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ABSTRACT 

In high-speed rail (HSR) train planning and scheduling, traditional approaches often focus on 

passenger demand over short periods, such as one or two hours or a single day, while overlooking 

demand fluctuations over an entire week. This study proposes an integrated model for weekly train 

timetabling and stop planning, aiming to optimize both train stops and schedules across different 

times of day and days of the week. To improve computational efficiency for large-scale, real-world 

applications, a Lagrangian relaxation algorithm is developed. Case studies based on Chinese HSR 

lines demonstrate that the proposed model and algorithm outperform both the commercial solver 

CPLEX and the conventional sequential approach of line planning followed by timetabling. The 

weekly timetable generated by the proposed algorithm significantly reduces train and passenger 

traveling costs by improving traveling speeds and the proportion of passengers traveling within their 

preferred periods compared to current practical timetables, making it widely applicable to a wide 

range of HSR lines. 

Keywords: Train timetabling, weekly timetable, stop planning, passenger demand, Lagrangian 

relaxation, time-space network 
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1 INTRODUCTION 

High-speed rail (HSR) offers convenient and efficient transportation for passengers. However, many 
HSR lines are increasingly facing resource limitations due to rising demand driven by urban 
population growth and economic expansion. As a result, improving resource utilization and aligning 
train services more effectively with passenger demand have long been central goals in optimizing 
HSR train operations. 

HSR train operations are typically optimized through several stages. During the line planning stage, 
decisions are made regarding origin and terminal stations, stopping patterns, and frequencies of the 
trains. In the train timetabling stage, departure and arrival times at each station are determined. 
These stages are followed by vehicle and crew scheduling to ensure seamless service execution. 
Among these, line planning and timetabling are critical, as they directly influence how effectively 
services can respond to fluctuating passenger demand. 

With continuous economic growth in many regions, the variation between passenger demand 
patterns on different days have become increasingly evident on numerous HSR lines. Among these, 
variations between weekdays and weekends are the most prominent and have become a major focus 
for many railway companies. For instance, weekday travel is typically dominated by commuter 
traffic between urban centers and surrounding areas, while weekends often see spikes in tourism-
related demand. Along busy HSR lines, business travelers frequently account for high weekday 
volumes. These variations lead to distinct demand patterns between weekdays and weekends, and 
even among individual days such as Friday, Saturday, and Sunday. Moreover, different origin-
destination (OD) pairs exhibit distinct daily and weekly demand trends. 

Such weekly demand fluctuations pose significant challenges to classical optimization models for 
train planning and scheduling, which have traditionally focused on short periods, such as one or two 
hours, or have only addressed fluctuations within a single day. To manage these complex weekly 
patterns, several alternative strategies have been explored. A common practice among railway 
companies is to manually adjust train schedules, adding or removing trains to create separate 
timetables for weekdays and weekends. However, when OD pairs have varying demand peaks, 
simply increasing or reducing train numbers can lower service quality for some OD pairs. Moreover, 
these adjustments are typically based on experience and lack scientific optimization, a limitation 
highlighted in recent studies.  

Another alternative is to develop daily-varying timetables, which more accurately reflect demand 
changes across the week. While this can improve demand matching, it results in highly irregular 
schedules that may confuse passengers, making it harder for them to remember departure times, 
plan transfers, or reschedule trips. The challenges posed by complex weekly demand patterns to 
classical models, along with the limitations of current weekly scheduling practices, form the core 
motivation for this study. 

Most train timetabling models either repeat trains within each period, resulting in periodic trains 
and timetables (Kroon et al., 2014; Zhang & Nie, 2016), or run trains only during certain periods of 
the day, resulting in aperiodic trains and timetables (Cacchiani et al., 2010; Cacchiani et al., 2015). 



With predetermined line plans as input, integer variables have been formulated in some studies to 
determine specific arrival and departure times at stations (Barrena et al., 2014; Gong et al., 2021). 
Other studies employ binary variables in time-space networks to determine train routes (Tian & Niu, 
2020; Yao et al., 2023). Given the strong interdependence between line planning and timetabling, 
feedback strategies have been developed to integrate the two stages. For instance, Burggraeve et al. 
(2017) proposed an algorithm where the output timetable evaluates the quality of the line plan. 
Similarly, in Yan & Goverde (2019), train frequency constraints are adjusted during line planning 
to generate corresponding timetables, with the optimal timetable selected as the output. Integrated 
optimization approaches for line planning and timetabling have also been explored, often solved 
through decomposition algorithms such as Lagrangian relaxation (Yue et al., 2015) or ADMM 
(Alternating Direction Method of Multipliers; Zhang et al., 2021). These methods have also been 
extended to other stages, such as platform assignment (Xu et al., 2021) and vehicle scheduling (Liao 
et al., 2021). 

As passenger demand becomes more complex, improving the alignment of train services with 
demand variation has become critical. Schmidt & Schöbel (2010) proposed methods to integrate 
passenger routing into train scheduling models, and in their subsequent work, two algorithms were 
introduced to co-optimize timetables and passenger routes (Schmidt & Schöbel, 2014). Addressing 
passenger routing, Borndörfer et al. (2017) presented four assumptions: passengers may search for 
multiple routes within a travel time limit, choose only the shortest route, select the shortest route 
with capacity constraints, or follow a unique route for each OD pair, factoring in capacity limits. In 
more recent studies, complex passenger demand scenarios have necessitated specialized train 
operation strategies, such as skip-stop and short-turning strategies (Zhao et al., 2020; Yuan et al., 
2021), which require consideration of passenger routing during train planning to enhance service 
quality. Other approaches integrate passenger routing into objective functions, optimizing metrics 
like minimizing transfer station congestion (Yin et al., 2021), passenger waiting times (Dong et al., 
2020; Bucak & Demirel, 2022), and transfer times (Xu et al., 2021). 

Despite these advancements, several gaps remain in addressing the complex weekly demand 
variations in HSR scenarios. Traditional models typically optimize line plans and timetables for 
short periods or single days. Traditional models typically focus on short time horizons or single-day 
planning, which is insufficient when demand patterns vary significantly across the week. 
Furthermore, maintaining consistent stopping patterns and schedules across days, which is 
important for passenger convenience, adds another layer of complexity. This makes it difficult to 
implement fully daily-varying schedules or to apply a peak-day schedule with simple reductions for 
other days. 

