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Abstract

The coupling of microscopic traffic simulation models with emission models offers a powerful tool
for assessing and optimising traffic control strategies to reduce fuel consumption and vehicle
emissions. Although many studies use traffic simulation for emission analysis and designing traffic
control measures, most focus on calibrating a selected traffic model to replicate observed traffic
flow. This raises a critical question: are the resulting optimal emission control strategies adequately
designed to account for the sensitivity of traffic models in capturing vehicle dynamics and
emissions? To address this issue, we compared three car-following models-the Krauss model, the
Intelligent Driver Model, and the Wiedemann model-each rooted in distinct theoretical
frameworks to understand traffic dynamics. We evaluated their performance in optimising road
speed limits to minimise (PM,) emissions in a school case study. A school was selected as the case
because children are highly vulnerable and particularly exposed to pollutants during their school
commute, and their exposure can be mitigated through optimal traffic control. Our findings reveal
that, even when tuned to achieve comparable levels of traffic flow, the models displayed significant
differences in their objective functions for traffic control optimisation. These discrepancies
stemmed from variations in fuel consumption and particulate matter (PM,) emission patterns
resulting from the traffic dynamics captured by the selected traffic model. At a macroscopic level
(e.g. average speed, flow, and density), the models exhibited minimal differences. However, at a
microscopic level (e.g. acceleration, deceleration rates, and deviations from the mean),
pronounced differences became evident. These results highlight that while certain traffic control
strategies appeared less effective, revisiting and critically examining the limitations of the models is
essential to ensure robust and tailored solutions for emission reduction.

1. Introduction

Road traffic, vital for the movement of passengers and goods, has been rapidly increasing in many parts of
the world, leading to serious environmental and economic challenges (Din et al 2023). It is estimated that
70% of global CO, emissions are from urban areas, with transport and buildings being the largest
contributors (United Nations 2024). Moreover, the traffic contribution to air pollution (particulate matter)
varies from 5% to 61% in cities worldwide, with an average of 27% (Heydari et al 2020). The degradation of
air quality caused by rising vehicular emissions in urban areas is now a major health concern. Emissions
contribute to a range of health issues, including respiratory and cardiovascular diseases, and even premature
deaths (Irin and Habib 2016). Populations in areas with a high number of active travellers and lower-income
residents are especially exposed to elevated pollution levels (Li et al 2017, Xu et al 2019), with children and
the elderly being particularly vulnerable (United Nations 2019).

© 2025 The Author(s). Published by IOP Publishing Ltd
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The task of achieving an efficient traffic flow while lowering emissions has emerged as an important area
of research, especially in crowded urban areas where congestion increases both environmental and economic
burdens. To address these challenges, many cities are adopting traffic control strategies as part of sustainable
transport planning—such as variable speed limits (Lee et al 2006, Khondaker and Kattan 2015), adaptive
signal control (Midenet et al 2004, Day et al 2012), ramp metering (Grzybowska et al 2022), high-occupancy
vehicle lanes (Cohen et al 2022) and congestion pricing (Zong et al 2024). However, the effectiveness of these
control measures largely depends on the intricate interplay among the chosen control strategies, traffic
conditions and their dynamics, and the robustness of the adopted modelling framework used to identify
optimal solutions.

Advanced traffic management systems encompass traffic information, traffic assignment, traffic
optimisation, and traffic prediction (Shahgholian and Gharavian 2018). Among these, traffic optimisation
has been a critical link integrating the other components into a cohesive system aimed at improving flow,
safety, and efficiency. When optimisation algorithms are applied for designing environmentally-focused
traffic control measures, they strive to achieve the objective of reducing emissions indirectly through
adapting the traffic flow. Optimisation algorithms in traffic control problems aim to determine the optimal
values of decision variables, which represent the implementation of the optimal control policies to achieve
the desired objectives. Evidence indicates that adopting optimal solutions such as optimum speeds tailored to
road environments can lead to an 11% increase in travel time, 17% reduction in casualty crashes, and 7% to
18% decrease in air pollution emissions (Cameron 2022).

Despite the increasing interest in traffic control strategies aimed at reducing emissions, and in spite of
numerous studies examining optimal control policies, the sensitivity analysis of optimal solutions based on
selected sub-models—whether traffic models or emission models—remains a significantly understudied
topic. Several critical gaps must be addressed to determine whether a given control measure is a worthwhile
solution. This study aims to develop a more in-depth understanding of two key issues related to optimising
traffic control measures for emissions reduction by:

(1) comparing the performance of different microscopic traffic models—specifically three car-following
(CF) models of different genres—in measuring emissions.

(2) presenting a sensitivity analysis of optimal control solutions under various CF models used to simulate
the vehicle trajectories.

The following section provides a detailed background justifying the need for this study and offers a
critical evaluation of the selected approach. This is followed by a detailed description of the methodology
and data analysis employed. The core section of the article presents a comprehensive report of the findings
from the comparative analysis and sensitivity tests. Finally, the paper concludes with a discussion that
integrates the key insights from the study and offers relevant policy recommendations for those tasked with
designing optimal traffic control strategies to reduce emissions.

2. Literature review

This section aims to highlight relevant literature that supports the understanding of the study’s primary
research contributions.

2.1. Optimisation and traffic control strategies

Traffic control measures are a widely acknowledged tool for improving network performance through
congestion reduction (Yan et al 2023, Gottlich et al 2024, Zhang et al 2024). In recent years, there has been an
increasing focus on the development and application of optimisation-based traffic control strategies, driven
by the dual objectives of improving traffic flow efficiency and minimising vehicle emissions. For instance,
signal optimisation, whether for isolated intersections or coordinated networks, seeks to optimise parameters
such as green time, red time, cycle length, phase sequences, and coordination to minimise delays, fuel
consumption, and total emissions (Abudayyeh et al 2021, Jalili et al 2021). Similarly, speed limit optimisation
aims to manage throughput and improve overall traffic and environmental outcomes (Zhang et al 2023). A
somewhat different example is that of an optimised tolling strategy, which may be used to ensure the efficient
utilisation of resources while also encouraging shifts in travel modes, driving routes, and departure times
(Hasnine et al 2020). A diverse range of algorithms have been applied for determining optimal solutions,
including heuristic and meta-heuristic methods (Shaikh et al 2020, Jalili et al 2021), exact approaches

(Li et al 2011, Mohebifard and Hajbabaie 2019), and machine learning or artificial intelligence-based
methods (K6viri ef al 2022). While each optimisation approach has its limitations, the effectiveness and
robustness of the solutions are highly dependent on the clarity of the problem definition and the accuracy of
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the sub-models used to represent vehicular emissions, traffic characteristics, and their interactions. Hence,
the success of optimisation efforts in determining policies that truly improve real-world conditions relies on
the sensitivity and robustness of the underlying traffic and emission models. This highlights the critical need
for a systematic evaluation of the factors influencing vehicular dynamics and emissions, in the context of
environmentally-focused traffic control, in order to ensure the control measures actually deliver the
anticipated improvements in the real-world.

