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Understanding the thermodynamic properties of many-body quantum systems and their emergence from
microscopic laws is a topic of great significance due to its profound fundamental implications and extensive
practical applications. Recent advances in experimental techniques for controlling and preparing these systems
have increased interest in this area, as they have the potential to drive the development of quantum technologies.
In this study, we present a density-functional-theory approach to extract detailed information about the statistics
of work and the irreversible entropy associated with quantum quenches at finite temperature. Specifically, we
demonstrate that these quantities can be expressed as functionals of thermal and out-of-equilibrium densities,
which may serve as fundamental variables for understanding finite-temperature many-body processes. We, then,
apply our method to the case of the inhomogeneous Hubbard model, showing that our density-functional-theory-
based approach can be usefully employed to unveil the distinctive roles of interaction and external potential on

the thermodynamic properties of such a system.

DOI: 10.1103/PhysRevA.110.062203

I. INTRODUCTION

Density-functional theory (DFT) [1,2] and its time-
dependent (TD) extension [3,4] are powerful and well-
established methods for studying the electronic properties of
interacting many-body systems at zero temperature, with DFT
providing comprehensive access to ground-state properties
and TDDFT extending this capability to include the prediction
of excited states. Thermal-density-functional theory (ThDFT),
introduced by Mermin [5], extends the Hohenberg-Kohn (HK)
framework of DFT [1] to address the electronic properties of
many-body systems under conditions where accounting for
finite-temperature effects is indispensable [6—15].

Renewed attention in ThDFT has been driven by the study
of thermal properties of out-of-equilibrium interacting quan-
tum systems, which represents a major focus in quantum
thermodynamics (QT). This field is rapidly evolving thanks
to advances in preparing and coherently controlling quan-
tum systems at the microscopic scale, enabling experimental
verification of fundamental properties such as fluctuation the-
orems [16—19]. These developments also hold potential for
new quantum technologies based on complex quantum sys-
tems (see, e.g., [20]). A major goal in QT is to understand the
role of purely quantum features, such as coherence and cor-
relations, in thermodynamic processes. This notably includes
work processes, where work is extracted from or performed
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on a quantum system, and the generation of irreversible
entropy [21-38].

In this realm, the emphasis is rapidly shifting towards
coupled many-body systems (see, e.g, [39,40]). Indeed, re-
cent studies have demonstrated that particle interactions can
enhance the efficiency of quantum heat engines [34,41-44].
On the theoretical side, addressing finite-temperature quan-
tum many-body systems poses significant challenges, often
requiring approximations to manage their complexity.

In this context, and drawing inspiration from previous
works [45-48], our objective is to establish a robust theo-
retical framework for applying DFT to the study of nonequi-
librium thermodynamics in quenched interacting many-body
systems. Our formalism focuses on the canonical ensemble, of
particular relevance for QT thermal machines. Specifically, we
demonstrate that the thermal and out-of-equilibrium densities
form the basis of an ab initio framework for deriving ther-
modynamic properties of quantum systems that experience a
sudden quench. A key advantage is that the out-of-equilibrium
thermodynamics of interacting many-body systems can be
effectively investigated using the Kohn-Sham (KS) approach
to DFT [2]. The strength of this approach lies in its abil-
ity to evaluate, in principle exactly, the thermal densities
by mapping the original interacting many-body system onto
a fictitious noninteracting one. We thus establish a general
framework for the DFT approach to QT, specifically for the
canonical ensemble, and validate it through the analysis of
the quenched inhomogeneous Hubbard model. Accordingly,
we first compare results from exact diagonalization for small
systems with those obtained using our finite-temperature
KS mapping, and then extend our analysis to larger sys-
tems. This extension allows us to clarify how interactions
influence thermal densities and, consequently, the work
performed.

Published by the American Physical Society
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The remainder of the paper is organized as follows. In
Sec. II, we recall the Mermin-Hohenberg-Kohn (MHK) the-
orem [1,5], adapting it to the context of lattice Hamiltonians
in closed quantum systems. In Sec. III, we review the fun-
damental concepts of out-of-equilibrium QT, showing that
for work protocols of infinitesimal duration, the probability
distributions of work and irreversible entropy production are
completely determined by the finite-temperature equilibrium
densities of the prequench and postquench Hamiltonians. In
Sec. 1V, we recall the Mermin-Kohn-Sham (MKS) equa-
tions [2,5], employing the finite-temperature KS mapping to
calculate the thermodynamic quantities of interest. In Sec. V,
we present a method for calculating the thermal densities of
a system of indistinguishable particles within the canonical
ensemble using the KS mapping. In Sec. VI, we apply our
theoretical framework to short Hubbard chains, solving the
problem both exactly and via the finite-temperature KS map-
ping to validate the robustness and accuracy of our DFT-based
approach. We then extend our DFT-based analysis to the Hub-
bard model with a larger number of sites. Finally, we draw our
conclusions in Sec. VIL.

II. THERMAL {A}-FUNCTIONAL THEORY

In its original formulation, DFT is founded on the HK the-
orems [ 1], which were later generalized to finite temperatures
by Mermin [5]. These theorems establish a one-to-one corre-
spondence between the external potential v(r) [or v(r) — u,
where  is the chemical potential], the quantum (equilibrium)
state of the system, and the ground-state (or thermal) electron
density n(r) [or nf(r)]. More recently, it has been demon-
strated that the HK theorems at zero temperature are still valid
for quantum systems whose Hamiltonian is defined on a lattice
[49-51], with some limitations [52—54]. Similarly, it can be
shown that this extension also holds true for finite-temperature
closed quantum systems.

To demonstrate this, let us consider a closed quantum sys-
tem governed by a Hamiltonian # of the following form:

L
AN = Ho + Veal il = Ho+ Y 1A, (1)

i=1
where H is quite general and can describe spin chains,
fermionic, or bosonic systems. 7:10 is the “universal” HK
Hamiltonian, and Veyr is the external potential, controlled by a
set of £ parameters {A;} that multiply the local operators {A;}.

Let us denote the thermal expectation value of A; as

a = Tr{pg"[{1: 1A, @)

where p"[{A:i})] = e~PHI ) Z[{1;}] represents the Gibbs
state and Z[{;}] = Tr{e #H1)]} expresses the canonical
partition function. By definition, each af is a function of the
parameters {A;}. It can be shown that exactly one parameter
set {A;} corresponds to a given mean value set {afj } (see
Appendix A).

Since {af } uniquely determines {A;}, which in turn de-
termines ,?)ﬂTH, the thermal state is also a unique functional
of {af3 }. This relationship highlights the direct connection
between observable mean values and the underlying thermal

state, emphasizing the role of {a;s } as the fundamental descrip-
tors of the system:
i) = {d} = p"=p"lll}]  ©

1 i

By the one-to-one relations established in Eq. (3), the ther-
mal HK theorem, as demonstrated by Mermin [5], remains
valid for closed quantum systems defined by the Hamiltonian
(1). Consequently, the free energy

. A, D
Fipl = Tr{p(?-t + 7) } “4)

minimized by the equilibrium Gibbs state, can be expressed
as a unique function of {A;} or, equivalently, as a unique
functional of {aiﬂ }:

Al =l + Y.

