
This is a repository copy of Identification of local detouredness and correlation effects in a 
bounded route choice model: solution & estimation in large-scale networks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/229900/

Version: Accepted Version

Article:

Duncan, L.C., Rasmussen, T.K., Watling, D.P. orcid.org/0000-0002-6193-9121 et al. (2 
more authors) (Accepted: 2025) Identification of local detouredness and correlation effects
in a bounded route choice model: solution & estimation in large-scale networks. 
Transportmetrica A: Transport Science. ISSN 2324-9935 (In Press) 

This is an author produced version of an article accepted for publication in 
Transportmetrica A: Transport Science, made available under the terms of the Creative 
Commons Attribution License (CC-BY), which permits unrestricted use, distribution and 
reproduction in any medium, provided the original work is properly cited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



 

1 
 

Identification of local detouredness and correlation effects in a bounded 
route choice model: solution & estimation in large-scale networks 

 
Lawrence Christopher DUNCAN a *, Thomas Kjær RASMUSSEN a, David Paul WATLING b, Laurent CAZOR a, Otto 

Anker NIELSEN a 

 

a Department of Technology, Management and Economics, Technical University of Denmark 
Akademivej Bygning 358, 2800 Kgs. Lyngby, Denmark. 

b Institute for Transport Studies, University of Leeds 
36-40 University Road, Leeds, LS2 9JT, United Kingdom. 

 
 

* corresponding author: 
Department of Technology, Management and Economics, Technical University of Denmark 

Akademivej Bygning 358, 2800 Kgs. Lyngby, Denmark. 
E-mail: lawdun@dtu.dk 

 
Highlights 

• Formulation of a Bounded Path Size Local Detour Threshold (BPS-LDT) route choice model 

• Bounds imposed on full-route & sub-route detours and used route overlap captured 

• Solution method with pre-processed sub-route information from pre-generated routes 

• Estimation in a real-life case study with BPS-LDT model outperforming relevant models 

• Experiments show statistical significance, forecastability, and MLE solution uniqueness 
 

Abstract 

The Bounded Choice Model with Local Detour Threshold (BCM-LDT) route choice model (Rasmussen et al., 2024) 
proposes that local detouredness (the extent to which a route detours on its subparts) is an influential factor upon route 
choice probability and choice set formation. The current paper addresses three unresolved challenges regarding the 
BCM-LDT model: i) accounting for correlations between overlapping routes defined as realistic, ii) developing a solution 
approach for applying the model to large-scale networks, and, iii) developing, testing, and applying a procedure for 
estimating the model. Addressing i), appropriate path size correction factors are integrated within the BCM-LDT 
probability relation, to adjust probabilities to capture correlations between routes defined as realistic by the local and 
global bounds. Addressing ii), due to the high computational burden of current methods for generating all routes below 
the local and global bounds, the current paper develops a heuristic solution approach that works from representative 
universal choice sets and pre-processes the necessary segment information for computing local detour measures. Solution 
tricks are developed to considerably improve computation times. Addressing iii), a modified maximum likelihood 
estimation procedure utilising tracked route observation data is developed, tested in a simulation study, and applied in a 
real-life large-scale case study. The local detour models are successfully estimated and found to outperform associated 
non-local detour models. Experiments provide evidence that the parameter estimates can be identified, are statistically 
significant and unique, and that the model is suitable for forecasting and can be estimated in feasible computation times. 
 
Key Words: bounded route choice model, path size, local detouredness, choice set formation, parameter estimation 
 

1 Introduction 
1.1 Background 
Route choice models are widely used by transport researchers and policy makers for an array of purposes, such as 
appraising travellers’ perceptions of route characteristics (e.g. Hood et al. 2011; Toledo et al., 2020; Zhong & Miao, 
2024), assessing transport policies (e.g. Chen et al., 2018; Tsai & Li, 2019; Mardan et al., 2024), predicting the impact of 
future changes in demand (e.g. Martens & Hurvitz, 2009; Wei et al., 2020), traffic assignment (e.g. Prashker & Bekhor et 
al., 2004; Gentile, 2012; Lim & Kim, 2016; Brederode et al., 2018; Duncan et al. 2023,2024), and designing transport 
networks (e.g. Joksimovic et al., 2005; Jiang & Szeto, 2014; Cadarso & Marín, 2016).  

Although other decision rules are considered in the literature (e.g. regret minimisation (Chorus, 2012; Li & Huang, 
2016) and non-compensatory decision rules (Chorus & van Cranenburgh, 2024; Cazor et al., 2024), by far the most 
commonly used route choice decision rule is utility maximisation. There are two types of utility-maximisation-based 
route choice model: path-based and link-based. Path-based models such as Multinomial Logit (MNL) and its many 
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different variants use route utilities to determine route choice probabilities, while link-based models such as Recursive 
Logit (Fosgerau, 2013) and the Perturbed Utility Route Choice (PURC) model (Fosgerau et al., 2022) operate at a link 
level using link utilities and the network structure to determine link usage. The latter are attractive as they avoid the need 
to generate route choice sets, which is not straightforward, and the latest development of the PURC model allows for 
irrelevant parts of the network to be unused. As a route choice model, however, link-based models are hampered by the 
requirement that route attributes must be link-additive, meaning that route-related attributes such as some transit fare 
schemes, transfer penalties, travel time reliability measures, tolling schemes, and local detouredness (Rasmussen et al. 
2024), cannot currently be accounted for. In this study, we focus on path-based models. 

Generally, path-based route choice modelling has two components: i) generating a set of realistic routes that 
travellers choose between (the route choice set), and ii) applying a route choice probability model to these routes to 
determine their choice probabilities. Numerous route choice set generation methods have been developed (see Prato 
(2009), Bovy (2009), Rieser-Schüssler et al. (2013) for reviews) and numerous route choice probability models have 
been developed (see Prato (2009), Duncan et al. (2020,2022), Jing et al. (2018) for reviews). We highlight, however, two 
common issues. 

The first issue is that choice set generation and route choice probability computation are often conducted in two 
independent, sequential steps, where the choice set formation and choice probability criteria are not consistent. 
Consequently, a route identified by the choice set formation criteria may be considered unrealistic by the choice 
probability criteria, and vice versa. This is supported by the work of Horowitz & Louviere (1995) who found in an 
empirical analysis that choice set formation and choice from the choice set are often driven by the same preferences, and 
thereby choice need not be modelled as a two-step process. 

The second issue is that the attractiveness of a route, both in choice set generation and choice probability 
computation, is often judged solely by qualities of the complete route, which we term the global properties of the route. 
These global properties include total length, travel time, travel time (un)reliability, and direct monetary costs such as 
might be imposed through road pricing. However, it has recently been shown in Rasmussen et al. (2024) that it is 
insufficient to judge the attractiveness of a route solely by its global properties. It is contended that the local properties of 
a route should also be considered; namely, its local detouredness, which is the extent to which it detours on subsections 
of the route. Through an empirical and theoretical analysis, it was shown that it is important to consider local 
detouredness both when determining realistic and tractable route choice sets and when determining route choice 
probabilities. For example, analysis of observed route choice data showed that route usage tends to decay with local 
detouredness, and that there is an apparent limit on the amount of local detouredness seen as acceptable. 

Several choice probability models have been developed in the following studies that aim to address the first issue: 
Swait (2001), Elrod et al. (2004), Gilbride & Allenby (2004), Martínez et al. (2009), Paleti (2015), Watling et al. (2018), 
Duncan et al. (2022), and Tan et al. (2024).1 In the application of route choice, one can generalise the overall approach as 
penalising the probability of a route if it has an attribute value or utility beyond a ‘cutoff’ value (bound/threshold), where 
it is then deemed to be unrealistic/unused (Cascetta & Papola, 2001). Thus, only routes with all attributes / utilities within 
the cutoff(s) are considered realistic/used, and the probabilities of these routes relates in some way to the likelihood they 
are used, thereby ensuring consistency between choice set formation and choice probability criteria. However, the models 
in Swait (2001), Martínez et al. (2009), and Paleti (2015) impose ‘soft’ cutoffs rather than ‘hard’ cutoffs, meaning that 
routes with attributes/utilities beyond the cutoff only receive reduced probabilities and not zero probabilities. The model 
in Elrod et al. (2004) imposes absolute cutoffs, which is inflexible and may be difficult to specify suitably given different 
Origin-Destination (OD) movements have different attribute value ranges (e.g. lengths). And, the model in Gilbride & 
Allenby (2004) has a non-continuous choice probability function, resulting in ‘abrupt changes’ in the choice probabilities 
as alternatives enter and exit the used route choice set. The Bounded Choice Model (BCM) developed in Watling et al. 
(2018), and its adaptations/extensions (Duncan et al., 2022; Tan et al., 2024), on-the-other-hand: a) imposes a hard cutoff 
so that routes with utilities below the bound receive zero choice probability, b) can be stipulated so that the bound is 
relative to the route utilities (e.g. 𝜑 times worse than best utility), and c) has a continuous choice probability function, 
including as routes enter and exit the used route set (cross from below to above the bound, and vice versa). 

To develop a model that both provides consistency between choice set formation and choice probability criteria and 
judges route attractiveness based on both its global and local properties (i.e. addresses both issues highlighted), 
Rasmussen et al. (2024) recently developed the BCM with Local Detour Threshold (BCM-LDT) model. The BCM-LDT 
model is derived by combining the BCM with a conjunctive choice model (Jedidi & Kohli, 2005; Gilbride & Allenby, 
2004; Swait, 2001; Shin & Ferguson, 2017; Kohli & Jedidi, 2005), so that separate bounds are imposed on different route 
‘aspects’ (Tversky, 1972), which in this case are total route travel cost and local detouredness. A route thus receives a 
zero choice probability (excluded implicitly from the choice set) if it has a cost above the global bound or a local 
detouredness above the local bound. Moreover, the probability of a route with both a cost and detouredness below the 
respective bounds, is determined according to its relative attractiveness in cost and detouredness compared to those of 
others.  

 
1 We note that an interesting relevant link-based route choice model is the perturbed utility model (Fosgerau et al. 
(2022)), which assigns links zero choice probabilities, thereby implicitly determining the implied set of used routes. 
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1.2 Paper contributions 
The paper is based on an extension of the BCM-LDT model to account for correlations between overlapping used routes. 
Numerous models have been proposed for capturing correlations between overlapping routes. Detailed reviews of these 
models can be found in Duncan et al. (2020,2022), where we review their strengths and weaknesses. Among them, 
correction term models (Ben-Akiva & Ramming, 1998; Cascetta et al., 1996; Duncan et al., 2020) are particularly 
attractive due to their simple closed-form choice probability functions that are quick and easy to compute and estimate. 
In Duncan et al. (2022) we combined the Path Size Logit (PSL) correction-term model with the BCM to formulate a 
Bounded Path Size (BPS) route choice model. Using analogous methodology, we first in the current paper combine 
concepts from the BPS model with the BCM-LDT to formulate a Bounded Path Size Local Detour Threshold (BPS-
LDT) model. To ensure that correlations are captured between only routes defined as realistic by both the local and 
global bounds, and continuity of the choice probability function is maintained, careful consideration is given to the 
formulation of the path size term. This is therefore a new model variant that we have created, though as it can be quite 
straightforwardly deduced from our previous work, we do not make a claim that this is a major contribution. 

Having formulated a BPS-LDT route choice model that accounts for both local detouredness and route correlation, 
the three major contributions of the paper are as follows. 
 
Contribution 1: Developing a solution approach for efficiently applying the model to large-scale networks 

The computational burden of current methods for generating all possible routes below the local and global bounds – such 
as the initial approach proposed in Rasmussen et al. (2024) – means it is not yet feasible to fully apply the BCM-
LDT/BPS-LDT models to large-scale networks. The first major contribution of the current paper is thus to develop a 
solution approach for application to large-scale networks. The heuristic approach involves working from representative 
universal choice sets. The approach is to pre-generate large enough working choice sets so that one can be fairly certain 
enough realistic alternatives are present, regardless of how many unrealistic routes are generated, and then apply the local 
detour model to exclude generated unrealistic routes. Although with this approach there may be some routes not 
generated that may be considered realistic by the choice probability criteria, at least unrealistic routes should be dealt 
with.  

Given the pre-generated representative universal choice sets, all necessary information regarding route segments and 
segment alternative choice sets required to calculate local detouredness is pre-processed. However, if not done 
intelligently, this still has the potential to be computationally demanding, as there are for example many possible 
segments a route can detour. In the paper we propose some tricks to pre-process useful information that can be used to 
improve the efficiency of computing local detour model choice probabilities, which are shown to considerably improve 
computation times. 

 
Contribution 2: Developing and testing a procedure for estimating the model 

The second major contribution of the paper is to develop and test a Maximum Likelihood Estimation (MLE) procedure 
for estimating the BPS-LDT model with tracked route observations. The focus of Rasmussen et al. (2024) was on the 
derivation of the BCM-LDT model and its application to traffic user equilibrium; model estimation has yet to be 
explored. Estimating the BCM-LDT/BPS-LDT models with MLE is, however, not straightforward, as: a) the Likelihood 
function can be zero meaning that the Log-Likelihood function has constraints, and b) the Likelihood function is non-
differentiable, meaning that gradient approaches cannot be directly adopted to solve the objective function, and standard 
errors of parameter estimates cannot be calculated analytically. Addressing these complications, we: a) develop a simple-
to-implement method for estimating the BPS-LDT model working round the constraints on the Log-Likelihood objective 
function, and b) approximate standard errors of estimates using a computationally-efficient resampling method. 
 
Contribution 3: An empirical analysis of the model 

The third major contribution of the paper is conducting an empirical analysis of the model with real route choice data, to 
explore whether:  

i) Local detouredness is an influential factor upon route choice probability / choice set formation, 

ii) Local detouredness and correlation effects are identifiable as distinct route choice attributes, 

iii) Parameter estimates are statistically significant, 

iv) MLE solutions are unique, 

v) The model can be estimated in feasible computation times on a large-scale network, 

vi) The model is suitable for forecasting, 

vii) Model estimates are sensitive to the assumed representative universal choice set. 
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To do this, we estimate the BPS-LDT model using the proposed MLE procedure in a real-life large-scale GPS case study, 
and analyse the results. For ii), we conduct a simulation study to assess whether model parameters can be successfully 
reproduced and identified. For iv), we visualise the Log-Likelihood surface to search for multiple maxima, and test for 
multiple MLE solutions numerically. And, for vi) we conduct out-of-sample validation. 
 
The paper is structured as follows. Section 2 introduces general network notation, and Section 3 formulates the BPS-LDT 
model. The three major contributions of the study are then addressed in the three following sections. Section 4 introduces 
the proposed solution method for computing local detour model choice probabilities, Section 5 introduces the proposed 
estimation procedure, and Section 6 conducts the empirical analysis of the model estimation results. Finally, Section 7 
summarises the paper conclusions and provides thoughts on future research. 
 

