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Abstract

Surgery remains a healthcare intervention with significant risks for patients. Novel tech-
nologies can now enhance the peri-operative workflow, with artificial intelligence (AI) and
extended reality (XR) to assist with pre-operative planning. This review focuses on inno-
vation in AI, XR and imaging for hepato-biliary surgery planning. The clinical challenges
in hepato-biliary surgery arise from heterogeneity of clinical presentations, the need for
multiple imaging modalities and highly variable local anatomy. AI-based models have
been developed for risk prediction and multi-disciplinary tumor (MDT) board meetings.
The future could involve an on-demand and highly accurate AI-powered decision tool for
hepato-biliary surgery, assisting the surgeon to make the most informed decision on the
treatment plan, conferring the best possible outcome for individual patients. Advances in
AI can also be used to automate image interpretation and 3D modelling, enabling fast and
accurate 3D reconstructions of patient anatomy. Surgical navigation systems utilizing XR
are already in development, showing an early signal towards improved patient outcomes
when used for hepato-biliary surgery. Live visualization of hepato-biliary anatomy in the
operating theatre is likely to improve operative safety and performance. The technological
advances in AI and XR provide new applications in pre-operative planning with poten-
tial for patient benefit. Their use in surgical simulation could accelerate learning curves
for surgeons in training. Future research must focus on standardization of AI and XR
study reporting, robust databases that are ethically and data protection-compliant, and
development of inter-disciplinary tools for various healthcare applications and systems.

Keywords: robotic surgery; artificial intelligence in surgery; surgical training; AR in
surgery; 3D imaging; surgical navigation; extended realities

1. Introduction
Despite centuries of advances in medical knowledge, technology and peri-operative

care, surgery remains a healthcare intervention with substantial risks for patients. Global
data shows that 16.8% of patients undergoing surgery will develop at least one surgical
complication, with post-operative mortality accounting for 7.7% of worldwide deaths [1,2].
For complex surgery, such as hepato-biliary surgery, the risks are even higher. Its nature
of variable anatomy coupled with locally invasive malignancies increases the risk of sur-
gical complications, reported as high as 48% and 60% for pancreatic and liver resections,
respectively [3,4]. There is an urgent need to improve peri-operative care to reduce the
global burden of surgical morbidity and mortality. Central to peri-operative care is clinical
decision-making, often taking place at diagnosis, surgical planning meetings or in the
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operating theatre. Novel technologies can now provide clinicians with more up to date
and detailed information to enhance patient selection, surgical planning and safety in the
operating theatre.

The era of digital surgery, also known as surgery 4.0, has introduced new technologies
available to the surgeon in the operative workflow [5]. The rapid adoption of robotic
surgery, artificial intelligence (AI) solutions and extended reality (XR) technology provides
new tools for clinical practice [6]. These offer an opportunity to enhance every aspect
of pre-operative planning, from image interpretation at diagnosis to surgical navigation
systems in the operating theatre, improving safety and clinical outcomes for patients. In this
review, we focus on the technological advances in pre-operative planning for hepato-biliary
surgery. The aims are to display the latest solutions to enhance pre-operative planning and
to discuss their route to routine practice adoption.

2. Foundations of Pre-Operative Planning
The risks associated with hepato-biliary surgery have always necessitated ample

surgical planning in the peri-operative pathway. Appropriate patient selection is key to
ensuring safety for patients. In surgery for primary and secondary liver malignancies, post-
hepatectomy liver failure (PHLF) occurs in 9–30% of extended resections and it is a major
determinant of post-operative death [7]. Accordingly, international guidelines provide a
clinical algorithm to assist in identifying patients at risk of PHLF (evidence derived from
high quality cohort studies) [8]. This includes functional assessments, which may involve
computational mathematical scores that combine clinical parameters, and volumetry, as-
sessing liver volume quantitatively through image analysis. These established approaches
to pre-operative planning are limited by static models, which limit their potential accuracy.
They are also based on a small number of clinical parameters, potentially missing essential
information, such as nutritional status or sarcopenia on an individual patient level. The
lack of comparison between the accuracy of functional assessments has been recognized
as an area requiring further research. The current methods of volumetry also have their
limitations. These frequently involve manual methods of image segmentation, a process
which entails manually partitioning an image into distinct regions, in this case selecting the
future liver remnant (FLR) for volumetric calculations [9]. This introduces inter-observer
variability and relies heavily on radiological expertise and resources to deliver accurate
risk predictions of PHLF. There is a need to standardize and automate risk prediction for
patients undergoing hepato-biliary surgery.