Here, Q[{af‘ }] represents the generally unknown “universal”
functional [55], associated with the {A;}-independent Hamil-
tonian 7—10. Similarly to the zero-temperature case [49,50],
Eq. (5) allows us to interpret the HK theorem as an expression
of duality in the sense of a Legendre transform. This duality
relates the thermal expectation values {af; }, which play a role
analogous to the thermal electron densities n?(r), to the set
of work parameters {A;}, which fulfill a role analogous to the
external potentials v(r).

A special case of the Hamiltonian (1) corresponds to the
following single-parameter scenario:

L
A =Ho+1) A (6)
i=1

where the HK theorem remains valid. However, to ensure a
unique mapping between A and

L
() = Tr{f);“[{xi}] ZAi}, (7)
i=1

it is necessary to require that [’}:[0, Zle Al # 0 [56].
Another important tool is offered by the Hellmann-
Feynman (HF) theorem [49,57,58], which establishes a
relationship between the first derivative of the free energy
with respect to the ith external parameter and the ith thermal
density:
oF
oA
This equation will be especially useful in the subsequent sec-
tions, particularly in the context of thermal sudden quenches,

where thermal expectation values serve as fundamental vari-
ables for deriving the thermodynamic quantities of interest.

A

oH A
= Tr{f)ﬂm[{)w}]ﬁ} = Tr{ps"[{M:)A;} = al. (8)

III. THERMAL {A}-FUNCTIONAL THEORY APPROACH
TO QUANTUM THERMODYNAMICS

ThDFT can be effectively employed to extract informa-
tion about the out-of-equilibrium thermodynamics of a closed
quantum system by leveraging its ability to handle thermal
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and quantum fluctuations. To establish the formalism, we first
review some key concepts in QT. Our focus is on a closed
quantum system that has been driven out of equilibrium by a
unitary quantum process. Specifically, we consider a generic
closed quantum system characterized by the Hamiltonian (1),
which depends on a set of time-dependent work parameters
{A}. The system is initially in equilibrium with a bath at
inverse temperature 8. In this configuration, at ¢ = 0, the set
of work parameters {1?} defines the thermal state, represented
by the Gibbs density operator ,bﬁTH[{)\?}]. After the system is
decoupled from the bath, it undergoes unitary dynamics, from
t =0 to t, governed by the time-evolution operator /(z, 0).
This evolution is driven by a protocol that changes the set of
work parameters from {k?}, with corresponding mean values
{aﬁ.S 0}, to {k{ }, with corresponding mean values {aiﬂ 1 }, over
the finite-time interval 7.

A. Probability distributions of work
and irreversible entropy production

The work performed or extracted during the protocol is
not an observable and cannot be represented by a Hermitian
operator. Rather, work is a stochastic variable characterized by
a probability distribution, which is determined by performing
two projective measurements at the initial and final times,
respectively [59-61].

This “two-point measurement” scheme, while potentially
problematic for states with initial coherence in the energy
basis (see Refs. [31,62-65]), is well suited for describing work
statistics in the case of initial thermal states, which we will
assume in the following analysis.

These two measurements involve the instantaneous eigen-
basis of the system Hamiltonian denoted {€,(¢), |n(z))}. The
probability distribution of work (PDW) is defined as follows:

Pew) =Y pa(0)posm(T)8(w — W), ©)

nm

where w,,, = €,(7) — €,(0) is the work performed in a sin-
gle realization, p,(0) = (n(0)| ,?)ﬂTH|n(O)) is the probability of
finding the system in the nth eigenstate at time ¢ = 0, and
Pm—n(7) 1s the transition probability, between the nth and mth
eigenstates, due to the protocol. Fluctuations arising from the
protocol and the measurements are encoded by p,,(0)p,—,(7)
and constrained by the Jarzynski’s equality [16]

(ePv) = e P2, (10)

where AF = F [{)»{ 1 — FI{A%}] is the free-energy difference
between the two equilibrium configurations, corresponding to
the initial and final Hamiltonians.

By the Jensen’s inequality, Eq. (10) implies that (w) >
AF, which reflects the second law of thermodynamics. This
leads to the definition of the average irreversible work [66]

(W) 1= (w) — AF, (11)

which is directly related to the average irreversible entropy
production [61,67,68]

(Sir) = B{Wr)- (12)

Both (wgg) and (Sikr) give a measure of the irreversibil-
ity introduced by performing the unitary transformation

p(t) =U(r, O),i)g”[{)»?}]lfl%(r, 0). Strictly speaking, due to
the unitary nature of the time evolution, no von Neumann
entropy is generated during this process, with the entropy of
the system remaining constant:

SIp(0] = ~Te(p(0)log p(0)} = S(pg"[{37}]).  (13)

Equation (12) is referred to as a measure of irreversibil-
ity because, when the system is returned to the bath after
the protocol, it relaxes from the out-of-equilibrium state to

the thermal state ,?)E“[{)»{ }1. This relaxation is a nonunitary
process, and the entropy produced during this process is
precisely (Sig)-

We emphasize that, like the average work, (Sig) is also the
first moment of a probability distribution obtained within the
two-point measurement framework. Indeed, it is possible to
define a stochastic variable, associated with the production of
irreversible entropy, as follows:

Smn := Blem(T) — €,(0)] — BAF. (14)

Then, the probability distribution for entropy production
(PDEP), analogous to the PDW, takes the form

Pe(s) =Y pu(0)pnsm(T)S(s = Spn)- (15)

A complementary approach to investigate the statistical
properties of work processes and irreversible entropy produc-
tion is based on the Fourier transforms of the corresponding
probability distributions, namely, P;(w) from Eq. (9) and
P, (s) from Eq. (15). It is therefore convenient to rely on the
characteristic function of work [61]

xo(w, 1) 1= /dw VP (w)

_ Tr{eivﬂ[{)\{}]a(r, O)e—im[{)\?}]
PPl e
with associated moments
(w"(t)) = ()"} xv(w, T)|v=0- (17)

It is further instructive to introduce the characteristic function
for irreversible entropy production:

Xu(s, T) = f ds " P(s)
= ¢ PHAT T BHFUINY (£, 0)
B0 A o
N iBuH[{A; }]pEH[{)\’?}]u (T, 0)}’ (18)
with associated moments

(s"(0)) = (=)0, xs(w, T)lu=0. 19)

The two quantities expressed in Egs. (16) and (18) play a cru-
cial role in the development of the thermal-density-functional
framework for specific protocols, as detailed in Sec. IIIB
(sudden quench) and Appendix B (finite-time protocols).

