

AA 81.23(± 3.10) 78.39(± 1.47) 91.05(± 0.5) 82.84(± 1.08) 88.92(± 0.42) 80.92(± 1.02) 92.25(± 2.04) 90.96(± 1.01) 94.89(± 0.20)

K×100 93.39(± 2.93) 91.14(± 1.57) 97.14(± 0.4) 93.61(± 0.03) 96.23(± 0.09) 93.34(± 0.02) 97.24(± 0.03) 97.06(± 0.05) 97.61(± 0.13)

Param(K) 105.35 K 120.79 K 153.74 K 140.97 K 82.98 K 104.28 K 290.81 K 189.45 K 498.36 K

MACs(M) 35.22 M 3.42 M 6.99 M 5.97 M 9.43 M 12.39 M 34.06 M 12.58 M 1.39 M

TR Time(s) 29.46 20.26 23.16 52.98 69.06 30.68 28.69 21.02 91.24

TS Time(s) 0.92 0.64 1.20 4.60 2.61 2.07 1.21 3.21 5.21

Table 6.  Classification result (%) on GF-5 dataset.
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Fig. 9.  Classification Maps obtained by different Models on Indian Pines Dataset. (a) Ground Truth. (b) 
A2S2K-Res. (c) SpectralFormer. (d) SSFTT. (e) MorphFormer. (f) GSC_ViT. (g) GLMGT. (h) SSMLP. (j) 
FTINet. (k) Proposed.

 

Class A2S2K-Res31 SF29 SSFTT37 MorphFor32 GSC-ViT33 GLMGT34 SSMLP35 FTINet36 Proposed

C1 36.57(± 20.02) 14.63(± 32.05) 81.39(± 4.82) 13.63(± 5.83) 95.34(± 5.99) 65.47(± 8.72) 95.12(± 2.31) 97.56(± 1.74) 97.56(± 1.07)

C2 95.79(± 1.11) 76.42(± 12.04) 92.62(± 6.90) 89.90(± 9.97) 95.18(± 3.80) 94.0(± 1.67) 91.43(± 0.33) 92.45(± 0.39) 97.78(± 0.03)

C3 99.19(± 0.7) 74.43(± 11.04) 99.74(± 0.04) 85.42(± 13.16) 98.44(± 0.31) 99.86(± 0.14) 97.45(± 1.06) 99.46(± 0.56) 94.62(± 2.21)

C4 96.24(± 1.62) 38.02(± 17.18) 82.95(± 6.50) 94.22(± 3.31) 95.00(± 4.12) 86.85(± 2.10) 96.71(± 1.03) 97.18(± 1.05) 94.81(± 0.32)

C5 98.39(± 0.32) 91.72(± 6.25) 100(± 0.00) 99.34(± 0.66) 99.10(± 0.00) 95.17(± 2.44) 95.86(± 0.90) 95.68(± 1.10) 100(± 0.00)

C6 99.54(± 0.01) 98.17(± 0.21) 99.41(± 0.11) 99.13(± 0.87) 96.90(± 2.02) 99.08(± 0.60) 98.78(± 0.96) 99.08(± 0.92) 100(± 0.00)

C7 16.87(± 21.11) 58.34(± 14.01) 84.61(± 4.80) 48.14(± 21.39) 7.69(± 35.49) 56.17(± 11.8) 100(± 0.00) 88(± 12.43) 92.3(± 0.36)

C8 100(± 0.00) 99.06(± 0.62) 100(± 0.00) 99.77(± 0.23) 100(± 0.00) 100(± 0.00) 100(± 0.00) 100(± 0.00) 99.29(± 0.7)

C9 41.57(± 10.16) 11.11(± 31.04) 36.84(± 19.4) 36.84(± 11.9) 31.57(± 12.26) 48.98(± 17.8) 44.44(± 20.8) 47.68(± 26.0) 100(± 0.00)

C10 99.77(± 0.01) 79.08(± 12.65) 97.15(± 1.38) 93.60(± 3.72) 93.91(± 5.08) 98.74(± 0.82) 93.25(± 1.74) 96.8(± 1.04) 93.66(± 0.02)

C11 99.27(± 0.07) 90.40(± 8.09) 97.09(± 2.56) 97.04(± 1.59) 98.68(± 0.29) 99.32(± 0.68) 98.59(± 1.48) 97.19(± 1.30) 99.33(± 0.08)

C12 98.68(± 0.15) 52.05(± 13.01) 91.93(± 4.45) 76.19(± 16.08) 91.66(± 5.99) 97.94(± 1.62) 97.19(± 2.54) 98.12(± 0.56) 97.36(± 2.96)

C13 97.29(± 0.40) 97.83(± 1.30) 96.37(± 3.51) 96.92(± 2.65) 89.00(± 3.50) 97.29(± 2.49) 98.91(± 0.01) 98.37(± 0.39) 95.81(± 0.87)

C14 99.64(± 0.35) 96.83(± 3.50) 99.91(± 0.09) 99.58(± 0.42) 100(± 0.00) 100(± 0.00) 99.91(± 0.09) 99.91(± 0.58) 99.55(± 0.45)

C15 99.42(± 0.18) 69.16(± 21.40) 94.76(± 3.25) 94.82(± 3.20) 97.77(± 2.07) 97.98(± 1.30) 98.84(± 1.11) 98.84(± 0.47) 97.86(± 1.27)

C16 83.33(± 3.02) 83.33(± 5.94) 89.65(± 7.40) 76.13(± 10.05) 90.69(± 4.22) 69.04(± 10.8) 98.80(± 1.19) 91.66(± 0.33) 98.75(± 0.02)