2.2. Factors affecting vehicular emission

Vehicular emissions are influenced by a range of factors, including individual decisions, as well as
vehicle-specific characteristics. For example, shifting from motorised transport to active modes such as
cycling or walking can substantially reduce emissions, especially for short- to medium-distance trips (Rabl
and De Nazelle 2012). Among various types of motorised vehicles—private cars, auto-rickshaws, and heavy-
and light-duty vehicles—the emissions from private cars play a significant role in air pollution (Ajayi et al
2024). Global statistics indicate that private transport dominates transportation worldwide, with emissions
from private cars contributing to 73% of urban air pollution (Lindau 2015). The type of engine and fuel also
heavily impact emission levels. Diesel engines, for instance, emit higher levels of carbon monoxide (CO),
hydrocarbons (HC), particulate matter (PM,), and nitrogen oxides (NO,) compared to gasoline engines
(Kumar et al 2021). This is largely due to incomplete combustion and underutilised fuel, which release
harmful chemicals into the atmosphere, disrupting ecosystems. In addition to vehicle conditions, driving
behaviour, environmental factors, and weather conditions all affect emissions. Stop-and-go traffic, idling,
aggressive driving (e.g. rapid acceleration and braking), and high speeds contribute to increased fuel
consumption and emissions (Toledo 2007, Kousoulidou et al 2013, Rodriguez et al 2016, Gallus et al 2017,
Llopis-Castell6 et al 2018, Abdull et al 2020, Harrison et al 2021, Shang et al 2021). Therefore, to effectively
reduce traffic-related emissions and implement control policies, it is crucial to investigate how vehicular
maneuvering (e.g. speed, spacing, acceleration, deceleration) and different driving conditions (whether at an
intersection, on highways, a congested downtown street, or in varying weather) contribute to pollution.

2.3. Traffic models in emission measurement

A key factor in accurate emission estimation lies in how effectively different traffic models capture vehicle
dynamics, as this directly impacts the reliability of the optimum results. Modelling traffic flow allows a great
variety of different traffic models - (1) macroscopic models are based on average quantities such as vehicle
density and average flux (e.g. Lighthill Whitham and Richard model (Lighthill and Whitham 1955, Richards
1956), Payne-Whitham model (Payne 1971), Aw and Rascle’s and Zhang’ model (Aw and Rascle 2000, Zhang
2002)), (2) microscopic models describing individual vehicle dynamics (e.g. acceleration, lane changing and
gap acceptance model (Toledo 2007)), and (3) meso-scopic models where individual vehicles moved
according to dynamic laws that are governed by macroscopic rules (e.g. headway distribution models, cluster
models, gas-kinetic models (Kessels and Kessels 2019)). Previous studies have used various traffic flow
modelling frameworks to understand the traffic dynamics at different levels of resolution. While macroscopic
traffic flow models have been often used for highway flow modelling (Kotsialos et al 2002, Ngoduy and
Maher 2012), other studies have highlighted the suitability of microscopic traffic simulation for
understanding urban local area traffic movement. One of the most important components of any
microscopic traffic flow models is the CF model, which describes a vehicle’s longitudinal behaviour and
interactions with the leading vehicle or vehicles in the same lane. In essence, these models assume that drivers
aim to control vehicle velocity to maintain a safe and comfortable following distance. The first CF model was
developed around the 1950s by Reuschel (1950) and Pipes (1953), and since then a large number of CF
models have been proposed. Depending on the focus of the development, they can be categorised as:
stimulus-response model (e.g. Gazis-Herman-Rothery model (Gazis et al 1959), Optimal Velocity Model
(Bando et al 1995), Intelligent Driver Model (IDM) (Treiber et al 2000), Tampere model (Tampere 2004)), a
collision avoidance model (e.g. Pipes model (Pipes 1953), Gipps model (Gipps 1981), Krauss model (Krauss
1998)), a psycho-physical model (e.g. (Wiedemann 1974)), or an artificial intelligence model (e.g. fuzzy logic
(McDonald et al 1997), neural network model (Panwai and Dia 2007), or combination of both). Each model
is designed to handle a particular aspect of car-following behaviour, encompassing a separate set of
assumptions, parameters, and intended usage. Research in the literature on emissions has attempted to
predict traffic movement in urban areas by using traditional CF models (e.g. Song et al (2015) used
Wiedemann’99 and Fritzsche models, Chauhan et al (2019) used Wiedemann 74 model), or by extending an
already-existing model for that purpose (e.g. Meng et al (2021) used a modified Newell’s model), or by
developing a new, special purpose model (e.g. Meng et al (2024) proposed a new CF model considering the
stochastic process of acceleration). While the availability of different models provides a wide range of
investigation options for those wishing to control traffic flow, the wider choice also brings with it the
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uncertainty as to the effect of model selection on the optimal policies. The empirical study by Song et al
(2013) reveals that even after fine-tuning calibration, different CF models can produce varying emission
estimates due to their differing abilities to accurately capture speed and acceleration dynamics. This finding
underscores the importance of selecting an appropriate traffic model, as this choice may directly impact both
the objective function and decision variables of an environmentally-focused optimisation problem.

2.4. Emission models and their sensitivity to traffic dynamics

Like the traffic model, the accuracy of emission estimates heavily depends on the capabilities of various
emission models, as each model approaches the calculation of vehicular emissions in distinct ways. Efforts
have been made to develop different emission models to measure emissions from traffic at various levels of
resolution and complexity. Macroscopic emission models are based on parameters such as average driving
speed and vehicle type, and are usually used to determine the impacts on a larger regional scale. COPERT
(Abdull et al 2020, Ali et al 2021), MOBILE developed by US EPA (Koupal et al 2002), and EMission FACtor
(EMFAC) developed by the California Air Resources Board (Bai et al 2009) are widely used macroscopic
average speed models. Since these models are intended to predict emission inventories for large regional
areas, they are not well suited for evaluating operational improvements that are more localised in nature,
such as at signals, bottlenecks and on urban local roads (Scora and Barth 2006). Besides the average speed
based approach, ARTEMIS (André 2004) and HBEFA (Colberg et al 2005, Notter et al 2021) both utilise the
traffic situation (kinematics) while calculating emission factors. However, these models ignore the
acceleration and deceleration of vehicles. On the other hand, microscopic emissions models such as
VERSIT+ (Jie et al 2013), Comprehensive Modal Emissions Model (Scora and Barth 2006) and Passenger
Car and Heavy Duty Emission Model (PHEM) (Wyatt et al 2014) estimate emissions based on
second-by-second data on vehicle speed and acceleration patterns. Therefore, the effectiveness of the
emissions’ estimation and, by extension, of the optimisation model used to minimise emissions depend not
only on the type of traffic model employed but also on the emission model’s ability to capture variations in
speed and acceleration and their potential impact on air pollution.

2.5. Microsimulation approach for emission control and traffic management strategies

Parallel to the advancements in traffic and emission models, recent years have witnessed a surge of interest in
the transport field in utilising microsimulation tools to model traffic on road networks and to optimise traffic
control measures. Microsimulation models are attractive for such analyses because they are based on the
explicit representation of individual driver behaviours and the real-time space-time trajectories of individual
vehicles. These models are able to capture the intricacies of vehicle trajectories, and provide vehicle operation
data at high spatial and temporal resolution, including instantaneous speed and acceleration (Liu et al 2006,
Madireddy et al 2011, Irin and Habib 2016). These vehicle operation data are essential inputs for detailed
emission predcitions and thereby for optimisation models aimed at reducing emissions. Such models allow
for the estimation of emissions both before and after the implementation of local traffic management
interventions, such as signal timing optimisation or one-way traffic management. SUMO (Simulation of
Urban MObility), VISSIM, AIMSUN are examples of such widely-used microsimulation tools used in such a
context (Day et al 2012, De Coensel et al 2012, Alshayeb et al 2022). Research has shown that integrating
microscopic traffic models, such as CF and lane-changing models, with emission models enables a more
accurate quantification of the relationship between local traffic operations and emissions (Stevanovic et al
2009, Madireddy et al 2011, Irin and Habib 2016, Fan et al 2019, Zhao et al 2022).

