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Sampling-Based Model Predictive Control for Dexterous

Manipulation on a Biomimetic Tendon-Driven Hand

Adrian Hess1, Alexander M. Kübler1, Benedek Forrai1, Mehmet Dogar2∗ and Robert K. Katzschmann1∗

Abstract— Biomimetic and compliant robotic hands offer
the potential for human-like dexterity, but controlling them is
challenging due to high dimensionality, complex contact inter-
actions, and uncertainties in state estimation. Sampling-based
model predictive control (MPC), using a physics simulator as
the dynamics model, is a promising approach for generating
contact-rich behavior. However, sampling-based MPC has yet to
be evaluated on physical (non-simulated) robotic hands, partic-
ularly on compliant hands with state uncertainties. We present
the first successful demonstration of in-hand manipulation on a
physical biomimetic tendon-driven robot hand using sampling-
based MPC. While sampling-based MPC does not require
lengthy training cycles like reinforcement learning approaches,
it still necessitates adapting the task-specific objective function
to ensure robust behavior execution on physical hardware. To
adapt the objective function, we integrate a visual language
model (VLM) with a real-time optimizer (MuJoCo MPC). We
provide the VLM with a high-level human language description
of the task and a video of the hand’s current behavior. The
VLM gradually adapts the objective function, allowing for
efficient behavior generation, with each iteration taking less
than two minutes. We show the feasibility of ball rolling,
flipping, and catching using both simulated and physical robot
hands. Our results demonstrate that sampling-based MPC is
a promising approach for generating dexterous manipulation
skills on biomimetic hands without extensive training cycles.1

I. INTRODUCTION

Robotic hands have the potential to achieve human-like

dexterity, but effectively controlling them poses significant

challenges due to their high-dimensionality and complex

contact states. Biomimetic hands with compliant actuation

offer advantages; however, they also bring additional chal-

lenges, e.g., the difficulty of estimating the state of compliant

links. Overcoming these challenges would allow biomimetic

robotic hands to become the ideal universal manipulation

platform in human-centric environments. Current reinforce-

ment learning (RL) methods have shown success in dexterous

manipulation tasks on robotic hands, but are limited by

long training times and the need for task-specific retraining.

Imitation learning (IL) is also emerging as an alternative, but

as of now, it still requires abundant robot teleoperation data

to master dexterous manipulation tasks.

Sampling-based MPC offers a flexible alternative that

excels in contact-rich manipulation tasks without the need for

retraining. However, its application has been largely limited

to simulations and has not yet been shown to work on

physical robot hands. Our approach combines the ability of
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Fig. 1: Our system accepts a human language description of the
task, which is used by a VLM to adapt the objective function of
a model predictive controller. We show demonstrations of in-hand
ball rolling and ball flipping, both in simulation and on the physical
robot hand. Different timestamps are used to display the results in
the simulated and real environments.

sampling-based MPC to execute new tasks without requiring

retraining with the flexibility of a VLM. The VLM translates

simple language commands into task-specific cost functions

for the MPC, enabling immediate task execution, visual

performance assessment, and rapid autonomous iteration for

the continuous refinement of manipulation behaviors. Inte-

grating these components closes the gap between simulation

and real-world deployment, facilitating robust and adaptive

manipulation with a biomimetic, tendon-driven robotic hand

(see Figure 1 for an overview).

A. State of the art in dexterous manipulation

Learning-based methods have shown great promise in dex-

terous manipulation. OpenAI [1] achieved a breakthrough

by using RL to demonstrate cube rotation with the Shadow

Hand [2]. They applied domain randomization, which varied

the simulation environment to help the robot perform better

in real life. OpenAI [3] also introduced automatic domain

randomization (ADR), enabling the robot to solve a Rubik’s

cube. The use of GPU-based simulators like Isaac Gym

has sped up the training process. Allshire et al. [4] showed

in-hand cube manipulation using the TriFinger [5] robot.