2 General network notation 
The model developed in this paper is applicable to general networks with multiple OD movements and flow-dependent 
link costs. However, without compromising the model derivation, we simplify notation by considering a single OD 
movement with fixed link costs. The network consists of link set 𝐴 and node set 𝐵. For the OD movement, 𝑅 is the 
choice set of routes, having size 𝑁 = |𝑅|. This could be the universal choice set of all routes, or a representative 

universal choice set of routes. 𝐴𝑖 ⊆ 𝐴 is the set of links in route 𝑖 ∈ 𝑅, and 𝛿𝑎,𝑖 = {1     𝑖𝑓 𝑎 ∈ 𝐴𝑖    0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 𝐵𝑖 ⊆ 𝐵 is the set of 

nodes belonging to route 𝑖 ∈ 𝑅. Suppose that the generalised travel cost 𝑡𝑎 of each link 𝑎 ∈ 𝐴 is a weighted sum (by 
parameter vector 𝜶) of variables 𝒘𝑎, i.e. 𝑡𝑎 = 𝑡𝑎(𝒘𝑎; 𝜶), and that the generalised travel cost for route 𝑖 ∈ 𝑅, 𝑐𝑖, can be 
attained through summing up the total cost of its links so that 𝑐𝑖(𝒕(𝒘; 𝜶)) = ∑ 𝑡𝑎(𝒘𝑎; 𝜶)𝑎∈𝐴𝑖 , where 𝒕 is the vector of all 

link travel costs and 𝒘 is the vector of all link variables.2 To simplify notation 𝑐𝑖(𝒕(𝒘; 𝜶)) is denoted just as 𝑐𝑖.  
 

3 Bounded Path Size Local Detour Threshold model 
In this section we combine the BCM-LDT model developed in Rasmussen et al. (2024) with the BPS model developed in 
Duncan et al. (2022), to formulate a Bounded Path Size Local Detour Threshold (BPS-LDT) model. For details on how 
the BCM-LDT model is derived and formulated we direct the reader to Sections 3&4 of Rasmussen et al. (2024), and for 
details on how the BPS model is derived and formulated we direct the reader to Section 3.2 of Duncan et al. (2022). In 
order to avoid repeating content, we shall henceforth assume readers are familiar with both models.  
 
Measure of local detouredness 

Rasmussen et al. (2024) proposed a new attribute influencing route choice: local detouredness, which in essence is the 
extent to which a route detours on its sub-routes. The measure of local detouredness is formulated as follows. Define a 
set of segments 𝑆𝑖 for route 𝑖 ∈ 𝑅 as the set of ordered node pairings: 𝑆𝑖 = {(𝑢, 𝑣): 𝑢 ∈ 𝐵𝑖 , 𝑣 ∈ 𝐵𝑖  and node 𝑢 precedes node 𝑣 when traversing route 𝑖 ∈ 𝑅}. 
Note that 𝑆𝑖 includes not just ordered node pairings of adjacent nodes, but all ordered node pairs in the route. The 
universal set of segments is defined as 𝑆 = ⋃ 𝑆𝑖𝑖∈𝑅 . 

Define the set 𝐾𝑢,𝑣 of segment alternatives for segment (𝑢, 𝑣) ∈ 𝑆 as an index set of simple sub-routes from node 𝑢 
to node 𝑣. Furthermore, define the used segment alternative for segment (𝑢, 𝑣) ∈ 𝑆𝑖 of route 𝑖 ∈ 𝑅 as the element 𝑘𝑢,𝑣,𝑖 ∈𝐾𝑢,𝑣, denoting the index of the segment alternative actually used by route 𝑖 ∈ 𝑅 from node 𝑢 to node 𝑣. 

The measure of local detouredness 𝜙𝑖 of route 𝑖 ∈ 𝑅 is defined as: 

 𝜙𝑖 = max {𝜔𝑘𝑢,𝑣,𝑖 − min(𝜔𝑙: 𝑙 ∈ 𝐾𝑢,𝑣)min(𝜔𝑙: 𝑙 ∈ 𝐾𝑢,𝑣) : (𝑢, 𝑣) ∈ 𝑆𝑖}, (1) 

where 𝜔𝑙 is the travel cost on segment alternative 𝑙 ∈ 𝐾𝑢,𝑣 for segment (𝑢, 𝑣) ∈ 𝑆𝑖 of route 𝑖 ∈ 𝑅. The measure of local 
detouredness identifies the maximum relative detour from each of its segments, by comparing, for each of the route’s 
segments, the used segment alternative of the route against the minimum costing segment alternative for the segment. 
Note that the measure of local detouredness is a relative measure, i.e. a detour measure of 𝜙𝑖 = 𝑦 corresponds to the 
worst detouring segment of the route being (100 × 𝑦)% or 𝑦 + 1 times greater than the cost of the minimum segment 
alternative cost for that segment. A demonstration of the local detour measure can be found in Section 4.2 of Rasmussen 
et al. (2024) as well as in Appendix C.1 of the current paper.  
 
BPS-LDT model 

 
2 Note that it is possible to include route-based attributes that are not link-additive within the route choice models in this 
paper, by including these within the total route travel cost component. 
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The idea of the BCM-LDT model is that two separate bounds are imposed upon total route travel cost and local 
detouredness. For the global cost bound, a route receives zero choice probability if it has a total cost as great as or greater 
than 𝜑 times the minimum cost route, i.e. if 𝑐𝑖 ≥ 𝜑 min(𝒄). For the local detour bound, a route receives zero choice 
probability if, at its most detouring segment, the used segment alternative has a travel cost as great as or greater than 𝜂 +1 times the minimum costing segment alternative for that segment, i.e. if it has a local detour measure 𝜙𝑖 ≥ 𝜂. Let 𝑅̅(𝒄, 𝝓; 𝜑, 𝜂) ⊆ 𝑅 therefore be the restricted choice set of all routes 𝑖 ∈ 𝑅 where both 𝑐𝑖 < 𝜑 min(𝒄) and 𝜙𝑖 < 𝜂, i.e. the 
set of all used routes.  

The BPS-LDT model is derived by integrating path size correction factors directly within the BCM-LDT probability 
relation (see equation (17) in Rasmussen et al. (2024)).3 This is a common approach, adopted for example by 
Kitthamkesorn & Chen (2013), Xu et al. (2015), and Duncan et al. (2022) to formulate Path Size Weibit, Path Size 
Hybrid, and Bounded Path Size route choice models, respectively, where the correction factor is multiplied to the choice 
probability kernel for each route (i.e. the numerator of the choice probability function). 

Given 𝑅̅, the choice probability relation for route 𝑖 ∈ 𝑅 is: 

 𝑃𝑖 = { (𝛾̅𝑖)𝛽(exp(−𝜃1(𝑐𝑖 − 𝜑 min(𝒄))) − 1)(exp(−𝜃2(𝜙𝑖 − 𝜂)) − 1)∑ (𝛾̅𝑗)𝛽 (exp (−𝜃1(𝑐𝑗 − 𝜑 min(𝒄))) − 1) (exp (−𝜃2(𝜙𝑗 − 𝜂)) − 1)𝑗∈𝑅̅       𝑖𝑓 𝑖 ∈ 𝑅̅                                                             0                                                                           𝑖𝑓 𝑖 ∉ 𝑅̅ , (2) 

where (𝛾̅𝑖)𝛽 is the path size correction factor for used route 𝑖 ∈ 𝑅̅. 𝛾̅𝑖 ∈ (0,1] is the path size term for used route 𝑖 ∈ 𝑅̅ 
measuring its distinctiveness (noting that unused routes do not have path size terms), and 𝛽 ≥ 0 is the path size scaling 
parameter measuring sensitivity to distinctiveness. A completely distinct route not overlapping at all with any other used 
route has a path size term equal to 1, resulting in no penalisation. Less distinct routes overlapping with other used routes 
have smaller path size terms and incur greater penalisation. The BPS-LDT path size term for the BPS-LDT model is as 
follows for used route 𝑖 ∈ 𝑅̅ is: 

 
𝛾̅𝑖 = ∑ 𝑡𝑎𝑐𝑖 1∑ ((exp(−𝜃1(𝑐𝑘 − 𝜑 min(𝒄))) − 1)(exp(−𝜃2(𝜙𝑘 − 𝜂)) − 1)(exp(−𝜃1(𝑐𝑖 − 𝜑 min(𝒄))) − 1)(exp(−𝜃2(𝜙𝑖 − 𝜂)) − 1) ) 𝛿𝑎,𝑘𝑘∈𝑅̅𝑎∈𝐴𝑖 . 

(3) 

To dissect the BPS-LDT path size term: each link 𝑎 in route 𝑖 is penalised (in terms of decreasing the path size term and 
hence the probability of the route) according to the number of used routes in the choice set that also use that link (∑ 𝛿𝑎,𝑘𝑘∈𝑅̅ ), where each contribution of a link-sharing route is weighted (i.e. ∑ (𝑊𝑘𝑊𝑖 ) 𝛿𝑎,𝑘𝑘∈𝑅̅ ), and the significance of the 

penalisation for link 𝑎 relates to how prominent link 𝑎 is in route 𝑖, i.e. the cost of route 𝑎 in relation to the total cost of 

route 𝑖 (𝑡𝑎𝑐𝑖 ). The BPS-LDT path size contribution factor is: 𝑊𝑘𝑊𝑖 = (exp(−𝜃1(𝑐𝑘 − 𝜑 min(𝒄))) − 1)(exp(−𝜃2(𝜙𝑘 − 𝜂)) − 1)(exp(−𝜃1(𝑐𝑖 − 𝜑 min(𝒄))) − 1)(exp(−𝜃2(𝜙𝑖 − 𝜂)) − 1) . 
One can see in Appendix A how this path size contribution factor relates to those from other path size choice models. 
The BPS-LDT path size term function in (3) is formulated as such so that unused routes with costs/detourednesses above 
the bound/threshold do not contribute to reducing the path size terms of used routes with costs/detourednesses below the 
bound/threshold. And, so that the path size term function is continuous.  

A key formatting difference between the BCM-LDT choice probability function in equation (17) in Rasmussen et al. 
(2024) and the BPS-LDT probability function in equation (2) here, is the use of the restricted choice set 𝑅̅ to determine 
the zero probability routes (rather than (. )+ functions). The reason for this, as proposed for the BPS model in Duncan et 
al. (2022) (see equations (6)-(7) in that paper), is so that the path size term can succinctly sum over the used routes 𝑘 ∈ 𝑅̅ 

to avoid cases of 
00. 

There are five standard BPS-LDT model parameters, which are as follows: 𝜃1 > 0 is the travel cost scaling 
parameter, 𝜃2 > 0 is the local detouredness scaling parameter, 𝛽 ≥ 0 is the path size scaling parameter, 𝜑 > 1 is the 
relative surplus cost bound parameter, and 𝜂 > 0 is the local detour threshold parameter. In Appendix C.3 we discuss and 
demonstrate the features / behavioural interpretations of these parameters. 

Fig. 1 illustrates how the BPS-LDT model can collapse into numerous different route choice models in the literature. 
By setting 𝛽 = 0, the BPS-LDT model collapses to the BCM-LDT model, which as shown in Rasmussen et al. (2024) 

 
3 Note that the BPS-LDT model can also be derived in a more theoretically rigorous manner by combining the 
conjunctive choice model (see Section 3.1 in Rasmussen et al. (2024)) with the conjunctive bounded choice model (see 
Section 3.3 in Rasmussen et al. (2024)), where distinctiveness is a conjunctive component and cost and detouredness are 
conjunctive bounded components. 
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can collapse into the BCM and MNL model. In the same way that the BCM-LDT model approaches the BCM as 𝜃2 → 0 
and 𝜂 → ∞ under the condition that 𝜂 tends to ∞ faster than 𝜃2 tends to zero, such that lim𝜃2→0𝜂→∞ 𝜃2𝜂 = ∞ (see Section 4.3 of 

Rasmussen et al. (2024)), the BPS-LDT model approaches the Bounded Path Size (BPS) model (see Appendix A.5) 
under the same conditions. Moreover, since the BPS model approaches the alternative Generalised Path Size Logit 
(GPSL′) model (see Appendix A.3) as 𝜑 → ∞, the BPS-LDT model can also collapse into GPSL′. In Appendix C.2 we 
demonstrate the benefits of the BPS-LDT model compared the BCM, BPS model, and BCM-LDT model. 

 

 
Fig. 1. Schematic diagram of how local detour threshold models, bounded models, and path size logit models collapse into one 

another. 
 

4 Solution method 
As demonstrated in Rasmussen et al. (2024), despite imposing both a bound upon total route travel cost and a threshold 
upon local detouredness, the number of all possible routes from the full network that will be assigned non-zero 
probabilities by these criteria may still be considerably large, especially for large-scale networks. Therefore, with existing 
methods for generating all routes below the cost bound and detour threshold to solve local detour threshold models – 
such the initial branch-and-bound-based algorithm proposed in Rasmussen et al. (2024) – applying local detour models to 
large-scale networks is not yet feasible computationally. In the current paper, we therefore adopt a heuristic approach, by 
working from a set of pre-generated routes that represent the universal set of possible routes. From these routes, a smaller 
set of routes will be assigned non-zero probabilities by the choice model that satisfy the cost-bound/detour-threshold 
conditions. This also allows for us in Section 6 to directly and consistently compare estimation results between related 
local detour and non-local detour models. 

In this section, we propose a solution method for computing BPS-LDT model choice probabilities with pre-
generated representative universal choice sets. This involves first pre-processing the route / network data to obtain the 
necessary segment information, and then using this information to compute BPS-LDT probabilities without requiring any 
further knowledge of the network.  

Now, computing local detour measures is not straightforward/quick, even when only doing it for a pre-generated 
representative universal choice set of routes, it still has the potential to be computationally demanding. Computing the 
local detour measure of a route entails finding the segment of the route that has the greatest relative detour from the best 
segment alternative. Since there are many segments of a route, it can be computationally demanding to iterate through 
every segment of the route and calculate its relative detour at each segment. We thus propose here two main tricks for 
improving the efficiency of computing local detour measures and calculating choice probabilities.  

The first trick is to identify during the pre-processing of the route-segment information of the generated routes, 
which segments are redundant. With some logical thinking regarding which segments will always lead to a greater 
relative detour than others in the route, one can identify which segments are redundant and exclude them, retaining only 
essential segments. This avoids storing and then operating with a lot of redundant information, thus improving 
efficiency. In Section 4.1 below we demonstrate essential/redundant segments. 

The second trick is to harness the feature that if a segment violates the local detour threshold, all routes using that 
segment will receive zero choice probability. Thus, when it is found that a segment violates the threshold when checking 
the segments of one route, one can simultaneously assign all routes using that segment a zero choice probability, and one 
does not need to then iterate through those routes to test for threshold violation. This reduces the number of routes that 
need to be iterated through to compute local detour measures, thus improving efficiency. 

In Section 4.1 and Section 4.2 below we introduce and discuss the proposed pre-processing method and solution 
method, respectively. Then, in Section 4.3 we assess the efficiency of our proposed approach, comparing it with more 
rudimentary methods that do not utilise the tricks of filtering out redundant segments or simultaneous route removal. 
 

4.1 Pre-processing method 
Algorithm 1 presents the proposed method for pre-processing segment information for solving the BPS-LDT model. The 
general idea of the method is to in Steps 1-4 identify the segments of each generated route, and then in Step 5 construct 
segment alternative choice sets for each segment from the routes. The segment alternatives are identified from the sub-
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routes taken by the generated routes between the segment nodes. Information is stored regarding the links of each 
segment alternative so that (during the solution method) the costs of all segment alternatives can be computed, and 
thereby the best segment alternatives can be identified and local detour measures computed. 

Now, operationalising the first trick discussed above, Step 3 in Algorithm 1 filters out ‘redundant’ segments and 
identifies just the ‘essential’ segments in each route. Moreover, operationalising the second trick, Step 5.4 stores 
information on which routes use each identified essential segment. The solution method in the following section uses this 
information to remove multiple routes at once when a segment violates the local detour threshold. 

 

Step 1. Generate a new unique route from the network (or select a route from the pre-generated set of routes). 

Step 2. Store the link-route information (e.g. add the route to a link-route incidence matrix). If first unique route 
generated, return to Step 1. 

Step 3. Compare the new generated route with each previously generated route to filter out ‘redundant’ segments and 
identify just the ‘essential’ segments in each route. This can be done, for example, as follows for two generated routes: 

Step 3.1. Identify the common segments (ordered pairings of nodes) between the two routes. 

