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Using policy learning to inform health insurance

targeting: a case study of Indonesia

Abstract

This paper demonstrates how optimal policy learning can inform the targeted
allocation of Indonesia’s two subsidised health insurance programmes. Using na-
tional survey data, we develop policy rules aimed at minimising “catastrophic health
expenditure” among enrollees of APBD or APBN, the two government-funded
schemes. Employing a super learner ensemble approach, we use regression and
machine learning methods of varying complexity to estimate conditional average
treatment effects and construct policy rules to optimise programme benefits, both
with and without budget constraints. We find that the financial impact of APBD
enrollment over APBN differs with household characteristics, particularly demo-
graphic composition, socioeconomic status, and geography. Households assigned to
APBD under the policy rule are typically urban-based with better facilities, whereas
rural households with less accessible healthcare are assigned to APBN – a pattern
intensified under budget constraints. Both constrained and unconstrained opti-
mal policy assignments show lower expected catastrophic expenditure risk than the
current assignment strategy. This study contributes to the literature on heteroge-
neous treatment effects, optimal policy leaning, and health financing in developing
countries, showcasing data-driven solutions for more equitable resource allocation
in public health insurance contexts.

Keywords— optimal policy learning; heterogeneous treatment effects; health insurance;

Indonesia; global health
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1 Introduction

Designing effective health insurance policies for low- and middle-income countries (LMICs) is a

persistent challenge, exacerbated by limited resources and diverse population needs. Traditional

approaches to policy design often fall short in capturing the nuances of individual and household

characteristics that influence health insurance efficacy, leaving substantial room for efficiency

improvements (Bhattacharya and Dupas, 2012). Recent evidence from LMICs demostrates

that health insurance impacts vary significantly across populations, with effectiveness heavily

dependent on household characteristics, regional factors, and healthcare access (Fink et al.,

2013; Grogger et al., 2015). This heterogeneity suggests the potential value of more targeted

approaches to policy design and implementation.

The growing literature on policy learning and targeting in social protection programs has demon-

strated that data-driven approaches can significantly improve program effectiveness through

better matching of beneficiaries to interventions (Alatas et al., 2016; Hanna and Olken, 2018).

In recent years, the concept of optimal policy learning has emerged as a promising framework for

assigning interventions based on characteristics that maximise welfare outcomes, such as reduc-

ing healthcare expenditures and improving health coverage (Athey and Wager, 2021; Dehejia,

2005; Kitagawa and Tetenov, 2018; Manski, 2004).

This approach is particularly relevant for health insurance programs, where recent studies have

documented substantial heterogeneity in insurance value and utilisation patterns across dif-

ferent population subgroups (Finkelstein and Notowidigdo, 2019). Our study demonstrates

novel approaches of policy learning in the context of health insurance. Specifically, the study

aims to inform the optimal allocation of lower-income households to Indonesia’s two subsidised

health insurance programmes, by estimating statistical treatment assignment rules. We explore

how these data-driven methods can be used to enhance the allocation process, ensuring that

households receive the most suitable insurance scheme to maximise financial protection.

Following recent proposals from the optimal policy learning literature, we consider two types

of statistical rules: threshold-based rules and tree-based rules. Threshold-based rules assign

policies based on whether expected benefits exceed a certain level, offering simplicity, but de-

pending on correctly identifying the direction of the effect (Luedtke and van der Laan, 2016b;

van der Laan and Luedtke, 2015). Tree-based rules, conversely, use decision trees to divide

the population into interpretable subgroups, providing policymakers with insights into which

household types benefit most from each scheme while allowing for flexibility in rule complexity

(Amram et al., 2022; Athey and Wager, 2021; Bertsimas et al., 2019).

Our methodological innovation advances the application of the Super Learner (van der Laan

et al., 2007), an ensemble machine learning technique. Although traditionally used for predic-

tion (Polley and van der Laan, 2010) and estimating average treatment effects (van der Laan

and Rose, 2011), we build upon a recent extension aimed at deriving the optimal policy rule

(Luedtke and van der Laan, 2016b; Montoya et al., 2021, 2023; van der Laan and Luedtke,
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2015). We demonstrate that in the Super Learner framework, tree- and threshold-based rules

can be combined to form an optimal policy allocation rule.

To demonstrate the practical application of these methodological innovations, we focus on In-

donesia’s two subsidised health insurance programs, PBI-APBD and PBI-APBN, which target

lower-income households under the broader Jaminan Kesehatan Nasional (JKN) scheme. Our

aim is to construct statistical rules to assign households to either insurance scheme to minimise

the burden of catastrophic health expenditures, a key component of financial protection and a

Sustainable Development Goal indicator (World Health Organization, 2010). We estimate op-

timal policy rules under two scenarios: one in which APBD enrolment is resource-constrained

(limiting enrolment to 10% of eligible households, reflecting the limited healthcare budget of

the state government), and one without constraints, allowing free allocation based solely on

expected benefits. Our dataset includes socioeconomic and demographic data from Indonesia’s

2017 National Socioeconomic Household Survey (SUSENAS) and the 2018 Village Potential

Statistics Census (PODES), which provide a detailed basis for estimating policy impacts on

household financial outcomes. We report two main sets of results: first the achievable welfare

with the estimated rules, in terms of counterfactual values of catastrophic health expenditure.

Second, we further explore how the learned policy rules align with household characteristics,

offering insights into potential improvements over the current assignment.

Our work contributes to three distinct but interconnected literatures. First, we advance research

on subsidised health insurance’s impact on financial protection in developing countries. Recent

work has highlighted the complex relationship between insurance coverage and financial out-

comes in LMICs (Erlangga et al., 2019; Limwattananon et al., 2012), with evidence suggesting

that programme effectiveness varies significantly based on local context and beneficiary char-

acteristics. Second, we contribute to the growing literature on optimal policy learning (Athey

and Wager, 2021; Kitagawa and Tetenov, 2018), by providing a practical demonstration of re-

cently proposed methods in the context of a health policy targeting using observational data.

We propose a workflow that handles practical challenges such as confounding adjustment and

selection of effect modifiers, using sample splitting and cross-validation to guard against over-

fitting concerns. To our knowledge we are the first to incorporate the tree-based policy learning

algorithm proposed by Athey and Wager (2021) in an ensembling machine learning framework.

Third, we improve our understanding of heterogeneous treatment effects in social and health

interventions, particularly through the use of machine learning (Athey et al., 2019; Kennedy,

2023; Künzel et al., 2019; Nie and Wager, 2021; Shalit et al., 2017). Our study highlights that

by leveraging heterogeneous treatment effects, policies can be personalised to achieve better

results than arbitrary or one-size-fits-all assignments (Dehejia, 2005; Manski, 2004).
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2 The Indonesian policy setting

Indonesia’s JKN programme had enrolled 83% of the population by mid-2019, representing

significant progress toward universal health coverage since its 2014 inception (Prabhakaran

et al., 2019). However, substantial challenges remain, particularly in providing effective coverage

for the economically vulnerable through the PBI scheme. These challenges mirror those faced

by other LMICs, where health financing reforms must balance ambitious coverage goals with

limited resources and complex implementation environments.

A key concern remains in JKN’s effectiveness in preventing catastrophic health expenditures, a

challenge frequently observed in similar LMIC health insurance schemes (El-Sayed et al., 2018;

Pratiwi et al., 2021). Research on health insurance impacts in developing countries reveals mixed

results regarding financial protection and healthcare access (Bernal et al., 2017; Erlangga et al.,

2019; Maulana et al., 2022), with effectiveness often moderated by local healthcare infrastructure

and socioeconomic conditions. For example, Grogger et al. (2015) report substantial variation

in the impact of Mexico’s public health insurance on catastrophic expenditures across income

groups and regions, while Fink et al. (2013) demonstrate how the effectiveness of community

health insurance in Burkina Faso varies by household wealth and distance to health facilities.

These examples underscore the potential value of targeted approaches in programme design and

implementation to address such heterogeneity.

In Indonesia, most JKN enrollees are in the PBI scheme, where the government subsidises

premiums. Table 1 presents data from SUSENAS 2017, showing the utilisation of insurance for

outpatient and inpatient care among PBI-insured household members.

Within the PBI scheme, there are two programmes available. The APBN scheme, managed

by the central government, targets the poorest households using the Unified Database (UDB)

and indicators such as household assets, income, and consumption, prioritising those below the

national poverty line. On the other hand, the APBD scheme, managed by regional governments,

relies on regional databases, community assessments, and local vulnerability criteria, often

extending coverage to households near or just above the poverty line.

Among APBD enrollees, 38% did not use insurance for outpatient care and 48% for inpatient

care. The corresponding figures for APBN enrollees were 11% and 34%, respectively. These

disparities suggest that differences in the two schemes may lead to varying levels of financial

protection and utilisation of health services, with some individuals continuing to pay out-of-

pocket due to concerns about care quality, discrimination, and wait times (Harimurti et al.,

2013).

JKN has struggled to engage the large informal working sector, with low uptake driven by

immediate health needs and financial constraints (Dartanto et al., 2020; Vilcu et al., 2016).

While JKN aimed to unify all subsidised programmes, local schemes like APBD remain crucial,

particularly in rural and remote areas where local governments have been more effective in

4



enrolling the uninsured (Kruse et al., 2012; Sparrow et al., 2017). Local initiatives and targeted

enrolment strategies could enhance health coverage access for these groups (Dutta et al., 2020).

