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route choice model (Rasmussen et al. 2024) proposes that local ~ Accepted 30 July 2025

detouredness (the extent to which a route detours on its subparts)

. . . . I ) KEYWORDS

is an influential factor upon route choice probability and choice Bounded route choice model:
set formation. The current paper first extends the BCM-LDT to cap- path size; local detouredness;
ture correlations between overlapping used routes, formulating a choice set formation;

Bounded Path Size (BPS) LDT model. It then develops a heuristic parameter estimation
solution method for computing BPS-LDT probabilities on large-scale
networks. The method involves pre-processing necessary sub-route
information from representative universal choice sets. Solution tricks
are proposed which are shown to considerably improve computa-
tion times. A modified maximum likelihood estimation procedure
is developed for estimating the BPS-LDT model. Empirical evidence
from a simulation study and real-life large-scale case study show
that parameter estimates can be identified, are statistically significant
and unique, and that local detouredness is an influential factor upon
route choice probability.

1. Introduction
1.1. Background

Route choice models are widely used by transport researchers and policy makers for an
array of purposes, such as appraising travellers’ perceptions of route characteristics (e.g.
Hood, Sall, and Charlton 2011; Toledo et al. 2020; Zhong and Miao 2024), assessing transport
policies (e.g. Chen, Li, and Lam 2018; Mardan et al. 2024; Tsai and Li 2019), predicting the
impact of future changes in demand (e.g. Martens and Hurvitz 2011; Wei et al. 2020), traffic
assignment (e.g. Brederode et al. 2019; Duncan et al. 2023, 2024; Gentile 2014; Y. Lim and
Kim 2016; Prashker and Bekhor 2004), and designing transport networks (e.g. Cadarso and
Marin 2016; Jiang and Szeto 2015; Joksimovic, Bliemer, and Bovy 2005).
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Although other decision rules are considered in the literature e.g. regret minimisation
(Chorus 2012; Li and Huang 2017) and non-compensatory decision rules (Cazor et al. 2024;
Chorus and van Cranenburgh 2024), by far the most commonly used route choice decision
rule is utility maximisation. There are two types of utility-maximisation-based route choice
model: path-based and link-based. Path-based models such as Multinomial Logit (MNL)
and its many different variants use route utilities to determine route choice probabilities,
while link-based models such as Recursive Logit (Fosgerau, Frejinger, and Karlstrom 2013)
and the Perturbed Utility Route Choice (PURC) model (Fosgerau, Paulsen, and Rasmussen
2022) operate at a link level using link utilities and the network structure to determine link
usage. The latter are attractive as they avoid the need to generate route choice sets, which
is not straightforward, and the latest development of the PURC model allows for irrelevant
parts of the network to be unused. As a route choice model, however, link-based mod-
els are hampered by the requirement that route attributes must be link-additive, meaning
that route-related attributes such as some transit fare schemes, transfer penalties, travel
time reliability measures, tolling schemes, and local detouredness (Rasmussen et al. 2024),
cannot currently be accounted for. In this study, we focus on path-based models.

Generally, path-based route choice modelling has two components: (i) generating a set
of realistic routes that travellers choose between (the route choice set), and (ii) applying
a route choice probability model to these routes to determine their choice probabilities.
Numerous route choice set generation methods have been developed (see Prato (2009),
Bovy (2009), Rieser-Schissler, Balmer, and Axhausen (2013) for reviews) and numerous
route choice probability models have been developed (see Prato (2009), Duncan et al.
(2020, 2022), Jing et al. (2018) for reviews). We highlight, however, two common issues.

The first issue is that choice set generation and route choice probability computation are
often conducted in two independent, sequential steps, where the choice set formation and
choice probability criteria are not consistent. Consequently, a route identified by the choice
set formation criteria may be considered unrealistic by the choice probability criteria, and
vice versa. This is supported by the work of Horowitz and Louviere (1995) who found in an
empirical analysis that choice set formation and choice from the choice set are often driven
by the same preferences, and thereby choice need not be modelled as a two-step process.

The second issue is that the attractiveness of a route, both in choice set generation and
choice probability computation, is often judged solely by qualities of the complete route,
which we term the global properties of the route. These global properties include total
length, travel time, travel time (un)reliability, and direct monetary costs such as might
be imposed through road pricing. However, it has recently been shown in Rasmussen
et al. (2024) that it is insufficient to judge the attractiveness of a route solely by its global
properties. It is contended that the local properties of a route should also be considered;
namely, its local detouredness, which is the extent to which it detours on subsections of
the route. Through an empirical and theoretical analysis, it was shown that it is impor-
tant to consider local detouredness both when determining realistic and tractable route
choice sets and when determining route choice probabilities. For example, analysis of
observed route choice data showed that route usage tends to decay with local detoured-
ness, and that there is an apparent limit on the amount of local detouredness seen as
acceptable.

Several choice probability models have been developed in the following studies that
aim to address the first issue: Swait (2001), Elrod, Johnson, and White (2004), Gilbride and
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Allenby (2004), Martinez, Aguila, and Hurtubia (2009), Paleti (2015), Watling et al. (2018),
Duncan et al. (2022), and Tan, Xu, and Chen (2024)." In the application of route choice,
one can generalise the overall approach as penalising the probability of a route if it has
an attribute value or utility beyond a ‘cutoff’ value (bound/threshold), where it is then
deemed to be unrealistic/unused (Cascetta and Papola 2001). Thus, only routes with all
attributes/utilities within the cutoff(s) are considered realistic/used, and the probabilities
of these routes relates in some way to the likelihood they are used, thereby ensuring con-
sistency between choice set formation and choice probability criteria. However, the models
in Swait (2001), Martinez, Aguila, and Hurtubia (2009), and Paleti (2015) impose ‘soft’ cut-
offs rather than ‘hard’ cutoffs, meaning that routes with attributes/utilities beyond the
cutoff only receive reduced probabilities and not zero probabilities. The model in Elrod,
Johnson, and White (2004) imposes absolute cutoffs, which is inflexible and may be diffi-
cult to specify suitably given different Origin-Destination (OD) movements have different
attribute value ranges (e.g. lengths). And, the model in Gilbride and Allenby (2004) has
a non-continuous choice probability function, resulting in ‘abrupt changes’ in the choice
probabilities as alternatives enter and exit the used route choice set. The Bounded Choice
Model (BCM) developed in Watling et al. (2018), and its adaptations/extensions (Duncan
et al. 2022; Tan, Xu, and Chen 2024), on-the-other-hand: (a) imposes a hard cutoff so that
routes with utilities below the bound receive zero choice probability, (b) can be stipulated
so that the bound is relative to the route utilities (e.g. ¢ times worse than best utility), and
(c) has a continuous choice probability function, including as routes enter and exit the used
route set (cross from below to above the bound, and vice versa).

To develop a model that both provides consistency between choice set formation and
choice probability criteria and judges route attractiveness based on both its global and
local properties (i.e. addresses both issues highlighted), Rasmussen et al. (2024) recently
developed the BCM with Local Detour Threshold (BCM-LDT) model. The BCM-LDT model
is derived by combining the BCM with a conjunctive choice model (Gilbride and Allenby
2004; Jedidi and Kohli 2005; Kohli and Jedidi 2005; Shin and Ferguson 2017; Swait 2001), so
that separate bounds are imposed on different route ‘aspects’ (Tversky 1972), which in this
case are total route travel cost and local detouredness. A route thus receives a zero choice
probability (excluded implicitly from the choice set) if it has a cost above the global bound
or a local detouredness above the local bound. Moreover, the probability of a route with
both a cost and detouredness below the respective bounds, is determined according to its
relative attractiveness in cost and detouredness compared to those of others.

1.2. Paper contributions

The paper is based on an extension of the BCM-LDT model to account for correlations
between overlapping used routes. Numerous models have been proposed for capturing
correlations between overlapping routes. Detailed reviews of these models can be found in
Duncan et al. (2020, 2022), where we review their strengths and weaknesses. Among them,
correction term models (Ben-Akiva and Ramming 1998; Cascetta et al. 1996; Duncan et al.
2020) are particularly attractive due to their simple closed-form choice probability functions
that are quick and easy to compute and estimate. In Duncan et al. (2022), we combined the
Path Size Logit (PSL) correction-term model with the BCM to formulate a Bounded Path
Size (BPS) route choice model. Using analogous methodology, we first in the current paper
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combine concepts from the BPS model with the BCM-LDT to formulate a Bounded Path Size
Local Detour Threshold (BPS-LDT) model. To ensure that correlations are captured between
only routes defined as realistic by both the local and global bounds, and continuity of the
choice probability function is maintained, careful consideration is given to the formulation
of the path size term. This is therefore a new model variant that we have created, though as
it can be quite straightforwardly deduced from our previous work, we do not make a claim
that this is a major contribution.

Having formulated a BPS-LDT route choice model that accounts for both local detoured-
ness and route correlation, the three major contributions of the paper are as follows.

1.2.1. Contribution 1: developing a solution approach for efficiently applying the
model to large-scale networks

The computational burden of current methods for generating all possible routes below
the local and global bounds - such as the initial approach proposed in Rasmussen et al.
(2024) - means it is not yet feasible to fully apply the BCM-LDT/BPS-LDT models to large-
scale networks. The first major contribution of the current paper is thus to develop a
solution approach for application to large-scale networks. The heuristic approach involves
working from representative universal choice sets. The approach is to pre-generate large
enough working choice sets so that one can be fairly certain enough realistic alternatives
are present, regardless of how many unrealistic routes are generated, and then apply the
local detour model to exclude generated unrealistic routes. Although with this approach
there may be some routes not generated that may be considered realistic by the choice
probability criteria, at least unrealistic routes should be dealt with.

Given the pre-generated representative universal choice sets, all necessary information
regarding route segments and segment alternative choice sets required to calculate local
detouredness is pre-processed. However, if not done intelligently, this still has the poten-
tial to be computationally demanding, as there are for example many possible segments
a route can detour. In the paper, we propose some tricks to pre-process useful informa-
tion that can be used to improve the efficiency of computing local detour model choice
probabilities, which are shown to considerably improve computation times.

1.2.2. Contribution 2: developing and testing a procedure for estimating the model
The second major contribution of the paper is to develop and test a Maximum Likelihood
Estimation (MLE) procedure for estimating the BPS-LDT model with tracked route observa-
tions. The focus of Rasmussen et al. (2024) was on the derivation of the BCM-LDT model
and its application to traffic user equilibrium; model estimation has yet to be explored. Esti-
mating the BCM-LDT/BPS-LDT models with MLE is, however, not straightforward, as: (a) the
Likelihood function can be zero meaning that the Log-Likelihood function has constraints,
and (b) the Likelihood function is non-differentiable, meaning that gradient approaches
cannot be directly adopted to solve the objective function, and standard errors of param-
eter estimates cannot be calculated analytically. Addressing these complications, we: (a)
develop a simple-to-implement method for estimating the BPS-LDT model working round
the constraints on the Log-Likelihood objective function, and (b) approximate standard
errors of estimates using a computationally-efficient resampling method.
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1.2.3. Contribution 3: an empirical analysis of the model
The third major contribution of the paper is conducting an empirical analysis of the model
with real route choice data, to explore whether:

(i) Local detourednessis an influential factor upon route choice probability / choice set
formation,

(i) Local detouredness and correlation effects are identifiable as distinct route choice

attributes,

) Parameter estimates are statistically significant,

) MLE solutions are unique,

(v) The model can be estimated in feasible computation times on a large-scale network,

) The model is suitable for forecasting,

) Model estimates are sensitive to the assumed representative universal choice set.

To do this, we estimate the BPS-LDT model using the proposed MLE procedure in a
real-life large-scale GPS case study, and analyse the results. For (ii), we conduct a sim-
ulation study to assess whether model parameters can be successfully reproduced and
identified. For (iv), we visualise the Log-Likelihood surface to search for multiple maxima,
and test for multiple MLE solutions numerically. And, for (vi) we conduct out-of-sample
validation.

The paper is structured as follows. Section 2 introduces general network notation, and
Section 3 formulates the BPS-LDT model. The three major contributions of the study are
then addressed in the three following sections. Section 4 introduces the proposed solu-
tion method for computing local detour model choice probabilities, Section 5 introduces
the proposed estimation procedure, and Section 6 conducts the empirical analysis of the
model estimation results. Finally, Section 7 summarises the paper conclusions and provides
thoughts on future research.

2. General network notation

The model developed in this paper is applicable to general networks with multiple OD

movements and flow-dependent link costs. However, without compromising the model

derivation, we simplify notation by considering a single OD movement with fixed link costs.

The network consists of link set A and node set B. For the OD movement, R is the choice

set of routes, having size N = |R|. This could be the universal choice set of all routes, or a

representative universal choice set of routes. A; C A is the set of links in route i € R, and
1 ifa €A

0 otherwise
generalised travel cost t, of each link a € A is a weighted sum (by parameter vector a) of
variables wg, i.e.t; = tq(wg; ), and that the generalised travel cost for route i € R, ¢j, can be

attained through summing up the total cost of its links so that ci(t(w; &) = > ta(wg; o),
aeA;

where tis the vector of all link travel costs and w is the vector of all link variables.? To simplify
notation ¢;(t(w; &) is denoted just as ¢;.