Step 3.2. For each common segment, check to see if the used segment alternative from each route (i.e. the links 
used by the route between the initial and end segment nodes) share any links. If no links are shared, add this 
segment (if not already present) to the lists for both routes of the essential segments. 

Step 4. If the universal choice set of routes has been generated, or an approximation of the universal choice set has been 
obtained, continue to Step 5. Otherwise, return to 1. 

Step 5. By iterating through each route and its associated essential segments in turn, construct segment alternative choice 
sets and obtain other relevant information for computing local detour measures. This can be done, for example, as 
follows. For each of the generated routes, iterate through each essential segment in turn and conduct the following: 

Step 5.1. Identify the used segment alternative of the current route, i.e. the links used by the route between the 
initial and end segment nodes. 

Step 5.2. If a new segment alternative for that segment has been identified, add the segment alternative to the 
segment alternative choice set for that segment, and store the link-segment alternative information (e.g. add the 
segment alternative to a link-segment alternative incidence matrix). 

Step 5.3. Note which segment alternative in the segment alternative choice set is used by this route during this 
segment. 

Step 5.4. Add the route to a list of routes that use that segment alternative. 

Algorithm 1. Proposed method for pre-processing segment information for solving the BPS-LDT model. 
 
To demonstrate what is meant by redundant/essential segments and how these can be identified, consider Fig. 2 which 
displays the step-by-step generation and adjoining of three routes from an underlying network where the OD movement 
is from node 1 to node 6. First, route 1 is generated which has node sequence: 1→2→3→4→5→6, then route 2 is 
generated with node sequence: 1→2→7→3→4→8→5→6, then route 3: 1→9→4→5→6.  

Upon the generation of route 2, step 3 in the pre-processing method above compares the segments / used segment 
alternatives of routes 1&2: redundant segments of both routes are filtered out to identify just the essential segments that 
each route can eliminate the other with (in terms of a local detour at that segment above the threshold). The first obvious 
filtering of redundant segments is to discard all segments that are not shared by routes 1&2: (2,7), (7,3), (4,8), & (8,5). 
The common segments between the two routes are thus: (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4), 
(3,5), (3,6), (4,5), (4,6), & (5,6). The next obvious redundant segments are those where the used segment alternative is 
the same for both routes, which are segments: (1,2), (3,4), & (5,6).  

This leaves just the segments where routes 1&2 have different used segment alternatives, and therefore have non-
zero local detourednesses. However, if for a given segment all of the segment alternatives share a common link, then the 
segment(s) consisting of the non-overlapping part(s) will always have a greater detour measure than the full segment. For 

example, supposing that each link in Fig. 2 costs 1, then the route 2 detour measure at segment (1,3) is 
3−22 = 0.5 

(1→2→7→3 against 1→2→3), but 1→2→7→3 and 1→2→3 share link 1→2 and therefore the segment (2,3) will always 

have a greater detour measure, which in this case is 
2−11 = 1 (2→7→3 against 2→3). This means that all segments where 

the segment alternatives overlap are redundant, which in the case of comparing routes 1&2 means that (1,3), (1,4), (1,5), 
(1,6), (2,4), (2,5), (2,6), (3,5), (3,6), & (4,6) are also redundant segments. This just leaves (2,3) and (4,5) as the essential 
segments which will dominate over all the others above in the local detour measure. (2,3) and (4,5) are thus added to the 
lists for routes 1&2 of essential segments to test. 
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Now, upon the generation of route 3, route 3 must be compared to both routes 1&2 to search for redundant/essential 
segments. Compared to route 1, the only segment in common where there are no shared links between segment 
alternatives is (1,4), and so (1,4) is added to the essential segments list of routes 1&3. Compared to route 2, the segments 
in common where there are no shared links are (1,4) and (4,5). These are thus both added to the essential segments lists 
for route 2&3, if not there already. 

 
Fig. 2. Demonstrating redundant/essential segments. 

 

4.2 Solution method 
For a given setting of the link costs and given values of the relative cost bound parameter 𝜑 and local detour threshold 
parameter 𝜂, Algorithm 2 presents pseudo-code for solving the BPS-LDT model with representative universal choice sets 
and pre-processed segment information. In Step 1, the relative surplus total travel cost of each generated route is checked 
against the global cost bound; violating routes are then removed from the used route choice set. In Step 2, the remaining 
routes are iterated through, calculating the local detourednesses of the segment alternatives for each essential segment 
identified during the pre-processing. Step 2.2.3 operationalises the second trick discussed above: for segment alternatives 
that violate the local detouredness threshold, all routes that use that segment alternative are removed from the used route 
choice set (potentially removing multiple routes at once). If none of the segment alternatives of a route violate the detour 
threshold, then the local detour measure is calculated and it remains in the used route choice set. In Step 3, the BPS-LDT 
choice probabilities are computed for the used routes given the local detour measures calculated in Step 2. 
 

Step 1: Cost bound route elimination phase. Compute the route costs then check the cost of each route against the cost 
bound. Remove all violating routes from the used route choice set. 

Step 2: Local detour threshold route elimination phase.  

 Step 2.1: Compile an ordered list of the routes remaining in the used route choice set. 

 Step 2.2: For the next route in the ordered list, go through each (essential) segment of the route in turn: 

Step 2.2.1: If the segment has been analysed by a previous route, note the relative surplus cost of the 
segment alternative used by the current route (already computed, see below), and continue to next 
segment.  

Step 2.2.2: Otherwise, compute the segment alternative costs and then the relative surplus cost of each 
segment alternative compared to the lowest costing segment alternative for that segment. 

Step 2.2.3: For each segment alternative that violates the detouredness bound, remove all the routes 
that use that segment alternative from the ordered list and the used route choice set. 

Step 2.2.4: If during this segment, the current route violates the detouredness bound, move on to the 
next route in the ordered list and return to Step 2.2. If this segment is the last segment of the current 
route, continue to Step 2.3, otherwise move on to the next segment of the route and return to Step 2.2.1. 

Step 2.3: Given no segments of the current route violate the detouredness bound, compute the measure of local 
detouredness for the route given the computed relative surplus costs of its segment alternatives during Step 2.2. 
If at the end of the ordered list of routes, continue to Step 3. Otherwise, move on to the next route in the ordered 
list and return to Step 2.2 
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Step 3: Choice probability computation. Given the remaining choice set of used routes, and the costs and measures of 
detouredness of the used routes computed in Step 1 and Step 2, respectively, compute the BPS-LDT choice probabilities. 

Algorithm 2. Solution method for computing BPS-LDT model choice probabilities given representative universal route choice sets 
and pre-processed segment information. 

 

4.3 Demonstration 
Here we shall demonstrate the efficacy of the proposed solution method compared to other more rudimentary methods 
one could adopt. As discussed, there are two main tricks that we employ to speed up computation times. The first 
involves filtering out redundant segments during the pre-processing stage, which dramatically reduces the number of 
segments being considered when computing the local detour measures. The second involves removing multiple routes at 
once from the used route choice set when checking if a segment alternative violates the local detour threshold (and thus 
not needing to compute detour measures for every route). The combination of these two tricks significantly improves 
BPS-LDT choice probability computation times. 

To demonstrate, we shall compute the BPS-LDT choice probabilities using four different methods: 

• Method 1: During the pre-processing stage, exhaustively identify all segments of a route, and then during the 
solution stage consider each route in turn, calculating the local detouredness of every segment of the route and 
thus identifying the maximum for the local detour measure. 

• Method 2: During the pre-processing stage, filter out all redundant segments of a route, and then during the 
solution stage consider each route in turn, calculating the local detouredness of each essential segment of the 
route and thus identifying the maximum for the local detour measure. 

• Method 3: During the pre-processing stage, exhaustively identify all segments of a route, and then during the 
solution stage, if a segment alternative violates the local detour threshold, remove all routes that use that 
segment alternative from the used route set. 

• Method 4 (our proposed method): During the pre-processing stage, filter out all redundant segments of a route, 
and then during the solution stage, if a segment alternative violates the local detour threshold, remove all routes 
that use that segment alternative from the used route set. 

Table 1 displays the computation times for each method when computing the BPS-LDT choice probabilities for a single 
OD movement of the real-life case study in Section 6.2. The OD movement has 100 routes in the representative universal 
choice set, and the BPS-LDT model parameters are those calibrated in Table 4 but with the local detour threshold 
parameter set to 𝜂 = 0.5, i.e. where 88% of the routes are cut out by the local detour threshold. As can be seen, Method 1 
is very slow, having to consider each route in turn and every segment of the route. Either filtering out redundant 
segments (Method 2) or removing multiple routes at once (Method 3) reduces computation times considerably, and a 
combination of the two, our proposed approach, results in much faster computation times. It is also worth noting that 
filtering out redundant segments dramatically reduces the memory required to store the pre-processed segment 
information. In this example, the unfiltered segment information required 120 times more memory. 

Fig. 3 displays how the BPS-LDT choice probability computation time using our proposed method varies as the 
local detour threshold parameter 𝜂 varies. As can be seen, the lower the threshold, the greater the number of violating 
routes, and thus the greater the number of routes that are being cut out simultaneously, speeding up computation times. 
 

Method Method 1 Method 2 Method 3 Method 4 
Computation Time [s] 22.19 0.384 3.74 0.022 

Table 1. BPS-LDT model choice probability computation times using our proposed method (Method 4), and three more rudimentary 
methods (Methods 1-3). 
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Fig. 3. BPS-LDT model choice probability computation times using our proposed method, for different settings of the local detour 

threshold parameter 𝜂. 

 

5 Estimation method 
In this section, we provide a modified Maximum Likelihood Estimation (MLE) procedure for estimating the BPS-LDT 
model with tracked route observations, as well as a computationally tractable method for evaluating estimate precision. 
 

5.1 Likelihood formulation 
Suppose that we have available a set of observed routes 𝑍, e.g. collected through GPS units or smart phones, and 
consider a situation where it is not needed to distinguish individuals in their preferences (the approach is, of course, 
readily generalised to permit multiple user classes differing in their parameters). Let 𝑅𝑧 be the choice set of route 
alternatives for observation 𝑧 ∈ 𝑍. Suppose that the observation data is contained in a vector 𝒙 of size |𝑍| where: 𝑥𝑧 = 𝑖     if alternative 𝑖 ∈ 𝑅𝑧 is chosen, ∀𝑧 ∈ 𝑍. 
The BPS-LDT model Likelihood, 𝐿, for a sample of size |𝑍| is: 

 𝐿(𝜶, 𝜃1, 𝜃2, 𝛽, 𝜑, 𝜂|𝒙) = ∏ 𝑃𝑥𝑧(𝒕(𝒘; 𝜶); 𝜃1, 𝜃2, 𝛽, 𝜑, 𝜂)𝑧∈𝑍 , (4) 

where 𝑃𝑥𝑧(𝒕) is the BPS-LDT model choice probability function given by (4) for route 𝑥𝑧 ∈ 𝑅𝑧. 
If for a given setting of the travel cost, cost bound, and local detour threshold parameters 𝜶̃, 𝜑̃, & 𝜂̃, there is an 

observation 𝑧 such that either 𝑐𝑥𝑧(𝒕(𝒘; 𝜶̃)) ≥ 𝜑̃ min (𝒄(𝒕(𝒘; 𝜶̃))) or 𝜙𝑥𝑧(𝒕(𝒘; 𝜶̃)) ≥ 𝜂̃, the BPS-LDT Likelihood value 

is zero. This means that the maximum likelihood estimates (𝜶̂, 𝜃̂1, 𝜃̂2, 𝛽̂, 𝜑̂, 𝜂̂) will always be such that 𝑐𝑥𝑧(𝒕(𝒘; 𝜶̂)) <𝜑̂ min (𝒄(𝒕(𝒘; 𝜶̃))) and 𝜙𝑥𝑧(𝒕(𝒘; 𝜶̃)) < 𝜂̃ for all 𝑧 ∈ 𝑍 (see Duncan et al. (2022)).  

The BPS-LDT model Log-Likelihood function, 𝐿𝐿, to be maximised is thus: 

 𝐿𝐿(𝜶, 𝜃1, 𝜃2, 𝛽, 𝜑, 𝜂|𝒙) = ln (∏ 𝑃𝑥𝑧(𝒕(𝒘; 𝜶); 𝜃1, 𝜃2, 𝛽, 𝜑, 𝜂)𝑧∈𝑍 ) = ∑ ln (𝑃𝑥𝑧(𝒕(𝒘; 𝜶); 𝜃1, 𝜃2, 𝛽, 𝜑, 𝜂))𝑧∈𝑍 , (5) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     {𝑐𝑥𝑧(𝒕(𝒘; 𝜶)) < 𝜑 min (𝒄(𝒕(𝒘; 𝜶)))𝜙𝑥𝑧(𝒕(𝒘; 𝜶)) < 𝜂 , ∀𝑧 ∈ 𝑍, (6) 

where 𝑃𝑥𝑧(𝒕) is the BPS-LDT model choice probability relation in (2) for route 𝑥𝑧 ∈ 𝑅𝑧. 

Solution Existence. In Duncan et al. (2022), it was shown that MLE solutions are guaranteed to exist for the BPS 
model. Moreover, that these MLE solutions are guaranteed to exist in the parameter space where the likelihood is not 
zero. In an analogous manner, MLE solutions are guaranteed to exist for the BPS-LDT model, in the parameter space 
where the likelihood is not zero. In order to avoid unnecessarily repeating what would be very similar material, we refer 
the reader to Section 7.2.2 of Duncan et al. (2022) for the arguments for these results.  

Solution Uniqueness. The BPS-LDT Log-Likelihood function is not guaranteed to be globally convex. Standard 
proofs of solution uniqueness thus cannot be applied to prove that BPS-LDT model MLE solutions are unique. That is 
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not to say though that solutions are not / cannot be unique, and in the experiments in this paper we have not experienced 
any cases of multiple solutions. In Section 6.2.6 we conduct an empirical analysis of the uniqueness of MLE solutions. 

 

5.2 Estimation procedure 
The proposed procedure for estimating the BPS-LDT model is a modification of a standard MLE procedure. As can be 
seen in (5)-(6), maximising the BPS-LDT Log-Likelihood is complicated by the constraints requiring all chosen routes to 
have both a cost below the bound and detour measure below the threshold, otherwise the Log-Likelihood function is 
undefined. Like as discussed for the BPS model in Duncan et al. (2022), it is possible to predetermine the parameter 
space for MLE where the Log-Likelihood will always be defined, by identifying (for a given closed-bounded range for 
the cost parameters) the lower limits for the bound parameter 𝜑 and local detour threshold parameter 𝜂 before it is 
possible for any chosen route to violate the cost bound / local detour threshold. Or, one could also incorporate 
corresponding constraints for the optimisation algorithm, like those in (6) but adjusted to include equivalence.  

However, since identifying the parameter space / incorporating the corresponding constraints is far from 
straightforward, we adopt an easier to implement approach. For a closed-bounded parameter space Ω where for some 
settings of the parameters the Likelihood is zero, the MLE solution will always lie in the parameter subspace Ω̅ where all 
observed routes have travel costs within the bound / local detour measures within the threshold, i.e. where the Likelihood 
is non-zero. Thus, similar to as done for the BPS model in Duncan et al. (2022), the idea is simply to tell the Log-
Likelihood maximisation algorithm to search for solutions within Ω̅ only, by setting nonoptimal values for the objective 
function when testing parameters not in Ω̅.  