OA 96.74(± 2.04) 83.02(± 1.46) 96.46(± 2.91) 93.30(± 2.22) 96.65(± 2.02) 96.83(± 2.23) 96.88(± 2.04) 97.17(± 1.05) 97.97(± 1.14)

AA 85.09(± 5.01) 70.66(± 9.70) 90.27(± 5.56) 81.29(± 9.68) 86.30(± 10.18) 87.86(± 14.0) 94.08(± 2.06) 93.62(± 0.44) 97.41(± 0.82)

K×100 96.74(± 0.16) 80.43(± 8.50) 95.96(± 3.25) 92.34(± 3.78) 96.17(± 1.41) 96.38(± 2.95) 96.44(± 0.94) 91.66(± 2.10) 97.67(± 2.09)

Param(K) 105.57 K 121.7 K 154.26 K 141.55 K 83.25 K 104.67 K 291.72 K 189.45 K 504.62 K

MACs(M) 35.22 M 3.42 M 6.99 M 5.98 M 9.43 M 12.39 M 34.06 M 12.58 M 1.3 M

TR Time(s) 214.99 54.19 98.01 124.68 235.34 131.93 130.87 87.54 242.14

TS Time(s) 2.74 1.59 1.82 5.54 5.70 2.51 1.80 5.36 6.55

Table 7.  Classification result (%) on IP dataset.
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Impact of training samples
The proportion of training samples significantly influences hyperspectral image (HSI) classification performance. 
However, the scarcity of labeled samples hinders model training. To address this, we evaluated our method’s 
effectiveness using limited training samples. We conducted experiments on the four datasets, utilizing 0.5%, 
1%, 5%, and 10% of the available samples for Xuzhou, ZYHHK and GF-5 dataset for the IP dataset 3%,5%10% 
and 20% samples are used. The results, presented in Fig. 11, demonstrate that our method consistently achieves 
the highest Overall Accuracy (OA) values across various training sample percentages. Notably, our approach 
surpasses 95% OA on both datasets with merely 0.5% of the samples. These findings confirm that our method 
maintains its superiority even when faced with limited training data. Furthermore, it can be observed that 
proposed model stabilized faster than other models. SSMLP, FTINet, GSC_ViT, GAHT and SSFTT also stabilize 
but with at different OA accuracies points.

Conclusion
In this article, we proposed a novel model designed to effectively handle HSIC tasks in the frequency domain 
by utilizing the token generation module, a spectral spatial wave generation module, spectral spatial frequency 
generation module, SSIM and a LGM module. The model’s primary goal is to extract deep spectral-spatial 
features in the frequency domain, which are critical for improving classification accuracy. The frequency 
transformer encoder block serves as the backbone of the model, token generation module functioning as a 
robust feature extractor in the low-level spectral-spatial frequency features. To capture high-level semantic 
features, we proposed the transformer encoder block. In the wave generation block the amplitude representation 
encodes the intensity of the features, reflecting the overall strength of the spectral-spatial feature, while the phase 
representation captures positional and structural information, highlighting spatial relationships and variations 
in the spectral domain. Together, these wave tokens, combining both phase and amplitude information, form 
the basis for subsequent multilevel frequency feature extraction. In multilevel frequency generation block High-
frequency features capture fine-grained local details crucial for distinguishing small-scale variations in spectral-
spatial relationships. Mid-frequency features act as a bridge between high- and low-frequency features, capturing 
medium-scale patterns and interactions. Low-frequency features model global and long-range dependencies, 
offering context and overall structural information. The SSIM module dynamically fuses the outputs from phase, 
amplitude, and frequency interactions to produce enriched spectral-spatial tokens. LGM is used to extract rich 

Fig. 10.  Comparison of different PCA component. (a) Impact of different PCA component on testing time. (b) 
Impact of different PCA component on Parameters.

 

Component Dataset

Token Generation Wave Generation Frequency Generation SSIM LGM XU IP SA GF-5 ZYHHK

× ✓ ✓ ✓ ✓ 93.65 90.57 95.20 89.31 90.23

✓ × ✓ ✓ ✓ 95.28 91.98 96.06 90.58 90.89

✓ ✓ × ✓ ✓ 96.05 93.61 97.47 91.63 91.69

✓ ✓ ✓ × ✓ 97.36 95.11 97.88 95.36 92.88

✓ ✓ ✓ ✓ × 97.87 96.77 98.22 97.19 95.24

✓ ✓ ✓ ✓ ✓ 98.48 97.97 99.07 98.29 98.60

Table 8.  Ablation experiments (%) with different component on five dataset.
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semantic feature and modulate the local global information. The experiments result shows that the proposed 
model obtained satisfactory classification results in frequency domain.

Data availability
Salinas, Indian Pines Dataset available on https://www.ehu.eus/ccwintco/index.php? ​t​i​t​l​e​=​H​y​p​e​r​s​p​e​c​t​r​a​l​_​R​e​m​
o​t​e​_​S​e​n​s​i​n​g​_​S​c​e​n​e​s​. Xuzhou dataset available on ​h​t​t​p​s​:​​/​/​i​e​e​e​​-​d​a​t​a​p​​o​r​t​.​o​​r​g​/​d​o​c​u​m​e​n​t​s​/​x​u​z​h​o​u​-​h​y​s​p​e​x​-​d​a​t​a​s​e​t​. 
The other datasets are available from the corresponding author on reasonable request.
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