B. Sudden-quench protocol

A sudden quench involves an instantaneous shift of the
work parameters, from {A?} to {)»lf }. This variation occurs
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in an infinitesimally short timeframe, unlike the finite-time
protocols covered in Appendix B. It can be demonstrated
that all of the moments of the PDW in this scenario are
functionals of the initial thermal densities. This outcome is
due to the fact that, in a sudden quench, the time-evolution
operator approaches the identity operator, as the quench dura-
tion becomes infinitesimally small [69]: lim,_, o+ U (7,0) = .
Therefore, the characteristic function of work (16) simplifies
to an ensemble average over the initial Gibbs state:

Xl)(w7 O+) — Tr{ lv/}'[[[)»f]] —lv/H[[AO ATH[{)\‘O}]} (20)

For a Hamiltonian of the form (1), any thermal average over
the initial state can be expressed as a functional of the initial

mean values {af8 %1, as dictated by the generalized HK theorem
outlined in Sec. II and Appendix A. Consequently, we have

xo(w, 07) = x,(w, 0H)[{a? °}], which implies that all the mo-
ments of Py+(w) are functionals of {a;8 0}, with parametric
dependence on both {19} and {A{ }. More explicitly, by using
Eq. (17), these moments can be expressed as the following
thermal averages:

w) =Te{ (AR = AL 2 T e

which are functional of the initial thermal densities: (w")
(w )[{a }] Now, the linearity of the Hamiltonian FH[{A;}] in
the work parameters {A;} leads to

AL - A0 = Y0 04 - x?)%. )

i

Then, using Eqgs. (21) and (22), the average work becomes

(w)y=>" (] =1))a’". (23)

Similarly, the characteristic function of the irreversible en-

tropy production (15), for a sudden-quench protocol, takes the
simplified expression

X}L (s, O+) = e_iﬁﬂA]:Tr{eiﬂM’}:[[{)\.if}]
SR e

Again, by virtue of the thermal HK theorem, the final and
initial free energies in AJF are functionals of {af ! } and {af O},
respectively. On the other hand, as seen in Eq. (20), the trace in
Eq. (24) is a functional of {a;3 0y only. Consequently, we can
assert that Py+(s), or x, (s, 0"), and the associated moments
(s™) are functionals of both {af I '} and {aiﬂ 0}. In particular, the
average irreversible entropy production takes the form

(See) ﬂZ (A = 29)a”

- Al - Al 29

We focus on sudden quenches of infinitesimal variation,
where the work parameters {A?} change by an elementary
amount to {k? + 8A;}. In this context, we can derive an explicit
functional form for the average irreversible entropy produc-
tion. In particular, we can expand Eq. (25) in a Taylor series

and apply the HF theorem, as expressed by Eq. (8). This yields

(Sir) = Zax 5,\j a,\O ) (26)

We emphasize that Eqs. (23) and (26) demonstrate that the
mean values of work and irreversible entropy production are
explicit functionals of the initial thermal densities. As dis-
cussed in the following sections, this is particularly important
for extracting information about many-body systems using the
KS mapping, which enables the computation of thermal elec-
tron densities within a formally noninteracting framework.

C. Fluctuation-dissipation relations in the sudden-quench limit

We now recall that classical quasiadiabatic processes fol-
low the fluctuation-dissipation relation (FDR)

27)

where 02 = (w?) — (w)? represents the variance in the PDW
[16,70,71]. Recently, it has been demonstrated that for slow
processes in open quantum systems, close to equilibrium, the
FDR is given by Eq. (27) minus a positive, purely quantum
term, which arises from the noncommutativity of the thermo-
dynamic protocol [72,73]. Here, with the aim of obtaining an
explicit functional form in terms of initial thermal densities for
the second moment of the work probability distribution, we
reobtain a similar generalized FDR that holds in the infinites-
imal sudden-quench regime. This should not be surprising,
as an adiabatic process, i.e., one that is close to equilibrium
throughout, can be considered as a sequence of a large number
of sudden quenches, each followed by thermalization towards
the equilibrium state [73].

To this end, we focus on the second moment of the PDW.
Then, we distinguish the case where the final and initial
Hamiltonians share a common eigenbasis, and the case where
they do not. Additional details on the following derivations
are provided in Appendix C. In the specific scenario where
[7:1[{)»{}], ﬁ[{k?}]] = 0, the second moment of the PDW is
given by

,30

da
Zm 82alal — Zax Shj——.  (28)

Notably, Eq. (28) expresses an explicit functional of the initial
mean values, independently of the amplitude of the sudden
quench. Nonetheless, with an infinitesimal sudden quench, we
can utilize the expressions for the average work, Eq. (23),
and the average irreversible entropy production, Eq. (26), to
rewrite Eq. (28) as

2
+ E(SIRR)s (29)
This relation validates the FDR, in its classical form, as given
by Eq. (27), to the leading order in {§A;}.

Turning to the instance where the initial and final Hamilto-
nians do not commute, and using Eq. (21), the second moment
of the PDW is still a functional of the initial equilibrium
thermal densities. Specifically, the latter can be split into the
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following two parts:

(w?) = (W), + O[{a]"}], (30)
where ®2[{af 0}] arises directly from the incompatibility of
the two Hamiltonians. A possible approximation method for
this functional is provided in Sec. IV. Operating again in
the infinitesimal sudden-quench limit, we can plug Egs. (23)
and (26) into Eq. (30). By doing so, we recover the
generalized FDR,

_ /32 2 :32 BO

(Swr) = =0, — —@2[{61- }], (€29)
2 2

which takes into account both thermal fluctuations and quan-

tum fluctuations due to [FH[{A]}], H[{12}1] # 0.

IV. THERMAL KOHN-SHAM MAPPING FOR QUANTUM
THERMODYNAMICS

The results discussed so far in previous sections are for-
mally exact, at least in the limiting conditions of the protocols
investigated for the evolution of the coupling parameters.
However, as a many-body system grows in complexity, the
number of interactions and possible configurations needed to
determine the exact thermal density becomes computation-
ally infeasible. To address this challenge, the KS scheme
[2] provides a powerful approach within the framework of
DFT for developing efficient approximations. This method
relies on defining a formally noninteracting many-body sys-
tem, the KS system, which is designed to replicate the
same particle density as the original interacting physical
system.

For systems governed by the Hamiltonian (1), and building
on methods developed in earlier studies [S0] at zero tempera-
ture, the KS approach can be applied as follows. We assume
the existence of a set of auxiliary systems, each described by
the Hamiltonian

L
=L + Z 2SS4, (32)

where the one-body operator 7:10“ replaces the complex many-
body term H, in Eq. (1). The KS Hamiltonian simplifies
the problem by focusing on noninteracting particles in an
effective potential associated to specific coupling parameters.
We further assume that 7 XS yields the same set of thermal
densities as the original Hamiltonian:

(il HAY 33

In this setting, f)g and ,0/3 «s denote the thermal density
matrices of the original and KS systems, respectively, both
parametrized by inverse temperature 8 and coupling parame-
ters {A;} and {1}

The MHK theorem clearly holds for the KS Hamiltonian,
though with some restrictions at absolute zero temperature
[49-51]. Consequently, the coupling parameters A;*® are func-

tionals of the thermal averages {af}}, ie, A = AiKs[{af}].