To bridge these gaps and better align train operations with weekly fluctuations in passenger demand, 
this study proposes the Weekly Train Timetabling Integrating Stop Planning (WTTSP) model, along 
with a customized Lagrangian relaxation algorithm. The key contributions of this study are as 
follows: 

(1) . The model determines train arrival and departure times across a seven-day period. While 
this extended planning horizon increases decision variables and constraints, it enables better 
alignment with complex, real-world demand variations across different days and time periods. 

(2). The model integrates stop planning and passenger routing into the weekly timetable 



optimization. By incorporating seating capacity constraints and OD-specific travel needs, the 
model ensures consistency between supply and demand. 

(3). A weekly train operation network is constructed, converting the integrated optimization 
problem into a joint routing problem for both trains and passengers. This transformation, which 
includes headway and capacity constraints, enables a more tractable and scalable formulation. 

(4). A customized Lagrangian relaxation algorithm is developed to solve the WTTSP model in 
practical HSR scenarios. The algorithm relaxes key constraints (e.g., safety headway, seating 
capacity limits) into the objective function and decomposes the problem into independent 
routing subproblems for trains and passenger groups. A specialized solution sequence and path-
search strategy based on cross-day and cross-period scheduling constraints further enhance 
efficiency. 

The structure of this paper is as follows: Section 2 defines the WTTSP problem and presents key 
concepts, including the weekly train operation network. Section 3 presents the mathematical 
formulation of the WTTSP model. Section 4 details the customized Lagrangian relaxation algorithm. 
Section 5 describes computational experiments, including small-scale scenarios to test the algorithm 
and large-scale scenarios based on Chinese HSR cases. Finally, Section 6 concludes the paper with 
a discussion of findings and future research directions. 

2 PROBLEM DESCRIPTION 

2.1 Weekly Train Timetabling Integrating Stop Planning Problem 

Weekly train operations and passenger travel times are structured into two dimensions: days and 
periods. A full week consists of seven days, where some days may share identical timetables due to 
similar passenger demand patterns (e.g., Tuesday through Thursday), while others may differ (e.g., 
Friday and Saturday). Each day is further divided into consecutive periods, excluding maintenance 
hours during which trains do not operate (typically from midnight to 6:00 AM in China). For 
instance, a day might be divided into nine 2-hour periods, such as 6:00-8:00, 8:00-10:00, and so on. 
Based on a train’s schedule and stopping patterns across different days and periods, it can be 
classified into one of three weekly modes: 

Periodic Trains: These trains run at the same time across all days and periods with fixed schedules 
and stops, ensuring high regularity in the timetable and facilitating passenger transfers. A periodic 
train group consists of multiple trains that operate on various days and periods, sharing identical 
stops and departure times within their respective periods (e.g., departing at 6:15 in the 6:00–8:00 
period, 8:15 in the 8:00–10:00 period, etc.). Once the stop and schedule for any train within a 
periodic group is determined, the stops and schedules of all other trains in the group are fixed. Figure 
1 (1) and (2) show examples of periodic trains and their groups in a weekly timetable. 

Daily Trains: These trains operate with the same schedule and stops every day, helping passengers 
memorize timetables and simplifying crew and vehicle scheduling. Periodic trains are a specific 
type of daily trains that run in every period. A daily train group includes trains with identical stops 
and daily schedules. Once the stop and schedule of any train within this group is determined, the 
stops and schedules of all other trains in the group are also fixed. Figure 1 (3) illustrates examples 
of daily trains and their groups in a weekly timetable. 



 

Figure 1 Periodic trains, daily trains, and weekly trains in a weekly timetable 

Weekly Trains: These trains introduce flexibility into the timetable by operating only on specific 
days of the week, allowing better alignment with varying passenger demand. Figure 1 (4) illustrates 
an example of weekly trains operating on different days in the weekly timetable. 

Our previous work (Nie et al., 2022) proposed an efficient approach for generating a weekly line 
plan, determining the origin, destination, frequency, composition, and weekly mode (periodic, daily, 
or weekly) of trains in different periods and days. This study focuses on adjusting train stops and 
schedules, using the weekly line plan from that earlier work as input. The origin, destination, 
frequency, composition, and weekly mode of all trains specified in the given line plan are treated as 



fixed inputs and are not subject to optimization in the WTTSP problem. 

Based on these classifications, the WTTSP problem can be defined as follows: Given the 
configuration of the HSR line and its stations; detailed passenger demand data over a week; and the 
origin, destination, frequency, composition, and weekly mode of all trains, determine the stopping 
patterns and the departure and arrival times of each train at each station. The objective is to minimize 
the total travel costs of both passengers and trains, while ensuring consistency in stop patterns and 
schedules for all trains within the same periodic or daily train group. 

2.2 Assumptions 

Assumptions 1 through 3 establish the foundational concepts of weekly train operations, consistent 
with those in Nie et al. (2022), and are briefly reviewed here. Assumption 4 outlines the modeling 
approach for the passenger preference. Assumptions 5 through 7 simplify practical train operation 
rules to facilitate the formulation of the WTTSP model and the development of the algorithm. 

Assumption 1: The WTTSP problem considers two types of high-speed train compositions: short-
composition vehicles with 8 carriages and long-composition vehicles with 16 carriages (or 17 
carriages on some Chinese HSR lines). Train composition is used as input for determining feasible 
passenger routes. 

Assumption 2: In the passenger demand data, passengers of the same OD pair and departing in the 
same period and on the same day, are grouped into a single passenger group. It is assumed that all 
passengers within a group share the same train preferences. This departure period is regarded as 
their preferred period, reflecting typical passenger travel behaviors. Passengers from different 
groups are assumed to have distinct demand characteristics, due to differences in OD pairs, 
departure periods, and travel days, capturing variations in passenger behavior across time and routes. 

Assumption 3: To ensure a basic level of service along the HSR line, certain trains are designed as 
mandatory trains, operating at fixed times even during low-demand periods. These are referred to 
as. In this study, long-distance trains connecting the terminal stations of the HSR line, departing at 
standard hours such as 8:00, 9:00, or 10:00 are considered mandatory. These trains make limited 
stops and prioritize high speeds to serve long-distance passengers. 

Assumption 4: Passenger travel behavior is influenced by three factors: (1) the difference between 
their preferred departure period and the boarding train’s departure period, (2) the travel speed of the 
train, which is affected by the number of stops and dwell times, and (3) the transfer times required 
when changing trains. 