Similarly, Arunachalam et al. [6] and Qin et al. [7] utilized

imitation learning to perform tasks on the Allegro Hand [8]

like cube rotation and object flipping, using demonstrations

captured with RGB and depth (RGB-D) cameras. Handa

et al. [9] achieved cube reorientation using the Allegro

Hand, with only 8 GPUs, outperforming earlier systems that

relied on thousands of CPU cores. Their use of vectorized

ADR enhanced the robot’s ability to generalize by adding

random variations that did not depend on physics. Yin et

al. [10] used tactile feedback to enable the Allegro Hand

rotate objects without visual input. Finally, Toshimitsu et

al. [11] developed the Faive Hand, a biomimetic tendon-

driven robotic hand. They demonstrated in-hand ball rotation

after just one hour of training on a single NVIDIA A10G

GPU. A learning-based alternative to reinforcement learning,

behavioral cloning (BC), is rapidly emerging as data sets

for human manipulation are becoming available through

teleoperation solutions [12]. Most of these trained policies, as

of now, are using simple parallel grippers such as Black et al.

[13] or Chi et. al [14]. With the growing industrial interest in

humanoids, there is a trend of applying the same approaches

to dexterous five-fingered robotic hands [15], but datasets of

the same scale as simpler grippers [16] are not yet available.

A proposed solution to this could be leveraging human data:

Mandikal et al. have shown successful imitation learning of

dexterous tasks from unstructured YouTube videos [17], but

as of now, this approach still needs hours of data for every

task.

Sampling-based MPC offers a promising alternative for

dexterous manipulation where per-task retraining is not nec-

essary. Bhardwaj et al. [18] successfully controlled high-

degree-of-freedom robot arms for real-time tasks. Howell et

al. [19] achieved in-hand cube rotation in simulation using

the MuJoCo physics engine on CPUs. Pezzato et al. [20]

used the GPU-parallelizable simulator Isaac Gym for non-

prehensile manipulation with a physical robotic arm. While

model-based control methods like MPC can solve com-

plex tasks, they are computationally demanding and require

precise modeling. Sampling-based methods do not depend

on gradients, making them suitable for nonlinear and dis-

continuous dynamics. However, computational complexity

limits its success in high-dimensional tasks. Current literature

indicates that sampling-based MPC has not been applied to

dexterous in-hand manipulation on physical robotic hands.

B. State of the art in objective function design via Large

Language Models (LLMs)

Objective functions are essential for directing robotic behav-

ior and optimizing tasks. However, 92% of researchers rely

on manual trial-and-error methods for reward design, often

yielding sub-optimal results [21]. Recent advancements in

multimodal LLMs, and particularly VLMs, offer new solu-

tions to these challenges. Ma et al. [22] introduced Eureka,

which leverages GPT-4’s in-context learning to automate

reward function design. This iterative process incorporates

human language feedback to adapt rewards until satisfactory

performance is achieved. Eureka successfully demonstrated

pen spinning on a simulated Shadow Hand. Yu et al. [23]

used GPT-4 for objective function design and executed

the task via sampling-based MPC. Their method facilitates

human interaction by translating natural language commands

into reward code, successfully achieving object grasping and

drawer opening with a 7-degree-of-freedom arm and a jaw

gripper. Liang et al. [24] further streamlined this process

by embedding motion descriptions within a single prompt

for reward code. This improved the teaching success rate

for unseen tasks by 26.9% and reduced human corrections,

achieving successful object grasping using a physical 7-

degrees-of-freedom (Dof) arm and a jaw gripper.

C. Approach

We use a tendon-driven robotic hand with bio-inspired rolling

contact joints. This joint design enhances compliance but

also introduces challenges in state estimation and modeling.

We use sampling-based MPC with the MuJoCo physics

engine to simulate the system dynamics. This approach

simplifies task adaptation by allowing rapid modifications

to task-specific objective functions. RL and BC methods

require separate training for each task, while our approach

can directly execute new objective functions. This allows

an efficient integration into an evolutionary optimization

loop without extensive retraining. We exploit the in-context

learning capabilities of a VLM (GPT-4o) to perform evolu-

tionary optimization of objective function weights with video

feedback. We investigate dexterous manipulation tasks such

as ball rolling, flipping, and catching. Our key contributions

are:

• We present the first successful demonstration of in-hand

manipulation on a physical biomimetic tendon-driven

robot hand using sampling-based MPC.

• We integrate a VLM into MPC to perform automated

objective function tuning using video feedback, reduc-

ing manual objective function design.

• We demonstrate a successful adaptation of sampling-

based MPC to real robots and dynamic tasks, showing

the ability to roll, catch, and flip balls using a robotic

hand.