. Bi C B is the set of nodes belonging to route i € R. Suppose that the
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3. Bounded path size local detour threshold model

In this section, we combine the BCM-LDT model developed in Rasmussen et al. (2024) with
the BPS model developed in Duncan et al. (2022), to formulate a Bounded Path Size Local
Detour Threshold (BPS-LDT) model. For details on how the BCM-LDT model is derived and
formulated we direct the reader to Sections 3&4 of Rasmussen et al. (2024), and for details
on how the BPS model is derived and formulated we direct the reader to Section 3.2 of Dun-
can et al. (2022). In order to avoid repeating content, we shall henceforth assume readers
are familiar with both models.

3.1. Measure of local detouredness

Rasmussen et al. (2024) proposed a new attribute influencing route choice: local detoured-
ness, which in essence is the extent to which a route detours on its sub-routes. The measure
of local detouredness is formulated as follows. Define a set of segments S; for route j € R as
the set of ordered node pairings:

Si = {(u,v) : u € Bj,v € Bijand node u precedes node v when traversing routei € R}.

Note that S; includes not just ordered node pairings of adjacent nodes, but all ordered
node pairs in the route. The universal set of segments is defined as S = UjcgS;.

Define the set K, of segment alternatives for segment (u,v) € Sasanindex set of simple
sub-routes from node u to node v. Furthermore, define the used segment alternative for seg-
ment (u,v) € S;of routei € Ras the elementk,y,i € Ky, denoting the index of the segment
alternative actually used by route i € R from node u to node v.

The measure of local detouredness ¢; of route i € Ris defined as:

k,,,; — Min(oy : 1 € Kyy)

¢,-=max‘ (u,v)esit, (1

min(wy : 1 € Kyy)

where @y is the travel cost on segment alternative | € K, for segment (u, v) € S; of route
i € R.The measure of local detouredness identifies the maximum relative detour from each
of its segments, by comparing, for each of the route’s segments, the used segment alterna-
tive of the route against the minimum costing segment alternative for the segment. Note
that the measure of local detouredness is a relative measure, i.e. a detour measure of ¢; = y
corresponds to the worst detouring segment of the route being (100 x y)% ory + 1 times
greater than the cost of the minimum segment alternative cost for that segment. A demon-
stration of the local detour measure can be found in Section 4.2 of Rasmussen et al. (2024)
as well as in Appendix B.1 of the current paper.

3.2. BPS-LDT model

The idea of the BCM-LDT model is that two separate bounds are imposed upon total route
travel cost and local detouredness. For the global cost bound, a route receives zero choice
probability if it has a total cost as great as or greater than ¢ times the minimum cost route,
i.e.if ¢; > @ min(c). For the local detour bound, a route receives zero choice probability if,
at its most detouring segment, the used segment alternative has a travel cost as great as or
greater than # + 1 times the minimum costing segment alternative for that segment, i.e. if
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it has a local detour measure ¢; > 7. Let R(c, ¢; ¢, ) C R therefore be the restricted choice
seof all routes i € R where both ¢; < ¢ min(c) and ¢; < , i.e. the set of all used routes.

The BPS-LDT model is derived by integrating path size correction factors directly within
the BCM-LDT probability relation (see equation (17) in Rasmussen et al. (2024)).3 This is
a common approach, adopted for example by Kitthamkesorn and Chen (2013), Xu et al.
(2015), and Duncan et al. (2022) to formulate Path Size Weibit, Path Size Hybrid, and
Bounded Path Size route choice models, respectively, where the correction factor is mul-
tiplied to the choice probability kernel for each route (i.e. the numerator of the choice
probability function).

Given R, the choice probability relation for route i € Ris:

(7)” (exp(=61 (ci — ¢ min(c))) — 1) (exp(—=0a2(d — 1)) — 1) fich

Pi = 1 Xk (7)) (exp(=61(G — p min(c))) — 1) (exp(—ba(gj — m) — 1) V)
0 ifi¢R

where (7,)” is the path size correction factor for used route i € R. 7; € (0, 1] is the path size
term for used route i € R measuring its distinctiveness (noting that unused routes do not
have path size terms), and § > 0is the path size scaling parameter measuring sensitivity to
distinctiveness. A completely distinct route not overlapping at all with any other used route
has a path size term equal to 1, resulting in no penalisation. Less distinct routes overlapping
with other used routes have smaller path size terms and incur greater penalisation. The
BPS-LDT path size term for the BPS-LDT model is as follows for used route i € R is:

_ t

i=> C—“
1

aeh; Zke.‘_? (

1
(exp(=61 (ck — ¢ min(c))) — 1) (exp(—02(¢x — 1)) — 1)) s
(exp(—01(ci — p min(c))) — 1) (exp(=Oa(pi — ) — 1) )

To dissect the BPS-LDT path size term: each link a in route i is penalised (in terms of
decreasing the path size term and hence the probability of the route) according to the

(3)

number of used routes in the choice set that also use that link (Z 5a,k), where each con-
keR

tribution of a link-sharing route is weighted (i.e. Z (%’l‘) da,k), and the significance of the
keR
penalisation for link a relates to how prominent link a is in route j, i.e. the cost of route g in

relation to the total cost of route i (tc—‘j) The BPS-LDT path size contribution factor is:

Wi (exp(=b:(ck — 9 min(c))) — 1) (exp(=ba (¢ — 1)) — 1)

Wi~ (exp(=01(ci — p min(c))) — 1)(exp(=Oz(di —m) = 1)~

One can see in Appendix A how this path size contribution factor relates to those from
other path size choice models. The BPS-LDT path size term function in (3) is formulated as
such so that unused routes with costs/detourednesses above the bound/threshold do not
contribute to reducing the path size terms of used routes with costs/detourednesses below
the bound/threshold. And, so that the path size term function is continuous.

A key formatting difference between the BCM-LDT choice probability function in
equation (17) in Rasmussen et al. (2024) and the BPS-LDT probability function in equation
(2) here, is the use of the restricted choice set R to determine the zero probability routes
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6, -0 @ = o0 , =0
BPS GPSL
1~ o '

BPS-LDT p=0 l MNL
BCM-LDT 6, >0 BCM
=0 n— o @ = ©

Figure 1. Schematic diagram of how local detour threshold models, bounded models, and path size
logit models collapse into one another.

(rather than (.)+ functions). The reason for this, as proposed for the BPS model in Duncan
etal. (2022) (see equations (6)-(7) in that paper), is so that the path size term can succinctly
sum over the used routes k € R to avoid cases of g.

There are five standard BPS-LDT model parameters, which are as follows: §; > 0 is the
travel cost scaling parameter, 6, > 0 is the local detouredness scaling parameter, § > 0
is the path size scaling parameter, ¢ > 1 is the relative surplus cost bound parameter, and
n > 0isthelocal detour threshold parameter. In Appendix B.3, we discuss and demonstrate
the features / behavioural interpretations of these parameters.

Figure 1 illustrates how the BPS-LDT model can collapse into numerous different route
choice models in the literature. By setting f = 0, the BPS-LDT model collapses to the BCM-
LDT model, which as shown in Rasmussen et al. (2024) can collapse into the BCM and
MNL model. In the same way that the BCM-LDT model approaches the BCM as 6, — 0
and # — oo under the condition that # tends to oo faster than &, tends to zero, such
that gzjog (see Section 4.3 of Rasmussen et al. (2024)), the BPS-LDT model approaches the
Bounded Path Size (BPS) model (see Appendix A.5) under the same conditions. Moreover,
since the BPS model approaches the alternative Generalised Path Size Logit (GPSL’) model
(see Appendix A.3) as ¢ — oo, the BPS-LDT model can also collapse into GPSL'. In Appendix
B.2, we demonstrate the benefits of the BPS-LDT model compared the BCM, BPS model, and
BCM-LDT model.

4. Solution method

As demonstrated in Rasmussen et al. (2024), despite imposing both a bound upon total
route travel cost and a threshold upon local detouredness, the number of all possible routes
from the full network that will be assigned non-zero probabilities by these criteria may still
be considerably large, especially for large-scale networks. Therefore, with existing meth-
ods for generating all routes below the cost bound and detour threshold to solve local
detour threshold models — such the initial branch-and-bound-based algorithm proposed
in Rasmussen et al. (2024) - applying local detour models to large-scale networks is not yet
feasible computationally. In the current paper, we therefore adopt a heuristic approach,
by working from a set of pre-generated routes that represent the universal set of possible
routes. From these routes, a smaller set of routes will be assigned non-zero probabilities by
the choice model that satisfy the cost-bound/detour-threshold conditions. This also allows
for us in Section 6 to directly and consistently compare estimation results between related
local detour and non-local detour models.
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In this section, we propose a solution method for computing BPS-LDT model choice
probabilities with pre-generated representative universal choice sets. This involves first pre-
processing the route / network data to obtain the necessary segment information, and
then using this information to compute BPS-LDT probabilities without requiring any further
knowledge of the network.

Now, computing local detour measures is not straightforward/quick, even when only
doing it for a pre-generated representative universal choice set of routes, it still has the
potential to be computationally demanding. Computing the local detour measure of a
route entails finding the segment of the route that has the greatest relative detour from
the best segment alternative. Since there are many segments of a route, it can be computa-
tionally demanding to iterate through every segment of the route and calculate its relative
detour at each segment. We thus propose here two main tricks forimproving the efficiency
of computing local detour measures and calculating choice probabilities.

The first trick is to identify during the pre-processing of the route-segment information of
the generated routes, which segments are redundant. With some logical thinking regard-
ing which segments will always lead to a greater relative detour than others in the route,
one can identify which segments are redundant and exclude them, retaining only essential
segments. This avoids storing and then operating with a lot of redundant information, thus
improving efficiency. In Section 4.1 below, we demonstrate essential/redundant segments.

The second trick is to harness the feature that if a segment violates the local detour
threshold, all routes using that segment will receive zero choice probability. Thus, when
itis found that a segment violates the threshold when checking the segments of one route,
one can simultaneously assign all routes using that segment a zero choice probability, and
one does not need to then iterate through those routes to test for threshold violation. This
reduces the number of routes that need to be iterated through to compute local detour
measures, thus improving efficiency.

In Section 4.1 and Section 4.2 below, we introduce and discuss the proposed pre-
processing method and solution method, respectively. Then, in Section 4.3 we assess the
efficiency of our proposed approach, comparing it with more rudimentary methods that do
not utilise the tricks of filtering out redundant segments or simultaneous route removal.

4.1. Pre-processing method

Algorithm 1 presents the proposed method for pre-processing segment information for
solving the BPS-LDT model. The general idea of the method is to in Steps 1-4 identify
the segments of each generated route, and then in Step 5 construct segment alternative
choice sets for each segment from the routes. The segment alternatives are identified from
the sub-routes taken by the generated routes between the segment nodes. Information is
stored regarding the links of each segment alternative so that (during the solution method)
the costs of all segment alternatives can be computed, and thereby the best segment
alternatives can be identified and local detour measures computed.

Now, operationalising the first trick discussed above, Step 3 in Algorithm 1 filters out
‘redundant’ segments and identifies just the ‘essential’ segments in each route. More-
over, operationalising the second trick, Step 5.4 stores information on which routes use
each identified essential segment. The solution method in the following section uses this
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Figure 2. Demonstrating redundant/essential segments.
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information to remove multiple routes at once when a segment violates the local detour
threshold.

Algorithm 1. Proposed method for pre-processing segment information for solving the
BPS-LDT model.

Step 1. Generate a new unique route from the network (or select a route from the pre-generated set of routes).

Step 2. Store the link-route information (e.g. add the route to a link-route incidence matrix). If first unique route
generated, return to Step 1.

Step 3. Compare the new generated route with each previously generated route to filter out ‘redundant’ segments
and identify just the ‘essential’ segments in each route. This can be done, for example, as follows for two
generated routes:

Step 3.1. Identify the common segments (ordered pairings of nodes) between the two routes.

Step 3.2. For each common segment, check to see if the used segment alternative from each route (i.e. the
links used by the route between the initial and end segment nodes) share any links. If no links are
shared, add this segment (if not already present) to the lists for both routes of the essential
segments.

Step 4. If the universal choice set of routes has been generated, or an approximation of the universal choice set has
been obtained, continue to Step 5. Otherwise, return to Step 1.

Step 5. By iterating through each route and its associated essential segments in turn, construct segment alternative
choice sets and obtain other relevant information for computing local detour measures. This can be done, for
example, as follows. For each of the generated routes, iterate through each essential segment in turn and
conduct the following:

Step 5.1. Identify the used segment alternative of the current route, i.e. the links used by the route between
the initial and end segment nodes.