2.6. Research gaps

While micro-simulation approaches are frequently employed to evaluate traffic control strategies by
simulating traffic flow, it is a usual practice to select a single traffic model (Zhao et al 2019). Although
comparative studies exist in the literature that compare predicted vehicular trajectories using different traffic
models (Song et al 2013), there is limited consideration of how the choice of traffic model impacts emission
measurements, or of the consequential impacts on traffic control measures aimed at reducing emissions.
This gap raises a critical question: are current traffic control designs aimed at reducing emissions achieving
genuinely optimal solutions, or are they constrained by the limitations of a particular traffic model?

As previously discussed, different CF models account for various aspects of driver behaviour, vehicle
dynamics, and traffic characteristics. The assumptions in these models—such as how a vehicle accelerates,
decelerates, or maintains a gap—directly impact on the prediction of emissions in the corresponding
emission models, which could lead to significantly different outcomes in the design of emission control
strategies. Through our experimental investigation in this study, we aimed to answer the following sequence
of inter-linked research questions:
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o To what extent do variations in the assumptions of a CF model lead to differences in emissions outputs?
e Are these emissions substantially different across different models?
e How does this variation impact optimal policy measures to minimise emissions?

In particular, we chose to investigate the minimisation of PM, around a school area in the Bradford district,
UK, achieved by applying speed control measures. A school was selected as the case because children are
highly vulnerable and particularly exposed to pollutants during their school commute, and their exposure
can be mitigated through optimal traffic control.

3. Methodology

This study aims to investigate the sensitivity of traffic control measures designed under various CF models. A
specific focus was placed on evaluating the objective function of the optimisation model, and optimal
solutions at a point of interest: Shipley C.E. Primary School in the Bradford District, United Kingdom. This
location was chosen due to its strategic position along Otley Road, a major thoroughfare with high vehicular
traffic intersecting Bradford Road (see figure 1). The methodology consists of five key stages: (1) Defining
the optimisation problem, (2) Selecting models for traffic simulation, (3) Pairing the traffic simulation with
a suitable emissions model, (4) Designing experiments to analyse emissions estimates, and (5) Comparing
different traffic models to identify optimal strategies for emission reduction near the school. The ultimate
aim was to gain insights into the robustness of traffic control strategies for urban emissions management
with respect to the traffic model selection.

3.1. Optimisation problem
In our study, we focused on the problem of minimising emissions via optimising the speed limit. Hence,
given a fine, discretised time-scale of the problem, the optimisation problem can be expressed as:

N T
min E; (t) At. (1)
i3> )
Here, E;(¢) is the instantaneous emissions of PM, for vehicle i during time step ¢. The decision variable
(speed limit) must adhere to the practical and legal constraints for local roads i.e. Vin < Viimir < Viax- The
total emissions of PM, during the simulation period T depends on the sub-models (traffic model and
emissions model) that translate the impact of the speed limit during the traffic flow simulation and emission
estimation.
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Figure 1. Study location and simulation area.
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3.2. Selection of traffic model

The selection of a suitable model for local-level emission measurement is influenced by several factors to
ensure it accurately represents traffic conditions and produces reliable emission estimates. In our study, a CF
model was deemed appropriate, as emissions at the local scale of the case-study are particularly sensitive to
stop-and-go traffic patterns, congestion, and queuing. For this research, we selected three well-established
CF models, representative of different families of models: the Krauss model, from the collision avoidance
family; the IDM, from the stimulus-response family; and the Wiedemann model, representative of the
psycho-physical modelling perspective. These models were chosen because they operate under different
assumptions and emphasise distinct aspects of driving behaviour. This diversity allows for a comparison of
how each model responds to identical traffic scenarios, offering valuable insights into their suitability for
emissions-related studies.

3.2.1. Krauss model

The Krauss model proposed by Krauss (1998) assumes that a vehicle’s movement is restricted by a maximum
velocity Viuax, and that the driver selects a velocity that is not greater than the maximum safe velocity, V.
Based on these assumptions, the model describes how a following vehicle interacts with the preceding cars
and how drivers attempt to avoid collisions by maintaining a distance that accounts for their speed and
reaction times. Both positive and negative accelerations are considered to have a limit (—b < % < a, where
a>0,b> 0). Let the leader is at position x; with velocity v;, and the follower at position x with velocity vy. If
the length of vehicle is L, and the gap between the two vehicles is g, then the speed and position of follower
vehicle after reaction time At can be defined as:

ve(t+ At) = max [0, vae (£) — 1] (2)
xf(t—|— At) ZXf(t)—i-VfAt (3)

Here, the desired velocity, v is formulated as:
Vies (f) = min [vmux, Vve(t) + alAt, veape (t)] (4)
where, the safe velocity, vy, is defined as:

t) — Qdes (
Vsufe (t) =V (t) + g(v?;rbvfgj—'r() (5)

In equation (5), 7 (= At) is the reaction time of the drivers. The gap between vehicles, g and the desired
gap, g4es can be defined as:

g(t)=x(t) —x(t) - L (6)
8des = TV] (7)

In equation (2), The random perturbation 7 > 0 was introduced to allow for deviations from optimal
driving. In our simulation we assumed 7 = At. The Krauss model is often used in microscopic traffic
simulations due to its simplicity and computational efficiency.

3.2.2. IDM model

The IDM proposed by Treiber et al (2000) is a widely used CF model that accounts for realistic driving
behaviour, such as acceleration and deceleration in response to surrounding vehicles. It incorporates factors
like desired speed, minimum spacing, and a time headway to model the interaction between vehicles. IDM is
known for its ability to generate smooth and adaptive driving behaviours in various traffic conditions. Using
IDM, the acceleration of the following vehicle a/(t) at time ¢ can be determined using the following equation:

ar(t) =a 1—<Vf(t)>6—<gd“)2 (8)
f max Vies q ( l’)
where, a4, is the maximum acceleration, v/(t) is the current velocity of the following vehicle, v, is the
desired velocity, § is the acceleration exponent, g(t) is the actual gap between the leading and the following
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vehicle, and gg; is the desired gap. The position of the following vehicle x at time ¢ + At is updated using the
following kinematic equation:

1
xp(t+ AL) = xp () + viAr + Eaf(At)z. (9)
The gap g(t) between the follower and leader is defined as in equation (6). The desired gap, gus is given by:

yly—w) 0) (10)
2 V amaxb
where, g is the minimum gap (jam distance) when the vehicle is at a standstill, T is the desired time headway

(representing the time the following vehicle wishes to maintain behind the leading vehicle), and b is the
comfortable deceleration (positive value).