To do this, the estimation procedure includes a step that checks if any observed route violates the current cost-
bound/detour-threshold, and if so, sets the Log-Likelihood value as an appropriately large and negative value. The 
proposed BPS-LDT estimation procedure is as follows: 

Step 1: For each route observation 𝑧 ∈ 𝑍, generate a representative universal choice set and pre-process the link  
attributes, link-route information, and segment information (see Algorithm 1). Set an initial set of parameters to test. 

Step 2: Given the current set of parameters to test, calculate the travel cost of every route and the local detour  
measure of each observed route. 

Step 3: For each route observation, check if its cost violates the cost bound or its detour measure violates the local  
detour threshold. If so, set the Log-Likelihood value as an appropriate large and negative value (see below), choose  
a new set of parameters to test, and return to Step 2. Otherwise, continue to Step 4. 

Step 4: Given the current set of parameters being tested, use the solution method detailed in Algorithm 2 to compute  
the BPS-LDT model choice probability of each route observation. 

Step 5: Given these choice probabilities, compute the Log-Likelihood value. 

Step 6: If Log-Likelihood converged, stop. Otherwise, choose a new set of parameters to test and return to Step 2. 

Initial conditions. Although it is not necessarily a requirement, our recommendation is that initial conditions are set such 
that none of the chosen route cost bounds or local detour thresholds are violated. This can be done simply by setting 
intuitively large bound/threshold values, or by calculating the lower limits of 𝜑 and 𝜂 before any chosen route violates 
the bound/threshold. In Section 6.2.6 we test solving MLE with different initial conditions. 

Cost-bound/detour-threshold violation check. Note that for the cost-bound/detour-threshold violation check, one 
only needs to compute the local detour measures for the route observations. Moreover, by performing the cost-bound 
violation check first, one may not need to compute any detour measures, which is the more computationally demanding 
part. For the experiments in this paper, supposing that 𝑍′ is the set of observations that violate either the bound or the 
threshold, we set the appropriate large and negative value as  𝐿𝐿 = ∑ −999           𝑖𝑓 𝑧 ∈ 𝑍′  ln(𝑃𝑥𝑧𝑀𝑁𝐿)       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑧∈𝑍 , 
where 𝑃𝑥𝑧𝑀𝑁𝐿 is the MNL choice probability for route 𝑥𝑧 ∈ 𝑅𝑧. Setting the appropriate large and negative value in this 
way, rather than as some constant arbitrary number, means that some information can be gathered on the relevance of the 
parameters even when bound-violating parameters are tested. MNL choice probabilities are chosen as these are quick and 
easy to compute. Note that for the violation  

Direction searching. In general, one can apply procedures from standard numerical optimisation methods to 
identify the parameters to evaluate at the next iteration. Since the BPS-LDT choice probability function is non-
differentiable for parameter values that lead to either: i) a route’s travel cost being equal to the bound value, ii) a route’s 
detour measure being equal to the detour threshold value, or iii) two or more routes having the same minimum travel cost 
(i.e. a point at which the minimum cost route changes), caution must be given when using gradient approaches such as 
Newton-Raphson or BHHH for the minimisation algorithm. While the non-differentiability at i) and ii) are not an issue as 
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we are only concerned with parameter settings within the subspace Ω̅ (the Log-Likelihood value will be large and 
negative anyway at those parameter values), the non-differentiability at iii) may be problematic if the minimum cost 
route is likely to change a lot for different parameter values. One possibility could be to replace the min functions in (1)-
(3) with smooth approximations of the minimum function, such as the Boltzmann operator or Mellowmax operator. In 
this study though, we use the L-BFGS-B bound-constraint quasi-Newton minimisation algorithm (Byrd et al., 1995) 
(where we minimise −𝐿𝐿), which approximates Log-Likelihood differentials using finite difference. We found that this 
converged well to MLE solutions, as we demonstrate in Section 6.2.6. The L-BFGS-B algorithm was implemented using 
the scipy.optimize.minimize package in Python. The parameter bounds and initial conditions are given in each study. 

 

5.3 Evaluating estimate precision 
For the BPS-LDT model it is not possible to calculate standard errors for the estimates analytically. This is because the 
model is non-differentiable at certain points and therefore violates the regularity conditions that establish asymptotic 
standard errors of the maximum likelihood estimates as the inverse of the Fisher information. Instead, we detail here a 
method for evaluating estimate precision numerically through resampling.  

Resampling approaches that could be utilised include, among others, the JackKnife, Bootstrap, and Subsampling 
methods (Efron, 1979). For a sample size of |𝑍| observations, the JackKnife method involves estimating the models for |𝑍| subsamples of |𝑍| − 1 observations, where each of the |𝑍| observations are sequentially removed one at a time from 
the sample set (with replacement). The Bootstrap method involves estimating the models for 𝐻 samples of |𝑍| 
observations drawn randomly from the full sample set 𝑍, with replacement. The Subsampling method involves 
estimating the models for 𝐻 subsamples of 𝐺 < |𝑍| observations drawn randomly from the full sample set, with or 
without replacement. With the |𝑍| estimates of the parameters obtained from the JackKnife method, and 𝐻 estimates 
from the Bootstrap and Subsampling methods, estimate precision statistics can be approximated such as standard errors 
and confidence intervals, given mean estimates. Indeed, Lim Jr et al. (2009), Tilahun et al. (2007), Jánošíková et al. 
(2014), and Fosgerau et al. (2023) all utilise Bootstrap to assess estimate precision in route choice parameter estimation 
studies. 

However, while estimating the BPS-LDT model once for a dataset of |𝑍| observations is computationally feasible 
(see estimation times for our real-life case study in Section 6.2.3), re-estimating the model many times for different 
samples of |𝑍| / |𝑍| − 1 observations for the Boostrap/Jacknife methods can be computationally onerous. The 
Subsampling method has a lower computational burden, but it violates sample size properties. We thus instead suggest 
using the Bag of Little Bootstraps (BLB) method (Kleiner et al, 2014), which was proposed as a more computationally 
efficient alternative to Bootstrap. Although it is to the best of our knowledge yet to be utilised in the context of transport 
route choice, the BLB method has been used to explore parameter estimate precision in other contexts, see e.g. 
Allahviranloo et al. (2017), Sharma & Kuma (2021), Covington et al. (2021). The BLB resampling method is as follows 
for a full sample set size of 𝑍 observations: 

Step 1: Randomly draw without replacement 𝐺 < |𝑍| observations from the full sample set. 

Step 2: Repeat Step 1 𝐻 times so that there are 𝐻 subsamples of 𝐺 unique observations. 

Step 3: From each of the 𝐻 subsamples of 𝐺 unique observations, randomly draw with replacement |𝑍|  
observations. 

Step 4: Repeat Step 3 𝑌 times so that for each of the 𝐻 subsamples of 𝐺 unique observations, there are 𝑌 samples of |𝑍| (not-all-unique) observations. 

The result is 𝐻 × 𝑌 samples of |𝑍| observations, 𝐺 of them unique in each sample. The models are estimated for each of 
the 𝐻 × 𝑌 samples and estimate precision statistics are evaluated from the set of 𝐻 × 𝑌 estimates. 

The computational advantage of the BLB method compared to the Bootstrap method is that each of the 𝐻 × 𝑌 
samples only have 𝐺 unique values, and therefore the computational demand scales in 𝐺 instead of |𝑍|. In our case study, 
each observation is a unique OD movement with its own choice set of routes. Thus, for JackKnife, one must compute the 
route choice probabilities for |𝑍| − 1 OD movements. For Bootstrap, the number of OD movements varies depending on 
how the observations are randomly drawn; the average according to some simple and standard calculations done by 
Efron & Tibshirani (1993) is approximately 0.632 ∙ |𝑍|, which is large if |𝑍| is large, and there could be as many as |𝑍| 
in the unlikely scenario every observation is drawn without repetition. The BLB method, however, allows for one to 
control the number of OD movements, and thus the computational burden, with 𝐺. Moreover, as Kleiner et al. (2014) 
discuss/demonstrate, the BLB method is well suited for modern parallel and distributed computing architects (more so 
than Bootstrap), and one can also use an iterative algorithm to seek the minimal values of the hyperparameters 𝐻 and 𝑌 
that are sufficiently large to yield good statistical performance. Once more, the BLB method does not violate the sample 
size properties (each sample has |𝑍| observations (that are not all unique)).  
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6 Empirical analysis 
In this section, we first conduct a simulation study to assess whether assumed true parameters can be successfully 
reproduced and identified. Then, the BPS-LDT model is estimated on a large-scale network using real route choice 
observation data tracked by GPS units. Results are compared with BCM-LDT model as well as other relevant non-local 
detour route choice models (see Appendix A). For this estimation work, we work with pre-generated representative 
universal choice sets, utilising the pre-processing and solution method proposed in Section 4. 
 

6.1 Simulation study 
Here we investigate the procedure proposed in Section 5.2 for estimating the BPS-LDT model in a simulation study, 
assessing the possibility of estimating reasonable parameters that reproduces observed behaviour. This is particularly 
important in the case of the BPS-LDT model as: i) there is some uncertainty over whether the heuristic estimation 
procedure will work effectively, ii) it is not guaranteed that the BPS-LDT solutions are unique, and iii) there is a complex 
interaction between the parameters of the BPS-LDT model, with possibilities for identification issues. For example, 𝜃1 
and 𝜑 both to some extent control sensitivity to travel cost, and 𝜃2 and 𝜂 both to some extent control sensitivity to local 
detouredness. We can also explore whether local detouredness and correlation are distinct, independent route attributes. 
 
6.1.1 Experiment setup 
A similar approach is adopted to that utilised for the Adaptive Path Size Logit model in Duncan et al. (2020) and BPS 
model in Duncan et al. (2022). In general, the approach is to sample observations according to an assumed ‘true’ model, 
and then use these in combination with the Log-Likelihood function to evaluate the ability to reproduce the assumed 
‘true’ parameters. The simulation estimation experiment consists of four steps: 

Step 1: Postulate a set of true parameters of the BPS-LDT model. 

Step 2: Given these assumed true parameters, calculate the BPS-LDT choice probability of each route alternative in  
the representative universal choice sets. 

Step 3: Given these route choice probabilities, sample |𝑍| observed route choices. 

Step 4: Given these observed route choices, apply the estimation procedure discussed in Section 5.2 to obtain BPS-
LDT parameter estimates. 

Steps 3 & 4 are replicated many times to obtain a set of parameter estimates. Then, by analysing the Bias and Standard 
Error of these sets of parameter estimates we can assess whether the assumed true BPS-LDT parameters can be 
successfully retrieved. 
 
6.1.2 Sioux Falls application 
The Sioux Falls network consists of 76 links and 528 OD movements with non-zero travel demands. Details of the 
network were obtained from https://github.com/bstabler/TransportationNetworks. The travel cost of link 𝑎 is specified as 
the free-flow travel time 𝑤𝑎,1 only, such that: 𝑡𝑎(𝒘𝑎; 𝜶) = 𝑤𝑎,1 ∙ 𝛼1, 
where 𝛼1 > 0 is the free-flow travel time parameter, and thus the travel cost for route 𝑖 ∈ 𝑅𝑚 is: 𝑐𝑚,𝑖(𝒕(𝒘; 𝜶)) = ∑ 𝑡𝑎(𝒘𝑎; 𝜶)𝑎∈𝐴𝑚,𝑖 = 𝛼1 ∑ 𝑤𝑎,1𝑎∈𝐴𝑚,𝑖 . 
The BPS-LDT models require in this case the specification of six parameters: 𝛼1, 𝜃1, 𝜃2, 𝛽, 𝜑, and 𝜂 but to ensure 
identification 𝜃1 is fixed at 𝜃1 = 1 throughout.  

To generate the representative universal choice sets, we utilised a simulation approach (Sheffi & Powell, 1982) 
where the link costs were drawn randomly from a truncated normal distribution with mean value being free-flow travel 
time and standard deviation being 0.6 times the mean. The link costs were simulated 100 times for each OD movement 
and for each simulation a shortest path search was conducted to generate a route, so that a maximum of 100 unique routes 
were generated for each choice set.  

For the Log-Likelihood maximisation algorithm (see Section 5.2) we set the initial conditions to (𝛼̃1(0), 𝜃̃1(0), 𝛽(0), 𝜑̃(0), 𝜂̃(0)) = (𝛼1𝑡𝑟𝑢𝑒 + 0.2, 𝜃1𝑡𝑟𝑢𝑒 + 0.2, 𝛽𝑡𝑟𝑢𝑒 + 0.2, 𝜑𝑡𝑟𝑢𝑒 + 0.2, 𝜂𝑡𝑟𝑢𝑒 + 0.2), and the bounds to 𝛼̃1 ∈[0.01,2], 𝜃̃1 ∈ [0.01,8], 𝛽 ∈ [0,2], 𝜑̃ ∈ [1.01,3], 𝜂̃ ∈ [0.01,4]. 
Table 2 reports, for various settings of the true parameters, the mean Bias (true parameter minus mean estimate), 

Standard Error (standard deviation of estimates), and Route Mean Squared Error (𝑅𝑀𝑆𝐸 = √(𝐵𝑖𝑎𝑠)2 + (𝑆. 𝐸)2), of the 

estimates across 250 experiment replications, each with |𝑍| = 5000 simulated observations. As shown, the mean bias of 

https://github.com/bstabler/TransportationNetworks
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the estimates of 𝛼1, 𝜃2, 𝛽, and 𝜑 are relatively small for nearly all settings of the true parameters tested. For example, the 

maximum absolute percentage biases for 𝛼1, 𝜃2, 𝛽, and 𝜑 are 6.5% (
0.0130.2 × 100%), 5.2%, 2.4%, and 0.6%, respectively. 

For 𝜂, the maximum absolute percentage bias is 10.9%, from the third setting of the true parameters where 𝜃2𝑡𝑟𝑢𝑒 is set 
the highest. As one can see, the precision of estimating 𝜂 (as measured by the RMSE) decreases as 𝜃2𝑡𝑟𝑢𝑒 increases and 𝜃2 
becomes more influential. And, the precision of estimating 𝜃2 decreases as 𝜂𝑡𝑟𝑢𝑒 decreases and 𝜂 becomes more 
influential. This makes sense as 𝜃2 and 𝜂 both have a similar scaling effect upon local detouredness and the parameters 
have some correlation (see below). Thus, the 10.9% bias for 𝜂 is due to a dominating 𝜃2 parameter, where the standard 
error for 𝜂 is also its largest.  

Table 3 displays the estimated covariances between the 𝛼1, 𝜃2, 𝛽, 𝜑, and 𝜂 parameters, from a single simulation 
experiment with the true parameters set as 𝛼1𝑡𝑟𝑢𝑒 = 0.2, 𝜃2𝑡𝑟𝑢𝑒 = 2, 𝛽𝑡𝑟𝑢𝑒 = 0.7, 𝜑𝑡𝑟𝑢𝑒 = 1.5, 𝜂𝑡𝑟𝑢𝑒 = 1. As shown, there 
is no evidence of strong correlation between the parameters. But, the greatest correlation is between the 𝜃̂2 and 𝜂̂ 
estimates, where there is a logical positive correlation: an increase in 𝜃2 or a decrease in 𝜂 gives more probability to 
lower detouring routes. 

Overall, the simulation study results suggest that the parameters of the BPS-LDT model can in general be 
successfully estimated and identified, evident from the low bias and standard error of the estimates, as well as the low 
covariance between parameters. There is though perhaps some confounding between the local detouredness scaling 
parameter 𝜃2 and local detour threshold parameter 𝜂. Importantly, the results suggest that local detouredness and 
correlation are distinct, independent route attributes. 