Tr{ﬁ;gH[{)\i}]Ai} =Tr

At this point, the following MKS equations can be solved
self-consistently for {a }:

+Z )\’HXC

¢ =g T A 0

H+2)Aios) = eglop), (G4

Here, the effective parameters A?'XC[{aiﬁ 11=1/ —A; play
the role of the Hartree (H) and exchange-correlation (XC)
potentials in the usual KS mapping, which account for the
effect of the many-body interaction term in #o. It is worth
recalling that while the eigensystem of the noninteracting KS
Hamiltonian exactly reproduces the thermal density, it gener-
ally does not correspond to the eigensystem of the interacting
Hamiltonian [74].

The approach outlined here is particularly useful when the
one-body Hamiltonian ?:L(;(S has a simple form, such as in the
case of a chain of interacting fermions, where 7:L0KS reduces
to a kinetic energy operator. In these scenarios, as is typically
done within the KS framework, suitable approximations can
be employed for the functionals )\}*'XC[{aiﬁ }. In other terms,
any thermodynamic quantity expressed as an explicit func-
tional of the thermal densities can be evaluated through a KS
mapping, with an accuracy dictated by the approximations
made for the functionals A?'XC[{af‘ }1. Nonetheless, not all
quantities in the MKS equations can be directly expressed as
functionals of the densities. For example, the functional form
of @2[{a§3 0}] in Eq. (30) requires reasonable approximations
to be determined.

A. Local density approximation for ®2[{af 0}]

The local density approximation (LDA) is the simplest and
most widely used approach for modeling XC effects in DFT.
For instance, the LDA has been effectively employed to de-
velop functionals for calculating the entanglement in spatially
inhomogeneous many-fermion systems [75]. To construct an
LDA scheme for an inhomogeneous system, it is necessary
to have an analytical solution for the corresponding homoge-
neous problem, where all coupling parameters are equal, i.e.,
A; = A. In the homogeneous case, the functional @2[{61}8 0}]
reduces to ©F° [a?°], where

a’ = —Tr[ pa{Ai)] ZA } (36)
Based on this, the following LDA scheme can be put forward:

O [{a*}] = Y O5M@ Moo (37

i

A crucial aspect of this implementation is that Eq. (37)
approximates the fluctuations in @2[{a£3 ’0}] arising from
the incompatibility between the prequench and postquench
Hamiltonians, as discussed in Sec. III C. Therefore, it is es-
sential that the homogeneous system satisfies the condition:
[Ho, YN, Ai] # 0. Otherwise, ©¥[a#°] would be identi-
cally zero.
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B. Approximation for (*)2[{11149 0}] via perturbation
treatment of the KS system

The fictitious KS world is governed by a Hamiltonian
that differs from the one describing the actual system under
investigation. However, if the exact form of the functional
k?’xc[{af’ }1is known, the KS framework can accurately repro-
duce the density of the original interacting system. Therefore,
a well-founded idea is to treat the KS Hamiltonian as a zeroth-
order approximation to the “true” Hamiltonian [47,48,76,77].
This is because the KS Hamiltonian encapsulates key aspects
of the many-body properties inherent in the real system. In
this perturbationlike approach, we can express the original
Hamiltonian as H = H* + AF, where AH =H — H*.
Accordingly, any observable property Q[{a;3 0}] can be ex-
panded as

offel")] = @ [{af )] + aQl{al)]. @8

where QKS[{af’ %3] represents the zeroth-order approximation
of the quantity of interest. This method is particularly ad-
vantageous when the LDA scheme is not applicable. For
example, if the underlying homogeneous system satisfies
[7:10, Zf’:] A;] = 0, the zeroth-order approximation can effec-
tively address the incompatibility between the initial and final
forms of the interacting Hamiltonian. In such cases, @2[{af3 0}]
can be approximated using the corresponding quantity calcu-
lated within the KS framework.

V. THE KOHN-SHAM SCHEME
IN THE CANONICAL ENSEMBLE

In Sec. IV, we introduced a finite-temperature KS map-
ping, which enables the accurate evaluation of equilibrium
thermal densities through iterative solutions of the self-
consistent MKS equations, i.e., Egs. (34) and (35). However,
dealing with statistical systems that have a fixed number of
indistinguishable particles, even within the noninteracting KS
framework, presents considerable challenges [78—81], making
the solution of the MKS equations computationally demand-
ing. This complexity is one reason why finite-temperature
DFT calculations typically employ the grand canonical en-
semble, where the average number of particles is fixed by
(N) =", fu(€;). In a many-fermion system, the Fermi-Dirac
distribution f,,(€;) = (1 + e#“=#)~! describes the occupa-
tion probabilities of the KS eigenstates, with €; representing
the KS eigenvalues and p the chemical potential. This frame-
work offers the advantage of a straightforward expression for
thermal electron densities: n (r) = Y_, f,.()|¥ 5 (r)|?, based
on the KS wave functions //*(r) [82]. Here, we present a
method to compute thermal densities within the canonical en-
semble using the KS mapping while keeping the calculations
feasible.

To elucidate our approach, we consider a system of N inter-
acting fermions on a lattice, characterized by the Hamiltonian
(1), with the specific form

Ho="Fo+ ) Vif. (39)

The universal part of this Hamiltonian reads as

Ho=T + WV, (40)
where
T=-J Y (,é10+He) 41)
iio=1.]

is the kinetic term, while W accounts for the two-body in-
teraction. In Eq. (41), 6;6 and ¢;, denote the creation and
annihilation operators for a fermion with spin o =1, |, and

nj = f; 4 + 1, is the total number operator for the ith site.
Given the form of the external potential, the thermal densi-
ties are naturally defined as nfg = Tr{pg"[{Vi}lA;}. According

to the MHK theorem, the following correspondence holds:
Vi) = [} = s =p[{nf}]. @2

l

As remarked in Sec. IV, there exists a KS system having
exactly the same set of thermal densities as the original in-
teracting system. The corresponding KS Hamiltonian is

L
A =T+ (Ul ]+ V)i @)
i=1
At this point, we seek a more computationally tractable equa-
tion for the thermal densities than Eq. (35). In particular, we
build on previous research [78,79] that examined the canon-
ical partition function for N noninteracting fermions. These
studies enable us to express the canonical partition function
for the KS fermions using the following recursive formula:

1 N
Zy = Nﬂ;)(—l)milzl(mﬂ)ZN—m(.B)’ 44)

where Z,(0) = 1 and Z,(mB) =) _; e "B form > 1.

Given the structure of the KS Hamiltonian (43), the par-
tition function for a KS system with N; spin-up and N,
spin-down fermions becomes Z* = Z{Z{3, with particle-
number conservation ensured by N = Ny + N,. The corre-
sponding equilibrium free energy is then F** = —% log(Z}®),
from which the equilibrium thermal densities can be extracted
using the HF theorem as

dF*S
The combination of Eqs. (45) and (34) forms the self-
consistent foundation of our finite-temperature KS approach,
which, in principle, exactly reproduces the thermal densities
of the original interacting system.