Previous works explored the application of MPC or MPC-

inspired algorithms to dexterous manipulation problems [19],

[25], [26], but our work is the first to deploy sampling-based

MPC on complex and compliant robotic hands.

II. METHODOLOGY

An overview of our proposed pipeline is shown in Figure 2.

Our method uses the MuJoCo simulator as the dynamics

model for sampling-based MPC [19]. At each timestep, the

ball position in the simulation is reset to the measured

ball position pball, and randomized input sequences Ū are

applied to parallel environments. The resulting rolled-out

trajectories from the simulator are used to approximate the

optimal control u∗

0 given the objective J . The optimal control

u∗

0 (i.e., the desired joint angles) is used by the low-level

controller of the robotic hand. The low-level controller of

the robot hand calculates the necessary tendon lengths to



achieve the desired joint angles, and commands the motors

to the right angles to achieve them. The in-context learning

capabilities of a multimodal LLM are used to perform

evolutionary optimization of the objective function weights

(i.e., parameters of J) using video feedback of the resulting

behavior.

A. Modelling and controlling the tendon-driven hand

As described in [11], the Faive Hand has a biomimetic

rolling contact joint design that mimics the motion of human

fingers without fixed axes of rotation. In this work, we

use the MuJoCo model of the Faive Hand provided by

the authors to simulate its complex, tendon-driven actua-

tion. Each rolling contact joint is represented by a pair

of virtual hinge joints. The axes of these hinge joints are

positioned to pass through the axis of the cylinder that

constitutes each rolling contact surface. These hinge joints

are constrained by tendons and fixed elements in the MJCF

format to ensure coordinated motion. The tendon parameters,

including stiffness and damping, enable the hand’s rolling

contact dynamics to be accurately simulated. The model also

directly specifies the minimum and maximum joint angles for

each joint, providing explicit joint angle constraints during

simulation. The Faive Hand’s joints are controlled by a low-

level controller that translates desired joint angle commands

into tendon length targets using a geometric model of the

joint and tendon paths. An extended Kalman filter (EKF)

uses tendon length measurements to estimate joint angles

in real time, providing accurate proprioceptive feedback for

low-level control. A detailed description of the low-level

controller can be found in [11].

B. Sampling-based MPC

MPC is an optimization-based control approach that gen-

erates a sequence of control inputs by solving a receding-

horizon optimization problem. It minimizes a cost func-

tion subject to system dynamics and constraints. Traditional

gradient-based MPC relies on differentiable models and lin-

ear approximations, which struggle with the discontinuities

and contact dynamics inherent in dexterous manipulation.

In contrast, sampling-based MPC directly samples control

trajectories, evaluating them in a physics simulator to de-

termine the optimal action. This makes it well-suited for

high-dimensional, contact-rich tasks where differentiability

Fig. 2: We propose the following pipeline to integrate VLMs with
sampling-based MPC to control physical robot hands.

is impractical. We chose the MuJoCo physics engine to

simulate the system dynamics due to its superior performance

for real-time predictive control. While Isaac Gym excels in

simulating simpler dynamics models thanks to GPU paral-

lelization, our initial experiments showed that it struggles

to meet simulation speed requirements for complex models

such as the Faive Hand, limiting its effectiveness for real-

time MPC applications.

Sampling-based MPC integrates optimal control principles

with derivative-free optimization techniques to achieve effec-

tive trajectory planning and control in real-time scenarios.

The approach involves selecting controls u to minimize

future costs or maximize returns in a dynamical system

characterized by the state x ∈ R
n, evolving according to:

xt+1 = f(xt, ut) (1)

where xt+1 is the updated state. The running cost is:

c(xt, ut) (2)

which can incorporate time-dependent factors through state

integration. For a finite time horizon T , the objective function

J is given by:

J(x0:T , u0:T ) =

T∑

t=0

c(xt, ut), (3)

where x0:T and u0:T denote sequences over discrete time.

Sampling-based MPC optimizes u0:T as decision vari-

ables, while enforcing the dynamics through forward sim-

ulation. In real-time operation, the current state x0 is con-

tinuously estimated or measured, and the MPC optimizer

computes near-optimal controls u0:T starting from the cur-

rently estimated state x0. Instead of representing u0:T as

T + 1 independent control variables, we represent it using

a spline function of order O, with spline parameters θ that

need to be defined at S distinct timepoints. This reduces the

dimensionality of the search space for optimal controls from

T + 1 to S. We use the Predictive Sampling method, which

was introduced as an elementary baseline but proved to be

surprisingly competitive [19].