Assumption 5: Stations along the HSR line are categorized as major or local based on 
characteristics such as station capacity, passenger volumes, and the number of 
originating/terminating trains. Each station is also assigned a level, and both trains and passengers 
are classified accordingly, as shown in Table 1. 

Assumption 6: All trains in the weekly timetable are assumed to have the same technical speed and 
acceleration. Once a train’s stopping pattern is determined, its travel time between any two adjacent 
stations become fixed. 

Assumption 7: Train dwell times at stations are adjustable within a predefined range based on the 



station’s level. Major stations, equipped with more arrival and departure tracks, can accommodate 
more simultaneous train stops and offer greater dwell time flexibility. Fast trains may also overtake 
slower trains at major stations if the latter have extended dwell durations. 

Assumption 8: Passenger transfers are only permitted at major stations, and transfer times are 
restricted to a predefined range. 

Table 1 Stations, trains, and passenger classifications 

 Level 1 Level 2 Level 3 

Station 

Major Stations: Located at 
key points in the network, 
usually connecting multiple 
HSR lines or at large cities 
with high passenger 
demand 

Local Stations: Typically located along HSR lines 
connecting two major stations. Local stations are 
further classified into different levels according to 
the passenger volume. 

Train 

Level 1 Trains: Fast trains 
stopping only at level 1 
major stations. 

Level 2 Trains: Relative 
fast trains stopping at 
level 1 or level 2 stations 

Level 3 Trains: Slow 
trains stopping at any 
stations 

Passenger 
Level 1 Passengers: Direct 
passengers between level 1 
stations 

Level 2 Passengers: 
Passengers between level 
2 or level 1 stations. 

Level 3 Passengers: 
Passengers between 
level 3 stations and 
any other stations. 

3 MATHEMATICAL FORMULATIONS 

This section presents the formulation of the Weekly Train Operation Network (WTON) and the 
WTTSP model. Section 3.1 introduces the arcs and nodes in the WTON, which represent the 
stopping patterns, schedules, and the corresponding passenger flows. Section 3.2 describes the 
operational rules for periodic and daily trains within the WTON to ensure consistency in their stops 
and schedules. Section 3.3 defines the model’s objective, decision variables, and constraints, all of 
which are constructed based on the WTON framework. 

3.1 Arcs and Nodes in the Weekly Train Operation Network (WTON) 

Let 𝑠 ∈ 𝑆 represent the stations along the HSR line, where each major station 𝑠 ∈ 𝑆𝑀 generates 
a departure time-space node 𝑛𝑠𝑑𝑡𝐷  and an arrival time-space node 𝑛𝑠𝑑𝑡𝐴  for every time 𝑡 ∈ 𝑇 on 
each day 𝑑 ∈ 𝐷  within the WTON. These nodes represent the departure and arrival of both 
passengers and trains. Local stations, located between adjacent major stations, are not explicitly 
modeled as individual time-space nodes in the network. 

In the WTON, traveling arcs connect two adjacent major stations and indicate that trains stop at 
both major stations as well as selected local stations in between. By selecting traveling arcs with 
different stopping patterns, various combinations of local stations can be served. Once a stopping 
pattern is chosen, the departure and arrival times at the corresponding major stations are determined 
accordingly.  

Between the arrival and departure nodes at the same major station, dwelling arcs represent the time 
trains and passengers spend at the station. After alighting at a major station, passengers may transfer 



to another departing train via a transfer arc, which is formulated similarly to a dwelling arc but is 
applicable only to passengers. 

Figure 2 illustrates an example of the arc formulation in the WTON: 

Traveling Arc: A traveling arc, denoted as 𝑎(𝑠𝑠′,𝑑,𝑡𝑡′,𝜆)𝑅 , represents a train or passengers departing 

from major station 𝑠 at time 𝑡 on day 𝑑, and arriving at major station 𝑠′ at time 𝑡′, following a 
stopping pattern 𝜆 ∈ 𝐿𝑃𝑠𝑠′  , where 𝐿𝑃𝑠𝑠′  is the set of all possible stopping patterns between 
stations 𝑠 and 𝑠′. For brevity, the arc notation is simplified 𝑎𝑠𝑠′𝑑𝑡𝜆𝑅 .  

According to Assumption 6, once the stopping pattern 𝜆 of a traveling arc 𝑎 is determined, the 
travel time (𝑡′ − 𝑡) is recorded as 𝜏𝑎, which includes three components: the dwelling time at each 
local station where the arc 𝑎 stops, the acceleration and deceleration time associated with each 
intermediate stop, and the travel time between the origin and destination of the arc 𝑎.  

All traveling arcs include stops at their origin and destination stations. The selected stopping pattern 𝜆  determines which intermediate local stations are served. Typically, traveling arcs are defined 
between adjacent major stations. If a major station lies between the origin and destination, it is not 
included in the stopping pattern, representing a long-distance direct service between non-adjacent 
major stations.  

For instance, in Figure 2, arcs 𝑎1, 𝑎2, and 𝑎3 all depart from 𝑠1 at time 𝑡1 on day 𝑑1. Both 𝑎2 
and 𝑎3 stop at major stations 𝑠3, but differ in their local station stops: 𝑎2 bypasses local station 𝑠2, while 𝑎3 includes a stop at 𝑠2, resulting in different arrival times at 𝑠3. In contrast, 𝑎1 skips 𝑠3  entirely and continues to 𝑠4 . All stops along a traveling arc serve as potential origins and 
destinations for passengers, and seating capacity constraints are applied on each segment between 
adjacent stops to limit the number of passengers that can board. 

Dwelling Arc: A dwelling arc, denoted as 𝑎(𝑠𝑠,𝑑,𝑡𝑡′)𝐷  and simplified as 𝑎𝑠𝑑𝑡𝑡′𝐷 , represents a train 

dwelling at major station 𝑠, transitioning from the arrival node at time 𝑡 on day 𝑑 to the departure 
node at time 𝑡′. According to Assumption 7, the dwell time at major stations falls within a range 𝑇𝐷, such that (𝑡′ − 𝑡) ∈ 𝑇𝐷. In Figure 2, dwelling arcs 𝑎5, 𝑎6, and 𝑎7 represent different dwell 
times for passengers and trains. 