 𝛼1𝑡𝑟𝑢𝑒  𝜃2𝑡𝑟𝑢𝑒 𝛽𝑡𝑟𝑢𝑒 𝜑𝑡𝑟𝑢𝑒 𝜂𝑡𝑟𝑢𝑒 𝛼̂1 𝜃2 𝛽̂ 𝜑̂ 𝜂̂ 

Bias S.E RMSE Bias S.E RMSE Bias S.E RMSE Bias S.E RMSE Bias S.E RMSE 
0.2 2 0.7 1.5 1 0.013 0.047 0.049 0.048 0.582 0.584 -0.017 0.132 0.133 0.007 0.010 0.013 -0.037 0.167 0.171 
0.2 2.5 0.7 1.5 1 0.013 0.050 0.052 -0.004 0.556 0.556 -0.016 0.138 0.139 0.009 0.011 0.014 -0.072 0.206 0.218 
0.2 3 0.7 1.5 1 0.005 0.051 0.051 0.045 0.509 0.511 -0.014 0.143 0.144 0.008 0.012 0.014 -0.109 0.325 0.344 
0.2 2 0.7 1.35 0.75 0.005 0.076 0.076 0.104 0.892 0.892 0.001 0.168 0.168 -0.002 0.008 0.008 -0.006 0.100 0.100 
0.1 3 0.8 1.7 1.2 0.001 0.040 0.040 0.062 0.363 0.368 0.012 0.115 0.116 0.004 0.027 0.028 -0.006 0.220 0.220 

Table 2. Sioux Falls simulation study: Stability of estimated BPS-LDT parameters across 250 experiment replications (|𝑍| = 5000 
observations). 

 
 𝛼̂1 𝜃̂2 𝛽̂ 𝜑̂ 𝜂̂ 𝛼̂1 - -0.020 0.000 0.000 -0.001 𝜃̂2 -0.020 - -0.018 0.001 0.047 𝛽̂ 0.000 -0.018 - -0.000 0.006 𝜑̂ 0.000 0.001 -0.000 - -0.000 𝜂̂ -0.001 0.047 0.006 -0.000 - 

Table 3. Sioux Falls simulation study: Estimated covariances between BPS-LDT model parameters from 250 experiment replications 
(𝛼1𝑡𝑟𝑢𝑒 = 0.2, 𝜃2𝑡𝑟𝑢𝑒 = 2, 𝛽̂ = 0.7, 𝜑̂ = 1.5, 𝜂̂ = 1). 

 

6.2 Real-life large-scale case study 
In this section we estimate the BPS-LDT model in a real-life case study using the procedure discussed in Section 5 with 
observed route choices tracked by GPS units. 
 
6.2.1 Setup 
The GPS data has been collected among drivers in the eastern part of Denmark in 2011, and includes a total of 17,115 
observed routes. The dataset is the same as used in Prato et al. (2014), Rasmussen et al. (2017), and Duncan et al. 
(2020,2022). 

The GPS traces were map matched to a network, for which corresponding time-of-day-dependent travel times were 
available on the entire network. See more details in Prato et al. (2014). The network is large-scale, representing all of 
Eastern Denmark, and thus includes 34,251 links. With current route generation techniques, it is not feasible to 
enumerate the universal choice set for such a large network, and even enumerating all alternatives with a cost below a 
rather large relative bound (e.g. 𝜑 = 2) is not feasible. Instead, we generated representative universal choice sets by 
generating a choice set for each observed route by applying the doubly stochastic approach also applied in Prato et al. 
(2014). This approach is based on repeated shortest path searches in which the network attributes and parameters of the 
cost function are perturbated between searches (Nielsen, 2000; Bovy & Fiorenzo-Catalano, 2007). To reduce the risk of 
bias in estimation, care was taken to ensure a large variety of alternatives with different characteristics were generated, 
by assuming large variance in the parameters of the cost function. Up to 100 unique paths were generated for each 
observation, and the observation was matched to the most similar generated route, with a requirement of the overlap in 
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length being at least 80% for the observation to be included in the estimation. This removed 841 routes, i.e. the coverage 
was 95%. We also removed trips where the sum of travel time (in minutes) and length (in km) was less than 10, as well 
as observations where only one route was generated, leaving a total of 8,105 observations. 

For the estimation in this study, like in Duncan et al. (2020,2022), the travel cost of link 𝑎 is specified as a weighted 
sum of congested travel time 𝑤𝑎,1 (in minutes), and length 𝑤𝑎,2 (in kilometres), such that: 𝑡𝑎(𝒘𝑎; 𝜶) = 𝑤𝑎,1 ∙ 𝛼1 + 𝑤𝑎,2 ∙ 𝛼2 

where 𝛼1 ≥ 0 and 𝛼2 ≥ 0 are the congested travel time, and length parameters, respectively. The generalised travel cost 
for route 𝑖 ∈ 𝑅𝑚 is thus: 𝑐𝑚,𝑖(𝒕(𝒘; 𝜶)) = ∑ 𝑡𝑎(𝒘𝑎; 𝜶)𝑎∈𝐴𝑚,𝑖 = ∑ (𝑤𝑎,1 ∙ 𝛼1 + 𝑤𝑎,2 ∙ 𝛼2)𝑎∈𝐴𝑚,𝑖 = 𝛼1 ∑ 𝑤𝑎,1𝑎∈𝐴𝑚,𝑖 + 𝛼2 ∑ 𝑤𝑎,2𝑎∈𝐴𝑚,𝑖 . 
The BPS-LDT model requires in this case the specification of seven parameters: 𝛼1, 𝛼2, 𝜃1, 𝜃2, 𝛽, 𝜑, and 𝜂, but to ensure 
identification, the 𝜃1 parameter is fixed at 𝜃1 = 1.  

There were a few outlying observations where the relative surplus cost to the minimum cost alternative was rather 
high. These may be a result of erroneous processing of the GPS data (e.g. stop not classified) or behaviour beyond the 
intended scope of the model such as the travellers getting lost. After visual inspection of the most deviating observations, 
we removed 10 observations from the original dataset, which had the largest relative deviation from the minimum cost 
alternative. Further interrogation of the data revealed 102 observations with unrealistic local detours, leaving a total of 
7,993 observations. 

Using the calibrated travel cost parameters from the BPS-LDT model (see estimation results below), Fig. 4A-B 
display the cumulative distributions of the relative surplus travel costs and local detour measures, respectively, of the 
observed routes compared to all routes generated. As can be seen, a large variety of routes were generated. While most 
routes have low relative surplus costs and/or low local detour measures, some routes are very relatively costly 
(maximally 2.95), and some have very large local detour measures (maximally 98.84). The observed routes did not take 
the most costly / most detouring routes, however. 46.9% of observations took the lowest costing route (relative surplus 
costs of 1), and 45.6% of observations took a route with no local detours (detour measure of 0). Moreover, as can be 
seen, route usage decays with cost/detouredness, where the maximum observed relative surplus cost was 1.58 and the 
maximum observed local detour measure was 3.78.  

  
Fig. 4. Cumulative distributions of relative surplus travel cost (A) and local detour measures (B), of all generated routes and of the 

observed routes. Travel cost was calculated using calibrated travel cost parameters from BPS-LDT model in Table 4. 
 
6.2.2 Estimation results 
Here we present results from estimating the BPS-LDT model, and compare estimated parameters and goodness-of-fit 
with those for other relevant models. As shown again in Fig. 5, the BPS-LDT model acts as a unified model for several 
route choice models in the literature, which can be found in Appendix A. By comparing the BPS-LDT estimation results 
with other models we assess the main hypotheses of the paper that: 

i) Local detouredness is an influential route choice attribute, 
ii) Travellers impose a threshold on the local detouredness of routes to determine their route choice sets, 
iii) Capturing correlations between used routes will lead to more realistic route choice probabilities. 

The different models were all estimated utilising the same Log-Likelihood maximisation algorithm (L-BFGS-B, see 

Section 5.2), initial conditions, and parameter bounds. The initial conditions were: (𝛼̃1(1), 𝛼̃2(1), 𝜃̃2(1), 𝛽(1), 𝜑̃(1), 𝜂̃(1)) =

A B 
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(1,0.7,1,0.8,1.7,5), with bounds: 𝛼̃1, 𝛼̃2 ∈ [0.01,3], 𝜃̃2 ∈ [0.01,5], 𝛽 ∈ [0,3], 𝜑̃ ∈ [1.01,5], 𝜂̃ ∈ [2,30]. In Section 6.2.6 
we estimate the BPS-LDT model with different initial conditions to test for multiple solutions. 

Table 4 shows the estimated parameters, Log-Likelihood values, and penalised-likelihood criteria (in this case BIC 
statistic), and adjusted rho squared measures for the different models. Note that standard errors of the estimates are not 
provided in Table 4, as these cannot be calculated analytically for the bounded / local detour models. We instead in 
Section 6.2.4 explore estimate precision numerically through a resampling approach. 

Local detouredness. As evident from the better Log-Likelihood, BIC, and adjusted rho squared statistics, the BCM-
LDT provides better fit to the data than the BCM, and the BPS-LDT model provides better fit to the data than the BPS 
model. These two results imply that either or both hypotheses i) and ii) are true, that local detouredness is an influential 
route choice attribute and/or travellers impose a threshold upon local detouredness. By inspecting the estimated BPS-
LDT model parameters, however, it is evident that only hypothesis i) is true. The estimated 𝜃2 parameter that scales 
sensitivity to local detouredness is estimated significantly different from zero (see Section 6.2.4), but the estimated local 
detour threshold parameter is estimated at the upper limit of 30 set for the L-BFGS-B algorithm, which approximates 
infinity. The latter is a surprising result, that when given the opportunity to define routes as unrealistic and assign them 
zero choice probabilities the local detour models opted not to. We explore this result in greater detail in Section 6.2.8. 
There is strong empirical evidence, however, that local detouredness is an influential route choice attribute. 

Correlation. The BPS-LDT model provides considerably better fit to the data than the BCM-LDT model, and the 
path size scaling parameter 𝛽 is estimated significantly different from zero (see Section 6.2.4), thus providing strong 
empirical evidence to support hypothesis iii) that capturing correlations between used routes leads to more realistic route 
choice probabilities. 

Cost-bounds. Shadowing similar results in Duncan et al. (2022), as can be seen for all of the bounded models, the 
cost-bound parameters 𝜑̂ were estimated to be around 1.5-1.6, which corresponds suitably with the observation with the 
maximum relative surplus cost, which is around 1.53-1.6 (see Fig. 4 and Fig. 12), depending on the estimated cost 
parameters. This cuts off a small proportion of routes (see Fig. 4), resulting in the BCM and BPS model providing 
marginally better fit to the data (as measured by BIC) than their corresponding non-bounded models MNL and GPSL′, 
respectively. This implies that the cost-bounds within the BCM-LDT and BPS-LDT models result in better fit to the data. 

Value of Time. Comparing the ratio between the travel time preference parameter 𝛼1 and distance preference 
parameter 𝛼2 gives a ratio between 2 and 3, inferring that travellers are willing to travel an extra 2-3 kilometres to save 1 
minute of travel time. This ratio range seems plausible and aligns well with our findings in a separate study of the same 
area in Duncan et al. (2025).  
 

 𝛼̂1 𝛼̂2 𝜃̂2 𝛽̂ 𝜑̂ 𝜂̂ 𝐿𝐿 BIC Adj. 𝜌2 

MNL 1.221 0.698     -21443 42904 0.399 
PSL 2.077 0.599  2.132   -20155 40336 0.435 

GPSL′  1.243 0.378  2.269   -18547 37121 0.480 
BCM 1.203 0.696   1.537  -21437 42901 0.399 
BPS 1.235 0.377  2.270 1.607  -18540 37116 0.480 

BCM-LDT 0.855 0.473 1.581  1.530 30 -19940 39925 0.441 
BPS-LDT 1.053 0.316 0.357 2.031 1.600 30 -17862 35778 0.499 

Table 4. Real-life case-study estimation results. 

 

 
Fig. 5. Schematic diagram of how the BPS-LDT model collapses into other models. 

 
6.2.3 Estimation times 
Table 5 displays the estimation times for each model. As shown, generally, the more complex the model and number of 
parameters to estimate, the longer the estimation times. The local detour models take longer to estimate, partly because it 
takes longer to compute the choice probabilities, but mainly because more function evaluations / iterations are required to 
reach convergence. MLE convergence patterns for the BPS-LDT model can be seen in Fig. 9. The BPS-LDT model can 
though be estimated in feasible computation times. As we shall discuss in Section 6.2.8, one can speed up estimation 
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times for the BPS-LDT model considerably by setting the relative cost bound and local detour threshold parameters to 
marginally above the relative cost / detour measure of the worst respective observations. 
 

Model MNL PSL GPSL′ BCM BPS BCM-LDT BPS-LDT 
Estimation 
Time [min] 

1.15 8.64 5.11 6.67 24.96 480.61 406.55 

Table 5. Estimation times for each model. 
 
6.2.4 Estimate precision 
Here we evaluate the precision at which the parameters of the different models are estimated, thereby assessing whether 
the parameters are statistically significant and thus influential factors upon route choice. 

To evaluate estimate precision, we adopt the BLB resampling method discussed in Section 5.3. We do not, however, 
adopt an iterative algorithm for seeking sufficient 𝐻 and 𝑌 as we wish to compare goodness-of-fit and estimate precision 
across different models, where the same samples will be used for each model. In simulation experiments, Kleiner et al 
(2014) investigate standard sufficient values for 𝐻 and 𝑌, and conclude that 𝑌 = 100 and 𝐻 = 10 were sufficient for 𝐺 ≥ |𝑍|0.6. After some preliminary experiments of our own, we concluded that – wanting to select as large a value of 𝐺 
as computational resources would allow – 𝐺 = |𝑍|0.8 = 1415 would be feasible in our case for 𝑌 = 100 and 𝐻 = 10. 
We therefore generated 10 ‘bags’ of 𝐺 = 1415 observations (without replacement from the full |𝑍| = 7993 observation 
sample set), and then randomly sampled with replacement |𝑍| observations from each of the 10 bags 100 times, to obtain 
a total of 1000 samples. Then, for each of the 1000 samples, we estimated the parameters for each of the models in Table 
4. In order to optimise efficiency, in the Python code for performing the BLB method for each model, we used parallel 
processing to split the 1000 estimations across 15 logical processors.  

Table 6 displays for each model the mean estimates 𝜇, standard deviations of the estimates 𝜎, mean Log-Likelihood 
values 𝐿𝐿̅̅ ̅, and mean BIC values. We do not include the local detour threshold parameter 𝜂 estimates and standard 
deviations as the estimates are all 30 (the upper algorithm limit) with zero standard deviation. As can be seen, the mean 
estimates in Table 6 are all similar to the estimates on the full dataset in Table 4. The standard deviations are also all 
appear reasonable, and there is no evidence that the parameters of the BPS-LDT model are estimated less precisely than 
the other models. Testing whether the 𝛼̂1, 𝛼̂2, 𝜃̂2, and 𝛽̂ parameter estimates are significantly different from zero and the 𝜑̂ parameter estimates are significantly different from 3 (a reasonable proxy for infinity, see Fig. 4/Fig. 8), the p-values 
for every parameter estimate of every model are all smaller than can be computed in Python, and thus the parameter 
estimates are statistically significant. This is of course apart from the 𝜂 parameter estimates, which are not statistically 
significant. 

In terms of goodness-of-fit, although the mean Log-Likelihood / BIC values in Table 6 are slightly different from 
the Log-Likelihood / BIC values on the full dataset in Table 4, the comparisons in fit are roughly the same. The BPS-
LDT model provides by far the best mean fit. Fig. 6 plots for each of the models the BIC from each of the 1000 BLB 
samples, ordered from lowest to highest BPS-LDT BIC. As can be seen, for all samples, the BPS-LDT model performs 
the best, highlighting the robustness of the result. 
 