Qdes = g0 + max (va—l—

3.2.3. Wiedemann’s model

Among other psycho-physical models, in this study we selected Wiedemann’s (Wiedemann 1974)
two-parameter model as it is suitable for urban, low speed movements (Durrani et al 2016, Farrag et al
2020). This model operates by defining several regimes of CF behaviour based on the relative speed and
distance between vehicles. The desired distance between two stationary vehicles is given by:

dy =L+ Cp. (11)

Here, Cy = Desired front-to-rear distance, which is parametrised as 1+ 2 X r,;. At low speeds, the desired
minimum following distance is defined as:

dy =dy+B. (12)

Here, B is the speed depending term which is further parametrised as 1 + 7 X r,,; X /7. In equations (11)
and (12), r,,; is a normally distributed driver dependent parameter. The maximum following distance is
expressed as:

d2:d0+B><E. (13)

In equation (13), E is parametrised as 2 — r,,,. 1,2 is also a normally distributed driver dependent parameter.
Consequently, if S, (¢) is the vehicle spacing between the front bumper of the leader and front bumper of
follower vehicle at time ¢, the speed of follower vehicle can be determined by the following equation during

the different phase:
Sp() —do\> [ Su(t)—do\’
ve(t+ At) = min ( - B ) ,( anE > S Viax | - (14)

3.3. Selection of emissions model

Among different emissions models, the PHEM (Wyatt et al 2014) is one that estimates emissions based on
second-by-second data on vehicle speed and acceleration. To calculate the emissions for the vehicle fleet, we
used the PHEMlight emission model. PHEMIight relies on data files containing the parameters pertinent to
the modelled emissions classes. The model itself was formulated through the utilisation of characteristic
emission curves, delineating the emission quantity in relation to the actual engine power of the vehicle.
These curves were generated through PHEM, utilising representative dynamic real-world driving cycles.
Consequently, the emission and fuel consumption outputs for a vehicle during each simulation step were
derived by calculating the power requisite for the vehicle

P, = (Prg + Par + Pac + Prc) /ncB- (15)
Here,
Prr = (mVehicle + mLoad) X gX (Fro + Fry X v+ Frq + V4) XV (16)
Par = (Cdx Ax p/2) xv* (17)
Pac = (Mvehicte + Mpot + Mpoad) X a X v (18)
Prc = (Mvehice + Mioad) X Gradient x 0.01 X v (19)
ngs = 0.95 X (AE) (20)
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* % *RR = Rolling Resistance, AR = Air Resistance, AC = Acceleration, RG = Road Gradient, GB = Gearbox,
AE = Average Efficiency.

To compute the power demand, the emission factors were selected from the PHEM database, and the
coefficients were determined based on the type of vehicle and engine used by the vehicles. In our simulation,
we considered all vehicles to be passenger cars with a gasoline engine (EURO 4).

3.4. Design of the experiment

In our micro-simulation experiment, we coupled the selected CF models with the chosen emissions model to
compare the emissions estimated by each traffic model. We used SUMO, an open source traffic simulation
package (Lopez et al 2018), to carry out the experiment. The experiment consisted of three main phases: (1)
instance selection, (2) synthetic trajectory generation for vehicle movement, and (3) traffic model calibration
and emissions measurement.

(i) Instance Selection: As already noted, we focused our analysis on emissions in the neighbourhood of a
primary school. Traffic network data was sourced from OpenStreetMap, with the network layout used in the
experiment shown in figure 1. Signal phase descriptions and timings were retrieved from the Bradford
SATURN network model (detailed signal timings are provided in supplementary documents, figure S1). The
speed limit on Otley Road is 30 mph. The traffic simulation covered the period from 7:00 AM to 10:00 AM
(7:00 to 8:00 warm-up period and 9:00 to 10:00 cool-down period), with school-related traffic peaking
between 8:30 AM and 9:00 AM, aligning with the school gate opening from 8:45 AM to 9:00 AM. Based on
the school’s capacity of 220 children, the simulation assumed a maximum of 220 school-related vehicles,
corresponding to each child arriving in a separate car.

(ii) Synthetic Trajectory Generation: Synthetic vehicle trajectories were generated for the period between
7:00 AM and 10:00 AM in the vicinity of the selected school, using hourly traffic flow count data. This data
was obtained from the official website of the Department for Transport (2023). Vehicles were randomly
generated across the time interval while adhering to traffic counts observed at specific points within the
simulation area. Initially, all possible routes within the simulation area were generated using SUMO?s in-built
randomTrips tool. These routes were then used to generate the demand for routed vehicles, utilising the
routesampler tool, which combines turn-count and edge-count data. Simulation was initially conducted
using Krauss’s original model, with parameters adjusted to reflect local traffic conditions. After the
simulation, key information such as vehicle departure time, departure and arrival edges, and lane IDs were
extracted to construct synthetic trajectories. Multiple sets of synthetic trajectories were generated for
simulating scenarios involving both school and non-school traffic, as well as scenarios without school traffic.
This approach enabled us to capture variations in emissions resulting from changes in the amount of school
traffic.

(iii) Traffic Model Calibration and Emissions Measurement: To evaluate the performance of the selected
CF models in estimating emissions, it was important to first calibrate them to a similar level. This was
achieved by calibrating the IDM and Wiedemann models to produce traffic characteristics and emissions
comparable to those of the Krauss model. During calibration, common parameters such as vehicle size,
minimum gap between leader and follower, maximum acceleration, and deceleration rates were kept
consistent across all models. Only the model-specific parameters were adjusted to match the emissions or
traffic characteristics produced by the Krauss model. Table 1 provides the common and model-specific
parameters for the three selected CF models. These parameter values imposed additional constraints on the
speed optimisation model. For example, the maximum allowable acceleration and deceleration rate for a
passenger car was assumed to be 2.6 ms~2 and 4.5 m s~ respectively. In this study, we focused on
comparing PM, emissions, though similar methodologies could be applied to other vehicular pollutants. The
emissions measurement experiment included three main scenarios: (1) Single follower-leader scenario, (2)
Steady-state condition with school and non-school traffic flow, and (3) Changing school traffic flow. Various
metrics such as average speed and emissions levels were used to evaluate the models under the different
scenarios. The details of the scenarios and metrics used to compare the models are listed in table 2.

3.5. Emissions reduction strategy: speed limit optimisation
The optimal speed limit, in the context of this study, was defined as the speed limit that minimises total
vehicle emissions around the school area during the main hour of the morning school commute (8:00 AM to
9:00 AM). The speed limit was adjusted only on roads in front of the school gate, where school children
commonly walk to school between 8:00 and 9:00 (figure 1). For each CF model, we compared the objective
function representing the relationship between PM, emissions and speed limits to evaluate the models’
sensitivity in providing optimal speed limit solutions.

The simulation models were tested under a defined range of potential speed limits, from 3 ms™! to
20 ms~!. The speed limit directly affects the parameters of the CF models. It sets the value of v,,,, and,
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Traffic model Parameter Values
All selected traffic model Length of vehicle (m) 5
Minimum gap (m) 2.5
Maximum speed limit (m s7h 70
Vehicle class Passenger
Acceleration (ms™?) 2.6
Deceleration (ms™2) 4.5
Emergency deceleration (ms™?) 9
Driver’s desired time headway (7) 1
Emission class PC_G_EU4
Deviation of the speed factor 0.1
Krauss model The frequency for updating the 1
acceleration associated with driver
imperfection
Sigma 0.5
IDM model Acceleration exponent (9) 1-5 (5%)
Internal step length 1
Wiedemann model Desire for security (r,1) 0.1-1 (0.1%)
Accuracy of situation estimation (r,2) 0.5-1(1%)

Table 2. Scenario description and metrics used to evaluate and compare the models.