Another key aspect of pre-operative planning in hepato-biliary surgery is imaging.
Multiple modalities are used to plan operations. In the example of liver resections, magnetic
resonance imaging (MRI) or computed tomography (CT) are used to detect deep liver
lesions. On the other hand, ultrasound (US) is more accurate in detecting peripheral
lesions close to the liver capsule, showing the complexity in imaging use for hepato-biliary
surgery. The importance of appropriate imaging pathways was recently demonstrated
in the CAMINO trial [10]. The randomized controlled trial investigated the addition of
liver contrast-enhanced MRI for detection of colorectal liver metastasis (CRLM), showing a
change in the local treatment plan in 31% (n = 92/298) of patients due to the MRI results.
Standardized imaging protocols with appropriate modalities can therefore enhance pre-
operative workflows. The amount of meaningful information obtained from imaging could
be improved with image fusion, combining multiple modalities that capture all required
detail for pre-operative planning.

The role of pre-operative planning in hepato-biliary surgery is also important to
anticipate challenging anatomy. Biliary anatomy is well known for its variability, with
studies showing variant rates of over 40% between individuals [11]. A feared compli-



J. Clin. Med. 2025, 14, 5385 3 of 13

cation associated with this involves bile duct injury (BDI), occurring in approximately
3 in 1000 cholecystectomies [12]. Despite the introduction of the “critical view of safety”,
adoption of new laparoscopic and robotic techniques has led to an increase in BDI in-
cidence [13,14]. Novel imaging methods have enabled real-time visualization of biliary
anatomy, such as indocyanine green (ICG) administration. When used during laparoscopic
cholecystectomy, ICG has been shown to reduce operative time, conversion to open surgery
rates, length of stay and BDI rates [15]. Although ICG now provides a mode of real-time
visualization, it is limited by poor performance in certain conditions (such as presence of
impacted gallstones or cystic duct stones) and its need for administration, which is most
optimal the day before surgery [16]. The ideal solution for hepato-biliary surgery involves
a method of biliary visualization that is on-demand, real-time and fused with existing
surgical platforms. In summary, the current methods for pre-operative planning involve
static models for risk prediction and a variety of imaging modalities, requiring clinicians
to interpret and extract data from images manually. The use of pre-operative imaging for
intra-operative navigation remains underutilized. The technologies with the most potential
to enhance pre-operative planning in hepato-biliary surgery include AI, 3D visualization
and XR, and are discussed as part of this review (Figure 1).

Figure 1. Innovation in pre-operative planning.

3. Generative Artificial Intelligence for Pre-Operative Planning
Generative artificial intelligence (GenAI) is set to revolutionize many industries and

is rapidly gaining applications in healthcare [17]. This technology is characterized by
extraction, structuring, analysis and synthesis of large datasets. GenAI is a specific domain
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within deep learning which is able to generate various outputs, such as text, images or code,
outside of predefined constraints [18]. A recent development within GenAI set to increase
its use is natural language processing, enabling computers to understand and manipulate
text and speech [19]. This has led to the advent of GenAI chatbots, which in surgery are
already being used to analyze data, automate literature reviews and draft surgical academic
manuscripts [20]. These developments allow the surgeon to interact with GenAI which is
now capable to learn from various forms of data. One of the newest forms of a chatbot was
trained on available text from the internet, using a total of 45 terabytes of data [21]. There
is an unprecedented opportunity to harness the power of GenAI to process large clinical
datasets and generate outputs that can enhance pre-operative planning.