Transfer Arc: A transfer arc, denoted as 𝑎𝑠𝑑𝑡𝑡′𝑇 , represents passengers transferring at major station 𝑠  from a train arriving at time 𝑡  on day 𝑑  to another train departing at time 𝑡′ . According to 
Assumption 8, the transfer time is constrained within a range 𝑇𝑇, such that (𝑡′ − 𝑡) ∈ 𝑇𝑇. In Figure 
2 transfer arc 𝑎21 represents passengers transferring at station 𝑠3. 



 

Figure 2 Arcs in WTON 

3.2 Periodic and Daily Trains in the WTON 

Based on the WTON, the consistency of stops and schedules for trains within the same periodic and 
daily train groups in the WTTSP problem is formulated through time-space route constraints. Let 𝑝 ∈ 𝑃 represent a period, with the length each of period is denoted as 𝜏𝑃. Integer 𝑘 represents the 
index of a period 𝑝 in the set 𝑃. 

The routes of periodic trains in the WTON are formulated as follows: Traveling arcs that 
connect major stations 𝑠 and 𝑠′, follow the same stopping pattern 𝜆, and depart at intervals of 
integer multiples of 𝜏𝑃, form a periodic traveling arc group. Suppose the earliest departure in this 
group occurs at time 𝑡, the group can be denoted as: 

𝐴𝑠𝑠′𝑡𝜆𝑅(𝑃) = {𝑎𝑠𝑠′𝑑𝑡′𝜆𝑅 |𝑡′ = 𝑡 + 𝑘 ∙ 𝜏𝑃 , 𝑘 ∈ [0, |𝑃| − 1], 𝑑 ∈ 𝐷} 

Similarly, a periodic dwelling arc group between time 𝑡1 and 𝑡2 at station 𝑠 is denoted as: 

𝐴𝑠𝑡1𝑡2𝐷(𝑃) = {𝑎𝑠𝑑𝑡1′ 𝑡2′𝐷 |𝑡1′ = 𝑡1 + 𝑘 ∙ 𝜏𝑃, 𝑡2′ = 𝑡2 + 𝑘 ∙ 𝜏𝑃, 𝑘 ∈ [0, |𝑃| − 1], 𝑑 ∈ 𝐷} 



In this case, for trains 𝑙 and 𝑙′ from the same periodic train group, which operate during periods 
indexed by 𝑘 and 𝑘′ on days 𝑑 and 𝑑′, respectively, if train 𝑙 occupies a traveling arc 𝑎𝑠𝑠′𝑑𝑡𝜆𝑅  

from the periodic group 𝐴𝑠𝑠′𝑡0𝜆𝑅(𝑃)
,where 𝑡 = 𝑡0 + 𝑘 ∙ 𝜏𝑃 , train 𝑙′  must occupy the corresponding 

traveling arc 𝑎𝑠𝑠′𝑑′𝑡′𝜆𝑅   from the same group 𝐴𝑠𝑠′𝑡0𝜆𝑅(𝑃)  , where 𝑡′ = 𝑡0 + 𝑘′ ∙ 𝜏𝑃 . This ensures that 

train 𝑙′ operates in the 𝑘′-th period on day 𝑑′, maintaining the same periodic structure as train 𝑙. 
Similarly, if train 𝑙 occupies a dwelling arc 𝑎𝑠𝑑𝑡1′ 𝑡2′𝐷

 from the group 𝐴𝑠𝑡1𝑡2𝐷(𝑃) , where 𝑡1′ = 𝑡1 + 𝑘 ∙
𝜏𝑃 and 𝑡2′ = 𝑡2 + 𝑘 ∙ 𝜏𝑃, then train 𝑙′ must occupy the corresponding dwelling arc 𝑎𝑠𝑑′𝑡1′′𝑡2′′𝐷  from 

the same group, where 𝑡1′′ = 𝑡1 + 𝑘′ ∙ 𝜏𝑃 and 𝑡2′′ = 𝑡2 + 𝑘′ ∙ 𝜏𝑃. 

An example is provided in Figure 2, where traveling arcs {𝑎2;  𝑎4;  𝑎12;  𝑎14}  and {𝑎9; 𝑎11;  𝑎18;  𝑎20}  form two periodic groups, while dwelling arcs {𝑎5;  𝑎8;  𝑎15;  𝑎17}  form 
another periodic group. These groups are also depicted in Figure 3. If a periodic train in period 𝑝1 
and day 𝑑1  select arcs 𝑎2 , 𝑎5 , 𝑎9 , then the trains from the same periodic train group but in 
different periods and days will select {𝑎4;  𝑎8;  𝑎11} , {𝑎12;  𝑎15;  𝑎18} , and {𝑎14;  𝑎17;  𝑎20}  to 
maintain schedule consistency. 

 

Figure 3 Periodic traveling and dwelling arc groups in the WTON 

The routes of daily trains in the WTON are formulated similarly: Traveling arcs that connect 
major stations 𝑠 and 𝑠′, follow the same stopping pattern 𝜆, and depart at time 𝑡 form a daily 
traveling group, denoted as: 

𝐴𝑠𝑠′𝑡𝜆𝑅(𝐷) = {𝑎𝑠𝑠′𝑑𝑡𝜆𝑅 |𝑑 ∈ 𝐷} 



Similarly, a daily dwelling arc group is denoted as: 

𝐴𝑠𝑡𝑡′𝐷(𝐷) = {𝑎𝑠𝑑𝑡𝑡′𝐷 |𝑑 ∈ 𝐷} 

In this case, for trains 𝑙  and 𝑙′  from the same daily train group, operating on days 𝑑  and 𝑑′ , 
respectively, if train 𝑙 occupies a traveling arc 𝑎𝑠𝑠′𝑑𝑡𝜆𝑅  in a daily group 𝐴𝑠𝑠′𝑡𝜆𝑅(𝐷)  or a dwelling arc 

𝑎𝑠𝑑𝑡𝑡′𝐷  in a daily group 𝐴𝑠𝑡𝑡′𝐷(𝐷), then train 𝑙′ must occupy traveling arc 𝑎𝑠𝑠′𝑑′𝑡𝜆𝑅  and dwelling arc 𝑎𝑠𝑑′𝑡𝑡′𝐷  from the same daily groups on day 𝑑′. 
Consider the example in Figure 2, where arcs {𝑎2;  𝑎12} , {𝑎4;   𝑎14} , {𝑎9;  𝑎18} , { 𝑎11;  𝑎20} , {𝑎3;  𝑎13} , and { 𝑎10;  𝑎19}  form different daily traveling arc groups, and arcs {𝑎5;  𝑎15} , {𝑎8;  𝑎17}, and {𝑎6;  𝑎16} form different daily dwelling arc groups. These groups are also illustrated 
in Figure 4. If a daily train on day 𝑑1 select arcs 𝑎2, 𝑎5, 𝑎9, then a train from the same daily 
group on day 𝑑2 will select 𝑎12, 𝑎15, 𝑎18. 