(45)

VI. ANOTABLE EXAMPLE

This section is dedicated to validating our finite-
temperature KS approach, as defined by Eqs. (34) and (45),
within the context of the Hubbard model [83-85]. Specifi-
cally, we examine a scenario where electrons are influenced
by an inhomogeneous external potential dependent on the
parameter Vy. The system Hamiltonian is expressed as

L
="Moo+ Vi(Vo)i, (46)

i=1
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where V;(Vg) = f;Vo with the dimensionless set {f;} that de-
fines the spatial shape of the external potential along the chain.
Here H,, takes the form given in Eq. (40), with the two-body
interaction term given by

L
W= "Uj i, (47)
i=1
As described in Sec. III the system is initially prepared
in the Gibbs state ,b;“[{n;9 }1. Subsequently, it is decoupled
from the thermal bath and undergoes an instantaneous quench
in the work parameter, with amplitudes §V; = f;5Vy.

We focus on the half-filled Hubbard model, with the total
spin along the z direction set to zero. Our analysis considers
two external potentials. One that decreases linearly along the
chain,

L

A 2vo(i — 1) ],
Vixr = ; |:V0 - ﬁ}”i, (48)
and another one with a harmonic dependence,
c 2
N 1 T W
VEXT = Z EVO |:l — T] n;. (49)

i=1

We begin by analyzing the exact results for the Hubbard
dimer, as presented in Sec. VIA. We then compare these
results with those obtained from our KS mapping, as detailed
in Sec. VIB and further explored in Sec. VIC. Next, we
extend our study to longer Hubbard chains probed by the
linear potential defined in Eq. (48), as outlined in Secs. VIB
and VID. In particular, in Sec. VI B, we compare exact results
for systems with up to eight sites with corresponding ones
from our KS mapping. Finally, in Secs. VID 1 and VID2,
we investigate the impact of electron-electron interactions on
work extraction in longer chains, considering both linear and
harmonic potentials given in Eqs. (48) and (49).

A. Exact results for the Hubbard dimer

In the two-particle subspace with total spin zero along the
z axis, the Hamiltonian (46) characterizes a two-site Hubbard
chain and is represented by the matrix

U +2V; —J J 0
~ L —J Vi+V, 0 —J
H= , (50
J 0 Vi+V, J (50)
0 —J J U +2V,

in the basis {|14,0), |1, {), 4, 1),10, 14)}. This straight-
forward, exactly solvable model exhibits a diverse range of
physical phenomena [48,86-88], including a precursor to the
Mott metal-insulator transition and, influenced by the external
potential, a precursor to the ionic insulator transition. The
two transitions are in competition, with the former favoring
single-site occupation and the latter promoting double-site
occupation. The metal phase emerges in the narrow region
where U ~ 2V, driven by the interplay of the interaction term
and the external potential.

In Fig. 1(a), we examine the average extracted work
(w)x = —(w) as a function of U and Vv, following a sudden
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FIG. 1. (a) Average extracted quantum work (w)., (b) average
irreversible entropy production (Sig), and (c) the first derivative of
the thermal density nf with respect to the work parameter v, for
a Hubbard dimer at the inverse temperature f = 1/J and a sudden
quench of amplitude §vy = 0.05J. In all panels, the red dashed-
dotted line represents the condition U = 2Vy.

quench of amplitude §v = 0.05J. For U > 2V, the system
enters the Mott insulating phase, leading to a decrease in the
extractable work as the interaction strength U increases. In
this phase, double occupancy of sites becomes energetically
unfavorable, rendering work extraction through the external
potential quench impractical. This behavior can be understood
by examining the thermal densities in the limit of large U:
for U > 2v,, we have n'f ~ ng ~ 1, which, according to
Eq. (23), results in (w) ~ 0. Conversely, for U < 2vj, the
system is in the ionic insulating phase, where the extractable
work increases as U decreases, reaching its maximum value
as U approaches zero. This is because for U <« 2V, we find
nlﬂ ~ 2 and ng ~ 0, leading to (w) ~ —28Vy as per Eq. (23).

In Fig. 1(b), we show the average irreversible entropy
production (Sig) for the same process. As expected, (Sir)
exhibits a pronounced peak in the metallic region separating
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FIG. 2. Thermal densities obtained through exact diagonalization of the Hubbard Hamiltonian (46) compared with those from our KS
mapping, as a function of U for vy = 5J and J = 1. The percentage error for chains of two, four, six, and eight sites is 0.7%, 3.7%, 2.28%,

and 1.78%, respectively.

the Mott insulating phase from the ionic insulating phase.
This behavior can be understood through the dependence of
the average irreversible entropy production on the thermal
densities, as described in Eq. (26). The thermal densities are
sensitive to small variations in the work parameter vy when
U ~ 2vy, which is also reflected in the peak observed in the
derivatives of the thermal density with respect to vy, shown in
Fig. 1(c).

B. Thermal KS mapping for Hubbard chains

To evaluate the thermodynamic quantities of interest for
the Hubbard model using our thermal KS scheme, the first
step is to construct an accurate approximation for the H-XC
potential. Some previous studies [8,88-90] provide a robust
framework for this construction. Furthermore, in the context
of the Anderson model for a single nonmagnetic impurity cou-
pled to two leads, it has been demonstrated that the impurity
Hamiltonian, modeled as a single-site Hubbard model, is v
representable in the noninteracting case. This allows for the
derivation of an analytical form for the XC potential [91].

To proceed further, we treat the Hubbard chain as a collec-
tion of single sites coupled by the kinetic term (41). Following
the LDA, we approximate the KS potential as
Vi [{n}] = Vi Ve[l

:V,»—}—U+%ln[‘g[nf], (51)

where VIXC[n] is the single-site H-XC potential, derived
from the nonmagnetic impurity Anderson model [91]. Further
details of this construction are provided in Appendix D, with
the explicit form of F{j given in Eq. (D11). It is worth men-
tioning that Eq. (51) can be viewed as a simplified version
of the LDA scheme implemented in [90], which utilized the
solution of the homogeneous problem via the thermal Bethe
ansatz.

With a reliable approximation for the H-XC potential in
hand, we can solve our thermal KS equations

{"”ZV“[nf]ﬁi}l%) = ¢j|¢}). (52)

g 2 d log (Zl\is) s
n; =g vs (53)

adapted from Egs. (35) and (45), to obtain the set of thermal
densities.

Figure 2 illustrates a comparison between the thermal den-
sities obtained through exact diagonalization of Eq. (46) and
those obtained using our KS mapping, as a function of the
interaction parameter U. This analysis covers chains with up
to eight sites, using the external potential defined in Eq. (48),
with Vo = 5J and the inverse temperature 8 = 1/J. To assess
the accuracy of the approximation, we use the density metric
discussed in [92]

1
D). (7)) = 5y St =l

where the scaling factor 2N represents the maximum possible
distance between the two sets of thermal densities, ensuring
that the distances lie within the range [0,1]. For the chosen
density metric and parameters, the percentage error for all the
chain lengths is less than 3.7%.

Now that the validity of the approximation for the ther-
mal densities is established, we can proceed to evaluate the
thermodynamic quantities of interest for which an explicit
functional is available.

: (54)

C. Thermal KS mapping for the Hubbard dimer

Here we leverage our KS mapping, defined by the above
derived self-consistent equations (52) and (53), to compute
various statistical moments for the Hubbard dimer and com-
pare these with the exact solution discussed in Sec. VIA.
Specifically, we focus on evaluating the first and second mo-
ments of the PDW and the first moment of the PDEP.