Table 1: Demand for inpatient and outpatient health care in 2017

N Inpatient demand (N) Outpatient demand (N)

Accessed care Used APBD Used APBN Accessed care Used APBD Used APBN

PBI-APBD 120,346 3,096 1,926 (62%) - 13,271 6,857 (52%) -
PBI-APBN 212,334 8,744 - 7,786 (89%) 29,970 - 19,841 (66%)

Note: Table reports the number of household members that used inpatient and outpatient health care, by
PBI insurance scheme, and whether they used insurance to pay. Source: SUSENAS 2017.

3 The policy allocation problem

Our study aims to demonstrate how optimal policy learning approaches can help allocate eligi-

ble households among the two subsidised health insurance schemes, APBD and APBN. Given

JKN’s universal coverage goals, we do not focus on evaluating the benefits of insurance com-

pared to no insurance, but on determining the most suitable scheme for a given household. By

focusing exclusively on PBI enrollees, we mitigate self-selection bias, and ensure overlap be-

tween the two compared programmes, as APBN and APBD enrollees tend to share comparable

socioeconomic profiles due to similar social protection targeting criteria, while both observed

and unobserved differences between the insured and uninsured populations may be substantial.

Although our focus on insured households may appear to bypass under-enrolment challenges,

especially within the informal sector, this methodological choice reflects several considerations

from recent research. Studies from Thailand, for example, show that analysing insurance value

among current beneficiaries can inform strategies to expand coverage (Limwattananon et al.,

2012). Similarly, Alatas et al. (2016) demonstrate that improving the efficiency of existing

programs can free resources for expanding services to uninsured populations.

Our identification strategy leverages the distinct targeting mechanisms of the two schemes,

controlling for criteria used by both schemes, and accounting for regional implementation dif-

ferences. In selecting variables for policy rules, we align with policy decision-making criteria,

reflecting the targeting approaches employed for PBI enrolment. The lists of variables for con-

founding adjustment and for inclusion in the potential policy rules are presented in detail in

Section 4.
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Table 2: Targeting variables included in our optimal policy learning model

Household member characteristics and demography
Household head marital status (1 if married, 0 otherwise)
Number of household members
Number of productive household members (aged 15-64)
Number of children at school (aged 5-14)

Socioeconomic status
Number of household members in work
Household head education level (1 if completed compulsory education, 0 otherwise)
Number of household members that completed compulsory education

Dwelling characteristics
Homeowner status (1 if homeowner, 0 otherwise)
Wall type (1 if concrete, 0 otherwise)
Roof type (1 if concrete/roof tile, 0 otherwise)
Lighting source (1 if electricity, 0 otherwise)
Drinking water source (1 if protected, 0 otherwise)
Toilet facility (1 if private/shared, 0 otherwise)
Cooking fuel (1 if electricity/gas, 0 otherwise)

Asset ownership
Refrigerator (1 if owns, 0 otherwise)
Gas canister >5.5kg (1 if owns, 0 otherwise)
Number of cellular phones in household
Car/motorcycle (1 if owns, 0 otherwise)
Gold/jewellery >10g (1 if owns, 0 otherwise)

Note: Targeting variables are based on the original variables included in the PMT
model specification to determine the PBI selection criteria.

4 Data

SUSENAS is an annual national socioeconomic household survey that collects data on approxi-

mately 300,000 households, and its members, across 514 districts (Badan Pusat Statistik, 2017).

A two-stage sampling design is used to ensure that households are representative at the district-

level, introducing clustering, and frequency weights are provided to reflect the population. The

survey comprises two modules that gather information on basic household characteristics, such

as occupation, education, health, housing, asset ownership and consumption expenditure. We

use cross-sectional data from the 2017 survey to construct a household-level dataset, and re-

strict the sample to households where all members reported having the same insurance type

at the time of survey (that is, either PBI-APBD or PBI-APBN). Households where at least

one member reported having alternative health insurance cover, either through their employ-

ers or private plans, are excluded from the analysis. We generate a binary indicator for our

catastrophic expenditure outcome, which equals 1 if health care expenditure, as a proportion of
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non-food household expenditure, exceeds 10%, and 0 otherwise (Wagstaff and Lindelow, 2008;

Wagstaff et al., 2007; Wagstaff and van Doorslaer, 2003; Xu et al., 2003).

We refer to the related literature on health insurance and catastrophic expenditure, and control

for a rich set of variables that may influence both the selection into treatment and the outcome.

Using SUSENAS, we control for head-of-household characteristics since they are representative

of household well-being (Bookwalter et al., 2006). These include age, sex, marital status and

socioeconomic status (which encompasses literacy, level of education, occupation and use of

technology). We additionally capture broader household characteristics by controlling for the

number of household members that are educated, in work, of a productive working age (between

15 and 64), or currently at school. To further capture households’ socioeconomic status, we

include a selection of variables that reflect asset ownership and housing characteristics, including

household amenities (e.g. types of water supply, toilet facilities and electricity), small households

assets (e.g. fridge, television, computer), and other household characteristics (e.g. number of

rooms, home ownership).1

Finally, we control for certain village-level characteristics using Potensi Desa data, PODES

2018, which collects information on villages’ availability of natural and human resources, and

can be merged with SUSENAS at the district-level (Badan Pusat Statistik, 2018). We include

information on whether access to all types of health care facilities (that is, primary and secondary

care, community health care, maternity care and pharmacies) is considered to be easy.

See Appendix A for a full list of variables included in our model for confounding adjustment.

In Indonesia, central government programs use proxy means testing (PMT) models to identify

households in poverty (Alatas et al., 2012; Vilcu et al., 2016). In 2011, the government collected

socioeconomic data from 24.5 million of the poorest households, creating the UDB, which was

updated in 2015. This PMT model identifies household assets and demographic characteristics

associated with consumption, informing PBI eligibility (National Team for the Acceleration of

Poverty Reduction (Indonesia), 2015). We base the targeting variables used in the policy rules

on the UDB, ensuring that they are accessible by decision makers for real world policy targeting.

These include the household size, number of household members who are employed, and various

indicators of asset ownership. The complete list of targeting variables is presented in Table 2.

5 Methods

5.1 Notation and setup

We construct an observational dataset of households i = 1, . . . , N that are characterised by

the tuple (Xi, Yi, Di), where Xi is a vector of confounders and effect modifiers; Yi ∈ {0, 1} is a

1We do not control for health care need since we are unable to identify whether health status is a
confounder or a mediator.
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binary outcome variable, which takes the value of 1 if the household’s health expenditure as a

proportion of total expenditure exceeds 10%; and Di ∈ {0, 1} is a binary treatment variable,

which is equal to 0 if all household members are enrolled into the nationally funded PBI scheme,

PBI-APBN (the “control”), and 1 if all household members are enrolled into the locally funded

PBI scheme, PBI-APBD (the “treatment”). Individual level treatment effects are defined as

τi = Yi(1) − Yi(0), where Yi(1) and Yi(0) are potential outcomes under the treatment and the

control.

To learn a policy rule π, we first define our targeting criteria V ⊆ X, where V could include all

variables in X, or a subset. The policy rule maps V into a binary decision, π : V → {0, 1}. We

specify a policy class Π that encodes any possible constraints on the policymaker’s objective

function (for example, resource or functional form restrictions) that the policy rule must satisfy,

where π ∈ Π. We encode a resource constraint, a fraction κ ∈ [0, 1], which represents the

maximum fraction of households that can receive treatment (APBD). We consider two scenarios:

an unconstrained environment where κ = 1, and a constrained environment where κ = 0.1, to

reflect the proportion of the state health care budget that is distributed to local governments.2

The counterfactual outcome for a household if treatment is assigned using a policy rule is

denoted as Yi(π(Vi)). Since smaller values of Y correspond to better outcomes (we want to

minimise catastrophic expenditure), the optimal policy rule π∗ can be defined as a minimiser

of the expected counterfactual mean outcomes over all candidate rules π ∈ Π:

π∗ = arg min
π∈Π

E[Yi(π(Vi))] s.t. E[π(Vi)] ≤ κ, (1)

where E[Yi(π(Vi))] is the policy value: our target causal parameter. The utility of implementing

an optimal policy rule π∗ can be measured by estimating its policy value relative to a given

reference rule πr(Vi). As reference rules, we include static rules that assign either APBD or

APBN to all households. We denote with U(π∗) the following contrast between the outcome

under π∗ and πr(Vi):

U(π∗) = E[Yi(π
∗(Vi))− Yi(π

r(Vi))]. (2)

Note that the causal target parameter in Equation 1 and 2 is written in terms of potential

outcomes. In order to write our target causal parameter in terms of the observed data (known

as the statistical target parameter or estimand) we need the following assumptions to hold:

(a) Unconfoundedness: Yi(d) ⊥ Di|Xi = x, ∀d ∈ D, ∀x ∈ X

(b) Overlap: 0 < e(x) ≡ P [Di = 1|Xi = x] < 1, ∀x ∈ X

(c) Stable Unit Treatment Value Assumption (SUTVA): Yi = Yi(Di)

2The imposed resource constraint is mainly for demonstrative purposes to model the Minister of
Finance’s Regulation No. 78/PMK.02/2020, which stipulates that 10% of APBD recipients’ contributions
will be funded by the central government through the state budget. Our model does not take into account
that the remaining 90% will be funded through other sources.
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We refer to e(x) as the propensity score. If above listed Assumptions (a)-(c) are satisfied, our

causal target parameter E[Yi(π(Vi))] (and U(π∗)) can be written in terms of the observed data.

We emphasise that Assumptions (a)-(c) are standard assumptions made in the causal inference

literature.