Step 5.2. If a new segment alternative for that segment has been identified, add the segment alternative to
the segment alternative choice set for that segment, and store the link-segment alternative
information (e.g. add the segment alternative to a link-segment alternative incidence matrix).

Step 5.3. Note which segment alternative in the segment alternative choice set is used by this route during
this segment.

Step 5.4. Add the route to a list of routes that use that segment alternative.
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To demonstrate what is meant by redundant/essential segments and how these can
be identified, consider Figure 2 which displays the step-by-step generation and adjoin-
ing of three routes from an underlying network where the OD movement is from node
1 to node 6. First, route 1 is generated which has node sequence: 1—-2—3—54—5-6,
then route 2 is generated with node sequence: 1—2—7—3—4—8—5—6, then route 3:
1-59—-4—->5-6.

Upon the generation of route 2, step 3 in the pre-processing method above compares
the segments / used segment alternatives of routes 1&2: redundant segments of both
routes are filtered out to identify just the essential segments that each route can eliminate
the other with (in terms of a local detour at that segment above the threshold). The first
obvious filtering of redundant segments is to discard all segments that are not shared by
routes 1&2: (2,7), (7,3), (4,8), & (8,5). The common segments between the two routes are
thus: (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6), & (5,6).
The next obvious redundant segments are those where the used segment alternative is the
same for both routes, which are segments: (1,2), (3,4), & (5,6).

This leaves just the segments where routes 1&2 have different used segment alterna-
tives, and therefore have non-zero local detourednesses. However, if for a given segment
all of the segment alternatives share a common link, then the segment(s) consisting of the
non-overlapping part(s) will always have a greater detour measure than the full segment.
Forexample, supposing that each linkin Figure 2 costs 1, then the route 2 detour measure at
segment (1,3) is % =0.5(1->2—7—>3against 1-2—3),but 152—>7—-3and 1-52—3
share link 1— 2 and therefore the segment (2,3) will always have a greater detour measure,
which in this case is 21;1 = 1 (2—7—3 against 2— 3). This means that all segments where
the segment alternatives overlap are redundant, which in the case of comparing routes 1&?2
means that (1,3), (1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,5), (3,6), & (4,6) are also redundant seg-
ments. This just leaves (2,3) and (4,5) as the essential segments which will dominate over all
the others above in the local detour measure. (2,3) and (4,5) are thus added to the lists for
routes 1&2 of essential segments to test.

Now, upon the generation of route 3, route 3 must be compared to both routes 1&2 to
search for redundant/essential segments. Compared to route 1, the only segment in com-
mon where there are no shared links between segment alternatives is (1,4), and so (1,4) is
added to the essential segments list of routes 1&3. Compared to route 2, the segments in
common where there are no shared links are (1,4) and (4,5). These are thus both added to
the essential segments lists for route 2&3, if not there already.

4.2. Solution method

For a given setting of the link costs and given values of the relative cost bound parameter
¢ and local detour threshold parameter 7, Algorithm 2 presents pseudo-code for solving
the BPS-LDT model with representative universal choice sets and pre-processed segment
information. In Step 1, the relative surplus total travel cost of each generated route is
checked against the global cost bound; violating routes are then removed from the used
route choice set. In Step 2, the remaining routes are iterated through, calculating the local
detourednesses of the segment alternatives for each essential segment identified during
the pre-processing. Step 2.2.3 operationalises the second trick discussed above: for seg-
ment alternatives that violate the local detouredness threshold, all routes that use that
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segment alternative are removed from the used route choice set (potentially removing
multiple routes at once). If none of the segment alternatives of a route violate the detour
threshold, then the local detour measure is calculated and it remains in the used route
choice set. In Step 3, the BPS-LDT choice probabilities are computed for the used routes
given the local detour measures calculated in Step 2.

Algorithm 2. Solution method for computing BPS-LDT model choice probabilities given
representative universal route choice sets and pre-processed segment information.

Step 1: Cost bound route elimination phase. Compute the route costs then check the cost of each route against the
cost bound. Remove all violating routes from the used route choice set.

Step 2: Local detour threshold route elimination phase.
Step 2.1: Compile an ordered list of the routes remaining in the used route choice set.

Step 2.2: For the next route in the ordered list, go through each (essential) segment of the route in turn:

Step 2.2.1: If the segment has been analysed by a previous route, note the relative surplus cost of
the segment alternative used by the current route (already computed, see below), and
continue to next segment.

Step 2.2.2: Otherwise, compute the segment alternative costs and then the relative surplus cost of
each segment alternative compared to the lowest costing segment alternative for that
segment.

Step 2.2.3: For each segment alternative that violates the detouredness bound, remove all the
routes that use that segment alternative from the ordered list and the used route choice
set.

Step 2.2.4: If during this segment, the current route violates the detouredness bound, move on to
the next route in the ordered list and return to Step 2.2. If this segment is the last
segment of the current route, continue to Step 2.3, otherwise move on to the next
segment of the route and return to Step 2.2.1.

Step 2.3: Given no segments of the current route violate the detouredness bound, compute the measure of
local detouredness for the route given the computed relative surplus costs of its segment
alternatives during Step 2.2. If at the end of the ordered list of routes, continue to Step 3. Otherwise,
move on to the next route in the ordered list and return to Step 2.2.

Step 3: Choice probability computation. Given the remaining choice set of used routes, and the costs and measures of
detouredness of the used routes computed in Step 1 and Step 2, respectively, compute the BPS-LDT choice
probabilities.

4.3. Demonstration

Here we shall demonstrate the efficacy of the proposed solution method compared to
other more rudimentary methods one could adopt. As discussed, there are two main tricks
that we employ to speed up computation times. The first involves filtering out redun-
dant segments during the pre-processing stage, which dramatically reduces the number
of segments being considered when computing the local detour measures. The second
involves removing multiple routes at once from the used route choice set when checking
if a segment alternative violates the local detour threshold (and thus not needing to com-
pute detour measures for every route). The combination of these two tricks significantly
improves BPS-LDT choice probability computation times.

To demonstrate, we shall compute the BPS-LDT choice probabilities using four different
methods:

e Method 1: During the pre-processing stage, exhaustively identify all segments of a route,
and then during the solution stage consider each route in turn, calculating the local
detouredness of every segment of the route and thus identifying the maximum for the
local detour measure.
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Table 1. BPS-LDT model choice probability computation times using our proposed
method (Method 4), and three more rudimentary methods (Methods 1-3).

Method Method 1 Method 2 Method 3 Method 4
Computation Time [s] 22.19 0.384 3.74 0.022

e Method 2: During the pre-processing stage, filter out all redundant segments of a route,
and then during the solution stage consider each route in turn, calculating the local
detouredness of each essential segment of the route and thus identifying the maximum
for the local detour measure.

e Method 3: During the pre-processing stage, exhaustively identify all segments of a route,
and then during the solution stage, if a segment alternative violates the local detour
threshold, remove all routes that use that segment alternative from the used route set.

e Method 4 (our proposed method): During the pre-processing stage, filter out all redun-
dant segments of a route, and then during the solution stage, if a segment alternative
violates the local detour threshold, remove all routes that use that segment alternative
from the used route set.

Table 1 displays the computation times for each method when computing the BPS-LDT
choice probabilities for a single OD movement of the real-life case study in Section 6.2. The
OD movement has 100 routes in the representative universal choice set, and the BPS-LDT
model parameters are those calibrated in Table 4 but with the local detour threshold param-
eter set to # = 0.5, i.e. where 88% of the routes are cut out by the local detour threshold.
As can be seen, Method 1 is very slow, having to consider each route in turn and every seg-
ment of the route. Either filtering out redundant segments (Method 2) or removing multiple
routes at once (Method 3) reduces computation times considerably, and a combination of
the two, our proposed approach, results in much faster computation times. It is also worth
noting that filtering out redundant segments dramatically reduces the memory required
to store the pre-processed segment information. In this example, the unfiltered segment
information required 120 times more memory.

Figure 3 displays how the BPS-LDT choice probability computation time using our pro-
posed method varies as the local detour threshold parameter 7 varies. As can be seen, the
lower the threshold, the greater the number of violating routes, and thus the greater the
number of routes that are being cut out simultaneously, speeding up computation times.

5. Estimation method

In this section, we provide a modified Maximum Likelihood Estimation (MLE) procedure for
estimating the BPS-LDT model with tracked route observations, as well as a computationally
tractable method for evaluating estimate precision.

5.1. Likelihood formulation

Suppose that we have available a set of observed routes Z, e.g. collected through GPS units
or smart phones, and consider a situation where it is not needed to distinguish individu-
als in their preferences (the approach is, of course, readily generalised to permit multiple
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Figure 3. BPS-LDT model choice probability computation times using our proposed method, for differ-
ent settings of the local detour threshold parameter 7.

user classes differing in their parameters). Let R; be the choice set of route alternatives for
observation z € Z. Suppose that the observation data is contained in a vector x of size |Z|
where:

X, = i if alternative j € R, is chosen, Vz € Z.

The BPS-LDT model Likelihood, L, for a sample of size |Z] is:

L(ee, 601,02, B, 0, m|x) = Hsz(t(W;a);91,92,,B,¢, n. (4)

zeZ

where Py, (t) is the BPS-LDT model choice probability function given by (4) for route x; € R;.
If for a given setting of the travel cost, cost bound, and local detour threshold parame-
ters &, ¢, & 7, there is an observation z such that either ¢, (t(w; &)) > ¢ min(c(t(w; &))) or
¢x, (t(w; @)) > 7, the BPS-LDT Likelihood value is zero. This means that the maximum like-
lihood estimates (&, 61,65, 5, ¢, 7) will always be such that ¢, (t(w; &)) < ¢ min(c(t(w; &)))
and ¢y, (t(w; a)) < 7 for all z € Z (see Duncan et al. 2022).
The BPS-LDT model Log-Likelihood function, LL, to be maximised is thus:

LL(ct, 61,02, B, 9, mlx) = IH(H Py, (t(W; @); 61,602, 5,0, n))

zeZ

=" In(Py, (t(W; ); 61,02, B, 0, 1), (5)

zeZ
Cx, (t(w; &) < @ min(e(t(w; a)))
ox, (t(W; ) < 7

subject to ’ ,VzelZ, (6)
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where Py, (t) is the BPS-LDT model choice probability relation in (2) for route x; € R;.

Solution existence. In Duncan et al. (2022), it was shown that MLE solutions are guar-
anteed to exist for the BPS model. Moreover, that these MLE solutions are guaranteed to
exist in the parameter space where the likelihood is not zero. In an analogous manner, MLE
solutions are guaranteed to exist for the BPS-LDT model, in the parameter space where the
likelihood is not zero. In order to avoid unnecessarily repeating what would be very similar
material, we refer the reader to Section 7.2.2 of Duncan et al. (2022) for the arguments for
these results.

Solution uniqueness. The BPS-LDT Log-Likelihood function is not guaranteed to be
globally convex. Standard proofs of solution uniqueness thus cannot be applied to prove
that BPS-LDT model MLE solutions are unique. That is not to say though that solutions are
not / cannot be unique, and in the experiments in this paper we have not experienced
any cases of multiple solutions. In Section 6.2.6, we conduct an empirical analysis of the
uniqueness of MLE solutions.

5.2. Estimation procedure

The proposed procedure for estimating the BPS-LDT model is a modification of a stan-
dard MLE procedure. As can be seen in (5)-(6), maximising the BPS-LDT Log-Likelihood is
complicated by the constraints requiring all chosen routes to have both a cost below the
bound and detour measure below the threshold, otherwise the Log-Likelihood function is
undefined. Like as discussed for the BPS model in Duncan et al. (2022), it is possible to pre-
determine the parameter space for MLE where the Log-Likelihood will always be defined,
by identifying (for a given closed-bounded range for the cost parameters) the lower lim-
its for the bound parameter ¢ and local detour threshold parameter ; before it is possible
for any chosen route to violate the cost bound / local detour threshold. Or, one could also
incorporate corresponding constraints for the optimisation algorithm, like those in (6) but
adjusted to include equivalence.

However, since identifying the parameter space / incorporating the corresponding con-
straints is far from straightforward, we adopt an easier to implement approach. For a
closed-bounded parameter space Q where for some settings of the parameters the Like-
lihood is zero, the MLE solution will always lie in the parameter subspace Q where all
observed routes have travel costs within the bound / local detour measures within the
threshold, i.e. where the Likelihood is non-zero. Thus, similar to as done for the BPS model in
Duncan et al. (2022), the idea is simply to tell the Log-Likelihood maximisation algorithm to
search for solutions within Q only, by setting nonoptimal values for the objective function
when testing parameters not in Q.

To do this, the estimation procedure includes a step that checks if any observed route
violates the current cost-bound/detour-threshold, and if so, sets the Log-Likelihood value
as an appropriately large and negative value. The proposed BPS-LDT estimation procedure
is as follows:

Step 1: For each route observation z € Z, generate a representative universal choice set
and pre-process the link attributes, link-route information, and segment informa-
tion (see Algorithm 1). Set an initial set of parameters to test.
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Step 2: Given the current set of parameters to test, calculate the travel cost of every route
and the local detour measure of each observed route.