Predictive Sampling works as follows: A nominal se-

quence of actions, represented by spline parameters, is

iteratively improved by random search. At each iteration,

K candidate splines are evaluated: The nominal itself and

K − 1 noisy samples from a Gaussian with the nominal as

mean and a fixed standard deviation σ. In this work, we

sample directly from the joint space of the 11 DoF Faive

Hand. After sampling, the actions are clamped to the control

limits by clamping the spline parameters θ. Each candidate

spline (i.e., controls) is rolled out in simulation starting from

x0. The total return, i.e., objective J , of each candidate is

computed and the nominal spline is updated with the best

candidate according to the objective.

As in Howell et al. [19], we use the following form to

describe the cost terms of our objective function for the



different tasks:

c(x, u) =
M−1∑

i=0

wi · ni(ri(x, u)) (4)

This cost is a sum of M terms, each comprising:

• A weight w ∈ R
+ determining the relative importance

of this term.

• A norm n(·) : Rd
→ R

+, taking its minimum at 0d.

• The residual r ∈ R
d is a vector of elements that are

“small” when the task is solved.

C. Evolutionary Adaptation with video feedback

We exploit the in-context learning capabilities of a VLM

(GPT-4o) to perform evolutionary adaptation of objective

function weights, wi, with video feedback, without a human

in the loop. The new objective function weights, as suggested

by the VLM, are directly used by the sampling-based MPC,

enabling real-time adaptation with each iteration taking only

2min. The adaptation process works as follows:

1) Context Initialization: The VLM is prompted with

contextual information instructing it to act as a cost

function engineer. It receives a structured Python

template describing objective function weights, which

serves as a baseline for its response. This step takes

approximately 15 s.
2) Task Definition: A high-level description of the de-

sired task is added by the user. For ball rolling we used

the task description: “Rotate the ball while ensuring it

does not fall down” and for ball flipping we used the

task description: “Flip the ball while ensuring it does

not fall down”.

3) Objective Weight Generation: In the first iteration,

the VLM initializes the objective function weights

based on the provided task definition.

4) Evaluation Strategy: The VLM determines success

criteria based on task descriptions and the generated

weights. The VLM analyzes expected outcomes, key

observations, and how different weights influence be-

havior. This step takes approximately 15 s.
5) Execution & Feedback Collection: The sampling-

based MPC controller runs with the new weights for

30 s, and the resulting behavior is recorded as a video

for 10 s.
6) Reflection & Iteration: The recorded video, along

with a reflection prompt, is fed back into the VLM. The

model analyzes the results, compares them to previous

iterations, and refines the cost weights, wi, accordingly.

This step takes approximately 15 s. Steps 4–6 repeat

until the robot successfully achieves the task. After

each iteration the program sleeps for 1min to avoid

running into token limitations.

By leveraging this iterative adaptation strategy, the robot

can autonomously learn new manipulation behaviors, re-

fining its control strategy without predefined task-specific

heuristics. This method enables rapid adaptation to differ-

ent tasks while ensuring efficient learning cycles through

systematic weight adjustments. The prompts for the context

initialization, objective weights generation, and reflection are

provided under https://drive.google.com/file/

d/1Xh5mX-uZsybAgeekGUFU6mbZt7G6VdK2.

III. EXPERIMENTS AND RESULTS

In this section, we present our experimental results, supple-

mented by a video showcasing key simulations and real-

world trials. To determine the weights of the objective func-

tions for each task, we evaluate two alternative approaches.

First, an Exhaustive Search method finds effective weight

values by systematically testing weight combinations and

recording performance metrics. The best-performing weights

maximize a task-specific score, which, for ball rolling, in-

cludes average rotational velocity and ball drops per minute,

while for ball flipping, it considers flip height, flips per

minute, and ball drops per minute. For each task, exhaustive

search tests 121 different weight combinations, where each

combination is tested for ten minutes, resulting in a total of

20+ hours search for a good combination of weights. Second,

we employ Evolutionary Adaptation with video feedback (as

described in Sec. II-C), leveraging a VLM to refine objective

function weights for both tasks. Table II lists the cost terms

(Eq. 4) used in the experiments, which are linearly combined

to express different in-hand manipulation tasks, with the

VLM autonomously assigning zero weights to irrelevant

terms.