The optimal policy rule π∗ can be learned using the CATE function τ(v), which is defined as

the expected difference in the potential outcomes, as a function of the households’ observed

covariate profile Vi ∈ Xi:

τ(v) = E[Yi(1)− Yi(0)|Vi = v]. (3)

Analogous to the identification result for the causal target parameter E[Yi(π(Vi))], we can write

τ(v) in terms of the observed data as

τ(v) = E[Yi|Vi = v,Di = 1]− E[Yi|Vi = v,Di = 0] (4)

= µ1(v)− µ0(v), (5)

where the expectation is taken with respect to the outcome and all covariates in X not in V . If

V constitutes all available covariates X, we simply write µd(x) as the counterfactual response

surface defined as E[Yi|Xi = x,Di = d]. In the remainder of the manuscript, we use τ(v) to

denote the statistical target parameter written in terms of the observed data. We also denote

estimated values from data with the (̂) symbol, so that, for example, an estimate of the optimal

policy rule π∗ is π̂∗.

5.2 Learning optimal policy rules

Below we introduce an important building block of policy learning, double-robust scores. We

outline how these scores are used to learn rules within the two main policy classes we consider

here: threshold based rules and tree-based rules. We then describe the meta-learning approach

we suggest to select among candidate rules.

5.2.1 Doubly robust scores

We assign doubly robust scores Γi to each household, according to the augmented inverse

probability of treatment weighted (AIPTW, or doubly robust) estimator for the ATE:3

3The AIPTW estimator for the ATE is formed by averaging the doubly robust scores: τ̂ =
1
N

∑N

i=1 Γ̂i(Xi)
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Γ̂i =
[
µ̂1(Xi) +

Di

ê(Xi)
(Yi − µ̂1(Xi))

]

︸ ︷︷ ︸

Γ̂i(1)

−
[
µ̂0(Xi) +

1−Di

1− ê(Xi)
(Yi − µ̂0(Xi))

]

︸ ︷︷ ︸

Γ̂i(0)

(6)

= µ̂1(Xi)− µ̂0(Xi) +
Di − ê(Xi)

ê(Xi)(1− ê(Xi))
(Yi − µ̂D(Xi)), (7)

where µ̂D(Xi) is the conditional expectation function for the observed outcome under the treat-

ment actually received. Doubly robust scores can be used (beyond using them to estimate the

ATE) to evaluate the value of a given policy rule, and to select the optimal policy rule within a

policy class. The empirical solution to Equation (1) minimises the counterfactual mean outcome

under the rule using the doubly robust scores:

π̂∗ ∈ arg min
π∈Π

1

n

n∑

i=1

Γ̂i(π(Vi)) s.t.
1

n

n∑

i=1

π(Vi) < κ, (8)

where Γ̂i(π(Vi)) = π(Vi)Γ̂i(1)+(1−π(Vi))Γ̂i(0). Here, Γ̂i(1) and and Γ̂i(0) represent the doubly

robust score for household (i) under treatment and control, respectively. We also use a modified

version of the doubly robust scores, proposed by Athey and Wager (2021), that use an initial

CATE estimate and apply a doubly robust adjustment (more details in Section 5.2.3).

5.2.2 Threshold-based rules

Threshold-based rules follow the intuition that treatment should only be assigned when it is

effective. In our policy learning problem, this means assigning treatment to households with

negative τ̂(v)). In recent years, a number of flexible estimators for τ(v) have been proposed,

including relying on fully nonparametric models (examples include Athey et al. (2019); Hahn

et al. (2020); Kennedy (2023); Künzel et al. (2019); Nie and Wager (2021); Shalit et al. (2017)).

In particular, van der Laan and Luedtke (2014) and Luedtke and van der Laan (2016b) propose

the two-stage doubly robust estimator, where the first stage requires the construction of doubly

robust scores Γ̂i as in (7), and the second stage involves modelling Γ̂i as a function of Vi ⊆ Xi

using any regression-based approach. The first stage takes care of the confounding adjustment

by controlling for the full covariate vector Xi in the outcome and treatment models, so that

the second stage CATE estimation can focus on the target criteria Vi ⊆ Xi. The advantages of

threshold-based rules include their simplicity and the ability to incorporate resource restrictions,

where there is a maximum proportion of the population that can be assigned to treatment

(Luedtke and van der Laan, 2016a). This constrained minimisation problem can be solved by

sorting the observed data according to their estimated CATEs in increasing order, and assigning

treatment to those with the lowest estimates until the constraint is met (see Appendix C for

further details). A limitation of threshold-based rules is their lack of interpretability, as they do

not reveal which variables influence assignment decisions. To enhance interpretability, threshold-

based rules can incorporate interpretable algorithms, such as decision trees or linear models,
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which clarify variable importance and facilitate understanding of the decision-making process.

This approach can also be strengthened by employing a discrete super learner4 (described in

detail later) limited to a library of interpretable algorithms, ensuring that the decision rules

remain both effective and transparent.

5.2.3 Tree-based rules

Tree-based rules are an alternative method for policy learning that uses fixed-depth decision

trees to directly optimise net policy benefits (Athey and Wager, 2021; Zhou et al., 2022). De-

cision trees recursively split observations into subgroups, in a way that maximises expected

outcomes, until they end up in a tree leaf that is associated with a policy decision (i.e., APBD

or APBN). Essentially, the optimiser takes Γ̂i and Vi as inputs, and searches through the space

of all candidate trees to identify the one that solves the minimisation problem in Equation

(8).5. To construct Γ̂i, Athey and Wager (2021) propose a modified version of Equation (7)

that replaces the first component (that is, the difference between the response functions) with

a causal forest estimate of the CATE function τ̂ cf (v):

Γ̂cf
i = τ̂ cf (Vi) +

Di − ê(Xi)

ê(Xi)(1− ê(Xi))
(Yi − m̂(Xi)− (Di − ê(Xi))τ̂

cf (Vi)), (9)

where m̂(Xi) = E[Yi|Xi = x].6,7 Causal forests find neighbourhoods of observations with similar

CATEs by regressing the Y -residual on the D-residual, and recursively partitioning the data

into leaves to maximise the within-leaf heterogeneity in treatment effects, thus forming a causal

tree. Each observation is dropped down the tree and assigned a weight based on how frequently

it is used to estimate τ̂(Vi) at Vi = v. This process is repeated across many causal trees using

bootstrapped samples to grow a forest. The CATE estimator is constructed as:

τ̂ cf (v) =

∑N
i=1wi(v)(Di − ê(Xi))(Yi − m̂(Xi))

∑N
i=1wi(v)(Di − ê(Xi))2

, (10)

4The discrete SuperLearner selects the single best-performing model from a library of candidate
algorithms, based on cross-validated performance. In contrast, the continuous SuperLearner combines
multiple models by assigning weights to each, producing an ensemble that aims to improve predictive
accuracy by leveraging strengths across algorithms (Polley and van der Laan, 2010)

5Further details on the tree-search algorithm can be found in Sverdrup et al. (2020) and Zhou et al.
(2022)

6Note that m̂(Xi) is different to the outcome regression µ̂D(Xi) in (7) as it is marginalised over the
treatment Di.

7The intuition behind constructing Γ̂i using (9) rather than (7) is to produce a (possibly) better score
since it requires a single estimate of the CATEs τ cf (Vi) rather than two separate estimates of nuisance
models µ1(Xi) and µ0(Xi).
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where wi(v) are the weights derived from the forest splitting on the vector-valued gradient of

τ cf (v).8,9 The main advantage of tree-based rules is their interpretability since the policy rule

can depend on a small number of variables in V , if a shallow depth decision tree is specified. The

downside, however, is that shallow trees may not capture all heterogeneity in treatment effects.

Furthermore, the direct reliance on the CATE estimates can introduce additional complexities

and potential biases. However, recent work demonstrates that model-agnostic doubly robust

scores can be used for policy trees (instead of CATEs), thereby enhancing the flexibility of

tree-based learning (Hatamyar and Kreif, 2023).

5.2.4 An ensemble learner for optimal policy rules

Ensemble learners can consider alternative models of varying complexity within a single frame-

work, and enable the selection of the best performing policy rule in a data-adaptive way. The

ensemble learner we consider using in this study is the super learner; a cross-validation based

ensemble prediction algorithm (van der Laan et al., 2007). In the policy learning setting, the

objective of the super learner is to improve the estimation of the policy rule by constructing an

ensemble learner that, among a library of candidate estimators of the optimal rule, chooses the

optimal weighted convex combination of candidates (known as the “continuous” super learner)

(Luedtke and van der Laan, 2016b). One of its favourable properties is that, in large enough

samples, it performs at least as well as the best performing candidate model (Dudoit and van der

Laan, 2005; van der Laan and Dudoit, 2003; van der Laan et al., 2006, 2007; van der Vaart et al.,

2006). In the policy learning setting, implementing the super learner requires the researcher

to define a so-called library of candidate estimators of the policy rule, the type of method

(or meta-learner) to combine candidate estimates, and the loss function to evaluate candidate

performance. We explain these in details in the following section.

5.3 The workflow of policy learning

In this section, we explain our workflow for estimating and evaluating optimal policy rules in

relation to our PBI assignment problem (see Figure 1 for an accompanying graphic diagram).

We closely refer to van der Laan and Luedtke (2015) and Luedtke and van der Laan (2016b),

which describe the theory behind the super learner framework for policy learning, and Montoya

et al. (2021) and Montoya et al. (2023), which provide the implementation and interpretation.

8The CATEs are estimated “out-of-bag”, meaning that for each observation dropped down the tree,
a prediction is made using trees that did not use this observation during the training process. Out-of-
bag prediction produce CATE estimates τ̂ cf (Vi) without the need for explicit data splitting techniques
(Athey et al., 2019).