Scenario ID

Scenario description

Metrics used for comparison

1

Single follower-leader scenario

Total travel time (s)

Total waiting time (s)
Avg. speed (ms™ D)

Avg. acceleration (ms™?%)
Avg. deceleration (m s72)
Total PM,(mg)

Steady-state condition with
school and non-school traffic

flow

Flow-density relation

Speed-density relation

Average speed (m s7hH

Total and average fuel consumption (g)
Total and average PMy (mg g_l) emissions

Changing school traffic flow

scenario

Traffic flow
Total and average fuel consumption (g)
Total and average PMy (mg g_l) emissions

followers. For example, in the Krauss and Wiedemann model, the influence of v,,,, is reflected in
determining the velocity of the vehicle (equations (4) and (14)). In contrast, for the IDM model, the

influence of v,y is reflected through its effect on the desired velocity, which directly controls the acceleration
(equation (8)). Additionally, we assessed the impact of varying speed limit precision on emissions estimation.

Speed precision was allowed to vary across different increments —1 m s71,0.5ms™ !, and 0.1 ms

~1—to

investigate whether greater precision leads to different objective functions and optimisation solutions.

4, Results

This section presents the results of the comparative analysis of selected CF models, highlighting emissions
measurements and identifying optimal solutions for emissions reduction. For clarity, the findings are
organised into two subsections: (1) a comparison of emissions calculated using the selected CF models, and

(2) a sensitivity analysis of optimal speed limits to minimise emissions.
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Table 3. One single leader’s and follower’s trajectory profile and performance on emissions measurement across different CF models
(total trajectory length: 952 m).

Krauss model IDM model Wiedemann model
Attributes Leader Follower Leader Follower Leader Follower
Total travel time (sec) 131 133 131 133 131 134
Total waiting time (sec) 34 36 38 27 52 10
Avg. speed (ms_l) 7.254+5.56 7.19+5.28 7.22+6.11 7.15+£5.19 7.25+6.59 7.12+5.24

Avg. acceleration (m 872) 1.07 +0.80 1.01 +0.82 1.294+1.02 0.87£0.97 2.34+0.55 1.844+0.99
Avg. deceleration (msfz) 1.154+1.32 0.98+t1.15 1.14+0.78 0.89+0.86 3.11+2.04 1.0541.42
Total fuel consumption (g) 105.65 99.06 96.82 100.925 108.13 113.32
Total PMy (mg) 7.245 5.976 6.83 5.27 11.99 12.56

4.1. Emissions measurement

Since emissions measurements directly influence the emissions minimisation problem, the comparison
process progressively examines the differences among the three models: (1) single follower-leader pairs, (2)
model differences under steady-state conditions involving both school and non-school traffic, and (3) the
impact of varying school traffic flow on emissions.

4.1.1. Single follower-leader scenario

To compare the performance of each selected CF model in a single follower-leader scenario, we allowed one
follower vehicle to complete a test scenario, specifically traversing from one edge to the other of the school
instance, in response to the leader vehicle’s trajectory. The length of the trajectory was 952 meters. The CF
model parameters used in this scenario were identical to those applied in the scenario with a vehicle fleet
(scenario 2). For the IDM model, the parameters were set to § = 5, and Stepping = 1, while for the
Wiedemann model, r,,; = 0.1, r,,, = 1. These settings successfully replicated the vehicular flow of a fleet
produced by the Krauss model.

A summary of the output from this single follower-leader scenario is presented in table 3 and
supplementary figure S2. Although the primary focus of this article was on emissions measurement, we also
compared other attributes such as travel time, waiting time, average speed, and acceleration/deceleration
indices, as these factors are directly linked to emissions. Table 3 shows that the travel times for both the leader
and follower vehicles to complete their journeys were approximately the same across different models. The
waiting times for the follower and leader vehicles varied across the models. Waiting time was defined as the
duration during which a vehicle was either stationary or moving at a speed of less than 0.1 ms™!. The
difference between the waiting times of the follower and leader was the lowest in the Krauss and IDM model,
while it was the highest in the Wiedemann model.

Similar to the travel times, the average speeds of both the follower and leader vehicles, along with their
respective deviations from the mean, exhibited comparable patterns. However, the Wiedemann model
showed higher average acceleration for the leader, while the Krauss model exhibited the lowest average
acceleration for the leader. The highest average acceleration for the follower was also observed in the
Wiedemann model. Notably, the IDM model had the highest standard deviation in mean acceleration
compared to both the Krauss and Wiedemann models. In terms of deceleration, the Wiedemann model
showed the highest average deceleration and the greatest dispersion from the mean for both the leader and
follower. As with the other attributes, discrepancies across the models were also observed when comparing
the total fuel consumption of the follower and leader during their journey. The Wiedemann model
demonstrated the highest fuel consumption and total PM, emissions for both the leader and follower. In
contrast, the IDM model exhibited the lowest fuel consumption for the leader and the lowest total PM,, for
both the leader and follower. However, the Krauss model recorded the lowest overall fuel consumption, with
total emissions falling between those of the Wiedemann and IDM models. These results underscore the
nonlinear relationship between fuel consumption and PM, emissions across the models.

4.1.2. Steady-state scenario

To compare the models under steady-state conditions, our simulation included both school and non-school
traffic. For the school traffic, a worst-case scenario was assumed where all children (n = 220) were driven to
school, with each child arriving in a separate car.

The number of vehicles traversing the simulation area between 7:00 AM and 10:00 AM is shown in
figure 2(a). During the target period (8:00-9:00 AM) the number of vehicles in the simulation area followed a
similar trend across all models. The largest differences between the models occurred during the warm-up
and cool-down periods. During the target period, while the IDM and Wiedemann models showed slight
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Figure 2. Differences across models in steady-state conditions (a) Number of vehicles traversing during the simulation time (7:00
to 10:00); For the school time (8:00 to 9:00): (b) Flow (Q) - density (K) relationship between Krauss and IDM model, (c) Flow
(Q) - density (K) relationship between krauss and Wiedemann model, (d) Speed (V) - Density (K) relationship between Krauss
and IDM model, (e) Speed (V) - Density (K) relationship between Krauss and Wiedemann model.

variations compared to the Krauss model, overall the selected CF models exhibited very similar vehicular

flow patterns.

When comparing the fundamental relationships across the models, no discernible differences were
observed between the IDM and Wiedemann models during the 8:00 AM to 9:00 AM period. The IDM and
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Table 4. Average speed, fuel consumption and emissions (at each time-step 1 s) profile of the entire fleet between 8:00 to 9:00.