We used different parameters for Predictive Sampling

depending on the task, as shown in Table I. For the ball

flipping task, we increased σ to allow for quicker reactions.

For tasks involving only the robotic hand, a zero-order spline

was sufficient, given the hand’s high responsiveness and

the low-level controller used. However, for the ball-flipping

task involving both the hand and the robot arm, we used a

quadratic spline to achieve smoother arm trajectories.

A. Simulation experiments

We performed simulated experiments using the Faive Hand

P0 with 11 DoFs, and a ball with a diameter of 6.5 cm. The

Faive Hand is fixed at an angle of 20 degrees relative to the

horizontal plane for the rolling and flipping tasks. We further

explored how fixing the Faive Hand on a robotic arm would

change the flipping performance. In this case we fixed the

Faive Hand on a Panda arm and, along with the hand joints,

actuated joint number 4 and 6 of the arm.

1) Ball rolling

In this task, the goal is to roll a ball with a single

Faive Hand. The desired rotational velocity is 1 rad/s. The

best objective function weights identified by the Exhaustive

TABLE I: Predictive Sampling parameters for different manipu-
lation tasks. The parameters include spline order (O), number of
spline timepoints (S), number of candidate splines (K), horizon
length (T ), and standard deviation (σ).

Task O S K T σ

Ball rolling 0 5 10 25 0.1
Ball flipping 0 5 10 25 0.2
Ball flipping with a robot arm 2 8 10 25 0.1
Ball catching 0 5 10 25 0.1



TABLE II: Different cost terms (Eq. 4) used in this paper. w is a
weight vector, w is a weight scalar, p is a position vector and q is
the orientation quaternion.

Name Cost term

In Hand ∥wInHand · (pball − poptimal)∥
2

2

Ball Orientation wOrientation ∗ ∥qball − qtarget∥22
Ball Linear Velocity ∥wLinVel · vball∥

2

2

Ball Height wHeight ∗ |hball − hdesired|
Flat Hand Configuration wFlatHand ∗ ∥qhand − qflat∥

2

2

Hold Ball Hand Configuration wHoldBall ∗ ∥qhand − qhold∥
2

2

Faive Actuator wFaiveActuator ∗ ∥q̇hand∥
2

2

Panda Actuator wPandaActuator ∗ ∥q̇arm∥22

Search are: wInHand = [1000, 1000, 1000], wOrientation = 20,

wLinearVelocity = [10, 10, 10], wHeight = 0, wFlatHand = 0,

wHoldBall = 10, and wFaiveActuator = 0.1.

Using these weights, ball rolling was achieved around all

axes. Figure 3 shows rolling around the negative y-axis. Ball

rolling was executed smoothly and consistently. The ball

remained securely in the hand throughout the simulations

and never fell down. We achieved stable rolling with average

rotational velocities: ωx = 0.96 rad/s, −ωx = 0.97 rad/s,

ωy = 0.96 rad/s, −ωy = 0.96 rad/s, ωz = 1.01 rad/s, and

−ωz = 0.99 rad/s, without the ball falling off. Given the

hardware limitations, e.g., the lack of abduction and adduc-

tion, as well as inaccurate thumb placement, it is surprising

that rolling around the x and z-axis work as effectively as

around the y-axis.

The objective function weights after four Evolution-

ary Adaptation cycles (taking 8 minutes) are: wInHand =
[50, 50, 50], wOrientation = 900, wLinearVelocity = [0, 0, 0],
wHeight = 0, wFlatHand = 0, wHoldBall = 300, and

wFaiveActuator = 0.1. The achieved performance is a rotational

velocity of −ωx = 0.97 rad/s and the ball drops 0.6 times

per minute. This suggests that while the VLM was able to

find a solution for rolling the ball, it did not identify the most

stable configuration.

2) Ball flipping

In this task, our goal is to flip the ball 15 cm high and

catch it with a single Faive Hand. A dynamic flipping motion

should be observed where the ball is constantly thrown up

Fig. 3: We demonstrate ball rolling (top), ball flipping (middle) and
flipping with a robot arm in simulation (bottom).

and caught again. The best weights identified by the Ex-

haustive Search are: wInHand = [500, 500, 0], wOrientation = 0,

wLinearVelocity = [40, 80,−120], wHeight = 140, wFlatHand = 20,

wHoldBall = 0, and wFaiveActuator = 0.1.