We determine the average extractable work (w)., = —(w),
using Eq. (23), and the average irreversible entropy production
(Sir)» using Eq. (26), from the thermal densities obtained
by solving Eqgs. (52) and (53). Figures 3(a) and 3(b) display
(w)ex and (Sir), respectively, as functions of the interaction
strength U and the work parameter Vy. The system is set at
an inverse temperature of 8 = 1/J with a sudden quench of
amplitude §vy = 0.05J. The computed results are in excellent
agreement with the exact results shown in Figs. 1(a) and 1(b),
validating the reliability and accuracy of our KS framework
for the Hubbard dimer. This approach becomes comparatively
less precise when computing the second moment of the PDW.
As outlined in Sec. III, (w?) consists of two contributions:
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FIG. 3. Mean values of (a) the extracted quantum work (w), and
(b) the irreversible entropy production (Sig), for a Hubbard dimer
at B =1/J and §vy = 0.05J. In both panels, the red dashed line
corresponds to U = 2Vy.

Vol)

(w?),., which is an explicit functional of the thermal density,
as defined in Eq. (28), and ®,, introduced in Eqgs. (30) and
(31), which addresses the incompatibility of the prequench
and postquench Hamiltonians. Currently, there is no avail-
able explicit functional form for ®,. Besides, the Hubbard
model falls into the category where an LDA approach for this
contribution cannot be implemented because [7:[0, 25\1:1 ] =
0. Thus, we use the zeroth-order approximation described
in Sec. VB, and apply the generalized FDR of Eq. (31)
to estimate the noncommutative functional as G)z[{nf ‘0}] 5
@55[{;1? 0. Figure 4(a) shows (w?), as calculated within
the analytic framework of the Hubbard dimer (green line).
This exact result is compared with (w?)s = (w?), + O,
obtained via our KS mapping (blue line), and with (w?), alone
(red line). In particular, (w?), (w?),s, and (w?), are plotted
as a function of U at an intermediate temperature of gJ = 1
and a sudden quench of amplitude §vy = 0.05J. We observe
that our KS approach becomes less accurate as the value of U
increases above ~2J. In fact, for U > 5 (w?), appears indis-
tinguishable from (w?),, and the contribution from the incom-
patibility between the prequench and postquench KS Hamilto-
nians vanishes. The underlying reason is that, as the parameter
U increases, the thermal densities n’f and nz’3 tend to be equal,
making V*[n’] ~ VIX[nf], and thus [H, Y, V<[l 14,] =
0. One potential refinement of our approximation, while
remaining within the framework of the KS zero-order approx-
imation, could be to construct an H-XC potential inspired
by the generalized gradient approximation (GGA) [93-95].
Alternatively, another strategy involves maintaining the

0.008 ™~
0.006 1
0.004 -

0.002 1

0.000 -

0.030
0.025
0.020 1
0.015 1
0.010
0.005
0.000 1

Bl

FIG. 4. (a) Second moment of the PDW for the Hubbard dimer
(w?) as a function of the interaction strength U, at the inverse tem-
perature of 8 = 1/J. This exact result is compared with the KS result
(w?), + O and the contribution (w?), alone. (b) Noncommutative
functional ®, evaluated exactly and via our KS scheme as a func-
tion of the inverse temperature 8, for U = 3J. In both panels, the
sudden-quench protocol Vo =2.00J — v, =2.05J is considered,
corresponding to a sudden quench of amplitude §vy = 0.05J.

selected H-XC potential while enhancing the approxima-
tion by extending beyond the KS zero-order framework,
specifically within the context of many-body perturba-
tion theory, where the unperturbed Hamiltonian is the
KS Hamiltonian. These refinements would improve re-
sults also for large U values, where the local densities
tend to become homogeneous, which would induce the
prequench and postquench Hamiltonian to commute. In
particular, the GGA functional should improve the detec-
tion of slight local variation of the density in the large
U limit.

To assess the accuracy of our KS scheme as a function of
temperature, Fig. 4(b) displays @53[{11? ’0}] and @2[{11? ’0}] as
functions of BJ for U = 3J. The two results exhibit values
that are close to each other and show similar trends, indicating
that the approximation remains reliable across the explored
temperature range for the specified value of U.

D. Average extracted work for Hubbard
chains with varying length

We finally focus on the possibility of extracting work from
an interacting many-body system. According to Eq. (23) the
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FIG. 5. Average work extracted with the linear potential defined in Eq. (48) for a sudden quench of amplitude §vy = 0.05J. Exact results
obtained via diagonalization of the Hamiltonian (46) are compared with those from our KS mapping for a chain with eight sites. The
comparisons are made for three different values of vy, namely, (a) Vo = 0.5/, (b) Vo = 2.5/, and (c) Vo = 5J. The corresponding maximum

errors are (a) 0.0019J, (b) 0.0063J, and (c) 0.0113J.

average work for the Hubbard chain is given by

(w) =" fisvon!, (55)

where the sign of the quenching amplitude §V( and the behav-
ior of the thermal densities nfs determine whether the work can
be extracted, meaning (w) < 0. In this context, the thermal
densities are strongly influenced by the interplay between
the external potential, characterized by the set of parameters
{fiVo}, and the many-body interaction. As observed for the
Hubbard dimer in Sec. VI A, the system can experience differ-
ent phases depending on the relative magnitudes of U and Vvy.
For vy > U, a band insulator phase emerges, where double
occupancy is favored. For U > vy, a Mott insulator phase oc-
curs, where the strong interaction inhibits double occupancy.
When U and v, are comparable, a metallic phase manifests,
due to the competition between the external potential and the
many-body interaction. In this respect, the external potential
plays a crucial role in determining which phase occurs in
different regions of the chain. We here demonstrate that the
external potential can actually enhance the effects of many-
body interactions, thereby facilitating the extraction of work,
either by driving the system towards the band insulator phase
or by shifting it towards the Mott insulator phase. As outlined
earlier in this section, we focus our analysis on the linear
decreasing potential (48) and the harmonic potential (49),
establishing that the ability to extract work from many-body
interactions is highly dependent on the nature of the external
potential.

1. Linear potential

We begin by considering the external potential that de-
creases linearly along the chain. In Fig. 5, we compare the
extracted work, calculated exactly and using our KS mapping
for an eight-site chain. As expected, given the good approxi-
mation for the thermal densities, discussed in Fig. 2, the two
results show excellent agreement. Figure 5 also illustrates that
for a fixed value of v, and a quench of amplitude §vy > 0, the
extractable work decreases monotonically as the interaction
strength U increases.