 𝛼̂1 𝛼̂2 𝜃̂2 𝛽̂ 𝜑̂ 𝐿𝐿̅̅ ̅ 𝐵𝐼𝐶̅̅ ̅̅ ̅ 
 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

MNL 1.21 0.11 0.73 0.12       -21526 43070 
PSL 2.06 0.13 0.63 0.09   2.13 0.09   -20250 40527 

GPSL′  1.24 0.06 0.39 0.06   2.28 0.08   -18599 37225 
BCM 1.19 0.11 0.72 0.12     1.52 0.07 -21515 43057 
BPS 1.22 0.06 0.39 0.06   2.29 0.08 1.56 0.10 -18582 37200 

BCM-LDT 0.81 0.09 0.48 0.08 1.70 0.28   1.50 0.06 -19922 39880 
BPS-LDT 1.03 0.06 0.32 0.05 0.40 0.09 2.04 0.08 1.54 0.08 -17851 35747 

Table 6. BLB results for each model (from 1000 estimations), mean 𝜇 and standard deviation 𝜎 of estimates. 
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Fig. 6. Plotting for each model the BIC penalised likelihood criteria from each of the 1000 BLB samples, in order of lowest to highest 

BPS-LDT model BIC. 
 
6.2.5 Out of sample validation 
Here we assess the forecastability of the BPS-LDT model, assessing whether the model overfits the data, and whether the 
model is suitable for transferring estimates to predict choice probabilities in other datasets. To do this we perform Monte 
Carlo cross-validation, following the same process as Cazor et al. (2024). For each model, we repeated the following 
steps 10 times: 

Step 1: Randomly split the full dataset 𝑍 into a training set 𝑍𝑡 and validation set 𝑍𝑣, where |𝑍𝑡| = |𝑍𝑣| = 0.5 ∙ |𝑍|. 
Step 2: Estimate the model on the training set 𝑍𝑡, obtaining a set of training parameter estimates. 

Step 3: Given these training parameters, calculate the Log-Likelihood on the validation set 𝑍𝑣. 

Fig. 7 displays the validation set Log-Likelihood of each model from each of the 10 experiments. As can be seen, the 
comparative fits to the data of the different models are the same as in Table 4 and Table 6. The BPS-LDT model 
outperforms the BPS model supporting the hypothesis that it is important to consider local detouredness as a route 
attribute, and considerably outperforms the BCM-LDT model supporting the hypothesis that it is important to consider 
route correlation. The result is consistent across all experiments. There is no evidence of overfitting; the BPS-LDT model 
is suitable for forecasting, and moreover provides the most realistic choice probabilities for doing so. 

 
Fig. 7. Validation set Log-Likelihood of each model from each of the 10 experiments. 

 
6.2.6 Uniqueness of MLE solutions 
Here we explore numerically whether BPS-LDT MLE solutions are unique. This is important as non-uniqueness can 
undermine the interpretability, stability, and reliability of results, as well as cause issues with convergence of the 
maximisation algorithm.  
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Fig. 8 visualises the BPS-LDT Log-Likelihood surface around the 6 parameter estimates in Table 4, i.e. varying 
each of the parameters around the estimate with the other parameters fixed. Note that we only visualise the Log-
Likelihood surface in parameter ranges where the Likelihood is non-zero. As can be seen, the Log-Likelihood surface is 
not globally concave, evident from the surface around the 𝜑 parameter. There is though no evidence of multiple maxima.  

To test for multiple solutions, Fig. 9 and Fig. 10 display the model parameters and Log-Likelihood value, 
respectively, at each iteration of the MLE solution algorithm with three different initial conditions. As can be seen, each 
initial condition converges to the same MLE solution.4 Additional evidence for uniqueness is provided in the simulation 
study, where for each set of drawn observations we obtained parameter estimates in the neighbourhood of the true 
parameters. 

 
Fig. 8. Visualising the BPS-LDT model Log-Likelihood surface around the parameter estimates in Table 4, varying one parameter and 

fixing the others to the estimates. 

 
4 Initial condition 2 converges to an 𝜂 estimate of 26.35, but this is only because the Log-Likelihood is very flat in this 
parameter range where 𝜂 is approximating infinity. A slightly greater Log-Likelihood value is achieved with 𝜂 = 30. 
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Fig. 9. BPS-LDT model parameters at each iteration of MLE solution algorithm, with different initial conditions. 

 
Fig. 10. BPS-LDT Log-Likelihood value at each iteration of MLE solution algorithm, with different initial conditions. 

 
6.2.7 Sensitivity to the representative universal choice sets 
The BPS-LDT choice probably solution method proposed in this paper operates from pre-generated representative 
universal choice sets rather than the full universal route set. While the BPS-LDT model deals with unintentionally 
generated circuitous routes with costs / local detours above the bounds (by assigning them zero choice probabilities), 
routes that were not pre-generated with costs / local detours below the bound are not accounted for. Here we explore how 
sensitive results are to the pre-generated representative universal choice sets adopted, to assess how robust results are to 
missing out relevant routes. 

Using the same doubly-stochastic route generation method discussed in Section 6.2.1, we generated additional 
routes to obtain choice sets with a maximum of 100, 200, and 300 routes, and then estimated the different models for 
each choice set composition. Table 7 displays the estimated parameters for the BPS-LDT model for each maximum 
choice set size. As shown, the estimated parameters remain relatively stable, though there is a decrease in the 𝛽 path size 
scaling parameter and an increase in the 𝜃2 detouredness scaling parameter. This is likely because the newly generated 
routes overlap with the observed routes, as well as detour from them. Fig. 11 displays for each model the difference in 
Log-Likelihood between estimation with the original choice sets and estimation with the expanded choice sets. As can be 
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seen, the Likelihood worsens less for the BPS-LDT model than for the other models, and remains by far the model with 
the best fit. These results indicate that the BPS-LDT model is relatively robust to missing out relevant routes from the 
pre-generated representative universal choice sets. The BPS-LDT model is also of course robust to unintentionally 
generated irrelevant routes. 
 

Maximum 
Choice Set 

Size 
𝛼̂1 𝛼̂2 𝜃̂2 𝛽̂ 𝜑̂ 𝜂̂ 

100 1.053 0.316 0.357 2.031 1.600 30 
200 1.070 0.321 0.415 1.844 1.620 30 
300 1.094 0.319 0.460 1.745 1.625 30 

Table 7. BPS-LDT estimated parameters for each choice set composition. 

 
Fig. 11. Difference in Log-Likelihood of each model between estimation with original choice sets and estimation with expanded 

choice sets. 
 
6.2.8 Exploring the local detour threshold 
Since the greatest local detour measure from the observed routes was 3.78, it was anticipated that the BPS-LDT local 
detour threshold parameter would be estimated close to (but greater than) 3.78. This would define 18,961 routes / 5.06% 
of routes as unrealistic. However, by estimating an infinite bound, no routes were defined as unrealistic by the local 
detour threshold. It is surprising that when given the opportunity to define routes as unrealistic and assign them zero 
choice probabilities the local detour models opted not to. A possible reason for this is explained as follows.  

The cost-bound and detour-threshold in local detour models do not only assign zero probabilities to routes with 
travel costs / detour measures above the bound/threshold, but also impact the probabilities of routes below the 
bound/threshold. Route probabilities decrease towards zero if their cost approaches the cost bound from below, or if their 
detour measure approaches the detour threshold from below. This ensures the choice probability function is continuous. 
However, it has the potential to cause conflictions. If one considers a standard MNL model where the route utility 
function is a linear combination of travel cost and local detouredness, then a route receives a small probability if it has an 
unattractive combination of both cost and detouredness. If it has a relatively attractive cost but a relatively unattractive 
detouredness, or vice versa, then it may receive a middling choice probability. For local detour models, however, a route 
receives a low choice probability if it has either a relatively unattractive cost that is just below the bound or an 
unattractive detouredness that is just below the threshold, regardless of how attractive the route may be in terms 
detouredness or cost, respectively.  

Therefore, given that the MLE procedure is trying to find the parameter values that overall produce the highest 
probabilities for all route observations, it could be the case that setting a low detour threshold (but still above the worst 
observed detour measure) reduces the probabilities for some observed routes, that otherwise may receive considerably 
better probabilities due to their relatively attractive travel cost. And, that this gain in probability for these observations is 
not cancelled out by the assigning of non-zero probabilities to generated routes with large detour measures, which under 
lower settings of the detour threshold would receive zero probabilities and thus take no probability away from observed 
route probabilities. Fig. 12 plots relative surplus cost against local detour measure for the observed routes. As shown, it is 
not the case that there is a positive correlation between cost and detouredness. In fact, as evident from the population of 
datapoints towards the left of the figure, and particular top left, there are many observations that have a low relative 
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surplus cost but a large local detour measure. In contrast, there are few routes that have large costs and small detour 
measures, especially since at worst the largest local detour of a route is the global detour.  

 
Fig. 12. Plotting relative surplus cost against local detour measure for the observed routes. 

 
As discussed, the cost bound and detour threshold do impact the choice probabilities of routes with costs / detour 
measures below the bound/threshold, but, principally, this is a mathematical construct to ensure the choice probability 
function is continuous. Although the parameters do scale in a non-direct way sensitivity to travel cost / local 
detouredness (as demonstrated in Appendix B.3), there are other parameters present in the model to do exactly such, i.e. 
the 𝜃1 and 𝜃2 parameters. The key role of the bound/threshold parameters is to identify the bound/threshold travellers 
have on travel cost / local detouredness, and thereby use this to consistently identify and define routes as unrealistic, i.e. 
that have costs / detour measures greater than the bound/threshold. One could therefore suppose that one need not 
actually estimate the bound/threshold parameters, and instead simply set them to marginally above the relative cost / 
detour measure of the worst respective observations (which may vary depending on the travel cost parameters).  

Doing exactly such, Table 8 displays estimation results from estimating the local detour models when setting the 
cost bound parameter 𝜑 marginally greater (+0.01) than the most relatively costly observation, and the detour threshold 
parameter 𝜂 marginally greater (+0.01) than the most detouring observation. As shown, the local detour threshold 
parameter values are all around the worst detour observation (around 3.7-3.8). As anticipated though, the Log-Likelihood 
and BIC values are worse than when estimating free bounds/thresholds (see Table 4). Both models do still all outperform 
their associated non-local detour model (BCM and BPS model), however, by a sizeable margin. But, while the parameter 
estimates for 𝛼̂1, 𝛼̂2, and 𝛽̂ are quite similar for the BPS-LDT model with free and fixed bound/threshold parameters, the 𝜃̂2 parameter estimate when fixing the bound/threshold parameters is very different, approximating zero. This indicates 
that the observations with low travel costs but high local detour measures are highly influential in the Log-Likelihood 
function, where a small 𝜃2 parameter is required to increase the probability of these routes. 

One benefit of setting the bound/threshold parameters marginally above the worst observations is that it reduces the 
number of parameters to be estimated, improving estimation times. This is especially pertinent for the estimation of 
bounded / local detour models, which have an unusual MLE pattern due to the heuristic setting of the Log-Likelihood 
when the bound or threshold are violated, which can consequently mean more function evaluations / iterations are 
required to find the MLE solution. The estimation times for the results in Table 8 were 65 minutes for the BCM-LDT 
model and 133 minutes for the BPS-LDT model, which are considerably faster than those given in Table 5. 

 
 𝛼̂1 𝛼̂2 𝜃̂2 𝛽̂ 𝜑 𝜂 𝐿𝐿 BIC 

BCM-LDT 0.814 0.492 1.652  1.518 3.735 -19998 40023 
BPS-LDT 1.070 0.315 0.000 1.996 1.591 3.796 -18103 36241 

Table 8. Estimation results from estimating local detour models with bound/threshold parameter set marginally above values from 
worst respective observations. 

 

7 Conclusions and future research 
Local detour route choice models suppose that local detouredness is an influential factor upon both route choice 
probability and route choice set formation. This paper has addressed three priorly unresolved challenges regarding local 
detour models: i) accounting for correlations between overlapping routes defined as realistic, ii) developing a solution 
approach for applying the model on large-scale networks, and, iii) developing, testing, and applying a procedure for 
estimating the model.  
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• Addressing i), path size terms were integrated within the local detour model probability relation to adjust 
probabilities to capture correlations between overlapping routes defined as realistic by local and global bounds. 
Careful consideration has been given to the formulation of the path size term to ensure that the choice 
probability function maintains continuity, consistency, and existence. 

• Addressing ii), due to the high computational burden of current methods for generating all routes below the 
local and global bounds, the current paper has developed a heuristic solution approach that operates from pre-
generated representative universal choice sets and pre-processes the necessary segment information for 
computing local detour measures. Tricks have also been developed that considerably improve computation 
times.  

• Addressing iii), a maximum likelihood estimation procedure utilising tracked route observation data was 
developed, tested in a simulation study where it was shown that assumed true parameters can generally be 
reproduced, and applied in a real-life large-scale case study with GPS-tracked route observations. The local 
detour models were successfully estimated and found to outperform associated non-local detour models. 

In response to the research questions listed in the introduction, the main findings of the empirical analysis were that:  

• Local detouredness is an influential factor upon route choice probability, 

• Local detouredness and correlation effects are identifiable as distinct route choice attributes, 

• Parameter estimates are statistically significant (other than the local detour threshold parameter), 

• No evidence was uncovered that MLE solutions are not unique, 

• The model can be estimated in feasible computation times on a large-scale network, 

• The model is suitable for forecasting, 

• Model estimates were relatively insensitive to the assumed representative universal choice set. 

A surprising finding from the real-life estimation work was that the local detour models estimated local detour threshold 
parameter approximating infinity. One might expect that the local detour threshold parameter would be estimated 
marginally above the largest local detour measure from the route observations, thereby maximising the number of 
generated routes the local detour models assign zero probabilities to (i.e. define as unrealistic). However, the local detour 
threshold parameters estimated as approximating infinity meant that no generated routes were assigned zero probabilities. 
Our hypothesis is that this result is, in part, a symptom of working from pre-generated representative universal choice 
sets, or at least the ones in this case study. As shown in Fig. 4B, a very small proportion of the generated routes have 
large local detour measures, and thereby have the potential to be assigned zero probabilities, to give probability to 
observed routes. Clearly, the working choice sets do not even come close to the universal set of all possible routes, which 
would include an enormous number of routes with large local detours. As shown in Rasmussen et al. (2024), when 
generating all routes with a local detour measure less than the detour threshold from the full network, the choice set size 
grows exponentially and becomes extremely large very quickly. If we were to estimate the local detour threshold models 
on the full network with the actual universal choice set of routes available, it thus seems significantly more likely that the 
cost bound / local detour threshold would try to exclude as many routes as possible. 

Future research could therefore explore developing a more computationally efficient method (than that developed in 
Rasmussen et al. (2024)) for generating all possible routes below the local and global bounds. For example, developing 
an efficient branch-and-bound route generation method utilising violating segments to efficiently branch, and re-uses 
information across OD movements. This will mean that one can apply local detour models with full consistency between 
the choice set generation criteria and choice probability criteria, where no route defined as realistic by the route choice 
probability criteria will be unused (i.e. not generated). 