Step 3: For each route observation, check if its cost violates the cost bound or its detour
measure violates the local detour threshold. If so, set the Log-Likelihood value as an
appropriate large and negative value (see below), choose a new set of parameters
to test, and return to Step 2. Otherwise, continue to Step 4.

Step 4: Given the current set of parameters being tested, use the solution method detailed
in Algorithm 2 to compute the BPS-LDT model choice probability of each route
observation.

Step 5: Given these choice probabilities, compute the Log-Likelihood value.

Step 6: If Log-Likelihood converged, stop. Otherwise, choose a new set of parameters to
test and return to Step 2.

Initial conditions. Although it is not necessarily a requirement, our recommenda-
tion is that initial conditions are set such that none of the chosen route cost bounds or
local detour thresholds are violated. This can be done simply by setting intuitively large
bound/threshold values, or by calculating the lower limits of ¢ and 7 before any chosen
route violates the bound/threshold. In Section 6.2.6, we test solving MLE with different
initial conditions.

Cost-bound/detour-threshold violation check. Note that for the cost-bound/detour-
threshold violation check, one only needs to compute the local detour measures for the
route observations. Moreover, by performing the cost-bound violation check first, one may
not need to compute any detour measures, which is the more computationally demanding
part. For the experiments in this paper, supposing that Z’ is the set of observations that
violate either the bound or the threshold, we set the appropriate large and negative value
as

—999 ifzeZ
In(P¥NL)  otherwise

where PN is the MNL choice probability for route x; € R;. Setting the appropriate large
and negative value in this way, rather than as some constant arbitrary number, means that
some information can be gathered on the relevance of the parameters even when bound-
violating parameters are tested. MNL choice probabilities are chosen as these are quick and
easy to compute. Note that for the violation

Direction searching. In general, one can apply procedures from standard numerical
optimisation methods to identify the parameters to evaluate at the next iteration. Since the
BPS-LDT choice probability function is non-differentiable for parameter values that lead to
either: (i) a route’s travel cost being equal to the bound value, (ii) a route’s detour measure
being equal to the detour threshold value, or (iii) two or more routes having the same min-
imum travel cost (i.e. a point at which the minimum cost route changes), caution must be
given when using gradient approaches such as Newton-Raphson or BHHH for the minimi-
sation algorithm. While the non-differentiability at (i) and (ii) are not an issue as we are only
concerned with parameter settings within the subspace Q (the Log-Likelihood value will be
large and negative anyway at those parameter values), the non-differentiability at (iii) may
be problematic if the minimum cost route is likely to change a lot for different parameter



TRANSPORTMETRICA A: TRANSPORT SCIENCE . 17

values. One possibility could be to replace the min functions in (1)-(3) with smooth approxi-
mations of the minimum function, such as the Boltzmann operator or Mellowmax operator.
In this study though, we use the L-BFGS-B bound-constraint quasi-Newton minimisation
algorithm (Byrd et al. 1994) (where we minimise —LL), which approximates Log-Likelihood
differentials using finite difference. We found that this converged well to MLE solutions,
as we demonstrate in Section 6.2.6. The L-BFGS-B algorithm was implemented using the
scipy.optimize.minimize package in Python. The parameter bounds and initial conditions
are given in each study.

5.3. Evaluating estimate precision

Forthe BPS-LDT modelitis not possible to calculate standard errors for the estimates analyt-
ically. This is because the model is non-differentiable at certain points and therefore violates
the regularity conditions that establish asymptotic standard errors of the maximum likeli-
hood estimates as the inverse of the Fisher information. Instead, we detail here a method
for evaluating estimate precision numerically through resampling.

Resampling approaches that could be utilised include, among others, the JackKnife,
Bootstrap, and Subsampling methods (Efron 1979). For a sample size of |Z| observations,
the JackKnife method involves estimating the models for |Z| subsamples of |Z| — 1 obser-
vations, where each of the |Z| observations are sequentially removed one at a time from the
sample set (with replacement). The Bootstrap method involves estimating the models for H
samples of |Z| observations drawn randomly from the full sample set Z, with replacement.
The Subsampling method involves estimating the models for H subsamples of G < |Z]
observations drawn randomly from the full sample set, with or without replacement. With
the |Z| estimates of the parameters obtained from the JackKnife method, and H estimates
from the Bootstrap and Subsampling methods, estimate precision statistics can be approx-
imated such as standard errors and confidence intervals, given mean estimates. Indeed,
H. Lim, Lim, and Piantanakulchai (2019), Tilahun, Levinson, and Krizek (2007), Janosikova,
Slavik, and Kohani (2014), and Fosgerau et al. (2023) all utilise Bootstrap to assess estimate
precision in route choice parameter estimation studies.

However, while estimating the BPS-LDT model once for a dataset of |Z| observations is
computationally feasible (see estimation times for our real-life case study in Section 6.2.3),
re-estimating the model many times for different samples of |Z| / |Z| — 1 observations for
the Boostrap/Jacknife methods can be computationally onerous. The Subsampling method
has a lower computational burden, but it violates sample size properties. We thus instead
suggest using the Bag of Little Bootstraps (BLB) method (Kleiner et al. 2014), which was
proposed as a more computationally efficient alternative to Bootstrap. Although it is to the
best of our knowledge yet to be utilised in the context of transport route choice, the BLB
method has been used to explore parameter estimate precision in other contexts, see e.g.
Allahviranloo, Regue, and Recker (2017), Sharma and Kumar (2021), Covington et al. (2021).
The BLB resampling method is as follows for a full sample set size of Z observations:

Step 1: Randomly draw without replacement G < |Z| observations from the full sample
set.

Step 2: Repeat Step 1 H times so that there are H subsamples of G unique observations.
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Step 3: From each of the H subsamples of G unique observations, randomly draw with
replacement |Z| observations.

Step 4: Repeat Step 3 Y times so that for each of the H subsamples of G unique observa-
tions, there are Y samples of |Z| (not-all-unique) observations.

The result is H x Y samples of |Z| observations, G of them unique in each sample. The
models are estimated for each of the H x Y samples and estimate precision statistics are
evaluated from the set of H x Y estimates.

The computational advantage of the BLB method compared to the Bootstrap method
is that each of the H x Y samples only have G unique values, and therefore the computa-
tional demand scales in G instead of |Z|. In our case study, each observation is a unique
OD movement with its own choice set of routes. Thus, for JackKnife, one must compute
the route choice probabilities for |Z] — 1 OD movements. For Bootstrap, the number of OD
movements varies depending on how the observations are randomly drawn; the average
according to some simple and standard calculations done by Efron and Tibshirani (1993)
is approximately 0.632 - |Z|, which is large if | Z| is large, and there could be as many as |Z|
in the unlikely scenario every observation is drawn without repetition. The BLB method,
however, allows for one to control the number of OD movements, and thus the compu-
tational burden, with G. Moreover, as Kleiner et al. (2014) discuss/demonstrate, the BLB
method is well suited for modern parallel and distributed computing architects (more so
than Bootstrap), and one can also use an iterative algorithm to seek the minimal values
of the hyperparameters H and Y that are sufficiently large to yield good statistical per-
formance. Once more, the BLB method does not violate the sample size properties (each
sample has |Z| observations (that are not all unique)).

6. Empirical analysis

In this section, we first conduct a simulation study to assess whether assumed true param-
eters can be successfully reproduced and identified. Then, the BPS-LDT model is estimated
on a large-scale network using real route choice observation data tracked by GPS units.
Results are compared with BCM-LDT model as well as other relevant non-local detour route
choice models (see Appendix A). For this estimation work, we work with pre-generated
representative universal choice sets, utilising the pre-processing and solution method
proposed in Section 4.

6.1. Simulation study

Here we investigate the procedure proposed in Section 5.2 for estimating the BPS-LDT
model in a simulation study, assessing the possibility of estimating reasonable parameters
that reproduces observed behaviour. This is particularly important in the case of the BPS-
LDT model as: (i) there is some uncertainty over whether the heuristic estimation procedure
will work effectively, (ii) it is not guaranteed that the BPS-LDT solutions are unique, and (iii)
there is a complex interaction between the parameters of the BPS-LDT model, with possibil-
ities for identification issues. For example, #; and ¢ both to some extent control sensitivity
to travel cost, and 6, and 7 both to some extent control sensitivity to local detouredness.
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We can also explore whether local detouredness and correlation are distinct, independent
route attributes.

6.1.1. Experiment setup

A similar approach is adopted to that utilised for the Adaptive Path Size Logit model in
Duncan et al. (2020) and BPS model in Duncan et al. (2022). In general, the approach is to
sample observations according to an assumed ‘true’ model, and then use these in combi-
nation with the Log-Likelihood function to evaluate the ability to reproduce the assumed
‘true’ parameters. The simulation estimation experiment consists of four steps:

Step 1: Postulate a set of true parameters of the BPS-LDT model.

Step 2: Given these assumed true parameters, calculate the BPS-LDT choice probability of
each route alternative in the representative universal choice sets.

Step 3: Given these route choice probabilities, sample |Z| observed route choices.

Step 4: Given these observed route choices, apply the estimation procedure discussed in
Section 5.2 to obtain BPS-LDT parameter estimates.

Steps 3 & 4 are replicated many times to obtain a set of parameter estimates. Then, by
analysing the Bias and Standard Error of these sets of parameter estimates we can assess
whether the assumed true BPS-LDT parameters can be successfully retrieved.

6.1.2. Sioux falls application

The Sioux Falls network consists of 76 links and 528 OD movements with non-zero travel
demands. Details of the network were obtained from https://github.com/bstabler/Trans
portationNetworks. The travel cost of link a is specified as the free-flow travel time wg,
only, such that:

ta(Wg; o) = wq1 - a1,

where a1 > 0is the free-flow travel time parameter, and thus the travel cost for routei € Ry,
is:
mitW;@) = D ta(Waa) =ar D Wa.
aehm, a€hAm,i

The BPS-LDT models require in this case the specification of six parameters: a1, 01, 62, B,
¢, and 5 but to ensure identification 6, is fixed at 8; = 1 throughout.

To generate the representative universal choice sets, we utilised a simulation approach
(Sheffi and Powell 1982) where the link costs were drawn randomly from a truncated nor-
mal distribution with mean value being free-flow travel time and standard deviation being
0.6 times the mean. The link costs were simulated 100 times for each OD movement and
for each simulation a shortest path search was conducted to generate a route, so that a
maximum of 100 unique routes were generated for each choice set.

For the Log-Likelihood maximisation algorithm (see Section 5.2) we set the initial condi-
tions to (&,"),0{”, F©,5©, 7@) = (a{¥ + 02,0 + 0.2, frue + 0.2, ptrue + 0.2, Ntrue +
0.2), and the bounds to a7 € [0.01,2],6; € [0.01,8], 8 €[0,2],¢ € [1.01,3], # € [0.01,4].

Table 2 reports, for various settings of the true parameters, the mean Bias (true param-
eter minus mean estimate), Standard Error (standard deviation of estimates), and Route
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Mean Squared Error (RMSE = V/(Bias)? + (S.E)z), of the estimates across 250 experiment
replications, each with |Z| = 5000 simulated observations. As shown, the mean bias of the
estimates of a1, 6>, B, and ¢ are relatively small for nearly all settings of the true parameters
tested. For example, the maximum absolute percentage biases for a1, 65, 5, and ¢ are 6.5%
(% x 100%), 5.2%, 2.4%, and 0.6%, respectively. For 7, the maximum absolute percent-
age bias is 10.9%, from the third setting of the true parameters where 4“¢ is set the highest.
As one can see, the precision of estimating 7 (as measured by the RMSE) decreases as 65
increases and ¢, becomes more influential. And, the precision of estimating ¢, decreases
as nirue decreases and # becomes more influential. This makes sense as 6, and 7 both have
a similar scaling effect upon local detouredness and the parameters have some correla-
tion (see below). Thus, the 10.9% bias for 7 is due to a dominating 6, parameter, where the
standard error for 7 is also its largest.

Table 3 displays the estimated covariances between the a4, 65, f, ¢, and 5 parameters,
from a single simulation experiment with the true parameters set as !¢ = 0.2, 93¢ =
2, Btrue = 0.7, 0true = 1.5, nerue = 1. As shown, there is no evidence of strong correlation
between the parameters. But, the greatest correlation is between the 92 and 7 estimates,
where there is a logical positive correlation: an increase in 6, or a decrease in 7 gives more
probability to lower detouring routes.

Overall, the simulation study results suggest that the parameters of the BPS-LDT model
can in general be successfully estimated and identified, evident from the low bias and
standard error of the estimates, as well as the low covariance between parameters. There
is though perhaps some confounding between the local detouredness scaling parame-
ter 6, and local detour threshold parameter 7. Importantly, the results suggest that local
detouredness and correlation are distinct, independent route attributes.