 

Figure 4 Daily traveling and dwelling arc groups in the WTON 

 

3.3 Weekly Train Timetabling Integrating Stop Planning (WTTSP) Model 

Table 2 The meaning of sets and parameters for WTTSP model 

Notation Meaning 𝑈  The set of passenger groups, and 𝑢 represents an individual passenger group. 𝑈𝑑  The set of passenger groups on day 𝑑. 𝐿  The set of trains in input weekly line plan, and 𝑙 represents an individual train. 𝐿𝑑  The set of trains on day 𝑑. 



𝑃𝑇  A periodic train group, and 𝒫𝒯 represents the set of all periodic train groups.  𝐷𝑇  A daily train group, and 𝒟𝒯 represents the set of all daily train groups. 𝐴𝑑  The set of arcs on day 𝑑. 𝐴𝑛+  The set of arcs departing from the node 𝑛 in the WTON. 𝐴𝑛−  The set of arcs arriving at the node 𝑛 in the WTON. 

𝐴𝑠𝑑𝑡𝐷𝑒𝑝
, 𝐴𝑠𝑑𝑡𝐴𝑟𝑟

 

The set of traveling arcs departs from or arrives at station 𝑠 at time 𝑡 on day 𝑑 𝐴𝑠𝑅  The traveling arcs that stop at station 𝑠. 

𝐴𝑢 
The set of traveling, dwelling, and transfer arcs between the origination and 
destination of passenger group 𝑢.  

𝐴𝐴  

The set of the pair of traveling arcs (𝑎, 𝑎′), which are crossed between two 

adjacent stations. For example, the departing time of 𝑎 at station 𝑠𝑛 is later 

than 𝑎′, but the arrival time of 𝑎 at station 𝑠𝑛+1 is earlier than 𝑎′. 
𝑆𝑆𝑎  

The set of the pair of stations (𝑠, 𝑠′), which are both stops of the traveling arc 𝑎. 

𝑈𝑠𝑠′   

The set of passenger groups whose origination or destination is between 
stations 𝑠 and 𝑠′. In this case station pair (𝑠, 𝑠′) can be part of the traveling 

routes of passengers. 

𝑆𝑢𝑀  
The set of major stations between the origination and destination of passenger 
group 𝑢.  𝜏𝑠𝐷𝑒𝑝  The safety departure headway interval between adjacent trains at station 𝑠. 𝜏𝑠𝐴𝑟𝑟  The safety arrival headway interval between adjacent trains at station 𝑠. 𝑑𝑎  The operating date of arc 𝑎 𝑣𝑢  The passenger volume of passenger group 𝑢. 𝑑𝑢  The departing date of passenger group 𝑢. 𝑠𝑢𝑂𝑟𝑖 , 𝑠𝑢𝐷𝑒𝑠  The origination station and destination station of passenger group 𝑢. 𝑠𝑙𝑂𝑟𝑖 , 𝑠𝑙𝑇𝑒𝑟  The origination station and termination station of train 𝑙. 𝑑𝑙  The operating date of train 𝑙. 𝑘𝑙  The index of the period of train 𝑙 in the period set 𝑃. 𝜀𝑙  The seating capacity of train 𝑙. 

The sets and parameters used in the WTTSP model are listed in Table 2. Decision variables related 
to the routes of trains are described as follows: 
⚫ 𝑥𝑎𝑙  is a binary variable that equals 1 if train 𝑙 occupies the arc 𝑎, and 0 otherwise. 

⚫ 𝜛𝑡𝑙 is a binary variable, that equals 1 if train 𝑙 departs at time 𝑡, and 0 otherwise. 



⚫ 𝜚𝑡𝑙  is a binary variable, that equals 1 if train 𝑙 terminates at time 𝑡, and 0 otherwise. 

When determining routes, passengers select arcs in a manner similar to trains. For each passenger 

group, consisting of a specific number of individuals, the distribution of passengers across selected 

arcs can be determined and used to calculate their total travel costs. If an OD pair is not adequately 

served, some passengers may be unable to find a train. The number of such unserved passengers is 

accumulated, and a corresponding penalty is added to the objective function. Based on this logic, 

the decision variables related to passenger groups are defined as: 

⚫ 𝑦𝑎𝑢 is a continuous variable representing the volume of passengers from group 𝑢 traveling 

through arc 𝑎. 

⚫ 𝑧𝑢 is a continuous variable representing the volume of passengers in group 𝑢 unable to board 

any train. 

The objective of the WTTSP model is defined in (r1). The first and second terms represent the total 

travel cost for all trains 𝑙 and all passenger groups 𝑢, respectively. The third term accounts for the 

number of unserved passengers, acting as a penalty for insufficient service on certain OD pairs. The 

parameter 𝜔 is the weight of passenger travel cost.  

For trains, the travel cost includes a basic operation cost 𝑐𝐵𝑙  and an additional travel cost 𝑐𝑎𝑙  for 

occupying arc 𝑎. The values of 𝑐𝑎𝑙  depends on the time consumption of arc 𝑎. To ensure that trains 
depart within the periods specified in the weekly line plan, an additional cost is incurred if the arc 𝑎 departs from station 𝑠𝑙𝑂𝑟𝑖 outside of period 𝑝𝑙.  

For passengers, the travel cost includes the cost 𝜃𝑎𝑢 for occupying the arc 𝑎 and a penalty cost 𝜑 

for passengers unable to board any train. Similar to 𝑐𝑎𝑙  , the value of 𝜃𝑎𝑢  depends on the time 
consumption for arc 𝑎. Additionally, a higher cost is incurred if arc 𝑎 departs from the passengers’ 

origin station 𝑠𝑢𝑂𝑟𝑖 outside of their preferred period 𝑝𝑢. 