Parameters Krauss model IDM model Wiedemann model
Avg. speed 4.37+2.38 5.1242.36 4.95+2.46
Avg. fuel consumption (g) per vehicle 21.01 +£12.39 20.144+12.73 19.82 +12.96
Avg. PM, emissions (mg) per vehicle 1.38+1.24 1.32+1.16 2.144+1.87

Wiedemann models adhered to the same macroscopic fundamental diagram (MFD). For instance, the
average flow-density relationships between IDM and Krauss, as well as Wiedemann and Krauss models,
followed a nearly identical distribution (figure 2(b)), exhibiting similar maximum average flow and critical
density values. Additionally, the Wiedemann and IDM models displayed a comparable distribution of
observations beyond the critical density. However, while the Wiedemann and IDM models showed flow
patterns similar to the Krauss model, the flow-density relationship revealed that the Krauss model had a
greater number of observations beyond the critical density compared to the other two models.

Similarly, the average speed-density relationships revealed only subtle differences across the models.
Compared to the Krauss and Wiedemann models, the IDM model exhibited relatively higher speed variation
at lower densities. In contrast, the Wiedemann model displayed a steeper speed-density relationship than
both the Krauss and IDM models, highlighting a more pronounced decrease in speed with increasing
density. This suggests that the Krauss model demonstrated a more gradual reduction in speed in response to
rising density (figure 2(d)). Furthermore, the scattered distribution in the speed-density plots suggested that
the Krauss model exhibited greater variability in speed at a given density compared to the IDM and
Wiedemann models.

In addition to comparing the fundamental relationships across the different CF models, we also analysed
the average speed profile, total fuel consumption (g), and total PM, emissions (mg) at each time step, as well
as the moving average over consecutive 100-second intervals, focusing on the 8:00 AM to 9:00 AM period. In
figures 3(a)—(i), the average speed, total values of fuel consumption and total values of PM, emissions at each
time step are represented by the grey points, while the smoothed moving average trend over 100-second
intervals is shown by the coloured solid line. Different colours (red, blue, and green) were used to highlight
the moving average trend across different CF models. Moreover, the summary statistics of the entire fleet are
also shown in table 4.

When comparing the average speed per vehicle at each time step (figures 3(a)—(c)), the IDM and
Wiedemann models displayed an increasing trend, whereas the Krauss model exhibited relatively flat trends.
The IDM model’s average speed at each time step ranged from 2.9 ms~! to 8 ms~!, showing less
pronounced fluctuations compared to the Krauss and Wiedemann models. Additionally, both the
Wiedemann and Krauss models experienced occasional drops in speed, often falling below 2 ms~!. For the
entire fleet, the average speed at each time step and its dispersion from the mean were similar across the
selected models, while the IDM model demonstrated a relatively higher average speed and lower dispersion
(table 4). This is consistent with the moving average speed profiles, where the IDM model showed less
fluctuation in speed compared to the Krauss and Wiedemann models (figures 3(a)—(c)), resulting in a higher
mean and lower speed variability for the entire fleet. As with the single follower-leader scenario, the average
speed at each time step did not exhibit appreciable discrepancies between the models (table 4). However, the
moving average speed profiles (figures 3(a)—(c)) revealed substantial differences at the micro level. For
example, the lowest average speed per vehicle in the Krauss model occurred after 8:50 AM, whereas for the
Wiedemann model, it occurred before 8:20 AM.

Unlike the speed profiles, the total fuel consumption profiles shown in figures 3(d)—(f) displayed a
decreasing trend between 8:00 AM and 9:00 AM across all models. This result is plausible, as an increase in
speed typically leads to more efficient fuel combustion, resulting in lower fuel consumption. Although the
moving averages of total fuel consumption revealed differences between the models, these differences were
less pronounced compared to other attributes such as speed and emissions. Summary statistics of fuel
consumption indicated that the Wiedemann model had the lowest average fuel consumption per vehicle but
exhibited the highest variation from the mean compared to the IDM and Krauss models (table 4). As shown
in the moving average plot (figure 3(f)), the Wiedemann model exhibited a wider variation in fuel
consumption values across time, resulting in a moving average trend that appeared less consistent compared
to the other models. In contrast, the Krauss model demonstrated the highest average fuel consumption and
the least variation from the mean for the entire vehicle fleet between 8:00 AM and 9:00 AM (table 4). This
contrasts with observations from the single follower-leader scenario, where the IDM and krauss model
consistently showed better fuel efficiency with minimal fluctuation.
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Figure 3. Differences across models in steady-state conditions: (a)—(c) - Average speed at each time step, (d)—(f) - Total fuel
consumption at each time step and average fuel consumption over 100-second intervals, (g)—(i) - Total PM, emissions at each
time step and average PM, emissions over 100 s intervals.

In terms of PM, emissions, the IDM model exhibited lower emissions at each time step, with less
variation from the mean trend (figure 3(h)). Conversely, the moving average profile shown in figure 3(i) and
the summary statistics in table 4 revealed that the Wiedemann model had the highest emissions, followed by
the Krauss model and then the IDM model. Additionally, compared to the IDM model, the Wiedemann
model and, to a lesser extent, the Krauss model demonstrated greater variability, characterised by frequent
and sharp changes in emissions.

4.1.3. Changing school traffic flow scenario

To compare the models in terms of emissions measurement, we also examined a scenario with varying traffic
flow conditions, by varying the number of school cars from 0 to 220. In the initial iteration, all of the school
children (n = 220) were driven to school. Then, a small number (1 = 2) of children who had previously been
driven to school were assumed to switched to a non-motorised mode (such as walking/cycling), and this
process continues, through n,#n — m,n — 2m, ... until no children were driven. The reason to follow this
approach was in order to minimise Monte Carlo noise in comparisons across different scenarios, and in
particular, noise caused by the random departure times at which vehicles were generated. By first generating
departure times for the maximum pool of #n potential vehicles, m vehicles are then randomly chosen for
deletion and the pool reduced to 1 — m, importantly with the remaining vehicles maintaining the same
departure times they were assigned in the scenario with # vehicles, and this process continues with the next
step deleting a further m vehicles from the remaining pool of n — m. This process allows us to better
exemplify systematic patterns in the model results.

Figures 4(a) and (b) illustrate the pattern of vehicular flow under different school traffic conditions.
These figures show that for each traffic model there was no unique set of parameters able to replicate the
vehicular flow. In some cases, different parameter values for each model can produce similar flow patterns,
but distinct differences still exist between the models. For instance, while different § parameters of the IDM
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Figure 4. Changing school traffic scenario: (a), (b) - Number of cars traversing between school time, (c), (d) - Average fuel
consumption per vehicle, (e), (f) - Total fuel consumption, (g), (h) - Total PM, emission.

model can approximate the flow of the Krauss model, varying r,,; and r,,, parameter values in the
Wiedemann model results in noticeably different vehicular flow patterns. At changing school traffic

conditions, figures 4(c) and (d) display the differences in average fuel consumption, while figures 4(e) and
(f) show the total fuel consumption across traffic models for different calibrated parameters. These figures
emphasise that although certain parameters can closely replicate vehicular flow, there were substantial
differences in both average and total fuel consumption. Parameters that yield the closest match to vehicular
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flow-such as § =5, Stepping = 1 for IDM, and r,,; = 0.1, r,,, = 1 for Wiedemann-align with the Krauss
model’s average and total fuel consumption, showing the lowest deviation from it. The total PM, emissions
are shown in figures 4(g) and (h), which indicated that parameters that closely replicate vehicular flow and
fuel consumption also recover PM, emissions with relatively low error compared to the Krauss model for the
IDM model. The error was lowest under low traffic flow conditions, such as when there was no school traffic,
but it began to increase as the number of school traffic increased. However, this is not the case for the
Wiedemann model. The parameters that minimise error in the Wiedemann model’s emissions outputs

(ra1 = 1, ry2 = 1) still show substantial discrepancies in fuel consumption and vehicular flow recovery.
However, in both cases-whether replicating the vehicular flow or estimating emissions-the Wiedemann
model’s measured PM, emissions were approximately double those of the Krauss and IDM models. It is
noteworthy that to achieve similar emissions levels from the vehicle fleet under specific school traffic
conditions, a relatively higher stepping parameter value of 1 was adopted for the IDM model. While this
value is considered relatively unsafe for the IDM model, it was used to facilitate a fair comparison of model
performances under comparable emissions outputs. With a smaller stepping parameter, the IDM model
could not replicate emissions comparable to those of the Krauss model.