6.2. Real-life large-scale case study

In this section, we estimate the BPS-LDT model in a real-life case study using the procedure
discussed in Section 5 with observed route choices tracked by GPS units.

6.2.1. Setup

The GPS data has been collected among drivers in the eastern part of Denmark in 2011,
and includes a total of 17,115 observed routes. The dataset is the same as used in
Prato, Rasmussen, and Otto (2014), Rasmussen et al. (2017), and Duncan et al. (2020;
2022).

The GPS traces were map matched to a network, for which corresponding time-of-day-
dependent travel times were available on the entire network. See more details in Prato,
Rasmussen, and Otto (2014). The network is large-scale, representing all of Eastern Den-
mark, and thus includes 34,251 links. With current route generation techniques, it is not
feasible to enumerate the universal choice set for such a large network, and even enumerat-
ing all alternatives with a cost below a rather large relative bound (e.g. ¢ = 2) is not feasible.
Instead, we generated representative universal choice sets by generating a choice set for
each observed route by applying the doubly stochastic approach also applied in Prato, Ras-
mussen, and Otto (2014). This approach is based on repeated shortest path searches in
which the network attributes and parameters of the cost function are perturbated between



Table 2. Sioux Falls simulation study: Stability of estimated BPS-LDT parameters across 250 experiment replications (|Z] = 5000 observations).
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Table 3. Sioux Falls simulation study: estimated covariances between BPS-LDT
model parameters from 250 experiment replications (aﬁ’“e =0.2, 6)2"”9 =2p=
0.7, =157=1).

2 by B ¢ ]
& - —0.020 0.000 0.000 —0.001
6, ~0.020 - —0.018 0.001 0.047
J] 0.000 —0.018 - —0.000 0.006
é 0.000 0.001 —0.000 - —0.000
i ~0.001 0.047 0.006 ~0.000 -

searches (Bovy and Fiorenzo-Catalano 2007; Nielsen 2000). To reduce the risk of bias in esti-
mation, care was taken to ensure a large variety of alternatives with different characteristics
were generated, by assuming large variance in the parameters of the cost function. Up to
100 unique paths were generated for each observation, and the observation was matched
to the most similar generated route, with a requirement of the overlap in length being at
least 80% for the observation to be included in the estimation. This removed 841 routes, i.e.
the coverage was 95%. We also removed trips where the sum of travel time (in minutes) and
length (in km) was less than 10, as well as observations where only one route was generated,
leaving a total of 8,105 observations.

For the estimation in this study, like in Duncan et al. (2020, 2022), the travel cost of link
ais specified as a weighted sum of congested travel time wg 1 (in minutes), and length wg >
(in kilometres), such that:

ta(Wg; ) = wg1 - a1 + Wg2 - a2

where a7 > 0 and a; > 0 are the congested travel time, and length parameters, respec-
tively. The generalised travel cost for route i € Ry, is thus:

Cmi(tW; ) = D taWaia) = D (Wai - o1 + Wa2 - @)

acAm,i aehm,
= o E Wg,1 + a2 E Wa,2.
achm,i a€hAm,i

The BPS-LDT model requires in this case the specification of seven parameters: a1, a3, 01,
62, B, ¢, and 5, but to ensure identification, the 8, parameter is fixed at ¢, = 1.

There were a few outlying observations where the relative surplus cost to the minimum
cost alternative was rather high. These may be a result of erroneous processing of the GPS
data (e.g. stop not classified) or behaviour beyond the intended scope of the model such as
the travellers getting lost. After visual inspection of the most deviating observations, we
removed 10 observations from the original dataset, which had the largest relative devi-
ation from the minimum cost alternative. Further interrogation of the data revealed 102
observations with unrealistic local detours, leaving a total of 7,993 observations.

Using the calibrated travel cost parameters from the BPS-LDT model (see estimation
results below), Figure 4(A,B) display the cumulative distributions of the relative surplus
travel costs and local detour measures, respectively, of the observed routes compared to
all routes generated. As can be seen, a large variety of routes were generated. While most
routes have low relative surplus costs and/or low local detour measures, some routes are
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Figure 4. Cumulative distributions of relative surplus travel cost (A) and local detour measures (B), of
all generated routes and of the observed routes. Travel cost was calculated using calibrated travel cost
parameters from BPS-LDT model in Table 4.

very relatively costly (maximally 2.95), and some have very large local detour measures
(maximally 98.84). The observed routes did not take the most costly / most detouring
routes, however. 46.9% of observations took the lowest costing route (relative surplus costs
of 1), and 45.6% of observations took a route with no local detours (detour measure of 0).
Moreover, as can be seen, route usage decays with cost/detouredness, where the maximum
observed relative surplus cost was 1.58 and the maximum observed local detour measure
was 3.78.

6.2.2. Estimation results

Here we present results from estimating the BPS-LDT model, and compare estimated
parameters and goodness-of-fit with those for other relevant models. As shown again in
Figure 5, the BPS-LDT model acts as a unified model for several route choice models in the
literature, which can be found in Appendix A. By comparing the BPS-LDT estimation results
with other models we assess the main hypotheses of the paper that:

(i) Local detouredness is an influential route choice attribute,
(ii) Travellersimpose a threshold on the local detouredness of routes to determine their
route choice sets,
(iii) Capturing correlations between used routes will lead to more realistic route choice
probabilities.

The different models were all estimated utilising the same Log-Likelihood maximisa-
tion algorithm (L-BFGS-B, see Section 5.2), initial conditions, and parameter bounds. The
initial conditions were: (&51),&g”,éz(”,ﬁ“),gﬁ“), 7M) = (1,0.7,1,0.8,1.7,5), with bounds:
d1,a, €[0.01,3],6, € [0.01,5], f € [0,3], ¢ € [1.01,5], 7 € [2,30]. In Section 6.2.6, we esti-
mate the BPS-LDT model with different initial conditions to test for multiple solutions.

Table 4 shows the estimated parameters, Log-Likelihood values, and penalised-
likelihood criteria (in this case BIC statistic), and adjusted rho squared measures for the
different models. Note that standard errors of the estimates are not provided in Table 4, as
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Figure 5. Schematic diagram of how the BPS-LDT model collapses into other models.

Table 4. Real-life case-study estimation results.

a az 0, p 7 7 LL BIC Adj. p?
MNL 1.221 0.698 —21443 42904 0.399
PSL 2.077 0.599 2.132 —20155 40336 0.435
GPSL 1.243 0.378 2.269 —18547 37121 0.480
BCM 1.203 0.696 1.537 —21437 42901 0.399
BPS 1.235 0.377 2.270 1.607 —18540 37116 0.480
BCM-LDT 0.855 0.473 1.581 1.530 30 —19940 39925 0.441
BPS-LDT 1.053 0316 0.357 2.031 1.600 30 —17862 35778 0.499

these cannot be calculated analytically for the bounded / local detour models. We instead
in Section 6.2.4 explore estimate precision numerically through a resampling approach.

Local detouredness. As evident from the better Log-Likelihood, BIC, and adjusted rho
squared statistics, the BCM-LDT provides better fit to the data than the BCM, and the BPS-
LDT model provides better fit to the data than the BPS model. These two results imply that
either or both hypotheses (i) and (ii) are true, that local detouredness is an influential route
choice attribute and/or travellers impose a threshold upon local detouredness. By inspect-
ing the estimated BPS-LDT model parameters, however, it is evident that only hypothesis
(i) is true. The estimated 6, parameter that scales sensitivity to local detouredness is esti-
mated significantly different from zero (see Section 6.2.4), but the estimated local detour
threshold parameter is estimated at the upper limit of 30 set for the L-BFGS-B algorithm,
which approximates infinity. The latter is a surprising result, that when given the oppor-
tunity to define routes as unrealistic and assign them zero choice probabilities the local
detour models opted not to. We explore this result in greater detail in Section 6.2.8. There is
strong empirical evidence, however, that local detouredness is an influential route choice
attribute.

Correlation. The BPS-LDT model provides considerably better fit to the data than the
BCM-LDT model, and the path size scaling parameter f is estimated significantly different
from zero (see Section 6.2.4), thus providing strong empirical evidence to support hypothe-
sis (i) that capturing correlations between used routes leads to more realistic route choice
probabilities.

Cost-bounds. Shadowing similar results in Duncan et al. (2022), as can be seen for all
of the bounded models, the cost-bound parameters ¢ were estimated to be around 1.5-
1.6, which corresponds suitably with the observation with the maximum relative surplus
cost, which is around 1.53-1.6 (see Figures 4 and 12), depending on the estimated cost
parameters. This cuts off a small proportion of routes (see Figure 4), resulting in the BCM
and BPS model providing marginally better fit to the data (as measured by BIC) than their
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corresponding non-bounded models MNL and GPSL’, respectively. This implies that the
cost-bounds within the BCM-LDT and BPS-LDT models result in better fit to the data.

Value of time. Comparing the ratio between the travel time preference parameter a;
and distance preference parameter a; gives a ratio between 2 and 3, inferring that travellers
are willing to travel an extra 2-3 kilometres to save 1 minute of travel time. This ratio range
seems plausible and aligns well with our findings in a separate study of the same area in
Duncan et al. (2025).

6.2.3. Estimation times

Table 5 displays the estimation times for each model. As shown, generally, the more com-
plex the model and number of parameters to estimate, the longer the estimation times. The
local detour models take longer to estimate, partly because it takes longer to compute the
choice probabilities, but mainly because more function evaluations / iterations are required
to reach convergence. MLE convergence patterns for the BPS-LDT model can be seen in
Figure 9. The BPS-LDT model can though be estimated in feasible computation times. As
we shall discuss in Section 6.2.8, one can speed up estimation times for the BPS-LDT model
considerably by setting the relative cost bound and local detour threshold parameters to
marginally above the relative cost / detour measure of the worst respective observations.

Table 5. Estimation times for each model.

Model MNL PSL GPSL’ BCM BPS BCM-LDT ~ BPS-LDT
Estimation Time [min] 1.15 8.64 5.11 6.67 24.96 480.61 406.55

6.2.4. Estimate precision

Here we evaluate the precision at which the parameters of the different models are esti-
mated, thereby assessing whether the parameters are statistically significant and thus
influential factors upon route choice.

To evaluate estimate precision, we adopt the BLB resampling method discussed in
Section 5.3. We do not, however, adopt an iterative algorithm for seeking sufficient H and
Y as we wish to compare goodness-of-fit and estimate precision across different models,
where the same samples will be used for each model. In simulation experiments, Kleiner
et al. (2014) investigate standard sufficient values for H and Y, and conclude that Y = 100
and H = 10 were sufficient for G > |Z|%6. After some preliminary experiments of our own,
we concluded that - wanting to select as large a value of G as computational resources
would allow - G = |Z|°® = 1415 would be feasible in our case for Y = 100 and H = 10.
We therefore generated 10 ‘bags’ of G = 1415 observations (without replacement from
the full |Z| = 7993 observation sample set), and then randomly sampled with replacement
|Z| observations from each of the 10 bags 100 times, to obtain a total of 1000 samples.
Then, for each of the 1000 samples, we estimated the parameters for each of the models in
Table 4. In order to optimise efficiency, in the Python code for performing the BLB method
for each model, we used parallel processing to split the 1000 estimations across 15 logical
processors.

Table 6 displays for each model the mean estimates y, standard deviations of the esti-
mates o, mean Log-Likelihood values LL, and mean BIC values. We do not include the local
detour threshold parameter # estimates and standard deviations as the estimates are all
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Table 6. BLB results for each model (from 1000 estimations), mean x and standard deviation o of
estimates.

an a2 ) B ¢
u o u o u o u o u o LL BIC
MNL 1.21 0.11 0.73 0.12 —21526 43070
PSL 2.06 0.13 0.63 0.09 2.13 0.09 —20250 40527
GPSL’ 1.24 0.06 0.39 0.06 2.28 0.08 —18599 37225
BCM 1.19 0.11 0.72 0.12 1.52 0.07 —21515 43057
BPS 1.22 0.06 0.39 0.06 2.29 0.08 1.56 0.10 —18582 37200
BCM-LDT 0.81 0.09 0.48 0.08 1.70 0.28 1.50 0.06 —19922 39880

BPS-LDT 103 006 032 005 040 0.09 204 008 154 008 —17851 35747

30 (the upper algorithm limit) with zero standard deviation. As can be seen, the mean esti-
mates in Table 6 are all similar to the estimates on the full dataset in Table 4. The standard
deviations are also all appear reasonable, and there is no evidence that the parameters of
the BPS-LDT model are estimated less precisely than the other models. Testing whether the
ai, 02, 92, and ﬁ parameter estimates are significantly different from zero and the ¢ param-
eter estimates are significantly different from 3 (a reasonable proxy for infinity, see Figures
4 and 8), the p-values for every parameter estimate of every model are all smaller than can
be computed in Python, and thus the parameter estimates are statistically significant. This
is of course apart from the # parameter estimates, which are not statistically significant.