9In theory, the doubly robust scores Γ̂cf
i in (12) could be regressed onto Vi to estimate CATEs as per

the method described in the previous section. However, since the causal forest directly produces CATE
estimates τ cf (Vi), the additional regression step is not required.
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We rely on the following software packages in R, and modify code where necessary to suit our

implementation: SL.ODTR10,11, SuperLearner12, grf13 and policytree14.

5.3.1 Selection of effect modifiers

We select V ⊆ X as the list of targeting variables included in Table 2. These variables rep-

resent decision makers’ selection criteria for assigning subsidised health insurance (PBI), and

we assume that they are also relevant for our policy learning problem. We denote this vector

of covariates as V 1. To further reduce the large set of potential effect modifiers, we follow

the doubly robust adaptive LASSO approach to construct a second, smaller covariate vector

V 2 ∈ V 1 (Bahamyirou et al., 2022).15 We do this after dividing the full data into two parts

with a 30:70 split, using the smaller partition (≈28,000 households) to learn V 2, leaving the

larger partition (≈65,000 households) to learn policy rules. We implement the adaptive LASSO

on the smaller 30% data partition using the following steps:

1. We fit super learners to estimate the nuisance parameters – e(Xi), µ1(Xi), µ0(Xi) and

µD(Xi) – and construct Γ̂i. See section 5.3.2 for details on candidate algorithms included

in the super learners.

2. We regress Γ̂i on V 1i to obtain β̃l, the estimated coefficient of V 1(l) for l = 1, . . . , p (where

l indexes the candidate algorithms and p is the total number of candidate algorithms in

the super learner), and construct coefficient-specific weights ŵl =
1

|βl|γ
(we set γ = 1) so

that the regularisation penalises more those coefficients with lower estimates in the initial

linear regression.

3. We fit a LASSO regression of Γ̂i on V 1i (again on the full 30% data partition) using ŵl as

the penalty factor associated with each coefficient 16. The tuning parameter λ is selected

using cross-validation. The final selection of covariates in V 2 are those with non-zero

coefficients.

We do not use this 30% data partition again and from here on, we refer to the remaining 70%

data partition as the full data.

10https://github.com/lmmontoya/SL.ODTR
11We modify the original code in SL.ODTR to incorporate tree-based rules into the candidate library

and to enable minimisation problems.
12https://github.com/ecpolley/SuperLearner
13https://github.com/grf-labs/grf
14https://github.com/grf-labs/policytree
15The adaptive LASSO is a regularisation method based on the traditional LASSO. The algorithm

has the oracle property, in that it consistently selects the right subset of variables, and has an optimal
estimation rate. It also uses coefficient-specific weights in the regularisation so that true-zero coefficients
are less likely to be selected than in the traditional LASSO. See Zou (2006) for further details.

16We use the same 30% data partition to perform both regressions in the adaptive LASSO, but in
theory, the data could be further partitioned to separate the data used for both tasks.
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5.3.2 Specification of candidate algorithms

We specify J candidate algorithms for estimating the optimal policy rule π∗(Vi) for j = 1, . . . , J .

These include:

• Threshold-based rules using CATE estimates generated in the following ways: (1) various

parametric and nonparametric regression specifications of Γ̂i on Vi.
17; and (2) causal

forests.

• Tree-based rules (i.e. shallow decision trees)18 using doubly robust scores that incorporate

causal forest CATE estimates τ̂ cf (Vi).

• Static rules that assign the same policy to all households.

See Table 3 for a full list of candidate algorithms included in our library. Note that all candidate

tree-based and threshold-based estimators are separately fitted on V 1 and V 2.

Table 3: Candidate estimators included in the super learner library

Estimator Description Inputs

Threshold-based rules

GLM Generalised linear model Γ̂i, Vi

GLMi Generalised linear model with interactions Γ̂i, Vi

GBM Generalised boosted model (depth 2) Γ̂i, Vi

PM Multivariate adaptive polynomial spline regression Γ̂i, Vi

NN Neural network Γ̂i, Vi

SVM Support vector machines Γ̂i, Vi

CF Causal forest τ̂ cf (Vi)

Tree-based rules

PT1 Policy tree (depth 1) Γ̂cf
i , Vi

PT2 Policy tree (depth 2) Γ̂cf
i , Vi

PT3 Policy tree (depth 3) Γ̂cf
i , Vi

Static rules
Treat all Assign PBI-APBD to all households -
Treat none Assign PBI-APBN to all households -

Note: Inputs refer to the parameters required to learn the policy rule. All
threshold- and tree-based rules are separately fitted on V 1 and V 2. The
super learner library for the constrained policy rule only includes threshold-
based rules.

17Including a diverse range of candidate regressions in our library, from simple parametric models to
more flexible, data-adaptive algorithms, hedges against the possibility that the optimal policy rule could
be best modelled by a simple (rather than a more complex) estimator.

18Athey and Wager (2021) advise fitting shallow trees (that is, an interaction depth of 2 or 3) to
prevent overfitting and for computational efficiency, although cross-validation can also be used to choose
the optimal depth.
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5.3.3 Trimming the sample to address practical positivity violations

Although we do not find significant violations in overlap between the covariate distributions of

the APBD and APBN populations, we trim the sample to address practical positivity violations

caused by extreme propensity scores near 1 or 0 – that is, almost always assigned to APBD or

never assigned to APBD, conditional on observed characteristics (Stürmer et al., 2021). Extreme

scores can affect inverse probability of treatment weights, thus creating bias and excessive

variance in the treatment effect estimators (Li et al., 2019).19 We fit a super learner on the

full data, and following Crump et al. (2009), we remove approximately 4,000 households ( 6%

of the sample) with ê(Xi) outside of the range [0.1,0.9]. We refer to the remaining data as the

trimmed data.

5.3.4 Learning the policy rules

To prevent overfitting, we divide the trimmed data randomly into two equal subsamples, denoted

s1 and s2; s1 is used to train the candidate models for estimating the policy rule, and s2 is used

to test the models and make predictions on new, unseen data. To account for a potential loss

in efficiency from sample splitting, and to achieve better finite-sample performance with good

asymptotic properties, we use 2-fold cross-fitting that swaps the roles of s1 and s2 and recreates

the trimmed dataset by pooling the test predictions of the nuisance models, CATEs and policy

rules (Chernozhukov et al., 2018a; Kennedy, 2023; Newey and Robins, 2018; Zhou et al., 2022).

We describe the following procedure on the iteration where s1 and s2 are the respective training

and testing data.

K-fold cross-validation on the training data

We split s1 into K folds (we choose K = 2 based on the effective sample size, as per Phillips

et al. (2022)) to perform the following steps using the K-fold cross-validation framework, where

k = 1, . . . ,K is the validation fold and K − k is the training fold.

1. Generate candidate estimates

Using the training fold K − k, we estimate the nuisance parameters – e(Xi), µ1(Xi),

µ0(Xi), µD(Xi) and m(Xi)
20 – using the super learner and construct doubly robust

scores.21,22,23 We train j = 1, . . . , J candidate estimators using the respective inputs

19Trimming the sample effectively changes the causal estimand to the expected policy value for house-
holds with sufficient overlap.

20We require predictions of m(Xi) to estimate τ̂ cf and to construct Γ̂cf
i .

21The doubly robust scores include both Γ̂i and Γ̂cf
i

22Fitting the metalearner and predicting both the nuisance parameters and the doubly robust scores
on the same training data is a form of “nested” cross-validation called “revere” (Coyle, 2017).

23Our candidate library for the nuisance models include a generalised linear model, LASSO regression
and a generalised boosted model (with an interaction depth of 2).
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detailed in Table 3. Using the validation fold k, and for each candidate j, we use the

trained models to predict CATEs τkj (Vi) and policy rules πk
j (Vi) = I{τkj (Vi) < 0} for each

household i ∈ n.

2. Meta-learning of policy rules using the super learner

The meta-learner finds weighted convex combinations of candidate estimators of the

CATEs τα(Vi) or candidate estimators of the policy rules πα(Vi), defined as:

τα(Vi) =
∑

j

αjτ(Vi), αj ≥ 0 ∀ j,
∑

j

αj = 1 (11)

πα(Vi) = I[
∑

j

αjπj(Vi) > 0.5], αj ≥ 0 ∀ j,
∑

j

αj = 1, (12)

where the weight vectors associated with a given convex combination α1, . . . , αJ are non-

negative and sum to one.24,25 The unconstrained policy rules (where κ = 1) use (12) since

the candidate library includes non-threshold-based estimators, and the constrained policy

rules (where κ = 0.1) use (11) since the candidate library can only include threshold-based

estimators in order to rank households by their estimated CATEs. Each candidate convex

combination of algorithms is evaluated by estimating the counterfactual mean outcome

under the candidate rule LE[Y (πj(Vi))] (i.e. the loss) using the AIPTW estimator. We

estimate the loss for each validation fold k, and average the estimates across all folds K

to produce a single estimated loss for each candidate convex combination. The one with

the lowest cross-validated loss is selected as the optimal candidate weighting α∗.

Constructing final policy rules using test data

We re-train each candidate estimator of the CATEs τj(Vi) and the optimal policy rule πj(Vi)

on the full training data s1, and generate predictions τ̂j(Vi) and π̂j(Vi) on the testing data s2.