4.2. Optimal speed limit

To test the sensitivity of optimal solutions across different CF models, we analysed the impact of speed limits
as a control measure to reduce emissions in a school zone. Figure 5 shows the total PM, emissions (g) for the
three different CF models tested across a range of pre-defined speed limits with an increment of 1 ms™!
(figure 5(a)), 0.5 ms™! (figure 5(b)), and 0.1 ms™~! (figure 5(c)).

These tests revealed that the same speed limit could influence model-specific variables such as speed and
acceleration in different ways, leading to different emissions profile. In other words, the formulation of speed
and acceleration in CF models substantially influenced the optimisation objective function. For example,
IDM adjusts acceleration dynamically based on leader-follower gaps, while Wiedemann incorporates
psychophysical thresholds, and Krauss relies on safe distance calculations. Due to these differences and all
else being equal, the impact of the speed limit on emissions was found to be not uniform across the models.
Instead, the results highlighted the sensitivity of the objective function to the underlying behavioural
assumptions in each traffic model.

In figures 5(a)—(c), the Krauss and Wiedemann models exhibited a relatively flat emissions profile at
lower speed limits. For the Krauss model, this flat trend persisted up to a speed limit of 14 ms—!, while for
the Wiedemann model, it was up to 11 ms~!. After these thresholds, emissions increased dramatically with
augmenting speed limits. On the other hand, the IDM model showed a consistent decrease in emissions as
the speed limit increased from 3 ms™! to around 11 ms™!, with emissions gradually increasing afterward.
IDM employs dynamic modelling of acceleration and deceleration, emphasising speed adjustments based on
the gap between the follower and leader (see equations (5)—(8)). This captures reactive behaviours, such as
realistic stop-and-go traffic. As a result, IDM exhibited a relatively smooth, concave emission curve under
different speed limit conditions. Across all scenarios, the IDM model consistently demonstrated the lowest
emissions compared to the other two models for a speed limit above 8 ms—!. In contrast, the Krauss model
bases the velocity and acceleration of the follower on those of the leader, while maintaining a safe distance. In
congested urban areas, where lower speed limits are typical, the follower’s velocity is generally constrained by
the leader’s speed and safety distance, with limited opportunity to accelerate or adjust speed. This resulted in
relatively stable emissions at lower speed limits. However, as the speed limit increased, the Krauss model
allowed for greater acceleration and speed changes, leading to a substantial rise in emissions. Between speed
limits of 8 ms~! and 14 m s~ ', emissions from the IDM and Krauss models showed minimal differences, but
for speed limits below 8 ms~! or above 14 m s~!, the variation between these models became more
pronounced.

The Wiedemann model, on the other hand, consistently exhibited higher PM, emissions compared to
both Krauss and IDM across all speed limits. This behaviour is attributed to its oscillatory nature, driven by
frequent transitions between driving zones (e.g. following and approaching states) based on headway
distance and relative speed. These micro-accelerations and decelerations result in increased emissions,
particularly at lower to moderate speeds. As the speed limits was increased beyond 15 m s}, emissions from
the Wiedemann model increased sharply. This can be attributed to more aggressive braking and acceleration
events as drivers transition between behavioural states. Such aggressive acceleration and deceleration were
also observed in single follower-leader scenarios. In that case, due to the reduced number of vehicles, both
the leader and the follower were more likely to operate at or near their desired velocities, leading to
pronounced speed adjustments. The steep rise in emissions at higher speed limits reflects Wiedemann’s
emphasis on a driver’s perception and reaction over smooth traffic flow, making it more sensitive to abrupt
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Figure 5. Total PM, emissions across a range of speed limit for three selected CF models (a) standard precision with a 1
increment, (b) moderate precision with a 0.5 increment, (c) high precision with a 0.1 increment.

changes in headway and relative speeds. Consequently, we may expect the Wiedemann model to predict
relatively high emissions levels in higher-speed scenarios, compared with other approaches.

When comparing the objective function of the selected optimisation problem at different precision levels
of the decision variable (speed limit), emissions exhibited distinct behaviours across the CF models. In the
standard precision scenario (figure 5(a)), the emissions exhibited minor variations across smaller differences
in speed limits, such as between 4 ms~! and 5 m s~!. However, in the high-precision scenario (figure 5(c)),
emissions displayed greater variability, highlighting the models’ sensitivity to changes in speed limit. For
instance, in the highest precision scenario (figure 5(c)), the IDM model captured finer fluctuations in
emissions while also maintaining the continuity in the objective function. This reflects IDM’s capacity to
dynamically model acceleration and deceleration based on the gap between the follower and leader, which
helps minimise unnecessary accelerations, especially at lower speeds. In contrast, the Wiedemann model
exhibited greater fluctuations in emissions in the speed range between 3 ms~! and 7 ms™!, indicating higher
sensitivity to minor speed variations at lower speed limits. This behaviour can be attributed to its
psychophysical thresholds and oscillatory nature, which lead to frequent transitions between driving states,
such as ‘following’ and ‘approaching’ Additionally, the Krauss model showed mentionable fluctuations in
emissions at higher precision levels within the speed range of 13 ms™! to 15 ms~!. This could be due to its
reliance on maintaining safe distances between vehicles, which results in more pronounced accelerations and
decelerations when the follower adjusts to the leader’s behaviour in response to higher speed limits.

One important reason for examining the sensitivity of precision is that, depending on the level of
precision, the objective function may shift from a continuously differentiable curve to one with
discontinuities as observed for Krauss and Widemann model. This shift can significantly influence the choice
of optimisation methods used to find the optimum solution. For instance, with the IDM model, the
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continuous nature of its objective function appears to allow for the use of gradient-based optimisation
methods to efficiently identify optimal results. However, at higher precision levels, the Krauss and
Wiedemann models may exhibit more irregularities or discontinuities in their objective functions due to
their dependence on extremely reactive driving behaviours, such as sudden accelerations and decelerations.
In such cases, optimisation approaches like gradient descent may become ineffective, as these methods are
prone to getting stuck in local optima. For these models, alternative techniques, such as the cross-entropy
method or meta-heuristic algorithms (e.g. genetic algorithm, simulated annealing, or particle swarm
optimization), may be more suitable to navigate the complex solution landscape and avoid convergence to
suboptimal results.