With these weights, we ran the experiments for ten minutes

and recorded the flip height, flip rate, drop rate. We achieved

successful ball flipping in simulation with an average flip

height of 9.6 cm. This is considerably lower than the desired

flip height of 15 cm. We achieved a dynamic flipping motion

as shown in Figure 3 but sometimes the ball got stopped in

the palm of the hand and the continuous flipping motion was

interrupted. This is the reason why the flip rate was only 48

flips per minute. The flipping behavior is quite stable and the

ball drops only once per minute. The flip rate was measured

as the number of successful flips per minute in which the ball

completed an upward trajectory and returned to the palm. If

the ball fell to the ground, it was reinitialized in the palm,

and the count was not resumed until the flip sequence was

restored.

The objective function weights after four Evolution-

ary Adaptation cycles (taking 8 minutes) are: wInHand =
[800, 800, 0], wOrientation = 0, wLinearVelocity = [0, 0,−900],
wHeight = 1000, wFlatHand = 900, wHoldBall = 0, and

wFaiveActuator = 0.1. The resulting average flip height is

14.0 cm with a flip rate of 91 flips per minute. The ball

drops on average 33 times per minute. The flip height is

significantly higher than what the Exhaustive Search weights

achieved (only 9.6 cm). Compared to our the Exhaustive

Search weights, the ball drops more frequently. We can

again observe the tendency to prioritize achieving a better

performance over not dropping the ball.

3) Ball flipping with a robot arm

Given the ball height achieved in the previous set of ex-

periments, we also investigated whether giving more degrees

of freedom to the MPC, by incorporating robot arm joints,

would create a significant change in performance. Hence, in

this task, our goal is to throw the ball to a target height

of 8-12 cm and catch it with a Faive Hand mounted on a

Panda arm. A dynamic flipping motion should be observed

where the ball is constantly thrown up and caught again. This

task uses a second-order spline with eight spline points to

achieve smoother actions compared to other tasks (Table II).

The best weights identified by the Exhaustive Search are:

wInHand = [750, 750, 0], wOrientation = 0, wLinearVelocity =
[0, 0,−5], wHeight = 10, wFlatHand = 20, wHoldBall = 0,

wFaiveActuator = 0.1, and wPandaActuator = 20. We ran the

experiments with these weights for ten minutes and recorded

the flip height, flip rate, drop rate. We achieved successful

ball flipping with an average flip height of 11.4 cm. The ball

flipping resulted in a dynamic flipping motion as shown in

Figure 3 and the ball never fell out of the hand. Flipping the

ball with the robotic arm resulted in 100 flips per minute in

a continuous flipping motion. Compared to flipping with the

robotic hand alone, the system with the robotic arm achieves

a higher flip rate and never drops the ball.



TABLE III: Comparison of main results in simulation (optimal and evolutionary weights) and on the physical robot hand.

Task Sim. (Optimal Weights) Sim. (Evol. Weights) Real (Optimal Weights)

Ball rolling 1 rad/s, no drops 0.99 rad/s, 0.6 drops/min 0.35 rad/s, occasional drops
Ball flipping 9.6 cm, 48 flips/min, 1 drop/min 14 cm, 91 flips/min, 33 drops/min Frequent drops
Ball flipping (robot arm) 11.4 cm, 100 flips/min, no drops Not investigated Not feasible
Ball catching Not investigated Not investigated 67% success rate

B. Demonstrations on the physical robot hand

Next, we investigated the performance of MPC on the phys-

ical robot system. Here, since our main goal is to evaluate

the MPC performance on physical dexterous manipulation

tasks, and since the high number of executions required for

Exhaustive Search and Evolutionary Adaptation are difficult

to realize on the physical robot, we used a set of weights

already optimized from simulation. Since Exhaustive Search

weights resulted in fewer drops, we used those weights for

the demonstrations on the physical hand.

For the demonstrations, we used the Faive Hand P0 with

11 DoFs attached to a static mount and a ball with a diameter

of 6.5 cm. The Faive Hand P0 has a total length of 20.1 cm,

a palm width of 8.1 cm, and a finger length of 12.2 cm
to 14.0 cm. The Faive Hand is positioned at an angle of

20 ◦ relative to the horizontal plane. It is equipped with

silicone padding around the fingers and on the fingertips.