Using the optimal weights α∗ from the previous step, we combine the candidate predictions to

yield the super learner estimate of the optimal policy rule, where π̂∗
τ(Vi)

(Vi) = I[τα∗(Vi) > 0]

(that is, the rule based on the sign of the optimal weighted convex combination of candidate

CATEs) and π̂∗
π(Vi)

(Vi) = π̂α∗(Vi) (that is, the rule that corresponds to the optimal weighted

convex combination of candidate rules).

Validation strategy and robustness to overfitting For causal estimands, the lack

of a ground truth for CATEs or optional policy rules makes direct validation infeasible. To

ensure robustness and generalisability, we use two complementary validation techniques. First,

we use 2-fold cross-fitting, which ensures that all predictions – including nuisance parameters,

24Convex combinations are found using the simplex method, which represents a linear programming
problem as a system of linear equations, and defines an algorithm for finding the solution to this system
of linear equations.

25Note from (12) that a given convex combination of candidate policy rules is made using a weighted
majority vote, meaning that if the weighted average of candidate rules is greater than 0.5, πα(Vi) is equal
to one; and zero otherwise.
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CATEs, and policy rules – are made on data unseen during training. This approach mimics out-

of-sample testing and is widely recognised as a rigorous validation method in causal inference.

Second, we apply K-fold cross-validation within the super learner framework to evaluate and

adaptively weight candidate models based on their cross-validated performance. Together, these

techniques provide safeguards against overfitting and ensure sufficient reliability of the learned

policy rules.

Figure 1: Our policy learning workflow.

5.3.5 Evaluating the policy rules

First, we analyse the estimated CATEs from our threshold-based candidates, to determine

whether there is any value in learning rules that exploit treatment effect heterogeneity in assign-

ing APBD over APBN. We plot Targeting Operating Characteristic (TOC) curves that compare

the ATE of assigning treatment (APBD) to increasing fractions of households q (households are

sorted according to τ̂j(Xi) in decreasing order) (Yadlowsky et al., 2021). Here, q represents
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the fraction of households exposed to APBD during the evaluation process, similar to κ, but

used specifically for exploring treatment effects. While the primary target causal parameter is

the value under the optimal policy rule, exploring the ATEs using TOC curves allows us to

illustrate the marginal improvements in treatment effects as we increase the fraction of treated

households. We also separately plot sorted group average treatment effects (GATEs) that strat-

ify τ̂j(Xi) into quintiles ordered in terms of treatment benefit, and estimate τ̂j for each quintile.

This approach helps to identify and quantify treatment effect heterogeneity across different

subgroups. Significant differences between the bottom and higher quintiles provide evidence of

varying treatment impacts (Chernozhukov et al., 2018b). Second, we compare the counterfac-

tual mean outcomes under the estimated optimal policy rules to the static rules and the actual

policy assignment, to determine whether personalised policy rules outperform the status quo.

The counterfactual mean outcomes under the various rules are estimated using the AIPTW

estimator, as well as the targeted minimum loss-based estimator (TMLE) for robustness.26 We

additionally report the counterfactual mean outcomes under each candidate policy rule, as well

as their weighted contributions to the super learner, to infer their relative importance in the

optimal policy rules. Third, we identify the subgroups formed from the optimal policy rules

by characterising households that are assigned to APBD and APBN under the optimal policy

rule, and comparing them to households under the actual policy assignment. Lastly, we plot

visual representations of the tree-based rules that are made up of splitting nodes (that is, the

covariates to split on and their associated splitting values) and leaf nodes (that is, the policy

decisions), for additional subgroup analyses.

6 Results

6.1 Descriptive statistics

Table 4 compares the average characteristics of households that are assigned to PBI-APBD and

PBI-APBN under the actual policy assignment Di for a selection of observed covariates from Xi.

Although the two samples are largely comparable, we find some small differences. Compared

to their APBN counterparts, the heads of APBD households are more likely to be in the 25-

44 age bracket, married and in employment, particularly in the primary sector. On average,

their households tend to be larger in size (average of 3.7 members compared to 3.5 for APBN),

although with fewer members that are educated. There are also fewer members that use the

internet or have cellular phones, and the household is slightly less likely to have basic household

amenities such as electricity and drinking water. Both samples report having easy access to all

26TMLE is a doubly robust estimator that aims to debias our target parameter in question by esti-

mating a “clever” covariate Hi =
I[Di=π(Vi)]

e(Xi)
, and updating the initial estimate of the outcome regression

under the rule µ̂π(Vi)(Xi) with the intercept term (estimated using maximum likelihood estimation) from
a generalised linear model that regresses Yi on an offset term logit{µ̂π(Vi)(Xi)} and Hi. See van der Laan
and Luedtke (2015); van der Laan and Rose (2018) for more details.
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types of health care facilities, although accessibility is significantly better for APBN households,

especially for hospitals. On average, community care centres are the most accessible health

facility across all households, and hospitals are the least accessible. Geographically, the average

household enrolled into PBI is rurally based. This is especially true for APBD households, who,

according to the data, are more likely than APBN households to live in Sumatera, Kalimantan

and Maluku-Papua, which represent a few of the regions in the country with high percentages

of rural populations (Mardiansjah et al., 2021). Figure 2 displays balance statistics on the full

covariate vector X, showing that after reweighting the trimmed sample using the inverse of

the propensity score, all covariate means are balanced (absolute SMD < 0.1) across the two

subpopulations.27 For any small remaining imbalances, we address these through our doubly

robust approach.

6.2 Variable selection

Figure B.2 plots the coefficients for V 1, as a function of the log(λ) values used in the adaptive

LASSO model. We select the covariates with non-zero coefficients that are associated with the

value of log(λ) that minimises the cross-validated mean squared error. Our model selects 10 (out

of 19) household-level variables relating to demographics, basic amenities and asset ownership –

the number of members aged between 15 and 64, the number of educated members, the number

of cellular phones, home ownership status, indicators for whether the household has electricity,

drinking water, electric/gas cooking fuel and concrete walls, and indicators for whether the

household owns a gas canister, vehicle (car or motorcycle) and gold – that form V 2.

6.3 Exploring treatment effect heterogeneity

Figure 3 plots TOC curves showing estimated improvements in the ATE (compared to the

overall ATE) from assigning APBD to increasing fractions of the population, ranked according

to their candidate-specific CATE estimates. The area above the TOC curve provides some

evidence of treatment effect heterogeneity since the ATEs for highly ranked subpopulations

outperform the overall ATEs. We find that, in general, the CATE models that consider V 1

display more heterogeneity than those that consider V 2. In both instances, generalised boosted

models find very little variation in treatment effects, whereas neural networks and support

vector machines find more heterogeneity. The notable differences in effect estimates across the

candidates algorithms highlight the potential limitations of relying on a single CATE-based

candidate estimator of the policy rule, as opposed to an ensemble.

Figure 4 plots sorted GATEs for quintiles of CATEs estimated by each threshold-based candi-

date estimator. Differences in sorted GATEs between the lowest quintile (Q1) and the higher

quintiles (Q2-Q5) are reported in Table B.1. Our findings support those from Figure 3, in that

27See Figure B.1 for a density plot of the predicted propensity scores.
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Figure 2: Covariate balance between households assigned to PBI-APBD and PBI-APBN.
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Note: Standardised mean differences between the “treated” (PBI-APBD) and the “controls”
(PBI-APBN) are reported in the unweighted untrimmed sample, unweighted trimmed sample,
and weighted trimmed sample (using inverse probability of treatment weights for the ATE).
HoH = head of household. HH = household. See Appendix A for further details on the
included covariates.

there is evidence of heterogeneity in treatment effects. An evaluation that focuses solely on over-

all ATEs would conclude that there are limited impacts of assigning APBD over APBN, and

the evident variation in impacts would be missed. The sorted GATEs tell us that households

in the higher quintiles (predominantly Q4 and Q5) have a lower risk of suffering catastrophic

health expenditures from receiving APBD over APBN, while those in the lower quintiles (Q1

and Q2) are at a higher risk. In summary, our heterogeneity analysis provides justification for
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Figure 3: Targeting Operator Characteristic (TOC) curve
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Note: TOC curve plots the cumulative estimated ATEs on catastrophic expenditure from
assigning PBI-APBD (compared to PBI-APBN) to increasing fractions of the population,
ranked according to the estimated CATEs from threshold-based candidate estimators of the
policy rule τ̂j(Xi). Separate TOC curves are displayed for CATE estimators that consider V 1
and V 2.

learning CATE-based policy rules.

6.4 Evaluating the estimated policy rules

Figure 5 presents point estimates and 95% confidence intervals of the counterfactual mean

outcomes under the super learner estimates of the optimal policy rules and the static rules, in

comparison to the mean outcome under the actual policy assignment Di of 0.127 (95% CI +/-

0.003). Using our primary performance measure, the AIPTW estimator of the mean value of the

learned policy, we find that the unconstrained rule has the best performance, with an estimated

mean outcome of 0.115 (95% CI +/- 0.006). The constrained rule performs slightly worse with

an estimated mean outcome of 0.125 (95% CI +/- 0.005), which is still better than the actual

assignment. Assigning all households to APBD generates a mean outcome of 0.123 (95% CI

+/- 0.007), and assigning all to APBN gives 0.127 (95% CI +/- 0.004). The TMLE estimator

supports our primary findings, with very similar point estimates and confidence intervals.