However, as discussed, the set of all possible routes below the local and global bounds has the potential to be 
enormous. Thus, perhaps further measures need to be introduced that define routes as unrealistic. For example, by 
imposing more bounds upon individual route ‘aspects’, e.g. length, travel time, number of left/right turns. After some 
investigation, it appears the main issue is that there are many routes with costs/detours below the global/local bounds that 
only deviate from each other in a minor way on very small subsections. It appears then that limiting this should be the 
next focus of the model. There are several approaches one could take. One approach could be to continue with the choice 
set pre-generation approach and incorporate certain constraints on the similarity of routes generated, so that the 
approximated universal choice sets contain plenty of variability in the routes, but do not include many routes that are 
essentially the same. Alternatively, perhaps one could develop a measure that can be used to bound route over-similarity 
in some way, perhaps by scaling the local detour measure by segment cost compared to total route cost, or by developing 
a C-Logit-type measure penalising over-similarity with a lesser costing route. 

In the present paper we have adopted a path-size approach for capturing correlations. In future research it would be 
interesting to explore to what extent many of the other existing correlation-based route choice models could be adapted to 
deal with bounds and local detours.  
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10 Appendix 
10.1 Appendix A – Relevant non-local detour route choice models 
10.1.1 A.1: Multinomial Logit 
The Multinomial Logit (MNL) choice model is derived from random utility theory. The deterministic utility of 
alternative 𝑖 ∈ 𝑅 is 𝑉𝑖, and the random utility of alternative 𝑖 ∈ 𝑅 is 𝑈𝑖 such that 𝑈𝑖 = 𝑉𝑖 + 𝜀𝑖, where the 𝜀𝑖 terms are the 
individually and identically distributed random variable error terms. Assuming individuals seek the alternative with 
highest utility, the probability that an individual selects alternative 𝑖 ∈ 𝑅 is: 𝑃𝑖 = Pr(𝑈𝑖 ≥ 𝑈𝑗 , ∀𝑗 ∈ 𝑅, 𝑗 ≠ 𝑖) = Pr(𝑉𝑖 + 𝜀𝑖 ≥ 𝑉𝑗 + 𝜀𝑗, ∀𝑗 ∈ 𝑅, 𝑗 ≠ 𝑖). 
The defining characteristic of Logit models is that the random variable error terms assume a Gumbel distribution. 
Consequently, the choice probability relation for alternative 𝑖 ∈ 𝑅 is: 𝑃𝑖 = 𝑒𝜃𝑉𝑖∑ 𝑒𝜃𝑉𝑗𝑗∈𝑅 , 
where 𝜃 > 0 is the Logit scaling parameter. The MNL model in the context of route choice supposes that the 
deterministic utility of route 𝑖 ∈ 𝑅 is given by the negative of travel cost: 𝑉𝑖 = −𝑐𝑖, and thus: 𝑃𝑖 = 𝑒−𝜃𝑐𝑖∑ 𝑒−𝜃𝑐𝑗𝑗∈𝑅 . 
The MNL model assumes the route utilities are independent from one another, however routes with overlapping links 
share unobserved attributes, and the assumption that the random error terms are all independently and identically 
distributed is no longer valid.  
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10.1.2 A.2: Path Size Logit  
The Path Size Logit (PSL) model (Ben-Akiva & Bierlaire, 1998) was developed to address the deficiency of the MNL 
model in its inability to capture the correlation between routes. To do this, PSL incorporates path size correction terms 
within the MNL choice probability function to penalise routes for sharing links with other routes. The PSL choice 
probability for route 𝑖 ∈ 𝑅 is hence: 𝑃𝑖 = (𝛾𝑖)𝛽𝑒−𝜃𝑐𝑖∑ (𝛾𝑗)𝛽𝑒−𝜃𝑐𝑗𝑗∈𝑅 , 
where (𝛾𝑖)𝛽 is the path size correction term for route 𝑖 ∈ 𝑅. 𝛾𝑖 ∈ (0,1] is the path size term for route 𝑖 ∈ 𝑅 measuring 
route distinctiveness, and 𝛽 ≥ 0 is the path size scaling parameter scaling sensitivity to route distinctiveness. A distinct 
route with no shared links has a path size term equal to 1, resulting in no penalisation. Less distinct routes have smaller 
path size terms and incur greater penalisation. The PSL path size is as follows for route 𝑖 ∈ 𝑅: 𝛾𝑖 = ∑ 𝑡𝑎𝑐𝑖 1∑ 𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖 . 
To dissect the path size term: each link 𝑎 in route 𝑖 is penalised (in terms of decreasing the path size term and hence the 
choice probability of the route) according to the number of routes in the choice set that also use that link (∑ 𝛿𝑎,𝑘𝑘∈𝑅 ), and 
the significance of the penalisation for link 𝑎 is weighted according to how prominent link 𝑎 is in route 𝑖, i.e. the cost of 

route 𝑎 in relation to the total cost of route 𝑖 (𝑡𝑎𝑐𝑖 ).  

 
10.1.3 A.3: Alternative Generalised Path Size Logit 
An issue with the PSL model that was raised by Ramming (2002) and later explored further by Duncan et al. (2020) is 
that all routes in the choice set contribute equally to path size terms, regardless of how unrealistic they may be. As such, 
the correction terms of realistic routes and thus their choice probabilities are negatively affected by link sharing with 
unrealistic routes. To combat this, Ramming (2002) proposed the Generalised Path Size Logit (GPSL) model where the 
contribution of route 𝑘 to the path size term of route 𝑖 is weighted according to the ratio of travel cost between the two 
routes. As such, routes with excessively large travel costs have a diminished impact upon the correction terms of routes 
with small travel costs, and consequently the choice probabilities of those routes. Duncan et al. (2020) reformulated the 
GPSL model (proposing the alternative GPSL model (GPSL′)) so that the contribution weighting resembles the 
probability relation, providing internal consistency. The GPSL′ path size term is as follows for route 𝑖 ∈ 𝑅: 𝛾𝑖 = ∑ 𝑡𝑎𝑐𝑖 1∑ (𝑒−𝜃𝑐𝑘𝑒−𝜃𝑐𝑖 ) 𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖 . 
Therefore, if the cost of route 𝑘 is greater than the cost of route 𝑖 then (𝑒−𝜃𝑐𝑘𝑒−𝜃𝑐𝑖 ) is less than 1, and thus the contribution of 

route 𝑘 to the path size term of route 𝑖 is diminished. Note that the path size contribution factor can be generalised to be (𝑒−𝜆𝑐𝑘𝑒−𝜆𝑐𝑖 ), where 𝜆 ≥ 0 is a path size contribution scaling parameter, providing flexibility and also collapsibility to the PSL 

model. In this study though we set 𝜆 = 𝜃 for improved internal consistency. 
 
10.1.4 A.4: Bounded Choice Model 
The Bounded Choice Model (BCM) (Watling et al., 2018) route choice principle is that travellers choose a route based 
on the probability of it having the best utility relative to a reference utility. By setting this reference utility equal to the 
maximum deterministic utility of all alternatives, the attractiveness of a route depends on the utilities of all routes, 
meaning that the BCM falls within the class of relative random utility theory. 

The BCM is derived as follows. Define 𝑉𝑟∗ as the reference utility of the reference alternative 𝑟∗, which in this case 
is the maximum utility alternative, i.e. 𝑉𝑟∗ = max(𝑉𝑟: 𝑟 ∈ 𝑅). Thus, if 𝑈𝑖 and 𝑉𝑖 are the random and deterministic utilities 
for route 𝑖 ∈ 𝑅, respectively, the difference in random utility for route 𝑖 ∈ 𝑅 relative to the reference utility is: 𝑈𝑟∗ − 𝑈𝑖 = 𝑉𝑟∗ + 𝜀𝑟∗ − 𝑉𝑖 − 𝜀𝑖 = 𝑉𝑟∗ − 𝑉𝑖 + 𝜖𝑖 = max(𝑉𝑟: 𝑟 ∈ 𝑅) − 𝑉𝑖 + 𝜖𝑖 , 
where 𝜀𝑖 is the individually and identically distributed random variable error term for route 𝑖 ∈ 𝑅, and 𝜖𝑖 is the difference 
random variable for route 𝑖 ∈ 𝑅 with the reference alternative. The MNL model can be derived by assuming the 𝜀𝑖 error 
terms are Gumbel distributed and thus the 𝜖𝑖 difference random error terms assume the logistic distribution. The BCM, 
however, proposes that the difference random variable error terms 𝜀𝑖 assume a truncated logistic distribution, obtained by 
left-truncating a logistic distribution with mean 0 and scale 𝜃−1 at a lower bound of −𝜓 for some 𝜓 ≥ 0. As such, a 
bound is applied to the difference in utility to the reference utility, so that if a route has a utility below the bound, it 
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receives zero choice probability. This means that routes with utilities below the bound have zero probability of being the 
best alternative (relative to the reference utility). 

Given the above, it follows from the derivation of the BCM in Duncan et al. (2022, Supplementary Material, 
Appendix A) that the choice probability relation for route 𝑖 ∈ 𝑅 is: 𝑃𝑖 = (exp(𝜃(𝑉𝑖 − max(𝑉𝑟: 𝑟 ∈ 𝑅) + 𝜓)) − 1)+∑ (exp (𝜃(𝑉𝑗 − max(𝑉𝑟: 𝑟 ∈ 𝑅) + 𝜓)) − 1)+𝑗∈𝑅 . 
Supposing that the deterministic utility of route 𝑖 ∈ 𝑅 is given by the negative of travel cost: 𝑉𝑖 = −𝑐𝑖, then: 𝑃𝑖 = (exp(−𝜃(𝑐𝑖 − min(𝒄) − 𝜓)) − 1)+∑ (exp (−𝜃(𝑐𝑗 − min(𝒄) − 𝜓)) − 1)+𝑗∈𝑅 . 
In this study, we suppose the bound is a relative bound on surplus total route travel cost, achieved by setting 𝜓 =(𝜑 − 1) ∙ min(𝑐𝑟: 𝑟 ∈ 𝑅), so that: 𝑃𝑖 = (exp(−𝜃(𝑐𝑖 − 𝜑 min(𝒄))) − 1)+∑ (exp (−𝜃(𝑐𝑗 − 𝜑 min(𝒄))) − 1)+𝑗∈𝑅 . 
where 𝜑 > 1 is the relative surplus cost bound parameter. In this case, a route receives zero probability if it has a cost as 
great as or greater than 𝜑 times the minimum route cost. 
 
10.1.5 A.5: Bounded Path Size model 
Like MNL, the BCM does not capture route correlations. To capture such, the BPS model (Duncan et al., 2022) 
incorporates path size correction factors within the BCM choice probability function. The BPS model is formulated as 
follows.5 Let 𝑅̅(𝒄; 𝜑) ⊆ 𝑅 be the restricted choice set of all routes 𝑖 ∈ 𝑅 where 𝑐𝑖 < 𝜑 min(𝒄). Given 𝑅̅, the choice 
probability function for route 𝑖 ∈ 𝑅 is: 

𝑃𝑖 = { (𝛾̅𝑖)𝛽(exp(−𝜃(𝑐𝑖 − 𝜑 min(𝒄))) − 1)∑ (𝛾̅𝑗)𝛽 (exp (−𝜃(𝑐𝑗 − 𝜑 min(𝒄))) − 1)𝑗∈𝑅̅          𝑖𝑓 𝑖 ∈ 𝑅̅                                          0                                              𝑖𝑓 𝑖 ∉ 𝑅̅, 
where the BPS path size term for route 𝑖 ∈ 𝑅̅ is: 𝛾̅𝑖 = ∑ 𝑡𝑎𝑐𝑖 1∑ ((exp(−𝜃(𝑐𝑘 − 𝜑 min(𝒄))) − 1)(exp(−𝜃(𝑐𝑖 − 𝜑 min(𝒄))) − 1)) 𝛿𝑎,𝑘𝑘∈𝑅̅𝑎∈𝐴𝑖 . 
The BPS path size term is formulated as such to ensure that the path size term function is continuous, including as a route 

enters and exits 𝑅̅ as its cost crosses from below-to-above and above-to-below the bound. And, to avoid occurrences of 
00. 

See Duncan et al. (2022) for more details. 
 

10.2 Appendix B – Demonstrations of model features 
In this section, we conduct some numerical experiments on a small example network to demonstrate the features of the 
BPS-LDT model, including comparing results with relevant non-local detour models (which can be found in Appendix 
A). 

For these demonstrations, consider example network 1 in Fig. 13 where there are 5 routes: route 1: 1 → 2 → 9, route 
2: 1 → 3 → 9, route 3: 1 → 4 → 5 → 8 → 9, route 4: 1 → 4 → 6 → 8 → 9, and route 5: 1 → 4 → 7 → 8 → 9. Routes 
1&2 are completely distinct while routes 3-5 overlap to a high degree since they all share a large proportion of their 
travel cost. Routes 3-5 differ only according to a single local detour: if route 3 is for example the main road, then routes 
4&5 offer a detour from the main road, where route 5 has a greater detour than route 4. As shown in Fig. 13, route 1 has a 
total travel cost of 3, route 2 has a cost of 1, and routes 3-5 have costs 1.01, 1+𝜌 (0.01 ≤ 𝜌 ≤ 0.05), and 1.05, 
respectively.  

 
5 Note that in Duncan et al. (2022) two versions of a BPS model are proposed: the Bounded Bounded Path Size model 
and the Bounded Adaptive Path Size model, but in this paper we focus on the Bounded Bounded Path Size model as it is 
conveniently closed-form, and refer to it just as the BPS model. 
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Fig. 13. Example network 1. 

 
10.2.1 B.1: Demonstration 1 – the local detour measure 
To make the results presented later easier to understand, we shall begin by walking the reader through the computation of 
the local detour measures for example network 1, (see Rasmussen et al. (2024) for other demonstrations and examples on 
this). In example network 1, there are 4 segments (𝑢, 𝑣) that have multiple segment alternatives: (1,9), (1,8), (4,8), & (4,9). Segments (1,8) & (4,9) are redundant, however, as (4,8) will always be a dominant segment, i.e. it will always 
have a greater detour measure than (1,8) & (4,9). This is because all segment alternatives for segments (1,8) & (4,9) 
share a common link, and thus the segment (4,8) consisting of the non-overlapping part will always have a greater detour 
measure than the full segment, see the discussion around Fig. 2 for more details. We thus disregard segments (1,8) & (4,9). (1,9) has all 5 routes as the segment alternatives and (4,8) have routes 3-5 as the segment alternatives.  

There are five segment alternatives for segment (1,9) that consist of routes 1-5, respectively. The index set of 
segment alternatives for segment (1,9) is thus 𝐾1,9 = {1,2,3,4,5} and the used segment alternatives of each route 1-5 at (1,9) are 𝑘1,9,1 = 1, 𝑘1,9,2 = 2, 𝑘1,9,3 = 3, 𝑘1,9,4 = 4, & 𝑘1,9,5 = 5. The costs of the segment alternatives 𝑙 ∈ 𝐾1,9, 𝜔𝑙, are: 𝜔1 = 3, 𝜔2 = 1, 𝜔3 = 1.01, 𝜔4 = 1 + 𝜌, & 𝜔5 = 1.05. Denote 𝜙𝑢,𝑣,𝑖 as the local detouredness of route 𝑖 at segment (𝑢, 𝑣) ∈ 𝑆𝑖. The local detourednesses of routes 1-5 at segment (1,9) are thus:  𝜙1,9,1 = 𝜔𝑘1,9,1 − min(𝜔𝑙: 𝑙 ∈ 𝐾1,9)min(𝜔𝑙: 𝑙 ∈ 𝐾1,9) = 𝜔1 − min(𝜔𝑙: 𝑙 ∈ {1,2,3,4,5})min(𝜔𝑙: 𝑙 ∈ {1,2,3,4,5}) = 3 − min({3,1,1.01,1.05})min({3,1,1.01,1.05}) = 3 − 11 = 2, 

𝜙1,9,2 = 1 − 11 = 0, 𝜙1,9,3 = 1.01 − 11 = 0.01, 𝜙1,9,4 = 1 + 𝜌 − 11 = 𝜌, 𝜙1,9,5 = 1.05 − 11 = 0.05. 
Notice that in the context of global bounds of total route travel cost, the relative costliness of routes 1-5 compared to the 
cheapest alternative are 3,1, 1.01, 1+𝜌, & 1.05, respectively, i.e. route 1 is 3 times more costly than the cheapest route. 
Local detouredness is always equal to relative costliness minus 1. 