In terms of goodness-of-fit, although the mean Log-Likelihood / BIC values in Table 6
are slightly different from the Log-Likelihood / BIC values on the full dataset in Table 4,
the comparisons in fit are roughly the same. The BPS-LDT model provides by far the best
mean fit. Figure 6 plots for each of the models the BIC from each of the 1000 BLB samples,
ordered from lowest to highest BPS-LDT BIC. As can be seen, for all samples, the BPS-LDT
model performs the best, highlighting the robustness of the result.

6.2.5. Out of sample validation

Here we assess the forecastability of the BPS-LDT model, assessing whether the model over-
fits the data, and whether the model is suitable for transferring estimates to predict choice
probabilities in other datasets. To do this we perform Monte Carlo cross-validation, follow-
ing the same process as Cazor et al. (2024). For each model, we repeated the following steps
10 times:

Step 1: Randomly split the full dataset Z into a training set Z; and validation set Z,, where
|Zt] = 12v]| = 0.5 - |Z].

Step 2: Estimate the model on the training set Z;, obtaining a set of training parameter
estimates.

Step 3: Given these training parameters, calculate the Log-Likelihood on the validation set
Z,.

Figure 7 displays the validation set Log-Likelihood of each model from each of the 10
experiments. As can be seen, the comparative fits to the data of the different models are
the same as in Tables 4 and 6. The BPS-LDT model outperforms the BPS model supporting
the hypothesis that it is important to consider local detouredness as a route attribute, and
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Figure 6. Plotting for each model the BIC penalised likelihood criteria from each of the 1000 BLB
samples, in order of lowest to highest BPS-LDT model BIC.

considerably outperforms the BCM-LDT model supporting the hypothesis that it is impor-
tant to consider route correlation. The result is consistent across all experiments. There is
no evidence of overfitting; the BPS-LDT model is suitable for forecasting, and moreover
provides the most realistic choice probabilities for doing so.

6.2.6. Uniqueness of MLE solutions

Here we explore numerically whether BPS-LDT MLE solutions are unique. This is important
as non-uniqueness can undermine the interpretability, stability, and reliability of results, as
well as cause issues with convergence of the maximisation algorithm.

Figure 8 visualises the BPS-LDT Log-Likelihood surface around the 6 parameter estimates
in Table 4, i.e. varying each of the parameters around the estimate with the other parame-
ters fixed. Note that we only visualise the Log-Likelihood surface in parameter ranges where
the Likelihood is non-zero. As can be seen, the Log-Likelihood surface is not globally con-
cave, evident from the surface around the ¢ parameter. There is though no evidence of
multiple maxima.

To test for multiple solutions, Figures 9 and 10 display the model parameters and Log-
Likelihood value, respectively, at each iteration of the MLE solution algorithm with three
differentinitial conditions. As can be seen, each initial condition converges to the same MLE
solution.* Additional evidence for uniqueness is provided in the simulation study, where for
each set of drawn observations we obtained parameter estimates in the neighbourhood of
the true parameters.
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Figure 7. Validation set Log-Likelihood of each model from each of the 10 experiments.

6.2.7. Sensitivity to the representative universal choice sets

The BPS-LDT choice probably solution method proposed in this paper operates from pre-
generated representative universal choice sets rather than the full universal route set. While
the BPS-LDT model deals with unintentionally generated circuitous routes with costs / local
detours above the bounds (by assigning them zero choice probabilities), routes that were
not pre-generated with costs / local detours below the bound are not accounted for. Here
we explore how sensitive results are to the pre-generated representative universal choice
sets adopted, to assess how robust results are to missing out relevant routes.

Using the same doubly-stochastic route generation method discussed in Section 6.2.1,
we generated additional routes to obtain choice sets with a maximum of 100, 200, and 300
routes, and then estimated the different models for each choice set composition. Table
7 displays the estimated parameters for the BPS-LDT model for each maximum choice
set size. As shown, the estimated parameters remain relatively stable, though there is a
decrease in the f path size scaling parameter and an increase in the ¢, detouredness scal-
ing parameter. This is likely because the newly generated routes overlap with the observed
routes, as well as detour from them. Figure 11 displays for each model the difference in
Log-Likelihood between estimation with the original choice sets and estimation with the
expanded choice sets. As can be seen, the Likelihood worsens less for the BPS-LDT model
than for the other models, and remains by far the model with the best fit. These results
indicate that the BPS-LDT model is relatively robust to missing out relevant routes from the
pre-generated representative universal choice sets. The BPS-LDT model is also of course
robust to unintentionally generated irrelevant routes.
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Figure 8. Visualising the BPS-LDT model Log-Likelihood surface around the parameter estimates in
Table 4, varying one parameter and fixing the others to the estimates.

Table 7. BPS-LDT estimated parameters for each choice set composition.

Maximum choice set size a9 ay 6, i 7] 7

100 1.053 0.316 0.357 2.031 1.600 30
200 1.070 0.321 0.415 1.844 1.620 30
300 1.094 0.319 0.460 1.745 1.625 30

6.2.8. Exploring the local detour threshold

Since the greatest local detour measure from the observed routes was 3.78, it was antici-
pated that the BPS-LDT local detour threshold parameter would be estimated close to (but
greater than) 3.78. This would define 18,961 routes / 5.06% of routes as unrealistic. However,
by estimating an infinite bound, no routes were defined as unrealistic by the local detour
threshold. It is surprising that when given the opportunity to define routes as unrealistic
and assign them zero choice probabilities the local detour models opted not to. A possible
reason for this is explained as follows.

The cost-bound and detour-threshold in local detour models do not only assign zero
probabilities to routes with travel costs / detour measures above the bound/threshold,
but also impact the probabilities of routes below the bound/threshold. Route probabilities
decrease towards zero if their cost approaches the cost bound from below, or if their detour
measure approaches the detour threshold from below. This ensures the choice probability
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Figure 9. BPS-LDT model parameters at each iteration of MLE solution algorithm, with different initial
conditions.

function is continuous. However, it has the potential to cause conflictions. If one consid-
ers a standard MNL model where the route utility function is a linear combination of travel
cost and local detouredness, then a route receives a small probability if it has an unattrac-
tive combination of both cost and detouredness. If it has a relatively attractive cost but a
relatively unattractive detouredness, or vice versa, then it may receive a middling choice
probability. For local detour models, however, a route receives a low choice probability if
it has either a relatively unattractive cost that is just below the bound or an unattractive
detouredness that is just below the threshold, regardless of how attractive the route may
be in terms detouredness or cost, respectively.

Therefore, given that the MLE procedure is trying to find the parameter values that over-
all produce the highest probabilities for all route observations, it could be the case that
setting a low detour threshold (but still above the worst observed detour measure) reduces
the probabilities for some observed routes, that otherwise may receive considerably better
probabilities due to their relatively attractive travel cost. And, that this gain in probabil-
ity for these observations is not cancelled out by the assigning of non-zero probabilities
to generated routes with large detour measures, which under lower settings of the detour
threshold would receive zero probabilities and thus take no probability away from observed
route probabilities. Figure 12 plots relative surplus cost against local detour measure for the
observed routes. As shown, it is not the case that there is a positive correlation between cost
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Figure 12. Plotting relative surplus cost against local detour measure for the observed routes.

and detouredness. In fact, as evident from the population of datapoints towards the left of
the figure, and particular top left, there are many observations that have a low relative sur-
plus cost but a large local detour measure. In contrast, there are few routes that have large
costs and small detour measures, especially since at worst the largest local detour of a route
is the global detour.

As discussed, the cost bound and detour threshold do impact the choice probabilities of
routes with costs / detour measures below the bound/threshold, but, principally, this is a
mathematical construct to ensure the choice probability function is continuous. Although
the parameters do scale in a non-direct way sensitivity to travel cost / local detouredness
(as demonstrated in Appendix B.3), there are other parameters present in the model to do
exactly such, i.e. the ; and 8, parameters. The key role of the bound/threshold parameters
is to identify the bound/threshold travellers have on travel cost / local detouredness, and
thereby use this to consistently identify and define routes as unrealistic, i.e. that have costs /
detour measures greater than the bound/threshold. One could therefore suppose that one
need not actually estimate the bound/threshold parameters, and instead simply set them
to marginally above the relative cost / detour measure of the worst respective observations
(which may vary depending on the travel cost parameters).

Doing exactly such, Table 8 displays estimation results from estimating the local detour
models when setting the cost bound parameter ¢ marginally greater (+0.01) than the
most relatively costly observation, and the detour threshold parameter # marginally
greater (+0.01) than the most detouring observation. As shown, the local detour thresh-
old parameter values are all around the worst detour observation (around 3.7-3.8). As
anticipated though, the Log-Likelihood and BIC values are worse than when estimating
free bounds/thresholds (see Table 4). Both models do still all outperform their associated
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Table 8. Estimation results from estimating local detour models with
bound/threshold parameter set marginally above values from worst respective
observations.

a1 as b, A 0 n L BIC
BCM-LDT 0814 0492 1652 1518 3735  —19998 40023
BPS-LDT ~ 1.070 0315 0000 1996 1591 3796  —18103 36241

non-local detour model (BCM and BPS model), however, by a sizeable margin. But, while
the parameter estimates for a1, @y, and ﬁ are quite similar for the BPS-LDT model with
free and fixed bound/threshold parameters, the #, parameter estimate when fixing the
bound/threshold parameters is very different, approximating zero. This indicates that the
observations with low travel costs but high local detour measures are highly influential
in the Log-Likelihood function, where a small 6, parameter is required to increase the
probability of these routes.

One benefit of setting the bound/threshold parameters marginally above the worst
observations is that it reduces the number of parameters to be estimated, improving esti-
mation times. This is especially pertinent for the estimation of bounded / local detour mod-
els, which have an unusual MLE pattern due to the heuristic setting of the Log-Likelihood
when the bound or threshold are violated, which can consequently mean more function
evaluations / iterations are required to find the MLE solution. The estimation times for the
results in Table 8 were 65 minutes for the BCM-LDT model and 133 minutes for the BPS-LDT
model, which are considerably faster than those given in Table 5.

7. Conclusions and future research

Local detour route choice models suppose that local detouredness is an influential fac-
tor upon both route choice probability and route choice set formation. This paper has
addressed three priorly unresolved challenges regarding local detour models: (i) account-
ing for correlations between overlapping routes defined as realistic, (ii) developing a solu-
tion approach for applying the model on large-scale networks, and, (iii) developing, testing,
and applying a procedure for estimating the model.

e Addressing (i), path size terms were integrated within the local detour model probabil-
ity relation to adjust probabilities to capture correlations between overlapping routes
defined as realistic by local and global bounds. Careful consideration has been given
to the formulation of the path size term to ensure that the choice probability function
maintains continuity, consistency, and existence.

e Addressing (ii), due to the high computational burden of current methods for generating
all routes below the local and global bounds, the current paper has developed a heuris-
tic solution approach that operates from pre-generated representative universal choice
sets and pre-processes the necessary segment information for computing local detour
measures. Tricks have also been developed that considerably improve computation
times.

e Addressing (iii), a maximum likelihood estimation procedure utilising tracked route
observation data was developed, tested in a simulation study where it was shown that
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assumed true parameters can generally be reproduced, and applied in a real-life large-
scale case study with GPS-tracked route observations. The local detour models were
successfully estimated and found to outperform associated non-local detour models.

In response to the research questions listed in the introduction, the main findings of the
empirical analysis were that:

e Local detouredness is an influential factor upon route choice probability,
Local detouredness and correlation effects are identifiable as distinct route choice
attributes,
e Parameter estimates are statistically significant (other than the local detour threshold
parameter),
No evidence was uncovered that MLE solutions are not unique,
The model can be estimated in feasible computation times on a large-scale network,
The model is suitable for forecasting,
Model estimates were relatively insensitive to the assumed representative universal
choice set.

A surprising finding from the real-life estimation work was that the local detour mod-
els estimated local detour threshold parameter approximating infinity. One might expect
that the local detour threshold parameter would be estimated marginally above the largest
local detour measure from the route observations, thereby maximising the number of gen-
erated routes the local detour models assign zero probabilities to (i.e. define as unrealistic).
However, the local detour threshold parameters estimated as approximating infinity meant
that no generated routes were assigned zero probabilities. Our hypothesis is that this result
is, in part, a symptom of working from pre-generated representative universal choice sets,
or at least the ones in this case study. As shown in Figure 4(B), a very small proportion of
the generated routes have large local detour measures, and thereby have the potential to
be assigned zero probabilities, to give probability to observed routes. Clearly, the work-
ing choice sets do not even come close to the universal set of all possible routes, which
would include an enormous number of routes with large local detours. As shown in Ras-
mussen et al. (2024), when generating all routes with a local detour measure less than
the detour threshold from the full network, the choice set size grows exponentially and
becomes extremely large very quickly. If we were to estimate the local detour threshold
models on the full network with the actual universal choice set of routes available, it thus
seems significantly more likely that the cost bound / local detour threshold would try to
exclude as many routes as possible.