3.1. Predictive Analytics for Risk Stratification

The current difficulties in patient selection for hepato-biliary surgery lie with the
heterogeneity of liver disease. PHLF risk is associated with a multitude of clinical variables
including a rise in nonalcoholic steatohepatitis, patient factors that change dynamically and
acquired dysfunction such as chemotherapy-associated liver injury (CALI) [22]. Individual
models have been developed to assist in risk stratification, such as the APRI + ALBI model
which can predict clinically significant PHFL with an AUC of 0.77 [23]. This captures the
biochemical hepatic function, without a metric expression of individual liver structure
and health. The accuracy could be improved using integrative models that combine
quantitative volumetry with hepatic function models. A signal towards this has already
been shown in early studies. Mai et al. developed an artificial neural network model (a type
of machine learning involved in GenAI) to predict severe PHLF for patients undergoing a
hemihepatectomy for hepatocellular carcinoma (HCC) [24]. Using clinical variables and
combined volumetry, the model was able to predict severe PHLF with an AUC of 0.880,
in their retrospective cohort study. Similar models are also being developed to predict
outcomes in patients with pancreatic cancer [25]. This shows the potential for GenAI to
improve risk prediction. Further variables could be integrated to increase the accuracy,
such as live patient data on physical fitness from wearable devices or up-to-date liver
imaging. Clinical teams will be empowered with GenAI-powered predictive analytics to
make the best decisions for patients.

In addition to single outputs that inform decisions, GenAI could assist with complex
decision-making in hepato-biliary surgery. GenAI technology is the perfect solution to
process different data forms into a clinician-facing output that can be used in risk prediction
and patient selection for hepato-biliary surgery. The solution could be used routinely
in multi-disciplinary tumor (MDT) board meetings. The chatbot ChatGPT 4.0 (OpenAI,
San Francisco, CA, USA) was recently tested as part of a MDT meeting for colorectal can-
cer [26]. The GenAI system was able to deliver appropriate treatment plans when provided
with 157 real-world cases. The highest degree of concordance was seen for post-operative
decisions (kappa coefficient = 0.876, p < 0.001), with lowest agreement in pre-operative
decisions (kappa coefficient = 0.271, p = 0.003). The authors explained this difference by
the lack of consensus between institutions on neoadjuvant and surgery-first pathways.
It is likely that hepato-biliary decisions, particularly on neoadjuvant and surgery-first
approaches to liver tumors, will face similar problems. However, the capacity for GenAI to
process more data should overcome the initial disagreements that may occur. The result
could involve efficient, on-demand and accurate decision-making for patients with a new
diagnosis of hepato-biliary malignancy, fast-tracking to the most optimal treatment to
improve their outcomes. The GenAI solution would work 24 h per day, appropriately
selecting treatment options for patients at the time of diagnosis. The potential to improve
outcomes in hepato-biliary malignancy through this is substantial.
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3.2. AI-Driven Imaging

Imaging is key to planning hepato-biliary surgery, and each modality has its own
strengths and limitations. The combination of CT, MRI and US into one 3D image would
enable clinicians to visualize hepato-biliary anatomy in the best possible detail (Figure 2).
Although this concept has been present for years, limitations in image processing have
prevented the wider adoption of image fusion in clinical practice [27]. For hepato-biliary
anatomy, discrepancies in viscera motility, respiration, heart rate and body movement
between images can make co-registration of different modalities challenging. Manually
overlaying images, such as MRI images for bile ducts against vascular structures from a CT
scan, can be a time- and resource-consuming process. Advances in AI now provide learning-
based methods which can automatically perform image fusion, improving the accuracy,
adaptability and speed of co-registration for different modalities [28]. The learning-based
methods can account for discrepancies between images to create one fused 3D reconstruc-
tion. Soon, clinicians could create 3D reconstructions of hepato-biliary anatomy using
multiple imaging modalities at the click of a button. It is possible that the use of fused
imaging will generate positive changes to patient pathways and outcomes, similarly to
the results of the CAMINO trial. The developments in automatic segmentation are also
important to note. Image segmentation algorithms identify and delineate specific anatomi-
cal structures, which can assist in image diagnostics or 3D reconstruction. The algorithms
used to deliver this are long established, however, they are limited by imaging artifacts,
such as noise and partial volume defects, and are not generalizable to different anatomical
areas [29]. AI methods for image segmentation, such as convolutional neural networks
or generative adversarial networks, can learn complex image features, increasing the seg-
mentation accuracy and the generalizability of models [30]. The automation of this process
using AI will have significant resource and cost savings for healthcare systems. With
these limitations unlocked by AI, it is likely that imaging fusion will feature in routine
hepato-biliary surgery planning.

 

Figure 2. Illustration of imaging fusion for hepatic anatomy.