For segment (4,8), there are three segment alternatives: segment alternative 1 is 4→5→8 (used only by route 3), 
segment alternative 2 is 4→6→8 (used only by route 4), and segment alternative 3 is 4→7→8 (used only by route 5). The 
index set of segment alternatives between segment (4,8) is thus 𝐾4,8 = {1,2,3} and the used segment alternatives of each 
route 3-5 at segment (4,8) are 𝑘4,8,3 = 1, 𝑘4,8,4 = 2, & 𝑘4,8,5 = 3. The costs of the segment alternatives 𝑙 ∈ 𝐾4,8 are: 𝜔1 = 0.01, 𝜔2 = 𝜌, 𝜔3 = 0.05. The local detourednesses of routes 3-5 at segment (4,8) are thus:  𝜙4,8,3 = 𝜔𝑘4,8,3 − min(𝜔𝑙: 𝑙 ∈ 𝐾4,8)min(𝜔𝑙: 𝑙 ∈ 𝐾4,8) = 𝜔1 − min(𝜔𝑙: 𝑙 ∈ {1,2,3})min(𝜔𝑙: 𝑙 ∈ {1,2,3}) = 0.01 − min({0.01,0.05})min({0.01,0.05}) = 0.01 − 0.010.01 = 0, 

𝜙4,8,4 = 𝜌 − 0.010.01 = 𝜌0.01 − 1, 𝜙1,9,3 = 0.05 − 0.010.01 = 4. 
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The measure of local detouredness for each route 1-5 are thus: 𝜙1 = max {𝜙𝑢,𝑣,1: (𝑢, 𝑣) ∈ {(1,2), (2,9), (1,9)}} = max{𝜙1,2,1, 𝜙2,9,1, 𝜙1,9,1} = max{0,0,2} = 2, 𝜙2 = max{0} = 0 𝜙3 = max{0, 𝜙1,9,3, 𝜙4,8,3} = max{0,0.01,0} = 0.01, 
𝜙4 = max{0, 𝜙1,9,4, 𝜙4,8,4} = max {0, 𝜌, 𝜌0.01 − 1} = {     𝜌            𝑖𝑓 𝜌 ≤ 199𝜌0.01 − 1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 

𝜙5 = max{0, 𝜙1,9,5, 𝜙4,8,5} = max{0,0.05,4} = 4. 
 

10.2.2 B.2: Demonstration 2 – comparison of features with other models 
We shall now demonstrate the features of the BPS-LDT model compared to other relevant models. Upon inspection of 
the route travel costs, it would appear that route 1 is potentially an unrealistic alternative as it is 3 times more costly than 
the cheapest alternative, but there is little difference between routes 2-5. Fig. 14A displays BCM choice probabilities for 𝜌 ∈ [0.01,0.05], with 𝜃 = 1 & 𝜑 = 2. As shown, since the relative cost of route 1 compared to the cheapest route (route 
2) is greater than the bound (i.e. a relative costliness of 3 compared to the bound 2), route 1 receives a zero probability. 

And, since the total costs of routes 2-5 are negligibly different, they all receive approximately 
14 probability each. 

However, due to the fact that: a) routes 3-5 are highly correlated, and b) route 5 (and potentially route 4 depending 
on 𝜌) has a large local detour (a measure of 4, see above) and thus may be considered unrealistic, these BCM 
probabilities are potentially inaccurate.  

Addressing deficiency a), the BPS model was developed to capture correlations between overlapping routes with 
costs below the BCM cost bound. Fig. 14B displays the BPS model choice probabilities for 𝜌 ∈ [0.01,0.05], with 𝜃 = 1, 𝛽 = 0.8, & 𝜑 = 2. As shown, route 1 still receives a zero probability as it has a travel cost above the bound, but now 
routes 3-5 have reduced probabilities (yet still relatively equal) compared to route 2 as they have been penalised to 
capture their correlation. 

Addressing deficiency b), the BCM-LDT was developed to exclude routes with large local detours, in a way that is 
consistent and mathematically well-defined (i.e. with a continuous probability function). Fig. 14C displays BCM-LDT 
choice probabilities for 𝜌 ∈ [0.01,0.05], with 𝜃1 = 1, 𝜃2 = 0.1, 𝜑 = 2, & 𝜂 = 3.5. As shown, route 1 has zero 
probability, and, since the local detouredness of route 5 is above the local detour threshold (i.e. a local detouredness 
measure of 4 compared to the threshold 3.5), route 5 now also receives a zero probability. As also shown, at 𝜌 = 0.01, 

routes 2-4 have approximately 
13 probability each since they all have similar travel costs and route 4 has an equal detour 

to route 3 at segment (4,8), i.e. 𝜙4,8,3 = 𝜙4,8,4 = 0. However, as 𝜌 increases, the local detouredness of route 4 increases; 
therefore, although the total travel cost of route 4 remains similar to routes 2&3, the probability of route 4 decreases, up 

until 𝜌 = 0.045 where the local detouredness measure of route 4 is equal to the threshold: 𝜙4 = 0.0450.01 − 1 = 3.5 (see 

above), where it then receives zero probability. 
So, the BPS model addresses deficiency a) and the BCM-LDT addresses deficiency b), but neither model addresses 

both deficiencies. The BPS-LDT model is thus developed in this paper to address both deficiencies. Fig. 14D displays the 
BPS-LDT choice probabilities for 𝜌 ∈ [0.01,0.05], with 𝜃1 = 1, 𝜃2 = 0.1, 𝛽 = 0.8, 𝜑 = 2, & 𝜂 = 3.5. As shown, routes 
3&4 have equal probability at 𝜌 = 0.01 but route 2 has a greater probability. This is because routes 3&4 have the same 
cost and local detour measure, but are highly correlated compared to the similar costing but distinct route 2. As 𝜌 
increases and the probability of route 4 decreases and tends towards 0 (due to its local detouredness increasing towards 
the threshold), the contribution of route 4 to the realistic route path size terms of route 3 decreases. At 𝜌 = 0.045, route 4 
becomes defined as an unrealistic route due to its local detouredness being exactly at the threshold; it is thus assigned a 
zero probability and no longer contributes to the path size terms of route 3. Thus, for 𝜌 ≥ 0.045, since routes 1,4,5 are 
defined as unrealistic by the cost bound / local detour threshold criteria, the network is in-effect reduced to just two 
routes (2&3) which are distinct and similar costing.  
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Fig. 14. Example network 1: Choice probabilities from the different models as 𝜌 is varied (𝜃1 = 1, 𝜃2 = 0.1, 𝜑 = 2, & 𝜂 = 3.5). A: 

BCM. B: BPS. C: BCM-LDT. D: BPS-LDT. 
 

10.2.3 B.3: Demonstration 3 – model parameters 
The BPS-LDT model has five standard parameters (there will likely be more for multiple travel cost attributes, see e.g. 
Section 6.2.1), which have complex interactions. In this section, we shall thus demonstrate how the model behaves 
according to the different parameters. To help the reader, Table 9 provides a summary description of the five standard 
BPS-LDT model parameters. 
 

Parameter Name Description 𝜃1 Travel cost scaling parameter Controls sensitivity to travel cost in the cost-
BCM component. A small 𝜃1 value corresponds 
to drivers being less aware of / less sensitive to 
differences in route travel cost, and a large 𝜃1 
corresponds to the opposite. 𝜃2 Local detouredness scaling parameter Controls sensitivity to local detouredness in the 
detour-BCM component. A small 𝜃2 value 
corresponds to drivers being less aware of / less 
sensitive to differences in local detouredness, 
and a large 𝜃2 corresponds to the opposite. 𝛽 Path size scaling parameter Scales the path size correction factor. A small 𝛽 
value corresponds to drivers being less aware of 
route correlation / less sensitive to route 
distinctiveness, and a large 𝛽 corresponds to the 
opposite. 

A B 

C D 
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𝜑 Relative surplus total route travel 
cost bound parameter 

The bound that drivers have in terms of the 
maximum excess travel cost they are willing to 
consider compared to the cheapest route. A 
route is only considered realistic if it has a cost 
less than 𝜑 times the cost on the cheapest route. 𝜂 Local detour threshold parameter The threshold that drivers have in terms of the 
maximum local detour they are willing to 
consider. A route is considered unrealistic if it 
has a used segment alternative that costs greater 
than 100 ∙ 𝜂% more than cheapest segment 
alternative. 

Table 9. Summary description of the BPS-LDT model parameters. 
 

Fig. 15 displays BPS-LDT choice probabilities for varying 𝜂, with 𝜌 = 0.03, 𝜃1 = 1, 𝜃2 = 0.1, 𝛽 = 0.8, & 𝜑 = 2. As 
shown, route 1 has a zero probability for all 𝜂 since the cost bound criterion defines it as an unrealistic route. As 𝜂 is 
decreased (from 10) the local detouredness measures of routes 4&5 (=2 & =4 respectively) approach the local detour 
threshold from below. Their probabilities as well as path size contributions thus decrease until their detouredness meets 
the threshold where they then – in as continuous manner – are assigned zero probabilities as well as zero path size 
contributions to overlapping realistic routes (i.e. the contribution of route 5 to the path size terms of routes 3&4 become 
eliminated, and the contribution of route 4 to the path size terms of route 3 become eliminated. 

  
Fig. 15. Example network 1: Choice probabilities from the BPS-LDT model as the local detour threshold 𝜂 parameter is varied (𝜌 =0.03, 𝜃1 = 1, 𝜃2 = 0.1, 𝛽 = 0.8, & 𝜑 = 2). 

 
Fig. 16 displays BPS-LDT choice probabilities for varying 𝜑, with 𝜌 = 0.02, 𝜃1 = 0.1, 𝜃2 = 0.1, 𝛽 = 0.8, & 𝜂 = 2.5. 
As shown, route 5 has a zero probability for all 𝜑 as it has a detouredness measure greater than local detour threshold 
(i.e. a measure of 4 compared to the 2.5 threshold). Route 4, on-the-other-hand, has a non-zero probability as it has a 
detouredness measure below the threshold (i.e. a measure of 1 compared to the 2.5 threshold). Routes 3-5 have total 
travel costs well below the cost bound in this range (i.e relative costs of 1.01, 1.02, & 1.05, respectively, compared to the 
bound 𝜑 ∈ [2.5,6]), and therefore are negligibly affected by 𝜑. Route 1, however, is affected. In this case, route 1 has a 
detouredness measure below the threshold, i.e. the measure taken from the global detour (from origin to destination) is 2 
compared to the 2.5 threshold – it is therefore not defined as an unrealistic route (and assigned a zero probability) by the 
local detour criteria. However, the cost bound criteria can still define the route as unrealistic, depending on 𝜑. As shown 
in Fig. 16, as 𝜑 is decreased, the relative cost of route 1 (=3) tends toward the bound and therefore decreases in 
probability up until 𝜑 = 3 where route 1’s relative cost meets the bound and it is assigned zero probability. Note here 
that route 1 is a distinct route and therefore does not contribute to the path size terms of other routes, but if it did its 
contribution to those overlapping routes would decrease as its cost approaches the bound (to then be eliminated at the 
bound). Suppose alternatively that the local detour threshold was instead 𝜂 = 1.5, then route 1 would have a global 
detour (=2) above the threshold. Route 1 would thus be assigned a zero probability regardless of the relative cost bound 𝜑.  

In terms of defining routes as unrealistic, it does not make sense for 𝜑 to be greater than 𝜂 + 1. This is because a 
local detour threshold of 𝜂 + 1 is equivalent to a cost bound of 𝜑 in terms of the routes that will be defined as unrealistic 
(the local detour measure will always consider the global detour). Therefore, 𝜑 values greater than 𝜂 + 1 will not define 
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any more routes as unrealistic than the 𝜂 + 1 threshold will. However, 𝜑 values greater than 𝜂 + 1 will still affect the 
choice probabilities of routes defined as realistic (by the local detour threshold criteria).  

  
Fig. 16. Example network 1: Choice probabilities from the BPS-LDT model as the relative surplus travel cost bound parameter 𝜑 is 

varied (𝜌 = 0.03, 𝜃1 = 0.1, 𝜃2 = 0.1, 𝛽 = 0.8, & 𝜂 = 2.5). 

 
Fig. 17 display BPS-LDT choice probabilities for varying 𝜃1, with 𝜌 = 0.02, 𝜃2 = 0.1, 𝛽 = 0.8, & 𝜑 = 𝜂 = 3.5. As 
shown, route 5 has zero probability as it has a detouredness measure (=4) above the threshold (=3.5), but route 1 has a 
non-zero probability as it has a relative cost (=3) below the bound (=3.5). As per the parameter description in Table 9, for 
smaller 𝜃1 drivers are less sensitive to / aware of the differences in travel cost and route 1 (the route with the only/most 
significant cost difference) increases in probability. For larger 𝜃1, drivers are more sensitive to / aware of the differences 
and route 1 decreases in probability (since it has the greatest travel cost among the realistic routes), and approaches zero 
probability (but does not reach it). 

 
Fig. 17. Example network 1: Choice probabilities from the BPS-LDT model as the travel cost scaling parameter 𝜃1 is varied (𝜌 =0.02, 𝜃2 = 0.1, 𝛽 = 0.8, & 𝜑 = 𝜂 = 3.5). 

 
Fig. 18 displays BPS-LDT choice probabilities for varying 𝜃2, with 𝜌 = 0.02, 𝜃1 = 1, 𝛽 = 0.8, 𝜑 = 2, & 𝜂 = 8. As 
shown, route 1 has zero probability as it has a relative cost (=3) above the bound (=2), but route 5 has detouredness 
measure (=4) below the threshold (=8). As per the parameter description in Table 9, for smaller 𝜃2 drivers are less 
sensitive to / aware of the differences in local detouredness and routes 3-5 (the main detour routes) have closer 
probabilities. For larger 𝜃2, drivers are more sensitive to / aware of the differences and routes 4&5 decrease in probability 
since they have greater detour measures than route 3. 
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Fig. 18. Example network 1: Choice probabilities from the BPS-LDT model as the local detouredness scaling parameter 𝜃2 is varied 

(𝜌 = 0.02, 𝜃1 = 1, 𝛽 = 0.8, 𝜑 = 2, & 𝜂 = 8).  

 
Lastly, Fig. 19 displays BPS-LDT choice probabilities for varying 𝛽, with 𝜌 = 0.02, 𝜃1 = 1, 𝜃2 = 0.1, 𝜑 = 2, & 𝜂 =3.5. As shown, routes 1&5 have zero probability as route 1 has a relative cost (=3) above the bound (=2) and route 5 has 
a local detour measure (=4) above the threshold (=3.5). At 𝛽 = 0, the BCM-LDT probabilities are plotted, where route 3 
is not penalised for overlapping with route 4 and thus has a similar probability to route 2 (due to similar travel costs and 
local detour measures). As 𝛽 increases, however, route 3 becomes increasingly penalised for overlapping with route 4.  

  
Fig. 19. Example network 1: Choice probabilities from the BPS-LDT model as the path size scaling parameter 𝛽 is varied (𝜌 = 0.02, 𝜃1 = 1, 𝜃2 = 0.1, 𝜑 = 2, & 𝜂 = 3.5).  

 