Future research could therefore explore developing a more computationally efficient
method (than that developed in Rasmussen et al. (2024)) for generating all possible routes
below the local and global bounds. For example, developing an efficient branch-and-
bound route generation method utilising violating segments to efficiently branch, and
re-uses information across OD movements. This will mean that one can apply local detour
models with full consistency between the choice set generation criteria and choice proba-
bility criteria, where no route defined as realistic by the route choice probability criteria will
be unused (i.e. not generated).
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However, as discussed, the set of all possible routes below the local and global bounds
has the potential to be enormous. Thus, perhaps further measures need to be introduced
that define routes as unrealistic. For example, by imposing more bounds upon individual
route ‘aspects’, e.g. length, travel time, number of left/right turns. After some investiga-
tion, it appears the main issue is that there are many routes with costs/detours below the
global/local bounds that only deviate from each other in a minor way on very small sub-
sections. It appears then that limiting this should be the next focus of the model. There are
several approaches one could take. One approach could be to continue with the choice
set pre-generation approach and incorporate certain constraints on the similarity of routes
generated, so that the approximated universal choice sets contain plenty of variability in the
routes, but do not include many routes that are essentially the same. Alternatively, perhaps
one could develop a measure that can be used to bound route over-similarity in some way,
perhaps by scaling the local detour measure by segment cost compared to total route cost,
or by developing a C-Logit-type measure penalising over-similarity with a lesser costing
route.

In the present paper, we have adopted a path-size approach for capturing correlations. In
future research it would be interesting to explore to what extent many of the other existing
correlation-based route choice models could be adapted to deal with bounds and local
detours.

Notes

1. We note that an interesting relevant link-based route choice model is the perturbed utility model
(Fosgerau, Paulsen, and Rasmussen 2022), which assigns links zero choice probabilities, thereby
implicitly determining the implied set of used routes.

2. Notethatitis possible to include route-based attributes that are not link-additive within the route
choice models in this paper, by including these within the total route travel cost component.

3. Note that the BPS-LDT model can also be derived in a more theoretically rigorous manner by
combining the conjunctive choice model (see Section 3.1 in Rasmussen et al. 2024) with the con-
junctive bounded choice model (see Section 3.3 in Rasmussen et al. 2024), where distinctiveness
is a conjunctive component and cost and detouredness are conjunctive bounded components.

4. Initial condition 2 converges to an 7 estimate of 26.35, but this is only because the Log-Likelihood
is very flat in this parameter range where 7 is approximating infinity. A slightly greater Log-
Likelihood value is achieved with # = 30.

5. Note thatin Duncan etal. (2022) two versions of a BPS model are proposed: the Bounded Path Size
model and the Bounded Adaptive Path Size model, but in this paper we focus on the Bounded
Bounded Path Size model as it is conveniently closed-form, and refer to it just as the BPS model.
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Appendices
Appendix A. Relevant non-local detour route choice models

A.1. Multinomial logit

The Multinomial Logit (MNL) choice model is derived from random utility theory. The deterministic
utility of alternative i € R is V;, and the random utility of alternative i € R is U; such that U; = V; +
i, where the &; terms are the individually and identically distributed random variable error terms.
Assuming individuals seek the alternative with highest utility, the probability that an individual selects
alternativei € Ris:
Pi=Pr(Ui > U VjeRj#i) =Pr(Vit+e > Vj+ej VjeRjF#i.

The defining characteristic of Logit models is that the random variable error terms assume a

Gumbel distribution. Consequently, the choice probability relation for alternative i € Ris:

ei
Pi= v
ZjER e@\/]
where 0 > 0 is the Logit scaling parameter. The MNL model in the context of route choice supposes
that the deterministic utility of route i € R is given by the negative of travel cost: V; = —c;, and thus:
_0C'
e 1
Pi=——¢-
ZjeR e

The MNL model assumes the route utilities are independent from one another, however routes
with overlapping links share unobserved attributes, and the assumption that the random error terms
are all independently and identically distributed is no longer valid.
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A.2. Pathsize logit

The Path Size Logit (PSL) model (Ben-Akiva and Ramming 1998) was developed to address the defi-
ciency of the MNL model in its inability to capture the correlation between routes. To do this, PSL
incorporates path size correction terms within the MNL choice probability function to penalise routes
for sharing links with other routes. The PSL choice probability for route i € Ris hence:

_ e
Z:J'eR (yf)ﬁe_ecj ,

where (y,)? is the path size correction term for route i € R. y; € (0, 1] is the path size term for route
i € Rmeasuring route distinctiveness, and £ > 0 is the path size scaling parameter scaling sensitivity
to route distinctiveness. A distinct route with no shared links has a path size term equal to 1, resulting
in no penalisation. Less distinct routes have smaller path size terms and incur greater penalisation.
The PSL path size is as follows for route j € R:

i

t, 1
Vi = - <= .
(g\“l_ Ci 2 ker Jak

To dissect the path size term: each link a in route i is penalised (in terms of decreasing the path size
term and hence the choice probability of the route) according to the number of routes in the choice

set that also use that link (Z §alk), and the significance of the penalisation for link a is weighted
keR

according to how prominent link a is in route i, i.e. the cost of route a in relation to the total cost of

i (ta
route | (C;)'

A.3. Alternative generalised path size logit

Anissue with the PSL model that was raised by Ramming (2002) and later explored further by Duncan
et al. (2020) is that all routes in the choice set contribute equally to path size terms, regardless of
how unrealistic they may be. As such, the correction terms of realistic routes and thus their choice
probabilities are negatively affected by link sharing with unrealistic routes. To combat this, Ramming
(2002) proposed the Generalised Path Size Logit (GPSL) model where the contribution of route k to
the path size term of route i is weighted according to the ratio of travel cost between the two routes.
As such, routes with excessively large travel costs have a diminished impact upon the correction terms
of routes with small travel costs, and consequently the choice probabilities of those routes. Duncan
et al. (2020) reformulated the GPSL model (proposing the alternative GPSL model (GPSL')) so that the
contribution weighting resembles the probability relation, providing internal consistency. The GPSL’
path size term is as follows for route i € R:

ta 1
Vi = Z ?, Z o0k 5*.
aeh; keR \ o=0c; ) Pak

e—0%
e 0c

Therefore, if the cost of route k is greater than the cost of route i then ( ) is less than 1, and

thus the contribution of route k to the path size term of route i is diminished. Note that the path size
—

contribution factor can be generalised to be (‘Z_—;Z), where A > 0 is a path size contribution scaling

parameter, providing flexibility and also collapsibility to the PSL model. In this study though we set
A = 6 for improved internal consistency.

A.4. Bounded choice model

The Bounded Choice Model (BCM) (Watling et al. 2018) route choice principle is that travellers choose
a route based on the probability of it having the best utility relative to a reference utility. By setting
this reference utility equal to the maximum deterministic utility of all alternatives, the attractiveness
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of a route depends on the utilities of all routes, meaning that the BCM falls within the class of relative
random utility theory.

The BCM is derived as follows. Define V,« as the reference utility of the reference alternative r*,
which in this case is the maximum utility alternative, i.e. V;»+ = max(V; : r € R). Thus, if U; and V; are
the random and deterministic utilities for route i € R, respectively, the difference in random utility for
route i € R relative to the reference utility is:

Ur —Ui=Ve4+er—Vi—gi=Vp = Vi+¢i=max(Vr:reR) -V +¢,

where ¢; is the individually and identically distributed random variable error term for route j € R, and
¢; is the difference random variable for route i € R with the reference alternative. The MNL model can
be derived by assuming the ¢; error terms are Gumbel distributed and thus the ¢; difference random
error terms assume the logistic distribution. The BCM, however, proposes that the difference random
variable error terms ¢; assume a truncated logistic distribution, obtained by left-truncating a logistic
distribution with mean 0 and scale §~' at a lower bound of —y for some y > 0. As such, a bound
is applied to the difference in utility to the reference utility, so that if a route has a utility below the
bound, it receives zero choice probability. This means that routes with utilities below the bound have
zero probability of being the best alternative (relative to the reference utility).

Given the above, it follows from the derivation of the BCM in Duncan et al. (2022, Supplementary
Material, Appendix A) that the choice probability relation for route i € Ris:

p— (exp@(Vi —max(Vy:r e R) + w)) — 1),
T 2 cr @xpOV; —max(Vyire Ry + ) — 1)

Supposing that the deterministic utility of route i € R is given by the negative of travel cost: V; =
—c¢;j, then:

P — (exp(=0(ci —min(c) — y)) — 1)4 '
2 jer (exp(=0(G — min(c) — y)) — 1),
In this study, we suppose the bound is a relative bound on surplus total route travel cost, achieved
by setting v = (p — 1) - min(¢, : r € R), so that:
b _(@P(0G—pmin@) — 1,
2 jer (exp(=0(¢; — p min(€))) — 1),

where ¢ > 1istherelative surplus cost bound parameter. In this case, a route receives zero probability
if it has a cost as great as or greater than ¢ times the minimum route cost.

A.5. Bounded path size model

Like MNL, the BCM does not capture route correlations. To capture such, the BPS model (Duncan et al.
2022) incorporates path size correction factors within the BCM choice probability function. The BPS
model is formulated as follows.> Let R(c; p) C R be the restricted choice set of all routes i € R where
¢i < ¢ min(c). Given R, the choice probability function for route i € Ris:

(7 (exp(=Oc—pmin@)=1) i ch
5 ) @p(—0G—pmin@)—1) "'
0 ifi ¢R

where the BPS path size term for route i € Ris:

— tg 1

=2 > (@eCoGpmine)-1Y 45
aeA; keR \ (exp(=0(ci—p min()))—1) ) Yak

The BPS path size term is formulated as such to ensure that the path size term function is

continuous, including as a route enters and exits R as its cost crosses from below-to-above and

above-to-below the bound. And, to avoid occurrences of g. See Duncan et al. (2022) for more details.
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Figure B1. Example network 1.

Appendix B. Demonstrations of model features

In this section, we conduct some numerical experiments on a small example network to demon-
strate the features of the BPS-LDT model, including comparing results with relevant non-local detour
models (which can be found in Appendix A).

For these demonstrations, consider example network 1in Figure A1 where there are 5 routes: route
1:1T>2—>9route2:1—>3—>9,route3:1>4—->5—-8—>9route4d:1->4—->6—>8-—>09,
androute5:1 - 4 —» 7 — 8 — 9. Routes 1&2 are completely distinct while routes 3-5 overlap to a
high degree since they all share a large proportion of their travel cost. Routes 3-5 differ only according
to a single local detour: if route 3 is for example the main road, then routes 4&5 offer a detour from
the main road, where route 5 has a greater detour than route 4. As shown in Figure A1, route 1 has a
total travel cost of 3, route 2 has a cost of 1, and routes 3-5 have costs 1.01, 1+p (0.01 < p < 0.05),
and 1.05, respectively.

B.1. Demonstration 1 - the local detour measure

To make the results presented later easier to understand, we shall begin by walking the reader
through the computation of the local detour measures for example network 1, (see Rasmussen et al.
(2024) for other demonstrations and examples on this). In example network 1, there are 4 segments
(u, v) that have multiple segment alternatives: (1,9), (1, 8), (4,8), & (4,9). Segments (1,8) & (4,9)
are redundant, however, as (4, 8) will always be a dominant segment, i.e. it will always have a greater
detour measure than (1, 8) & (4,9). This is because all segment alternatives for segments (1, 8) & (4,9)
share a common link, and thus the segment (4, 8) consisting of the non-overlapping part will always
have a greater detour measure than the full segment, see the discussion around Figure 2 for more
details. We thus disregard segments (1, 8) & (4,9). (1,9) has all 5 routes as the segment alternatives
and (4, 8) have routes 3-5 as the segment alternatives.
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There are five segment alternatives for segment (1, 9) that consist of routes 1-5, respectively. The
index set of segment alternatives for segment (1,9) is thus K19 = {1, 2, 3,4, 5} and the used segment
alternatives of each route 1-5 at (1,9) are k191 = 1, k1,92 = 2, k1,93 = 3, k1,94 = 4, &kj 95 = 5. The
costs of the segment alternatives | € Ky g, wj,are:w1 =3, w3 = 1, w3 = 1.01, 04 = 1+ p, &ws = 1.05.
Denote ¢y, as the local detouredness of route i at segment (u, v) € S;. The local detourednesses of
routes 1-5 at segment (1,9) are thus:

Why 5, — Min(o; : I € Kio) = min(w; :/ € {1,2,3,4,5})

P91 = min(w :1€Kig)  minw /€ {1,23,4,5})
_3-min((3,1,101,105) _3-1
~ min({3,1,1.01,705) ~— 1~ ~
1—1 101 —1 T+p—1 1.05 — 1
D92=—"—=0,¢$193=—"—=001,$194 = Sl Al P95 = ——— = 0.05.