Table B.2 presents estimates of the counterfactual mean outcomes for the candidate estimators

included in the super learner. We find that the majority of our algorithms, including simple

linear models, generalised boosted models, causal forests, regression splines and policy trees (of

all depths), perform particularly well with estimates in the range of 0.114-0.118. Overall, candi-

dates rules that are based on simpler or restricted functional forms (for example, linear models

and and shallow policy trees) outperform those based on more complex models (for example,
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Figure 4: Estimated sorted GATEs from threshold-based candidate estimators of the
CATE
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Note: Sorted GATEs are the estimated ATEs for each quintile of the population, ranked (in
descending order) by predicted CATEs. The bottom quintile (Q1) denotes the least affected
population subgroup (i.e. households with the smallest CATEs), and the top quintile (Q5)
denotes the most affected subgroup (i.e. households with the largest CATEs). The red dashed
line is the candidate-specific ATE estimate. Separate plots are displayed for CATE estimators
that consider V 1 and V 2.

neural networks and support vector machines). Figure B.3 presents the average weighted con-

tributions of the candidate estimators across the sample-specific super learner estimates of the

policy rules. Causal forests (fitted on V 1) and generalised linear models (fitted on V 2) receive

the largest weightings in the respective unconstrained and constrained rules.

Table 4 presents results from the classification analysis of the learned subgroups under the

super learner estimates of the optimal policy rule for selected variables in X. We compare the

characteristics of households under the optimal policy to those under the actual assignment.

Compared to households actually assigned to APBD, those that are assigned to APBD under the

unconstrained rule are more likely to be urban-based, where health care facilities are even more

accessible. They are slightly less likely to reside in the regions of Maluku-Papua and Sumatera,

where the current APBD allocation is concentrated, but in Sulawesi, Bali, and Java. The

opposite is true for APBN, in that compared to the actual assignment, the unconstrained rule

assigns APBN to less urban households, particularly in the regions of Sumatera and Maluku-

Papua, where health care is less accessible. There are also some important socioeconomic

differences that strengthen this urban-rural distinction. Compared to the actual assignment,

households assigned to APBD under the optimal policy rule have more educated members, their

homes are more likely to have basic amenities and assets, and they are also more likely to access

technology (for example, internet and cellphones). Households assigned to APBN under the

rule are slightly worse off in terms of the same features. With regard to demography, APBD-
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Figure 5: Estimated counterfactual mean outcomes
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Note: Point estimates and 95% confidence intervals (CI) are reported for the AIPTW and
TMLE estimators. APBD-all (APBN-all) is the static rule that assigns APBD (APBN) to
everyone. Unconstrained (constrained) SL is the super learner estimate of the unconstrained
(constrained) optimal policy rule. The red solid line denotes the mean outcome under the
actual policy assignment Di.

assigned households under the rule are smaller, with heads of households that are older (aged

45 and over) and more likely to be employed in the secondary and tertiary sectors, compared

to the current assignment. On the contrary, APBN-assigned households under the rule are

larger, with heads of households that are younger (aged below 45) and working in the primary

sector. Under the constrained rule, we find similar differences between households that are

assigned to the two schemes compared to the actual assignment. However, certain differences

in characteristics are more pronounced. For example, households that are assigned to APBD

under the optimal policy rule are even more likely to be educated and have access to technology,

while the opposite is true for households that are assigned to APBN.

Figures B.4-B.9 plot the learned policy trees that are candidates in the super learner esti-

mate of the unconstrained optimal policy. The splitting covariates support our findings from

the subgroup analyses that households assigned to APBD under the optimal policy rule are

socioeconomically richer than those assigned to APBN, with better household amenities (for

example, protected drinking water, and cooking and toilet facilities) and assets (for example,

vehicles and cellphones). The shallower trees (of depth 1) only split on the availability of house-

hold amenities, while the deeper trees (of depths 1 and 2) introduce characteristics associated

with household members (for example, the household size and the number of members in work

or with education).
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7 Discussion

In this paper, we addressed the assignment of Indonesia’s two subsidised health insurance

schemes to eligible households, considering the perspective of the state government. We learned

optimal policy rules that assign households to either treatment (PBI-APBD) or control (PBI-

APBN) to reduce the expected probability of households incurring catastrophic health. Using

a standard 10% threshold of household income for catastrophic expenditure, we were able to

gauge the impact on households’ enrolment to APBD versus APBN on their financial outcomes.

Although average treatment effects appear small, the heterogeneous treatment effects indicate

that utility gains could be maximised with CATE-based policy rules, estimated using the super

learner.

Our unconstrained optimal policy rule, which targets specific covariates, achieves a lower ex-

pected risk of catastrophic expenditure than both the actual assignment and static rules. Ap-

plying a 10% budget constraint, our constrained policy outperforms the actual assignment and

the static rule that assigns APBN to all. Although the utility gains under the estimated optimal

policy rules appear modest in percentage terms, the reduction in the total number of uninsured

households facing catastrophic health expenditure compared to the actual assignment strategy

could be substantial at the population level. For example, in a population of approximately

245 million with 22.5% uninsured (=55 million) (as reported by Mahendradhata et al. (2017)),

the relative reduction in the number of uninsured facing catastrophic health expenditure is

approximately 660,000 for the unconstrained rule and 110,000 for the constrained rule.

One of the main differentiating features between the assignment strategy under the estimated

rules and the actual assignment is geography, particularly the urban-rural distinction, which

is known to be linked to the availability of health services, and a key determinant of health

spending (Agustina et al., 2019; Johar et al., 2018; Sambodo et al., 2021). An optimal policy

rule that shifts a small proportion of urban enrollees from APBN to APBD could improve

outcomes, assuming that this strategy is chosen over one that improves the availability of

health services in less-developed regions. Socioeconomic differences are also present within the

assignment strategy. Households that are assigned to APBD under the optimal policy rule

are more likely to be better off than those assigned to APBN, in terms of characteristics that

can be easily verified by decision makers (for example, whether the household has electricity,

toilet facilities or a vehicle). The wider goal of JKN is to achieve full population coverage, which

would involve assigning PBI to eligible uninsured households based on their observed covariates.

Differences in characteristics between households that are assigned to APBN and APBD under

the optimal policy rule, which can be identified from our descriptive statistics and the visual

decision trees, could be used to match uninsured households to the appropriate PBI scheme.

Our study has some limitations. We assume no unobserved confounding, given our rich set of

included controls, and rely on a doubly robust adjustment for observed confounding to estimate

our target causal parameter. We previously discussed our justification for restricting the sample
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to households that are enrolled into either PBI scheme, and excluding uninsured households.

By controlling for head-of household characteristics, household assets and health care service

accessibility, we try to minimise unobserved confounding that may explain the process of selec-

tion into APBD or APBN, which can create bias in our estimates of the treatment effects, and

consequently, the policy rules. We also make explicit the fact that we trim observations with

extreme propensity scores, which are becoming more common in larger datasets. We acknowl-

edge that trimming methods are sensitive to the pre-defined cut-off points, and can result in

a substantial sample size reduction (Li et al., 2019). We also apply a 10% budget constraint

to reflect the national government healthcare funding allocation to local governments, which

assists in modelling realistic constraints but may not fully capture additional funding sources

for APBD. For a representative policy rule, further consultation would be necessary to un-

derstand precise budgetary restrictions on PBI allocations. Furthermore, our choice to define

catastrophic expenditure using a 10% threshold of household income – while standard (Wagstaff

et al., 2018) – may not fully capture financial strain across income levels or regions. Although we

did not perform a sensitivity analysis with alternative thresholds (e.g. 5%, 15%), future studies

could explore this approach to assess the robustness of policy implications. Lastly, in our super

learner library of candidate estimators, we include rules that are based on the CATE function

(threshold- and tree-based rules) and static rules. In theory, other candidate estimators that

do not rely on estimating the CATE function could be included.

Potential criticisms of relying on ensembling tools for policy learning are that their underlying

methods are based on a black-box, meaning that the exact contribution of each covariate to

prediction is unclear. The use of machine learning in policy decisions has raised some concerns

about their potential ethical and equity implications (Kube et al., 2019). Hence, the learned

rule may need to be constrained to belong to a policy class that imposes restrictions on the

functional form, for example, for added interpretability (Kitagawa and Tetenov, 2018; Zhou

et al., 2022). In general, the requirement for human interpretability to justify policy decisions

could result in a sub-optimal rule in terms of the objective function. If the expected loss

in utility between an optimal, uninterpretable rule and a nearly-optimal, interpretable rule is

small, decision makers may choose to opt for the latter. Learning optimal policies using the

super learner offers a structured solution to addressing the trade-off between optimality and

interpretability, as the candidate library can include a diverse set of estimators according to the

decision maker’s preferences. In our assignment problem, we find that a policy that belongs to

a class of interpretable and transparent rules (for example, simple linear models and shallow

decision trees) may achieve similar or even better outcomes in finite samples than the black-box

ensemble. Further, the comparable performance of candidate estimators that consider V 1 and

V 2 also implies that a policy rule that targets only the most important predictors of treatment

effect heterogeneity, which we identify using regularisation on the CATE model, can also produce

an interpretable solution. Since our policy rule is based on decision criteria that were curated

by policymakers, and we can, to some extent, explain the construction of the rule, we hope that

the potential impacts of algorithmic bias on our findings are reduced (Panch et al., 2019).
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Learning policy rules can be time and resource-intensive. A well-constructed rule relies on

gathering sufficient data and having an appropriately skilled workforce to conduct the analyses.

Sustaining utility gains would require regularly updating the rule using new information that

reflects any changes in covariate distributions, particularly if these changes are in response to

the rule itself. However, this is unlikely in our empirical problem given the relatively comparable

characteristics between treated and control populations.