The utility of 3D reconstructions has been previously described in the literature for
hepato-biliary surgery. Fang et al. used 3D models to plan resections for centrally located
HCC in a retrospective cohort study [31]. For the 3D model intervention group (n = 60), a
significant decrease was observed in operative time (294.5 ± 61.9 min vs. 324.3 ± 83.1 min;
p = 0.028), rate of hepatic inflow occlusion (51.7% vs. 71.4%; p = 0.029) and major com-
plication rate (3.3% vs. 14.3%; p = 0.048) compared to the control group. Although this
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is early evidence, it provides a signal towards improved outcomes because of enhanced
pre-operative planning. With medical software for 3D reconstruction of hepato-biliary
anatomy becoming more readily available, it is likely that further evidence of benefit will be
generated in the near future (Figure 3). Another possible advantage involves the uptake of
minimally invasive surgery. It is possible that enhanced visualization using 3D reconstruc-
tions facilitates an increase in laparoscopic or robotic approaches to hepato-biliary surgery,
which are known to positively influence patient outcomes. In conclusion, GenAI has the
potential to revolutionize patient selection, combining multiple data inputs, including
established clinical parameters and novel data points, such as wearable device recordings,
to generate accurate risk prediction outputs for clinicians. These outputs may include
MDT recommendations, providing on-demand decision aids for healthcare teams. AI is
also set to enhance pre-operative imaging, enabling automatic fusion of multiple imaging
modalities, to create a single- and fused-image output that aids anatomical understanding.
These outputs can be displayed in 3D models, which are already showing an early signal
of benefit for pre-operative planning.

(a)  (b) 

Figure 3. Images from HoloCare© Studio for liver surgery planning, 3D reconstructions of CRLMs
using portal venous phase CT images (blue: hepatic veins; purple: portal veins; yellow: CRLM).
(a) Single large CRLM threatening FLR; (b) multiple CRLMs in close proximity to hepatic and
portal veins.

4. Extended Reality and Navigation Systems
4.1. Immersive Technologies

A new technology gaining large interest in healthcare is XR. XR is an umbrella term
encompassing all forms of new devices that alter the human-computer interaction [32]
(Figure 4). This includes virtual reality (VR), where the user sees digitally rendered images
without the physical world, augmented reality (AR), involving the physical world aug-
mented by digital information and mixed reality (MR), which uses a mixture of methods
to blend the physical and digital world for the user. A potential use involves the display
of 3D holograms for surgical planning. Hepato-biliary surgeons require ample training
to be able to visualize complex anatomy using a 2D scan to formulate a mental 3D image.
The 3D visualization technology eliminates this step and with XR enables the surgeon to
interact with individual patient anatomy in an immersive environment. This could enhance
the pre-operative planning through a better understanding of patient anatomy. The next
stage involves bringing XR to the operating theatre and utilizing the imaging abilities for
surgical navigation.
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Figure 4. Graphical illustration of extended reality technology.

4.2. Surgical Navigation Systems

3D model display using XR can now be used in the operating theatre. Holograms can
be displayed in a variety of ways tailored to the operative approach, using direct overlay
onto the patient in open surgery, virtual display on a laparoscopic monitor or using mixed
reality that is fully integrated within a surgical robotic platform. This enables the hepato-
biliary surgeon to visualize specific anatomy in the operating theatre, anticipating key
steps such as vascular ligation or tumor dissection. We hypothesize that this in turn leads
to more efficient operating, as the surgeon progresses with greater confidence, reducing
operative times. Ultimately, XR navigation systems could decrease complication rates and
improve cancer resection margins through improved operative performance. The potential
for improved patient outcomes is substantial. Early XR navigations systems have already
been utilized and documented in the literature. Table 1 summarizes examples of studies
which have evaluated XR surgical navigation systems for hepato-biliary surgery.