𝑀𝑖𝑛: 𝑍 = 𝜔 (∑ 𝑐𝑎𝑙 𝑥𝑎𝑙𝑙,𝑎 + ∑ 𝑐𝐵𝑙 𝜛𝛥𝑡𝑙𝑙,𝑡 ) + ∑ 𝜃𝑎𝑢𝑦𝑎𝑢𝑢,𝑎 + 𝜑 ∑ 𝑧𝑢𝑢  (r1) 

Constraints for train operation are formulated as (r2) through (r11). The departure and arrival 
constraints (r2), along with the flow balance constraints (r3), (r4), and (r5) define feasible time-
space routes for trains on the WTON. The safety headway constraints for departure and arrival 
(r6) and (r7) ensure the intervals between departure and arrival times of adjacent trains at any station. 
The crossing constraint (r8) prevents the time-space routes of any two trains from intersecting 
between any two adjacent stations. However, based on the findings of Yue et al. (2016), this crossing 
rarely occurs in Chinese HSR lines while the safety headway constraints are satisfied, thus 
constraints (r8) are not considered in solving WTTSP model. Periodic train operation constraints 
(r9) and (r10) along with daily train operation constraints (r11) and (r12) ensure the consistency 
of stops and schedules for periodic and daily trains within the same groups.  



∑ 𝜛𝑡𝑙𝑡 = ∑ 𝜚𝑡𝑙𝑡                ∀𝑙 ∈ 𝐿 
(r2) 

∑ 𝑥𝑎𝑙𝑎∈𝐴𝑛𝑠𝑑𝑙𝑡+ = ∑ 𝑥𝑎𝑙𝑎∈𝐴𝑛𝑠𝑑𝑙𝑡−                ∀𝑙 ∈ 𝐿 ;  ∀𝑠 ∈ (𝑆𝑀 − 𝑠𝑙𝑂𝑟𝑖 − 𝑠𝑙𝑇𝑒𝑟); ∀𝑡 ∈ 𝑇 (r3) 

∑ 𝑥𝑎𝑙𝑎∈𝐴𝑛𝑠𝑙𝑇𝑒𝑟𝑑𝑙𝑡+ = ∑ (𝑥𝑎𝑙 + 𝜚𝑡𝑙 )𝑎∈𝐴𝑛𝑠𝑙𝑇𝑒𝑟𝑑𝑙𝑡−                ∀𝑙 ∈ 𝐿; 𝑡 ∈ 𝑇 (r4) 

∑ (𝑥𝑎𝑙 + 𝜛𝑡𝑙)𝑎∈𝐴𝑛𝑠𝑙𝑂𝑟𝑖𝑑𝑙𝑡+ = ∑ 𝑥𝑎𝑙𝑎∈𝐴𝑛𝑠𝑙𝑂𝑟𝑖𝑑𝑙𝑡−                ∀𝑙 ∈ 𝐿; 𝑡 ∈ 𝑇 (r5) 

∑ 𝑥𝑎𝑙𝑙∈𝐿𝑑,𝑡′∈[𝑡,𝑡+𝜏𝑠𝐷𝑒𝑝],𝑎∈𝐴𝑠𝑑𝑡𝐷𝑒𝑝 ≤ 1               ∀𝑠 ∈ 𝑆;  𝑡 ∈ 𝑇; 𝑑 ∈ 𝐷 (r6) 

∑ 𝑥𝑎𝑙𝑙∈𝐿𝑑,𝑡′∈[𝑡,𝑡+𝜏𝑠𝐴𝑟𝑟],𝑎∈𝐴𝑠𝑑𝑡𝐴𝑟𝑟 ≤ 1               ∀𝑠 ∈ 𝑆;  𝑡 ∈ 𝑇; 𝑑 ∈ 𝐷 (r7) 

∑(𝑥𝑎𝑙 + 𝑥𝑎′𝑙 )𝑙 ≤ 1          ∀(𝑎, 𝑎′) ∈ 𝐴𝐴 
(r8) 

𝑥𝑎𝑠𝑠′𝑑𝑙𝑡𝑙𝜆𝑅𝑙 = 𝑥𝑎𝑠𝑠′𝑑𝑙′𝑡𝑙′ 𝜆𝑅𝑙′     ∀𝑠, 𝑠′ ∈ 𝑆𝑀;  𝜆 ∈ 𝐿𝑃𝑠𝑠′;  ∀𝑡 ∈ 𝑇; 𝑡𝑙 = 𝑡 + 𝑘𝑙 ∙ 𝜏𝑇; 𝑡𝑙′= 𝑡 + 𝑘𝑙′ ∙ 𝜏𝑇; ∀𝑃𝑇 ∈ 𝒫𝒯;  ∀ 𝑙, 𝑙′ ∈ 𝑃𝑇 

(r9) 

𝑥𝑎𝑠𝑑𝑙𝑡𝑙𝑡𝑙′𝐷𝑙 = 𝑥𝑎𝑠𝑑𝑙′𝑡𝑙′𝑡𝑙′′𝐷𝑙′   ∀𝑠 ∈ 𝑆𝑀; ∀𝑡 ∈ 𝑇; 𝑡𝑙 = 𝑡 + 𝑘𝑙 ∙ 𝜏𝑇;  𝑡𝑙′ = 𝑡′ + 𝑘𝑙 ∙ 𝜏𝑇; 𝑡𝑙′= 𝑡 + 𝑘𝑙′ ∙ 𝜏𝑇; 𝑡𝑙′′ = 𝑡′ + 𝑘𝑙′ ∙ 𝜏𝑇; (𝑡′ − 𝑡) ∈ 𝑇𝐷;   ∀𝑃𝑇∈ 𝒫𝒯;  ∀ 𝑙, 𝑙′ ∈ 𝑃𝑇 

(r10) 

𝑥𝑎𝑠𝑠′𝑑𝑙𝑡𝜆𝑅𝑙 = 𝑥𝑎𝑠𝑠′𝑑𝑙′𝑡𝜆𝑅𝑙′     ∀𝑠, 𝑠′ ∈ 𝑆𝑀;  𝜆 ∈ 𝐿𝑃𝑠𝑠′;  ∀𝑡 ∈ 𝑇;   ∀𝐷𝑇 ∈ 𝒟𝒯; ∀ 𝑙, 𝑙′ ∈ 𝐷𝑇 

(r11) 