The Faive Hand P0 can only indirectly estimate joint angles

from tendon lengths, which results in limited proprioceptive

accuracy. Therefore, we do not provide joint angle feedback

to the MPC controller. Instead, the system leverages the

hand’s inherent compliance, which is essential for perform-

ing dexterous manipulation tasks. This compliance allows

the fingers to adapt to object geometries and maintain

stable contact without requiring precise estimation of the

joint state. Research has shown that compliance naturally

handles disturbances and positional uncertainties, reducing

the need for detailed contact modeling [27]. It also allows

the hand to respond naturally to external forces and inter-

actions, supporting robust, human-like grasping behaviors

[28]. However, for tasks such as catching and flipping, where

the ball leaves the hand, it is crucial to track the ball’s

position with high frequency and precision to enable accurate

control. To support these tasks, our ball is equipped with

28 evenly spaced reflective markers. The Qualisys Motion

Capture (MoCap) System, equipped with eight cameras, is

used to track reflective markers at a frequency of 100 Hz.

An additional camera captures RGB video. The Qualisys

MoCap System runs on an Intel NUC with an i7-10710U

CPU. We use the MuJoCo physics engine to simulate the sys-

tem dynamics. The simulation runs on a high-performance

computer with Ubuntu 20.04 and an i9-10900K CPU with

20 threads.

The ball’s position is updated in the simulation to match

the measured state. To do this, we use random sample

consensus (RANSAC) on the ball’s 28 reflective markers,

allowing robust detection of the ball’s center, even in the

presence of occlusions. We update the ball position in the

simulation to the measured ball position at 30 Hz. The

Predictive Sampling method simulates the task from the

initialized point and predicts the best action according to

the objective function. We then send the best action to the

low-level joint controller of the hand at 30 Hz. The positional

accuracy of our ball center detection system is within 5 mm,

and the standard deviation of the ball center noise is less than

1 mm. We also observed that the detection remains accurate

even when the ball is moving at high speed through the air.

Due to the high noise and insufficient accuracy of orientation

measurements, we do not perform orientation estimation.

Instead, in each optimization step, the orientation of the ball

in the simulation is kept fixed, and the target orientation is

set to 60◦ in front of this fixed orientation in the desired

direction of rotation.

Sampling-based MPC does not strive to find the optimal

solution in a single step but instead aims to make incremental

progress towards the goal. This approach is well-suited for

handling uncertainties and state estimation errors in real-

time. It is often more important to replan based on updated

state measurements after each iteration rather than attempting

to converge to an outdated solution. The tendon-driven

actuation, combined with this iterative approach, ensures

that the system remains stable and compliant, even in the

presence of state estimation uncertainties.

1) Ball rolling

We demonstrate the feasibility of ball rolling around the

negative y-axis with the Exhaustive Search weights. The

rotational velocity was inconsistent and the ball occasionally

fell out of the hand. A 180 ◦ rotation was completed in

2 s, as illustrated in Figure 4. The rotation speed varied

significantly, ranging from 0.2 rad/s to 1.6 rad/s, with an

average speed of 0.35 rad/s for a full rotation. We observe

that the finger movements are very fast, but not very smooth.

This can potentially be improved through sampling of larger

number of trajectories (i.e., a higher K), though it would

then also mean a lower MPC frequency due to the increased

computational expense. Rotation around the x-axis and z-

axis could not be achieved on the physical robot hand. This

was expected because such rotations are more difficult to

perform without abduction and adduction capabilities, and

results on the physical robot are sensitive to differences

between simulation and reality.

We compare our ball-rolling results with those reported by

Toshimitsu et al. [11]. Their approach used RL with domain

randomization to train a ball-rolling policy on an identical

robot hand. They used joint angle estimations provided by an

EKF as proprioceptive feedback for the RL policy, without

incorporating the ball position into the policy. Using domain



randomization, they successfully achieved smooth rotations

around the y-axis in both directions. Their approach main-

tained a consistent rotational velocity of 1.5 rad/s, which

is significantly faster than our reported average rotational

velocity of 0.35 rad/s. The ball rotation motion generated

by their RL policy was smoother than we observed with

sampling-based MPC. However, a limitation of their method

is the lack of ball position feedback, which simplified the

policy by consistently repeating the same motion without

considering the position of the ball. Incorporating ball posi-

tion feedback into the policy would make their method more

robust to external disturbances. It is also important to note

that their RL policy would require an hour of training to

adapt to changes in the task, whereas our approach adapts

to a new task in only eight minutes.