Our findings highlight the potential of combining ex-ante and ex-post targeting measures to

improve the delivery of social programmes. Evaluating the progress of implemented policies,

through an assessment of impact heterogeneity, could strengthen policy corrections and guide

future decisions, by potentially identifying a superior assignment strategy that achieves larger

expected benefits. We acknowledge that policymaking at the national level is incredibly com-

plex. Health care may be one of several objectives of the state, so aligning targeting criteria

across the social welfare function is important. Improving equity is a policy priority in most

health care systems, including Indonesia (Johar et al., 2018). We do not directly encode equity

constraints into our objective function, although in theory this could be possible with some

algorithmic modifications. For example, an equity constraint could assign centrally-funded in-

surance to all households that receive social security, regardless of their observed covariates.

We do, however, include proxies for socioeconomic status in our pre-specified targeting criteria

that could indirectly address equity considerations. Since our learned policy trees define an

assignment strategy that is primarily based on socioeconomic disparities, policymakers could

use these to guide fairness decisions.

8 Main conclusions

This study demonstrates the potential of data-driven methods to optimise the assignment of

Indonesia’s subsidised health insurance schemes. The proposed optimal policy rules can signifi-

cantly reduce catastrophic health expenditure, with substantial benefits at the population level.

By targeting specific geographic and socioeconomic groups, the rules could enhance equity in

health insurance access. While real-world implementation is beyond the scope of this study,

the findings provide a basis for future discussions with policymakers on adopting data-driven

approaches to improve health insurance allocation and outcomes.

26



Table 4: Classification analysis of selected variables in X, for households assigned to PBI-
APBN and PBI-APBD under the learned policy rules, estimated using the unconstrained
and resource-constrained super learners.

Actual assignment Unconstrained rule Constrained rule

APBN
(n=39,367)

APBD
(n=22,375)

APBN
(n=23,598)

APBD
(n=38,144)

APBN
(n=58,168)

APBD
(n=3,574)

Mean Mean Mean Diff Mean Diff Mean Diff Mean Diff

Head of household characteristics
Male 0.814 0.850 0.828 0.013 0.827 -0.023 0.827 0.012 0.834 -0.016
Age 0-24 0.013 0.018 0.015 0.002 0.015 -0.003 0.015 0.002 0.013 -0.006
Age 25-44 0.307 0.391 0.340 0.033 0.336 -0.055 0.338 0.030 0.341 -0.051
Age 45-64 0.508 0.461 0.487 -0.021 0.494 0.033 0.492 -0.017 0.487 0.025
Age 65+ 0.154 0.114 0.140 -0.014 0.139 0.025 0.139 -0.015 0.144 0.030
Married 0.770 0.805 0.781 0.011 0.783 -0.021 0.782 0.012 0.791 -0.014
In employment 0.855 0.892 0.867 0.012 0.869 -0.023 0.869 0.014 0.862 -0.030
Employment: primary sector 0.437 0.524 0.469 0.032 0.469 -0.055 0.469 0.032 0.457 -0.067
Employment: secondary sector 0.063 0.047 0.058 -0.005 0.057 0.010 0.057 -0.006 0.056 0.010
Employment: tertiary sector 0.354 0.321 0.340 -0.014 0.344 0.022 0.342 -0.012 0.348 0.027
Literate: Latin/Arabic letters 0.914 0.907 0.913 -0.001 0.910 0.004 0.911 -0.003 0.911 0.004
Compulsory education 0.684 0.683 0.683 -0.001 0.684 0.001 0.684 -0.001 0.687 0.004
Had a cellphone in previous 3

months
0.585 0.610 0.594 0.009 0.593 -0.016 0.594 0.009 0.587 -0.023

Used internet in previous 3
months

0.117 0.106 0.116 -0.001 0.112 0.005 0.114 -0.003 0.107 0.001

Household characteristics
Number of members 3.538 3.693 3.590 0.053 3.596 -0.097 3.593 0.055 3.618 -0.075
Number of productive

members (aged 15-64)
2.366 2.340 2.358 -0.008 2.356 0.015 2.356 -0.010 2.365 0.025

Number of children in school 0.394 0.352 0.376 -0.018 0.381 0.029 0.378 -0.016 0.388 0.037
Number of members in

employment
1.684 1.695 1.689 0.004 1.688 -0.007 1.688 0.004 1.693 -0.002

Number of members with
compulsory education

2.211 2.136 2.179 -0.032 2.187 0.051 2.182 -0.029 2.218 0.082

Number of rooms 5.851 5.796 5.836 -0.014 5.828 0.031 5.830 -0.021 5.845 0.049
Location: urban 0.372 0.315 0.349 -0.023 0.352 0.038 0.351 -0.021 0.355 0.041

Household asset ownership
Electricity 0.958 0.908 0.942 -0.016 0.938 0.031 0.940 -0.018 0.935 0.027
Purchases drinking water 0.596 0.559 0.586 -0.010 0.581 0.022 0.583 -0.014 0.580 0.021
Private/shared toilet 0.794 0.790 0.793 -0.001 0.792 0.003 0.792 -0.002 0.804 0.015
Refrigerator 0.407 0.422 0.408 0.001 0.415 -0.007 0.413 0.006 0.407 -0.015
Gas canister >5.5kg 0.062 0.053 0.059 -0.003 0.058 0.005 0.058 -0.003 0.059 0.006
Car/motorcycle 0.638 0.660 0.648 0.009 0.646 -0.015 0.646 0.007 0.652 -0.008
Gold/jewellery >10g 0.131 0.139 0.135 0.005 0.133 -0.006 0.134 0.003 0.131 -0.007

District characteristics
Easy access: secondary care 0.793 0.681 0.755 -0.038 0.750 0.069 0.752 -0.040 0.750 0.069
Easy access: community care 0.979 0.924 0.960 -0.019 0.958 0.034 0.959 -0.020 0.957 0.034
Easy access: primary care 0.887 0.815 0.866 -0.021 0.858 0.043 0.861 -0.026 0.857 0.042
Easy access: maternity care 0.867 0.781 0.839 -0.028 0.834 0.052 0.836 -0.031 0.828 0.047

Region
Sumatera 0.311 0.360 0.328 0.017 0.329 -0.030 0.329 0.018 0.317 -0.042
Jakarta 0.003 0.000 0.002 -0.001 0.002 0.002 0.002 -0.001 0.003 0.003
Java 0.312 0.270 0.296 -0.015 0.297 0.027 0.296 -0.016 0.306 0.036
Bali,NTB,NTT 0.069 0.030 0.055 -0.014 0.054 0.024 0.054 -0.015 0.064 0.034
Kalimantan 0.072 0.088 0.079 0.007 0.077 -0.011 0.078 0.006 0.073 -0.015
Sulawesi 0.165 0.075 0.135 -0.030 0.131 0.056 0.133 -0.032 0.129 0.054
Maluku-Papua 0.069 0.177 0.104 0.036 0.110 -0.067 0.108 0.039 0.108 -0.069

Note: Sample means are reported for selected variables included in X for households in the trimmed
70% data partition that are assigned to PBI-APBD and PBI-APBN under the actual assignment, and
the optimal unconstrained and constrained policy rules (estimated using the super learner). The absolute
differences (”Diff”) in covariate means for households that are assigned to APBN and APBD under
the estimated optimal policy rules compared to the actual assignment are also reported. Coloured cells
denote the p-values from Welch’s two-sample t-test on whether these differences in covariate means are
significant. Two-sample t-test is conducted at a significance level of 0.05. If p-value on t-statistic <0.05:
cell colour is green; white otherwise.
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Appendices

A List of all covariates used for confounder adjust-

ment

Head of household-level (binary)

Male

Marital status: married

Age 0-24

Age 25-44

Age 45-64

Age 65+

Has a national identity number

Literate: Latin/Arabic letters

Educated (at the compulsory level)

Travelled domestically for tourism in 2016

Had a cellphone in previous 3 months

Used internet in previous 3 months

Employment status: in employment

Employment sector: primary

Employment sector: secondary

Employment sector: tertiary

Household-level (count)

Educated (at the compulsory level)

Employment status: in employment

Productive members (aged 15-64)

Children at school

Size (members)

Size (families)

Rooms

Household-level (binary)

Location: urban area

Home occupancy status: owner

Has a second residence

Roof material: concrete/tile

Wall material: concrete

Floor material: marble/granite/ceramic/parquet/vinyl/carpet
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Toilet facility: private/shared

Protected drinking water source

Purchases drinking water

Electricity

Cooking fuel: gas/electric

Sewage disposal: septic tank/sewage system

Experienced a natural diaster in previous year

Natural tourism in residential area

Savings account

Goods ownership: gas (over 5.5kg)

Goods ownership: refrigerator

Goods ownership: air conditioning

Goods ownership: radiator

Goods ownership: landline

Goods ownership: computer

Goods ownership: gold (over 10g)

Goods ownership: boat

Goods ownership: car/motorcycle

Goods ownership: television

Goods ownership: land

District-level (binary)

Easy access to primary health care

Easy access to community health care

Easy access to maternal health care

Easy access to secondary (hospital) health care

Easy access to pharmacy

Regional-level (binary)

Region: Sumatera

Region: Jakarta

Region: Jawa

Region: Bali, NTB, NTT

Region: Kalimantan

Region: Sulawesi

Region: Maluka-Papua
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B Additional figures/tables

Figure B.1: Overlap plot
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Note: Density plot showing the distribution of propensity scores for households enrolled into
PBI-APBD and PBI-APBN in the trimmed 70% data partition.
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Figure B.2: Variable trace plot of adaptive LASSO fit
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Note: Plot shows the coefficients on V 1, as a function of the log(λ) values used in the cross-
validated adaptive LASSO model. The grey dashed line represents the value of log(λ) that
minimises the cross-validated mean squared error. See Table 2 for a detailed description of
the covariates in V 1. HoH = head of household.