𝑥𝑎𝑠𝑑𝑙𝑡𝑡′𝐷𝑙 = 𝑥𝑎𝑠𝑑𝑙′𝑡𝑡′𝐷𝑙′     ∀𝑠 ∈ 𝑆𝑀;  𝑡 ∈ 𝑇; (𝑡′ − 𝑡) ∈ 𝑇𝐷;  ∀𝐷𝑇 ∈ 𝒟𝒯; ∀ 𝑙, 𝑙′ ∈ 𝐷𝑇 
(r12) 𝑥𝑎𝑙 ∈ {0,1}          ∀𝑙 ∈ 𝐿; 𝑎 ∈ 𝐴𝑑𝑙 (r13) 𝜛𝑡𝑙 ∈ {0,1}          ∀𝑙 ∈ 𝐿 

(r14) 𝜚𝑡𝑙 ∈ {0,1}          ∀𝑙 ∈ 𝐿 

(r15) 

Constraints for passengers are formulated as (p1) through (p5). The passenger volume constraints 
(p1) and (p2) limit the total volume of passengers departing from the origin of each group. Passenger 
flow balance constraints (p3), similar to train flow balance constraints (r3), ensure the proper flow 
of passengers. The passenger boarding constraints (p4) ensure that passengers can only board the 
trains that stop at their origin or destination stations. Seating capacity constraints (p5) link the 
routes of trains and passengers while limiting the number of passengers traveling through each arc. 

∑ 𝑦𝑎𝑢𝑡,𝑎∈(𝐴𝑛𝑠𝑢𝑂𝑟𝑖𝑑𝑢𝑡+∩𝐴𝑅) + 𝑧𝑢 = 𝑣𝑢              ∀𝑢 ∈ 𝑈 

(p1) 



∑ 𝑦𝑎𝑢𝑡,𝑎∈(𝐴𝑛𝑠𝑢𝐷𝑒𝑠𝑑𝑢𝑡−∩𝐴𝑅) + 𝑧𝑢 = 𝑣𝑢            ∀𝑢 ∈ 𝑈 

(p2) 

∑ 𝑦𝑎𝑢𝑎∈(𝐴𝑛𝑠𝑑𝑢𝑡+∩𝐴𝑢) = ∑ 𝑦𝑎𝑢𝑎∈(𝐴𝑛𝑠𝑑𝑢𝑡−∩𝐴𝑢)               ∀ 𝑢 ∈ 𝑈; 𝑠 ∈ 𝑆𝑢𝑀;   𝑡 ∈ 𝑇 (p3) 

𝑦𝑎𝑢 = 0              ∀𝑢 ∈ 𝑈; 𝑎 ∉ 𝐴𝑠𝑢𝑂𝑟𝑖𝑅  ;  𝑎 ∉ 𝐴𝑠𝑢𝐷𝑒𝑠𝑅    (p4) 

∑ 𝑦𝑎𝑢𝑢∈(𝑈𝑠𝑠′∩𝑈𝑑𝑎) ≤ ∑ 𝜀𝑙𝑥𝑎𝑙𝑙∈𝐿𝑑𝑎               ∀𝑎 ∈ 𝐴𝑅; ∀(𝑠, 𝑠′) ∈ 𝑆𝑆𝑎 (p5) 

𝑦𝑎𝑢 ∈ [0, 𝑝𝑢]          ∀𝑢 ∈ 𝑈; 𝑎 ∈ 𝐴𝑑𝑢 (p6) 𝑧𝑢 ∈ [0, 𝑝𝑢]           ∀𝑢 ∈ 𝑈 (p7) 

Incorporating a weekly planning horizon and integrating both train timetabling and stop planning, 
significantly increases the number of decision variables and constraints in the WTTSP model. 

First, the number of decision variables 𝑥𝑎𝑙 , 𝜛𝑡𝑙, and 𝜚𝑡𝑙 , along with constraints (r2)–(r5) depends 
on the number of trains 𝑙. Similarly, the number of variables 𝑦𝑎𝑢 and 𝑧𝑢, and constraints (p1)–(p4), 
depends on the number of passenger groups 𝑢 . Compared with traditional single-day planning 
models, the inclusion of weekly demand data and a larger train set substantially increases model 
scale. 

Second, the number of time-space arcs in WTON affects the scale of decision variables 𝑥𝑎𝑙  and 𝑦𝑎𝑢 
and constraint (p5). Meanwhile, the number of time-space nodes determines the size of constraints 
(r6)–(r8). Since stop planning is integrated, many traveling arcs are created to represent different 
stopping patterns, further expanding the model compared to conventional timetabling frameworks. 

Third, the number of periodic train groups determines the scale of constraints (r9) and (r10), and the 
number of daily trains determines the scale of constraints (r11) and (r12). These consistency 
constraints increase the model’s structural complexity and further differentiate it from classical 
approaches. 

4 ALGORITHM 

To address large-scale practical scenarios, a Lagrangian relaxation algorithm is developed to 
solve the WTTSP model. The safety headway constraints (r6) and (r7), along with the seating 
capacity constraints (p5), are relaxed and incorporated into the objective function, allowing the 
original model to be decomposed into more tractable submodels, as detailed in Section 4.1. The 
operation constraints for periodic and daily trains remain enforced and are satisfied by solving the 
submodels sequentially, in accordance with the weekly schedule of trains. 

In each iteration, a relaxed solution representing a lower bound on the optimal solution, is obtained 
by independently solving the submodels. Simultaneously, a feasible solution representing an upper 
bound, is determined using a customized passenger demand-matching strategy, introduced in 
Section 4.2. After each iteration, the Lagrangian multipliers are updated according to the procedure 



described in Section 4.3.  

4.1 Decomposing the WTTSP model 

The large number of trains included in a weekly timetable significantly increases the complexity of 
finding an optimal solution. To address this, the proposed algorithm decomposes the WTTSP model 
into submodels for determining the timetables of subgroups of trains. The complete set of train 
subgroups is denoted as ℒ, while an individual subgroup is denoted as 𝐿𝑆𝑢𝑏. A train subgroup may 
consist of either a periodic train group, a daily train group, or a single weekly train. 