2) Ball flipping

We show ball flips with a single Faive Hand using the

Exhaustive Search weights, as shown in Figure 4. With a

target height of 15 cm, heights greater than 10 cm were

often reached. During the demonstration, the flipping motion

was inconsistent, resulting in frequent instances of the ball

falling to either side of the palm. This task is particularly

challenging due to its dynamic nature, which requires pre-

cise timing and coordination. Even minor deviations in the

position of the ball or fingers in the real system compared

to the simulation, caused by latency, sensor noise or in-

accurate actuation, often result in failed flips. The exact

timing of the flip relative to the ball’s position is critical

to successful execution, making the task extremely sensitive

to small errors. Additionally, limitations of the robotic hand

increase the difficulty and robustness of this task. First,

the hand lacks wrist mobility, a critical feature that allows

humans to perform complex manipulations, such as juggling,

where dynamic wrist movements adjust hand orientation. In

addition, the lack of abduction and adduction capabilities

hinders the fingers’ ability to accurately position themselves

under the ball’s center of gravity. Inaccuracies in thumb

positioning further hinder the robot’s ability to prevent the

ball from rolling to the side.

Fig. 4: We demonstrate successful ball rolling, ball flipping and
ball catching on a physical robot hand. Please also see our video:
https://youtu.be/6ivbd_jijHA.

3) Ball catching

The ball catching task was performed directly on the

physical robot. In this demonstration, the goal is to catch a

ball using a five-fingered robotic hand, with its base attached

to a static mounting bracket. A human operator throws the

ball toward the center of the hand. The goal of the task for

the robotic hand is to catch and maintain a hold of the ball.

For this task, we directly adapt the weights for the use in

the real environment and do not conduct tests in simulation.

We used the weights (only reporting the non-zero weights):

winHand = 1000, wFaiveActuator = 0.1, and wHoldBall = 100. We

demonstrate the feasibility of catching a ball with a robot

hand as seen in Figure 4. We tried 36 throws that landed

in the palm of the hand and managed to catch 24. This

corresponds to a success rate of 67 %. This task is highly

dependent on the trajectory and force of the ball thrown by

the human tester, which caused variability in throws.

C. Limitations

During this work, we encountered several challenges related

to computational efficiency, the complexity of the Faive Hand

model, and hardware limitations of the robotic hand. The

computational demands of sampling-based MPC influenced

the smoothness of trajectory generation, particularly in tasks

requiring rapid manipulation. The complexity of the Faive

Hand model limited the use of GPU parallelization in Isaac

Gym due to insufficient simulation steps per second for

real-time manipulation. Hardware issues such as inaccu-

rate proprioception, thumb positioning, and lack of abduc-

tion/adduction capabilities further limited performance. In

addition, VLM’s token-per-minute constraints reduced video

frame rates, which impacted task recognition. Still, we were

able to demonstrate some of the first examples of MPC-

based control of a variety of dexterous manipulation tasks

on a physical anthropomorphic robot hand.

IV. CONCLUSION

We presented a framework that uses sampling-based MPC

to perform dexterous in-hand ball manipulation tasks. We

demonstrate tasks such as ball rolling, ball flipping, and ball

catching using a physical robotic hand and ball position feed-

back. By combining sampling-based MPC with VLMs and

video feedback, we enabled rapid autonomous iteration and

improvement of manipulation behaviors. Using our method,

each iteration is completed in less than two minutes, allowing

for rapid iteration cycles. After only a few iterations of

evolutionary optimization with video feedback, the robot has

successfully learned how to perform in-hand ball rotation and

ball flipping. Despite these advances, challenges remain, in-

cluding optimizing sampling efficiency in high-dimensional

action spaces and improving proprioceptive accuracy. Future

work will focus on real-time domain randomization, refine

the action space for more efficient sampling, address hard-

ware constraints, and implement direct evolutionary adapta-

tion on the physical robotic hand.
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