1 1 1 1

Notice that in the context of global bounds of total route travel cost, the relative costliness of routes
1-5 compared to the cheapest alternative are 3,1, 1.01, 1+p, & 1.05, respectively, i.e. route 1 is 3 times
more costly than the cheapest route. Local detouredness is always equal to relative costliness minus
1.

For segment (4, 8), there are three segment alternatives: segment alternative 1 is 4—5— 8 (used
only by route 3), segment alternative 2 is 4— 6— 8 (used only by route 4), and segment alternative 3 is
4—7— 8 (used only by route 5). The index set of segment alternatives between segment (4, 8) is thus
Kag = {1,2,3} and the used segment alternatives of each route 3-5 at segment (4, 8) are kag3 =1,
kaga = 2,&kags = 3.The costs of the segmentalternatives/ € K4 g are:w; = 0.01,w = p, w3 = 0.05.
The local detourednesses of routes 3-5 at segment (4, 8) are thus:

Okygs —Min(wy 11 € Kag) w1 —min(ey:1€{1,2,3})

Pa83 = T e Kig)  min(w:le (1,2,3})
001 —min({0.01,005)) _ 0.01 —0.01 _
~ min({0.01,005})) o001
p—001 p 0.05 — 0.01
= = — — 1, = =
9484 = 401 001 19193 0.01

The measure of local detouredness for each route 1-5 are thus:

¢1 = max{¢u,v,1 . (U, V) € {(112): (21 9)! (119)}} = max{¢1,2,1l¢2,9,11¢1,9,1} = maX{O, Or 2} - 2:
¢2 = max{0} =0
¢3 = max{0, 1,93, pa83} = max{0,0.01,0} = 0.01,

ifp< g
b4 = Max{0, ¢ 9.4, b4 g4} = Max [O,p, r_ 1] = [p P < 35

L , .
0.01 o7 — | otherwise

@5 = max{0, $1,95, ha,85} = max{0,0.05,4} = 4.

B.2. Demonstration 2 - comparison of features with other models

We shall now demonstrate the features of the BPS-LDT model compared to other relevant models.
Upon inspection of the route travel costs, it would appear that route 1 is potentially an unrealistic alter-
native as it is 3 times more costly than the cheapest alternative, but there is little difference between
routes 2-5. Figure A2(A) displays BCM choice probabilities for p € [0.01,0.05], with6 = 1& ¢ = 2. As
shown, since the relative cost of route 1 compared to the cheapest route (route 2) is greater than the
bound (i.e. a relative costliness of 3 compared to the bound 2), route 1 receives a zero probability. And,
since the total costs of routes 2-5 are negligibly different, they all receive approximately % probability
each.
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However, due to the fact that: (a) routes 3-5 are highly correlated, and (b) route 5 (and poten-
tially route 4 depending on p) has a large local detour (a measure of 4, see above) and thus may be
considered unrealistic, these BCM probabilities are potentially inaccurate.

Addressing deficiency (a), the BPS model was developed to capture correlations between over-
lapping routes with costs below the BCM cost bound. Figure A2(B) displays the BPS model choice
probabilities for p € [0.01,0.05], with & = 1, § = 0.8, & ¢ = 2. As shown, route 1 still receives a zero
probability as it has a travel cost above the bound, but now routes 3-5 have reduced probabilities (yet
still relatively equal) compared to route 2 as they have been penalised to capture their correlation.

Addressing deficiency (b), the BCM-LDT was developed to exclude routes with large local detours,
in a way that is consistent and mathematically well-defined (i.e. with a continuous probability func-
tion). Figure A2(C) displays BCM-LDT choice probabilities for p € [0.01,0.05], with 8; = 1, 6, = 0.1,
@ = 2,&n = 3.5. As shown, route 1 has zero probability, and, since the local detouredness of route 5
is above the local detour threshold (i.e. a local detouredness measure of 4 compared to the threshold
3.5), route 5 now also receives a zero probability. As also shown, at p = 0.01, routes 2-4 have approx-
imately % probability each since they all have similar travel costs and route 4 has an equal detour
toroute 3 at segment (4, 8), i.e. ¢a33 = Pagas = 0. However, as p increases, the local detouredness of
route 4 increases; therefore, although the total travel cost of route 4 remains similar to routes 2&3, the
probability of route 4 decreases, up until p = 0.045 where the local detouredness measure of route 4
is equal to the threshold: ¢4 = %%“15 — 1 = 3.5 (see above), where it then receives zero probability.

So, the BPS model addresses deficiency (a) and the BCM-LDT addresses deficiency (b), but neither
model addresses both deficiencies. The BPS-LDT model is thus developed in this paper to address
both deficiencies. Figure A2(D) displays the BPS-LDT choice probabilities for p € [0.01,0.05], with9; =
1,6, =0.1, § = 0.8, p = 2, & 5 = 3.5. As shown, routes 3&4 have equal probability at p = 0.01 but
route 2 has a greater probability. This is because routes 3&4 have the same cost and local detour
measure, but are highly correlated compared to the similar costing but distinct route 2. As p increases
and the probability of route 4 decreases and tends towards 0 (due to its local detouredness increasing
towards the threshold), the contribution of route 4 to the realistic route path size terms of route 3
decreases. At p = 0.045, route 4 becomes defined as an unrealistic route due to its local detouredness
being exactly at the threshold; it is thus assigned a zero probability and no longer contributes to the
path size terms of route 3. Thus, for p > 0.045, since routes 1,4,5 are defined as unrealistic by the cost
bound /local detour threshold criteria, the network is in-effect reduced to just two routes (2&3) which
are distinct and similar costing.

B.3. Demonstration 3 - model parameters

The BPS-LDT model has five standard parameters (there will likely be more for multiple travel cost
attributes, see e.g. Section 6.2.1), which have complex interactions. In this section, we shall thus
demonstrate how the model behaves according to the different parameters. To help the reader, Table
B1 provides a summary description of the five standard BPS-LDT model parameters.

Figure A3 displays BPS-LDT choice probabilities for varying , with p = 0.03,6; = 1,0, = 0.1, § =
0.8, & ¢ = 2. As shown, route 1 has a zero probability for all  since the cost bound criterion defines
it as an unrealistic route. As 7 is decreased (from 10) the local detouredness measures of routes 4&5
(=2 & =4 respectively) approach the local detour threshold from below. Their probabilities as well as
path size contributions thus decrease until their detouredness meets the threshold where they then
- in as continuous manner — are assigned zero probabilities as well as zero path size contributions to
overlapping realistic routes i.e. the contribution of route 5 to the path size terms of routes 3&4 become
eliminated, and the contribution of route 4 to the path size terms of route 3 become eliminated.

Figure A4 displays BPS-LDT choice probabilities for varying ¢, with p = 0.02, 6; = 0.1, 6, = 0.1,
£ = 0.8,&n = 2.5. As shown, route 5 has a zero probability for all ¢ as it has a detouredness measure
greater than local detour threshold (i.e. a measure of 4 compared to the 2.5 threshold). Route 4, on-
the-other-hand, has a non-zero probability as it has a detouredness measure below the threshold
(i.e. a measure of 1 compared to the 2.5 threshold). Routes 3-5 have total travel costs well below
the cost bound in this range (i.e. relative costs of 1.01, 1.02, & 1.05, respectively, compared to the
bound ¢ € [2.5,6]), and therefore are negligibly affected by ¢. Route 1, however, is affected. In this
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Figure B2. Example network 1: Choice probabilities from the different models as p is varied (01 =1,
6, = 0.1, ¢ = 2,& 5 = 3.5). A:BCM. B: BPS. C: BCM-LDT. D: BPS-LDT.

Table B1. Summary description of the BPS-LDT model parameters.

Parameter Name Description

o Travel cost scaling parameter Controls sensitivity to travel cost in the cost-BCM component. A
small 6 value corresponds to drivers being less aware of / less
sensitive to differences in route travel cost, and a large 6
corresponds to the opposite.

6 Local detouredness scaling Controls sensitivity to local detouredness in the detour-BCM

parameter component. A small 6, value corresponds to drivers being less
aware of / less sensitive to differences in local detouredness,
and a large 6, corresponds to the opposite.

s Path size scaling parameter Scales the path size correction factor. A small § value corresponds
to drivers being less aware of route correlation / less sensitive to
route distinctiveness, and a large /8 corresponds to the opposite.

o Relative surplus total route The bound that drivers have in terms of the maximum excess

travel cost bound parameter travel cost they are willing to consider compared to the
cheapest route. A route is only considered realistic if it has a cost
less than ¢ times the cost on the cheapest route.

n Local detour threshold The threshold that drivers have in terms of the maximum local

parameter detour they are willing to consider. A route is considered
unrealistic if it has a used segment alternative that costs greater
than 100 - #% more than cheapest segment alternative.
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Figure B3. Example network 1: Choice probabilities from the BPS-LDT model as the local detour thresh-
old # parameter is varied (p = 0.03,6; = 1,0, = 0.1, = 0.8, & ¢ = 2).

case, route 1 has a detouredness measure below the threshold, i.e. the measure taken from the global
detour (from origin to destination) is 2 compared to the 2.5 threshold - it is therefore not defined
as an unrealistic route (and assigned a zero probability) by the local detour criteria. However, the
cost bound criteria can still define the route as unrealistic, depending on ¢. As shown in Figure A4,
as ¢ is decreased, the relative cost of route 1 (=3) tends toward the bound and therefore decreases
in probability up until ¢ = 3 where route 1’s relative cost meets the bound and it is assigned zero
probability. Note here that route 1 is a distinct route and therefore does not contribute to the path
size terms of other routes, but if it did its contribution to those overlapping routes would decrease as
its cost approaches the bound (to then be eliminated at the bound). Suppose alternatively that the
local detour threshold was instead # = 1.5, then route 1 would have a global detour (=2) above the
threshold. Route 1 would thus be assigned a zero probability regardless of the relative cost bound ¢.

In terms of defining routes as unrealistic, it does not make sense for ¢ to be greater than 5 + 1. This
is because a local detour threshold of # + 1 is equivalent to a cost bound of ¢ in terms of the routes
that will be defined as unrealistic (the local detour measure will always consider the global detour).
Therefore, ¢ values greater than # + 1 will not define any more routes as unrealistic than the n + 1
threshold will. However, ¢ values greater than # + 1 will still affect the choice probabilities of routes
defined as realistic (by the local detour threshold criteria).

Figure A5 display BPS-LDT choice probabilities for varying 61, with p = 0.02,6, = 0.1, § = 0.8, &
@ = n = 3.5. As shown, route 5 has zero probability as it has a detouredness measure (=4) above the
threshold (=3.5), but route 1 has a non-zero probability as it has a relative cost (=3) below the bound
(=3.5). As per the parameter description in Table B1, for smaller 8; drivers are less sensitive to / aware
of the differences in travel cost and route 1 (the route with the only/most significant cost difference)
increases in probability. For larger 8y, drivers are more sensitive to / aware of the differences and
route 1 decreases in probability (since it has the greatest travel cost among the realistic routes), and
approaches zero probability (but does not reach it).
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Figure B4. Example network 1: Choice probabilities from the BPS-LDT model as the relative surplus
travel cost bound parameter ¢ is varied (p = 0.03,6; = 0.1,6, = 0.1, § = 0.8, & n = 2.5).

Figure A6 displays BPS-LDT choice probabilities for varying 85, with p = 0.02,6; =1, = 0.8,¢ =
2,&n = 8.Asshown, route 1 has zero probability as it has a relative cost (=3) above the bound (=2), but
route 5 has detouredness measure (=4) below the threshold (=8). As per the parameter description in
Table B1, for smaller 8, drivers are less sensitive to / aware of the differences in local detouredness and
routes 3-5 (the main detour routes) have closer probabilities. For larger 8,, drivers are more sensitive
to / aware of the differences and routes 4&5 decrease in probability since they have greater detour
measures than route 3.

Lastly, Figure A7 displays BPS-LDT choice probabilities for varying 8, with p = 0.02, 6, = 1,6, =
0.1, p = 2, & n = 3.5. As shown, routes 1&5 have zero probability as route 1 has a relative cost (=3)
above the bound (=2) and route 5 has a local detour measure (=4) above the threshold (=3.5). At § =
0, the BCM-LDT probabilities are plotted, where route 3 is not penalised for overlapping with route 4
and thus has a similar probability to route 2 (due to similar travel costs and local detour measures). As
p increases, however, route 3 becomes increasingly penalised for overlapping with route 4.
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Figure B5. Example network 1: Choice probabilities from the BPS-LDT model as the travel cost scaling
parameter ¢, is varied (p = 0.02,6, = 0.1, 3 = 0.8, & ¢ = n = 3.5).
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Figure B6. Example network 1: Choice probabilities from the BPS-LDT model as the local detouredness
scaling parameter 6, is varied (p = 0.02,6; =1, = 08,9 = 2,&7n = 8).
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Figure B7. Example network 1: Choice probabilities from the BPS-LDT model as the path size scaling
parameter £ is varied (p = 0.02,6; = 1,6, =0.1,¢9 = 2,&n = 3.5).
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