Figure B.3: Weighted contributions of candidate estimators to the super learner
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Note: Average contribution of each candidate estimator in the super learner across cross-fitted samples
are displayed. Static rules are not included in the candidate library for the constrained rule.
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Table B.1: Results from heterogeneity test using difference-in-means estimator

V1 V2

Est SE Unadj
p-val

Adj
p-val

Est SE Unadj
p-val

Adj
p-val

CF
Q2-Q1 -0.055 0.000 0.000 0.000 -0.054 0.000 0.000 0.000
Q3-Q1 -0.073 0.000 0.000 0.000 -0.072 0.000 0.000 0.000
Q4-Q1 -0.088 0.000 0.000 0.000 -0.083 0.000 0.000 0.000
Q5-Q1 -0.113 0.000 0.000 0.000 -0.101 0.000 0.000 0.000

GBM
Q2-Q1 -0.011 0.000 0.000 0.000 -0.011 0.000 0.000 0.000
Q3-Q1 -0.017 0.000 0.000 0.000 -0.018 0.000 0.000 0.000
Q4-Q1 -0.019 0.000 0.000 0.000 -0.020 0.000 0.000 0.000
Q5-Q1 -0.021 0.000 0.000 0.000 -0.022 0.000 0.000 0.000

GLM
Q2-Q1 -0.039 0.000 0.000 0.000 -0.037 0.000 0.000 0.000
Q3-Q1 -0.057 0.000 0.000 0.000 -0.055 0.000 0.000 0.000
Q4-Q1 -0.070 0.000 0.000 0.000 -0.067 0.000 0.000 0.000
Q5-Q1 -0.088 0.000 0.000 0.000 -0.081 0.000 0.000 0.000

GLMi
Q2-Q1 -0.072 0.000 0.000 0.000 -0.053 0.000 0.000 0.000
Q3-Q1 -0.104 0.000 0.000 0.000 -0.073 0.000 0.000 0.000
Q4-Q1 -0.133 0.000 0.000 0.000 -0.091 0.000 0.000 0.000
Q5-Q1 -0.185 0.000 0.000 0.000 -0.121 0.000 0.000 0.000

SVM
Q2-Q1 -0.088 0.001 0.000 0.000 -0.077 0.001 0.000 0.000
Q3-Q1 -0.124 0.001 0.000 0.000 -0.106 0.001 0.000 0.000
Q4-Q1 -0.156 0.001 0.000 0.000 -0.125 0.001 0.000 0.000
Q5-Q1 -0.227 0.001 0.000 0.000 -0.163 0.001 0.000 0.000

NN
Q2-Q1 -0.032 0.001 0.000 0.000 -0.048 0.000 0.000 0.000
Q3-Q1 -0.036 0.001 0.000 0.000 -0.052 0.000 0.000 0.000
Q4-Q1 -0.037 0.001 0.000 0.000 -0.080 0.000 0.000 0.000
Q5-Q1 -0.064 0.001 0.000 0.000 -0.127 0.000 0.000 0.000

PM
Q2-Q1 -0.053 0.000 0.000 0.000 -0.040 0.000 0.000 0.000
Q3-Q1 -0.077 0.000 0.000 0.000 -0.058 0.000 0.000 0.000
Q4-Q1 -0.098 0.000 0.000 0.000 -0.069 0.000 0.000 0.000
Q5-Q1 -0.132 0.000 0.000 0.000 -0.086 0.000 0.000 0.000

Note: Table reports estimates and standard errors of the differences in sorted
GATEs (for quintiles of predicted CATEs) between the lowest quintile (Q1)
and higher quintiles (Q2-Q5). Unadj p-val does not correct for multiple hy-
pothesis testing. Adj p-val uses the Romano-Wolf procedure to correct for
multiple hypothesis testing.
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Table B.2: Counterfactual mean outcomes for candidate estimators included in the super
learner

AIPTW TMLE

Est SE Est SE

Static rules
APBD-all 0.123 0.004 0.124 0.003
APBN-all 0.127 0.002 0.126 0.002

Threshold-based rules
GLM-V 1 0.114 0.003 0.113 0.003
GLMi-V 1 0.117 0.003 0.115 0.003
PM-V 1 0.116 0.003 0.114 0.003
NN-V 1 0.122 0.003 0.120 0.003
SVM-V 1 0.120 0.003 0.122 0.003
GBM-V 1 0.114 0.003 0.112 0.003
CF-V 1 0.118 0.003 0.116 0.003
GLM-V 2 0.114 0.003 0.112 0.003
GLMi-V 2 0.114 0.003 0.113 0.003
PM-V 2 0.114 0.003 0.113 0.003
NN-V 2 0.119 0.003 0.117 0.003
SVM-V 2 0.126 0.003 0.127 0.003
GBM-V 2 0.115 0.003 0.112 0.003
CF-V 2 0.117 0.003 0.116 0.003

Tree-based rules
PT1-V 1 0.116 0.003 0.114 0.003
PT2-V 1 0.116 0.003 0.115 0.003
PT3-V 1 0.117 0.003 0.115 0.003
PT1-V 2 0.116 0.003 0.114 0.003
PT2-V 2 0.116 0.003 0.114 0.003
PT3-V 2 0.116 0.003 0.114 0.003

Note: Point estimates (Est) and standard errors (SE) are reported for
the AIPTW and TMLE estimators.
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Figure B.4: Depth 1 policy trees (fitted on V 1)
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Figure B.5: Depth 1 policy trees (fitted on V 2)
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Figure B.6: Depth 2 policy trees (fitted on V 1)
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Figure B.7: Depth 2 policy trees (fitted on V 2)
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Figure B.8: Depth 3 policy trees (fitted on V 1)
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Figure B.9: Depth 3 policy trees (fitted on V 2)
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C Optimal policy learning with resource constraints

Luedtke and van der Laan (2016a) model the problem of estimating optimal resource constrained

policy rules by imposing a constraint κ on the maximum proportion of units that can be treated,

and defining a set of solutions that satisfy κ. The optimal policy rule is the optimal solution

among the set of solutions that respect the constraint.

The formal theorem starts by defining SP as the survival function of the CATE function τ̂(Vi),

i.e. the probability that τ̂(Vi) is greater than some varying threshold T : T 7→ P (τ(Vi) > T .

Then, let

η := inf{T : SP (T ) ≤ κ}

TP := max{ηP , 0},

where η identifies the largest threshold value for which the survival probability is less than κ.

The optimal policy rule can be defined as follows:

π̂∗ :=







κ−SP (TP )

P (τ̂(Vi)=TP ) , if τ̂(Vi) = TP and TP > 0

I(τ̂(Vi) > TP ), otherwise.
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D Classical Derivations

D.1 Equivalence of the Optimization Objectives

In this section, we provide classical derivations for the interested reader. In the following, we

emphasize the equivalence of the full optimization objective in Equation (1) and the double-

robust-based optimization objective in Equation (8). In particular, for d = {0, 1}, note that

E[Γ̂i(d) | Xi] = E[µ̂d(Xi) +
I(Di = d)

êd(Xi)
(Yi − µ̂d(Xi)) | Xi]

= E[µ̂d(Xi) | Xi] + E[
I(Di = d)

êd(Xi)
(Yi − µ̂d(Xi)) | Xi]

= µ̂d(Xi) +
1

êd(Xi)
êd(Xi)(E[Yi(d) | Xi]− µ̂d(Xi))

= E[Yi(d) | Xi].

D.2 Equivalence of the Double Robust Scores

We emphasize the equivalence of the double robust score in Equation (7) and (9):

Γ̂cf
i = τ̂ cf (Vi) +

Di − ê(Xi)

ê(Xi)(1− ê(Xi))
[Yi − m̂(Xi)− (Di − ê(Xi))τ̂

cf (Vi)]

= (µ̂1(Xi)− µ̂0(Xi)) +
Di − ê(Xi)

ê(Xi)(1− ê(Xi))
[Yi − m̂(Xi)− (Di − ê(Xi))(µ̂1(Xi)− µ̂0(Xi))]

= (µ̂1(Xi)− µ̂0(Xi)) +
Di − ê(Xi)

ê(Xi)(1− ê(Xi))
[Yi − µ̂0(Xi)− ê(Xi)(µ̂1(Xi)− µ̂0(Xi))

− (Di − ê(Xi))(µ̂1(Xi)− µ̂0(Xi))]

= (µ̂1(Xi)− µ̂0(Xi)) +
Di − ê(Xi)

ê(Xi)(1− ê(Xi))
[Yi − µ̂0(Xi)− (µ̂1(Xi)− µ̂0(Xi))(Di − ê(Xi) + ê(Xi))]

= (µ̂1(Xi)− µ̂0(Xi)) +
Di − ê(Xi)

ê(Xi)(1− ê(Xi))
[Yi − µ̂0(Xi)−Di(µ̂1(Xi)− µ̂0(Xi))]

= (µ̂1(Xi)− µ̂0(Xi)) +
Di − ê(Xi)

ê(Xi)(1− ê(Xi))
[Yi − µ̂D(Xi)]

= Γ̂i.

We note that the second to last line follows since

1. if Di = 1,

Yi − µ̂0(Xi)−Di(µ̂1(Xi)− µ̂0(Xi))

= Yi − µ̂1(Xi).
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2. if Di = 0,

Yi − µ̂0(Xi)−Di(µ̂1(Xi)− µ̂0(Xi))

= Yi − µ̂0(Xi).
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