This behavior is further explored in the context of a 16-site
chain. In Fig. 6, the extracted work is shown as a function
of U and V(. With the system prepared in the band insulator
phase, near-double occupancy is favored at the sites in the
second half of the chain, although this is partially masked by
finite-temperature effects. Performing a quench of the work
parameter with an amplitude 6Vy > O further promotes this
double occupancy, which translates into the opportunity of
extracting the maximum possible work:

L

20— 1) (L2 — 4)8v,
(w) ~ 28V, [1 - ] =— . (56)
;L/:Z £L—1 20L—1)

Conversely, at a fixed initial Vv, as the interaction param-
eter increases, less and less work can be extracted from the
system. This occurs because the electron-electron interaction
opposes double occupancy, counteracting the effect of the
quench Vo — Vg + Vg that would otherwise favor it. In the
strongly interacting limit, where each n? ~ 1, the external
potential form prevents work from being extracted at all:

L .
<w>~5vOZ[1——22:i)] =0. (57)
i=1
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FIG. 6. Average work extracted from a Hubbard chain with 16
sites, probed by the linear potential of Eq. (48). The system is at an
inverse temperature of 8 = 1/J, with a sudden quench of amplitude
8vo = 0.05J.
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FIG. 7. Spatial distribution of the thermal densities for a fixed
Vo = 0.175J and four different values of U at an inverse temperature
BJ =1.

In summary, for a positive quench of amplitude v, > 0,

the work lies in the range —(ﬁziz—ff;" < (w) < 0. This in-
dicates that work can be extracted starting from any initial
state, with many-body interactions generally impeding this
extraction. On the other hand, for quenches of negative am-
plitudes, §vy < 0, the work is positive covering the range
0 < (w) < Gl

2. Harmonic potential

We now turn our attention to the scenario where electrons
are subjected to a parabolic (harmonic) potential. The impact
of this potential on the thermal densities {nf} } is illustrated in
Fig. 7 for a fixed vy and four distinct values of U on a 20-
site chain. It is evident that the primary impact of many-body
interactions is to suppress the double occupancy at the center
of the chain favored by the external potential.

Unlike the linear potential case, the parabolic potential
does not allow work extraction via a quench that drives the
system toward a band insulator phase, regardless of the values
of vopand U, i.e., independent of the phase in which the system
resides before the quench. In other words, no extraction of
work is possible for a quench in which the parabola amplitude

1.662x10
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0.150 1.440
0.125 1.329
< 0.100 1.219
> 1.108
0.075
0.997
0.050 0.886
0.025 0.775
0.665

0.000
0

FIG. 8. Mean value of the quantum work extracted from a
Hubbard chain subjected to a harmonic potential, at an inverse tem-
perature 8 = 1/J, following a quench with amplitude §v, = 0.05J.

is changed from vy to Vo 4 §Vy. Conversely, if the quench
increases the parabola amplitude, the average work (w) is neg-
ative for any initial values of Vo and U, see Fig. 8 meaning that
work can always be extracted. The underlying reason is that
the Coulomb repulsion and the widening of the parabola do
not compete but rather favor the condition {n? ~ 1}. In con-
trast to the linear potential, stronger many-body interactions
here result in more work being extracted. Specifically, in the
deep Mott phase, the extractable work reaches its maximum
possible value.

VII. CONCLUSIONS

In this work, we have explored the thermodynamics of
many-body systems through the lens of the MHK theorem
and a finite-temperature KS mapping. In particular, utilizing
the MHK theorem, we demonstrated that the PDW and
the PDEP, along with their characteristic functions, can be
expressed as functionals of the thermal densities. This insight
turned to be particularly powerful as it provides a unified
framework for analyzing the statistics of work and irreversible
entropy production in the context of sudden quenches of
small amplitudes. Specifically, we derived simple analytical
expressions for the first moments of the PDW and the
PDEP that are functionals of the thermal densities and their
derivatives. For the second moment of the PDW, we identified
and separated two distinct contributions: (w?),, a classical-
like term, and @2[11? ’0], a purely quantum contribution
arising from the noncommutativity of the prequench and
postquench Hamiltonians. This separation enabled us to
establish a generalized FDR in the sudden-quench regime
to the lowest order in the amplitude parameters §A;. We
then introduced a KS mapping as a promising approach
for studying the thermodynamics of many-body systems,
especially when explicit functionals for thermodynamic
quantities are unavailable. In Sec. V, we developed a method
to evaluate thermal densities using the KS scheme within
the canonical ensemble framework, thereby bypassing the
need to construct the many-body Gibbs state explicitly.
The proposed method was validated on out-of-equilibrium
thermodynamics of the Hubbard model under the influence
of a nonhomogeneous external potential. We assessed the
accuracy of the KS mapping by comparing the exact thermal
densities with those obtained via the KS approach for chains
of up to eight sites. Furthermore, we explored the quantum
thermodynamics of the quenched Hubbard dimer, illustrating
the applicability and limitations of the KS mapping when
an explicit functional is unavailable. Our investigation
into the role of many-body interactions in work extraction
revealed that the KS mapping, combined with our general
findings, provides a robust framework for analyzing the
thermodynamic properties of complex quantum systems.
The principles of zero-temperature density-functional theory
have been demonstrated for a set of model Hamiltonians,
including the Heisenberg model and the XXZ model (see,
e.g., [74]). In this respect, the set of our results independent
from the model could be directly applied also to these other
Hamiltonians. In summary, our KS mapping, along with the
insights gained from the MHK theorem, offers a powerful
tool for studying the thermodynamics of many-body systems
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in out-of-equilibrium scenarios. As quantum technologies
continue to advance, our results could play a significant role
in the development of efficient quantum thermal devices,
providing a pathway to explore thermodynamic properties in
regimes where traditional methods fall short.
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APPENDIX A: UNIQUE MAPPING FOR CLOSED
QUANTUM SYSTEMS

We present here the MHK theorem for closed quantum
systems described by Hamiltonians of the form (1). Let us
consider the following Hamiltonians:

L
H=Ho+ Y rdi = Alr)] (A1)
i=1
and
L
H=Ho+ Y MA; = AL, (A2)

i=1

respectively, associated to the sets of external parameters
{A;} and {A}} of fixed length £, which differ by more than
a site-independent constant. The free energy corresponding
to H, as given by Eq. (4), is minimized by the Gibbs state

ATH

pg' = p;“[{k }]. We assume that this state is unique. Simi-

larly, the free energy corresponding to # is minimized by
Z)EH/ = AEE‘[{A;}]. We also assume that this state is unique.
Given the nontrivial choice for the two sets of external pa-
rameters, the two above introduced thermal states must be

different: p AT“’ #+ Z)T” Suppose that both {2;} and {A;} result

in the same set of mean values {af }. The two Hamiltonians
are simply related by

£
=T+ (- rA:. (A3)
i=1
Consequently, the equilibrium free energy corresponding to
the Hamiltonian (A2) can be expressed as

1 A TH/
{ATH'[H+Z(A — M)A+ Zf’ “

Flo5*] =

TH/ +Z()» (A4)

By the minimization principle of the equilibrium free energy,
we must have F|[ AT“/] > F [,6;“], which leads to the inequality

L
Flop"] = Flogl+ D i —nal.  (AS)

This inequality remains valid when primed and unprimed
quantities are interchanged, yielding

Flo5] > F 5] +Z(,\ : (A6)

As in the original formulation of the first HK theorem
[1], Egs. (AS) and (A6) lead to the absurd conclusion that
]-"[AT”/] + ]-'[,2); ] > .7:[,?);"] + .F’[AT“’] Therefore, one and
only one set of nontrivial external parameters {A;}, can result
in a given set of mean values, {af} }, provided that the equilib-
rium Gibbs state is unique. As a corollary, since {a’g } uniquely
determines {);}, which in turn determines ,oT“ the thermal

state is also a functional of the set {aiﬁ }. Specifically,
) = {df}) = pp=pp[{dl})] @D

As a final note, we observe that this proof is based on the vari-
ational principle satisfied by the equilibrium free energy. Sim-
ilarly, one could use an approach based on the constrained-
search technique [96], thus removing the hypothesis on the
uniqueness of the Gibbs thermal state, as it has been done in a
previous study conducted at zero temperature [50].