XR navigation systems have been used for a variety of hepato-biliary procedures,
including liver resection, pancreaticoduodenectomy and laparoscopic cholecystectomy
(Table 1). The current evidence is derived from early evaluation studies, as expected
for an evolving technology at this stage. However, a signal towards improved patient
outcomes for hepatectomy has been shown in some studies. The potential applications of
XR show promise for hepato-biliary surgery. For example, imaging in the form of US or
magnetic resonance cholangiopancreatography (MRCP) could be used to develop mixed
reality holograms for laparoscopic cholecystectomy. Using AI-powered segmentation
and image overlay in a laparoscopic platform, the surgeon would be able to visualize
biliary anatomy in real-time, without additional preparation. This would be a useful
surgical tool without the drawbacks of current visualization systems, for example ICG
which requires intravenous administration. The ability to visualize biliary anatomy may
decrease the risk of BDI, and therefore improve patient outcomes. The developments in
XR technology now enable the hepato-biliary to interact with imaging in an immersive
environment, providing a better appreciation of individual patient anatomy. XR can also
be used for navigation in the operating theatre, which is already showing improvements
in liver resection outcomes. The described technologies could revolutionize pre-operative
planning and surgical performance for patients with hepato-biliary conditions.
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Table 1. Clinical studies using XR technology for surgical navigation in hepato-biliary surgery.

Ref. n Intervention/Surgery Performed Results Significant Findings

[33]
85

Augmented reality navigation
system/laparoscopic anatomical

hepatectomy for primary liver cancer

Length of stay:
Intervention = 7 days

Control = 10 days
p = 0.003

Decreased length of stay and
estimated blood loss in the
augmented reality group

Estimated blood loss:
Intervention = 200 mL

Control = 300 mL
p = 0.002

[34]

45

Mixed reality navigation combined
with intra-operative

ultrasound/laparoscopic anatomical
hepatectomy for primary liver cancer

Estimated blood loss:
Intervention = 103 mL

Control = 259 mL
p < 0.001

Complication rates:
Intervention = 1

Control = 7
p = 0.021

Decreased estimated blood loss,
complication rates and operative
time in the mixed reality group

Operative time:
Intervention = 135 min

Control = 199 min
p < 0.001

[35]

7 Augmented reality navigation for
pancreaticoduodenectomy

Estimated blood loss:
Intervention = 901 mL

Control = 825 mL
p > 0.05

No significant differences

Operative time:
Intervention = 412 min

Control = 425 min
p > 0.05

[36]

27 Augmented reality navigation for
laparoscopic cholecystectomy

Estimated blood loss:
Intervention = 0 mL

Control = 0 mL
p > 0.05

No significant differences

Operative time:
Intervention = 74 min

Control = 58 min
p > 0.05

5. Surgical Education, Training and Patient Involvement
Beyond immediate clinical utility, AI and XR offer significant potential in training

the next generation of surgeons. Pre-operative planning tools that use 3D visualization
or AI-guided scenarios can accelerate learning curves for junior team members and im-
prove anatomical understanding for trainees [37–39]. XR environments can simulate rare
or complex cases, offering safe and repeatable exposure outside the operating theatre.
Moreover, AI algorithms can provide objective feedback on performance, enabling data-
driven progression assessments [40]. These innovations may be particularly impactful in
lower-volume centers where hands-on training opportunities are limited. Furthermore, this
technology may enhance patient engagement, 3D reconstructions and holographic models
can be used during consultations to visually explain surgical procedures and associated
risks (Figure 5). This could improve patient understanding, reduce anxiety, and foster
shared decision-making [41]. Furthermore, AI tools capable of synthesizing individual risk
profiles may enable more personalized discussions around expected outcomes, helping
align treatment strategies with patient preferences and values. The applications of AI
and XR are therefore not limited to pre-operative planning, and could be used to enhance
surgical training, through simulated scenarios with objective data-driven assessments of
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performance. Another potential application involves patient consent, improving patient
understanding through interactive 3D reconstructions of anatomy and surgical procedures.

Figure 5. Picture illustrating patient consultation using a 3D hologram. Image from HoloCare©.

6. Current Challenges and Limitations
To bring these technological advances into routine hepato-biliary practice, several