5. Discussion

The coupling of microscopic traffic simulation models with emissions models offers a powerful tool for
assessing and optimising traffic control strategies to reduce fuel consumption and vehicle emissions.
Although many studies use traffic simulation for emissions analysis and designing traffic calming measures,
most focus on calibrating a selected traffic model to replicate observed traffic flow, limiting their
investigation. This approach creates a gap in the literature and raises the question: Are optimal emissions
control strategies appropriately tailored to account for the sensitivity of traffic models in capturing vehicle
dynamics and emissions? To address this gap, we compared three CF models, each developed within distinct
theoretical frameworks, and evaluated their performance using both trip-based and emission-specific
metrics. This analysis aimed to assess their sensitivity in designing an effective traffic control strategy to
reduce emissions around a school zone case study. For emissions analysis, scenarios ranged from single
follower-leader interactions to varying school traffic conditions. Finally, we tested these models’ effectiveness
in designing a traffic control strategy to reduce emissions by imposing speed limits around the school area.

Under the single follower-leader CF scenario, the results from the comparative analysis showed that the
models exhibited subtle differences in macroscopic traffic attributes. When comparing travel time and
average speed of the follower and leader, the variation across models was minimal. Similarly, when
examining the average speed of the entire fleet, differences across models were only noticeable when
analysing the average speed at each time step and the corresponding moving average over a certain time
period. In fact, vehicular flow during the school time was nearly identical across the models. Additionally, the
MED further supported the idea that each model accurately represented the same traffic scenario, indicating
consistency in their ability to replicate aggregated traffic characteristics such as flow, density, and average
speed. These findings suggested that when the key indicators were travel time or average speed, all three
models could predict similar vehicular movements. It was also evident in other traffic modelling studies that
microscopic traffic models with different driver behaviours can lead to similar macroscopic traffic dynamics
(Klar and Wegener 2000, Treiber et al 2006, Chevalier et al 2015). However, when examining more
microscopic traffic attributes, such as the acceleration and deceleration of the follower and leader or the
entire fleet, notable differences were observed in our study (consistent with the findings of the study of
Pourabdollah et al (2017) for different vehicular platoons). For instance, in our study, the Wiedemann model
exhibited higher average acceleration and deceleration values, leading to higher emissions, as shown by the
emissions output of PM, in the analysis. In contrast, the Krauss and IDM models displayed less variation in
acceleration, resulting in lower emissions. These findings highlighted that when coupling traffic simulation
with emissions models and measuring emissions based on average speed, vehicular flow, or other
macroscopic attributes, the differences across models could be subtle, and emissions measurements could be
inaccurate. Hence, for urban area modelling, where frequent stop-and-go traffic is common, traffic models
need to be sensitive enough to capture acceleration and deceleration patterns, while emissions models must
be responsive to micro-level traffic dynamics.

Moreover, the results from the three scenarios suggested that replicating similar vehicular flow and
average speed could still produce different emissions outcomes, indicating a need to reconsider the focus of
traffic model calibration. The findings suggested that differences in fuel consumption and emissions
estimates might arise from how each CF model captures vehicle dynamics such as acceleration and
deceleration. In this study, the Wiedemann model showed relatively higher average acceleration and
deceleration with greater variability, leading to higher calculated emissions. Interestingly, it also exhibited
lower average fuel consumption than other models. While this divergence did not imply over- or
underestimation in the absence of empirical validation, it highlighted how model characteristics could
influence measured outcomes and the importance of model selection in emissions and fuel consumption
studies. Traditionally, CF models have been calibrated with an emphasis on replicating traffic flow patterns.
However, results from our study revealed that such calibration might result in models that accurately reflect
traffic flow but misrepresent fuel consumption and emissions. A review based study by Madziel (2023) also
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emphasised that users of simulation models rely on parameters such as traffic volume calibration to ensure
that the simulation closely reflects reality, which is inefficient in terms of vehicle emissions. Hence, given the
growing importance of reducing emissions in urban environments, calibrating models based solely on traffic
flow metrics could lead to sub-optimal emissions reduction strategies. Instead, the findings suggested that
calibration should prioritise emissions accuracy, ensuring the model accurately captures the relationship
between driving behaviour, fuel use, and emissions. Shifting the focus toward emissions calibration would
enable the development of more effective traffic management strategies that optimise both vehicular
movement and environmental impact.

Furthermore, the study results highlighted that the objective function for minimising emissions through
speed limit optimisation was not consistent across different CF models. Each model’s response to changes in
speed limits and sensitivity to precision demonstrated distinct emissions patterns. These results highlighted
the complexities of emissions minimisation, such as selecting the appropriate traffic model to estimate
emissions, the impact of decision variables on traffic dynamics that might lead to emissions, optimisation
methods, managing Monte Carlo simulation noise, and addressing potential specification and
computational errors. For example, our study findings showed that the simplicity of the Krauss model, which
represents vehicle responses to acceleration or deceleration based on safety distance, seemed to make it less
effective in capturing the influence of speed limits on emissions measurements. This is particularly relevant
in local areas where speed limits are typically low, as the model’s assumptions may not fully reflect the
dynamics that influence emissions in such conditions. Furthermore, variations in the precision of decision
variables could impact the accuracy of the optimisation model, suggesting the need for careful model
constraints to mitigate such challenges and ensure reliable optimisation outcomes. For example, in our case
study the IDM model suggested an optimal speed limit of approximately 11 ms~!, and this could be
determined at different levels of precision of the decision variable. The Wiedemann model, on the other
hand, suggested 7 ms~! as the optimal solution when considering a low precision objective function,
whereas at higher precision the solution was less clear due to the variability in the objective function. These
features implied that care is needed in the selection of appropriate optimisation algorithms, depending on
the choice of traffic model, to avoid being trapped in suboptimal solutions.

6. Further research

To reduce the environmental impact of traffic and mitigate the financial losses caused by congestion, efforts
have been made to understand traffic flow dynamics and develop strategies for controlling and optimising it.
In this study, we experimentally evaluated and analysed the sensitivity of different CF models in measuring
emissions and designing optimal traffic control measures aimed at emissions reduction. Although this
research explored the sensitivity of these models in an optimisation problem through an experimental setup,
there is significant scope for future investigation.

Future research could involve the use of real-world traffic data and pollutant counters to validate the
findings obtained from the experiment carried out in this study. Field-level observations would help
distinguish which models are better suited for accurately measuring emissions, whether by replicating traffic
flow or directly capturing emissions outputs. Such studies are particularly important in areas with a large
number of active population (e.g. downtown regions), for understanding prolonged exposure to emissions
among those who spend more time on the road, such as pedestrians and lower-income commuters.
Conducting similar comparative assessments in these contexts would support more accurate risk assessment
and ensure that emissions mitigation strategies are not overly dependent on a single CF model, which may
not reflect the full range of real-world local traffic conditions. Additionally, this study focused on traffic flows
consisting of a single type of vehicle. Future research could expand to consider mixed traffic conditions,
evaluating how various CF models perform in measuring emissions and designing emission-reduction
strategies in such scenarios. Moreover, field-based studies could also help identify external factors like
weather, wind speed, and land-use patterns, and their contributions to emissions. While we investigated the
differences in identifying optimal speed limits, future studies could apply similar comparisons to optimise
traffic signals. Ultimately, our intention is that this study opens new pathways in emissions research by
encouraging the calibration of traffic models specifically to improve emissions measurement and
optimisation.
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