APPENDIX B: AVERAGE WORK AND IRREVERSIBLE
ENTROPY PRODUCTIONS FOR GENERAL
FINITE-TIME PROTOCOLS

The Runge-Gross theorem for statistical mixtures [97] en-
sures that the temporal evolution of an initial thermal state
f)EH is a functional of the out-of-equilibrium electron density
n.(r), i.e.,

p(x) = Uz, 0)pg"[nf ()]U (z, 0)

= pe[ne (), nf ()] (B1)

Previous studies [98,99] have shown that for pure states,
an analogous form of the Runge-Gross theorem holds for
systems driven by the Hamiltonians (1). Assuming that the
same proof can be extended to statistical mixtures, Eq. (B1)
becomes

p(r) =U(r, 0)p5 [{al "} (z, 0)

=pel{af "} {al})- (B2)

By defining the out-of-equilibrium free energy as in Eq. (4),
the average work and the irreversible entropy production, re-
spectively, become

(w) = Flp(0)] — F[p"°]. (B3)
with p10 = p™[{af°}], and
(Sie) = B{FID(D] — F[p5"7]}. (B4)

with pIT = p[{al }].
Then, using Eq (B2), these two expressions can be rewrit-
ten as

() =Y {r7af =20l } +{Q[{af}] -

i

[{a}]}

(BS)
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and

(Swr) =B Z {)‘fair - )‘?afgo}

-slelfa )] -elld 1} ®o

where Q[{a}] represents the universal part of the out-of-
equilibrium free energy. As previously stated, this part is
generally unknown, which significantly increases the com-
plexity of the problem. However, suitable approximations can
generally be found [45—48], highly dependent on the regimes
under consideration, ranging from adiabatic to nearly sudden-
quench evolutions. Indeed, in the v — 0 limit, Egs. (BS)
and (B6) reduce to the expressions derived in Sec. III B for
sudden-quench protocols.

APPENDIX C: DERIVATION OF THE
FLUCTUATION-DISSIPATION RELATIONS
FOR INFINITESIMAL SUDDEN QUENCHES

We provide here a derivation of Egs. (28) and (30), yield-
ing the fluctuation-dissipation relations (27) and (31) in the
sudden-quench regime. We then consider a sudden-quench

protocol starting from a thermal state f)}“, or more generally

for an initial Gibbs state commuting with 7—2[{)»?}]. Given the
characteristic function of work (20), it is straightforward to
show that the nth moment of the distribution can be written as

w") =Te{ AL - AL 2 [201]). D
Specifically, the second moment of the PDW in a system
defined by the Hamiltonian (1), where the external work pa-

rameters switch instantaneously from {A;} to {X; + X}, is
given by

i

At this point, we want to make explicit the dependence on the
thermal densities {aﬁ3 }.

First, we consider the case where [7—2[{)»{}], 7—1[{)»?}]] =0.
The HF theorem [see Eq. (8)] ensures that

PF  ddl
OA;ON, 0A;
and
102
— = =—gd. (C4)
Z 0Aj J
On the other hand, we have
Bﬁ)g“ N 102
— _ AAATH_ATH__ CS
o, B iPg Pp Za)\j (&%)
and
92 F _ {Ai@}
OAjOA, oA
A N 102
= —BTr{AdiA;p5"} — Tr{Aipg"} = —
P Pz,

Comparing Eq. (C3) with (C6), we obtain
- 19a’
A T[0T — PP — — 70
Tr{A,AJ,oﬁ [{Ai }]} = Ba; d; Bon, (or))}
Then, substituting Eq. (C7) into (C2), we get (w?) as given in
Eq. (28).

We now analyze the scenario where the protocol is non-
commutative, and the relation (C5) is no longer valid. Here,
we rather have

0 ,6;“ N 102
— _BApM _pym_ "%
8)”‘ ﬂ ']pﬁ pﬁ Z 8)»!

o~ (1)
+Z( ‘) BUIAL A ... [RLANIDE.  (C8)

n

n=2 R
n times

Therefore, Eq. (28) is corrected by an infinite series of ex-
pectation values over the initial thermal state, which are still
functionals of the initial thermal densities:

0" [{af ] = Te{A (L AL LA M AR (C9)

ntimes

Consequently, the second moment of the PDW reads as

(w?) = (w?), + 0:[{al°}]. (C10)
with
o) _1n
ouffa}] = Y onan, 3 g
i,j n=2 :
< Te{d; [F, (7 ... [ A oy}
ntimes

_ - =" n—1p(n) BO
=2 onidh y — =0 [{al"}].

i j n=2 !

(C11)

APPENDIX D: HUBBARD MODEL IN A LATTICE
WITH ONE SITE

Let us consider the single-site Hubbard model whose
Hamiltonian is

A~

H =Vo(iiy +70)) +Unyiyy. D1

Equation (D1) describes a closed system, with an interacting
thermal density

ng = Tr{apy"} = Tr{(ay + 2y)py"}
2[e=PYo 4 ¢ F2VotU)]

Z ) (D2)
depending on the canonical partition function
Z =Trle P} = 1 427V 4 ¢ POV, (D3)

Equation (D2), defining the thermal occupations of the model,
depends only on Vy. It can be inverted explicitly to obtain

1
Volngl = —U — 3 In GE [ng], (D4)
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where

Snp + \/sng +ePU(L = Sny)?

gg[flﬂ] - 1-— (Sl’lﬁ

(D5)

and dng = ng — 1. With the external potential expressed as
a functional of the density, we can also write the partition
function as an explicit functional of the density:

Zngl = 1+ P (2G5 ng] + Ghlng?). (D6

Consequently, the noninteracting KS Hamiltonian for the
single-site Hubbard model reads as

7:ll<s — Vr(s(ﬁT 4 ﬁi) = (Vo + Vr{-xc)(ﬁT + ﬁi)' (D7)
As it has been done for the interacting single site it is possible
to invert the relation
e PV 4 2BV

KS __ A ~ATH _
i = Trlibgs} = 1+ 2e PV 4 2726V (D8)

for the KS thermal density, and obtain

KS KS 1 nKS
\%4 [l’lﬁ] = _E In ) _ﬁnzs.

(D9)

By forcing nig = ng, the defining expression of the H-XC
potential can be written as

VIXClngl = U + %m T4 [ng], (D10)

where

Sng + \/(Snfg + e PU(1 - 8n3)
Brnal =
Pylngl =

(D11)

KS
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