current limitations must be addressed. Data is key to training accurate AI algorithms
which can process complex data. Although public databases of open-source images exist
(The Cancer Imaging Archive, USA), they are limited in scope, preventing model gener-
alizability [42]. There is a need for high quality, robust and ethically and data protection-
compliant databases with image data and metadata for AI training. This should be achieved
through effective collaboration between different healthcare institutions, and it is already
a priority for European Union (EU)-funded projects [43]. Creation of such databases will
help to create accurate and effective AI models for pre-operative planning in hepato-biliary
surgery. In addition to technical considerations, ethical and legal issues present critical
barriers to widespread adoption. Robust data governance frameworks must ensure patient
privacy, informed consent, and responsible AI usage. For instance, under the General
Data Protection Regulation (GDPR) in the EU, any use of clinical data must maintain strict
anonymization and transparency in data processing. Moreover, AI models trained on
historical datasets must be scrutinized for potential biases that could perpetuate health
inequities. The development of explainable AI algorithms is therefore essential to support
clinician trust and accountability in clinical decision-making. Another area to address is
standardization of research. As the fields of AI and XR involve rapidly evolving technology,
safety of novel interventions must be ensured through effective research reporting. Loftus
et al. reviewed 36 studies exploring AI decision support for surgery and found that a minor-
ity of research reported external validation (13.8%), real-time validation (5.6%) and clinical
implementation frameworks (36.1%). Innovation in surgery should be reported in line
with established frameworks, such as the Idea, Development, Exploration, Assessment and
Long-term follow-up (IDEAL) framework, to develop robust evidence of clinical benefit
for patients [44]. Accordingly, various frameworks for reporting AI in research, such as
CONSORT-AI or DECIDE-AI, have been developed and their use should be employed more
widely for surgical decision-making research [45]. Currently, there are no available frame-
works for XR studies in surgery and this should be developed to facilitate safe and effective
research. Another limitation relates to the early development stage of these technologies.
The research described in this review features mostly interventions confined to a single
clinical condition and usually involving a specific clinical intervention (such as decision-aid
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or mixed reality display of images). To facilitate wider adoption of AI and XR, technologies
must be developed to address inter-disciplinary clinical problems. For example, a platform
for MDT decision-making should involve different cancers and oncological subspecialities
in one system. In the case of XR, interventions should be developed to work across different
surgical laparoscopic and robotic platforms. Tools enabling decision-assistance for multiple
clinical problems in different healthcare environments are more likely to be implemented,
leading to wider adoption.

The limitations outlined can be addressed with further technological developments
and research. As with any new technology, cost is a concern for healthcare systems when
considering adoption into clinical practice. Economic considerations are pivotal in deter-
mining the real-world impact of AI and XR innovations. Upfront costs for infrastructure,
software and training can be substantial. However, these may be offset by long-term gains,
such as reduced complication rates, shorter operative times, lower readmission rates and
substantial gain of clinical experience. Cost-effectiveness analyses comparing traditional
planning with AI-assisted or XR-integrated pathways will be important to support policy
decisions, especially in resource-constrained settings. Additionally, equitable access must
be considered to prevent the emergence of a technological divide across surgical institu-
tions. An additional benefit of AI and XR to consider in the cost-effectiveness analysis is in
surgical training. For pre-operative planning, many years of clinical experience are required
to process patient data and images to formulate appropriate surgical plans. We hypothesize
that AI and XR assistance will be of most value to the early-career hepato-biliary surgeon.
There is a well-documented association between the experience of a surgeon and patient
outcomes when undergoing hepato-biliary surgery [46,47]. The ability to generate decision
aids and operative plans through the use of AI and XR could accelerate the learning of
an early-career hepato-biliary surgeon. Although the cost–benefit may not be seen in
experienced centers, the benefits for surgeons building their clinical experience should be
investigated in future research and cost analysis.

7. Conclusions
Pre-operative planning for hepato-biliary surgery is essential in ensuring appropriate

decision-making for patients and the best possible outcomes. Advances in AI and XR tech-
nologies provide new tools for the hepato-biliary surgeon. AI could soon be used to provide
on-demand and accurate risk prediction and treatment plans for patients. Traditional 2D
images from different modalities could be transformed using AI into 3D holograms involv-
ing fused images from CT, MRI and US scans. These can now be displayed in an immersive
environment using XR technology, enabling the clinician to interact with the anatomy,
make surgical plans and navigate in the operating theatre. Both technologies could be used
to simulate rare and challenging scenarios for surgeons in training, accelerating learning
curves. Limitations include data availability, ethical considerations, research reporting
and lack of inter-disciplinary AI/XR platforms. These must be addressed to improve
the development and adoption of these new technologies. The future of pre-operative
hepato-biliary planning will transform patient care, empowering clinicians and patients
with more data to facilitate the best possible outcomes.
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