The Lagrangian multipliers for relaxing the safety headway constraints (r6) and (r7), and the seating 
capacity constraints (p5), are denoted by 𝜆𝑠𝑑𝑡, 𝜆′𝑠𝑑𝑡, and 𝜎𝑎𝑠𝑠′ , respectively. The relaxed objective 
is formulated as (s1), where the binary parameter 𝜖𝑎𝑠𝑠′𝑢 , equals 1 if passenger group 𝑢 belongs to 
the set 𝑈𝑠𝑠′ ∩ 𝑈𝑑. This relaxed objective can be reformulated as (s2), consisting of a constant term ∑ (𝜆𝑠𝑑𝑡 + 𝜆′𝑠𝑑𝑡)𝑠,𝑑,𝑡 , the sum of travel costs and multipliers 𝑍𝑙𝑅𝑒𝑙 for all trains 𝑙 in all subgroups 𝐿𝑆𝑢𝑏 (formulated as (s3)), and the sum of travel costs and multipliers 𝑍𝑢𝑅𝑒𝑙  for all individual 
passenger groups 𝑢 (formulated as (s4)).  

𝑀𝑖𝑛: 𝑍𝑅𝑒𝑙 = 𝑍 + ∑ 𝜆𝑠𝑑𝑡 ( ∑ 𝑥𝑎𝑙𝑙∈𝐿𝑑,𝑡′∈[𝑡,𝑡+𝜏𝑠𝐷𝑒𝑝],𝑎∈(𝐴𝑛𝑠𝑑𝑡′+∩𝐴𝑅) − 1)𝑠,𝑑,𝑡
+ ∑ 𝜆′𝑠𝑑𝑡 ( ∑ 𝑥𝑎𝑙𝑙∈𝐿𝑑,𝑡′∈[𝑡,𝑡+𝜏𝑠𝐴𝑟𝑟],𝑎∈(𝐴𝑛𝑠𝑑𝑡′−∩𝐴𝑅) − 1)𝑠,𝑑,𝑡
+ ∑ 𝜎𝑎𝑠𝑠′ ( ∑ 𝑦𝑎𝑢𝑢∈(𝑈𝑠𝑠′∩𝑈𝑑𝑎) − ∑ 𝜀𝑙𝑥𝑎𝑙𝑙∈𝐿𝑑𝑎 )𝑎∈𝐴𝑅,(𝑠,𝑠′)∈𝑆𝑆𝑎  

(s1) 

𝑀𝑖𝑛: 𝑍𝑅𝑒𝑙 = ∑ ( ∑ 𝑍𝑙𝑅𝑒𝑙𝑙∈𝐿𝑆𝑢𝑏 )𝐿𝑆𝑢𝑏∈ℒ + ∑ 𝑍𝑢𝑅𝑒𝑙𝑢 − ∑(𝜆𝑠𝑑𝑡 + 𝜆′𝑠𝑑𝑡)𝑠,𝑑,𝑡  (s2) 

𝑍𝑙𝑅𝑒𝑙 = 𝜔 ∑ 𝑐𝑎𝑙 𝑥𝑎𝑙𝑎 + 𝜔 ∑ 𝑐𝐵𝑙 𝜛𝑡𝑙𝑡 + ∑ 𝜆𝑠𝑑𝑡𝑥𝑎𝑙𝑙∈𝐿𝑑,𝑡′∈[𝑡,𝑡+𝜏𝑠𝐷𝑒𝑝],𝑎∈(𝐴𝑛𝑠𝑑𝑡′+∩𝐴𝑅)
+ ∑ 𝜆′𝑠𝑑𝑡𝑥𝑎𝑙𝑙∈𝐿𝑑,𝑡′∈[𝑡,𝑡+𝜏𝑠𝐴𝑟𝑟],𝑎∈(𝐴𝑛𝑠𝑑𝑡′−∩𝐴𝑅)− ∑ 𝜎𝑎𝑠𝑠′𝑎∈𝐴𝑅,(𝑠,𝑠′)∈𝑆𝑆𝑎,𝑙∈𝐿𝑑𝑎 𝜀𝑙𝑥𝑎𝑙  

(s3) 

𝑍𝑢𝑅𝑒𝑙 = ∑ 𝜖𝑎𝑠𝑠′𝑢 𝜎𝑎𝑠𝑠′𝑎∈𝐴𝑅,(𝑠,𝑠′)∈𝑆𝑆𝑎 𝑦𝑎𝑢 + ∑ 𝜃𝑎𝑢𝑦𝑎𝑢𝑎 + 𝜑𝑧𝑢
 (s4) 

Submodels for routing train subgroups 𝑳𝑺𝒖𝒃: The objective of the submodel for train group 𝐿𝑆𝑢𝑏 
is to minimize ∑ 𝑍𝑙𝑅𝑒𝑙𝑙∈𝐿𝑆𝑢𝑏  . The decision variables include 𝑥𝑎𝑙  , 𝜛𝑡𝑙 , and 𝜚𝑡𝑙   for each train 𝑙 ∈𝐿𝑆𝑢𝑏

 , subject to the routing constraints (r2)–(r5) from the WTTSP model. If 𝐿𝑆𝑢𝑏 is a periodic 
train group, constraints (r9) and (r10) are included to ensure the consistency of stops and schedules. 



If 𝐿𝑆𝑢𝑏 is a daily train group, constraints (r11) and (r12) apply to enforce daily regularity.  

After solving the submodels separately, the resulting objective values ∑ 𝑍𝑙𝑅𝑒𝑙𝑙∈𝐿𝑆𝑢𝑏  are treated as 

the Lagrangian relaxation costs of each train subgroup. Subgroups with relatively lower relaxation 
costs typically attract higher passenger volumes or are less likely to violate safety headway 
constraints.  

Submodels for routing passenger group 𝒖: The objective of each passenger group’s submodel is 
to minimize 𝑍𝑢𝑅𝑒𝑙. The only decision variable is 𝑦𝑎𝑢, subject to constraints (p1)–(p4), which ensure 
proper routing of passengers. Since these submodels only involve continuous variables, they are 
computationally efficient and can be solved quickly using commercial solvers. Multiple passenger 
group submodels can be processed in parallel, improving overall algorithm performance.  

4.2 Updating the Upper Bound 

The lower bound of the optimal solution is defined as the highest objective value obtained among 
all relaxed solutions. In each iteration, the relaxed solution provides a lower bound, calculated as 

the sum of the Lagrangian relaxation costs, ∑ 𝑍𝑙𝑅𝑒𝑙𝑙∈𝐿𝑆𝑢𝑏  and 𝑍𝑢𝑅𝑒𝑙
.  

Conversely, the upper bound is the smallest objective value among all feasible solutions. A In the 
current iteration, a feasible solution is generated based on the same relaxation cost values. Following 
the traditional approach used in integrated train timetable studies (e.g., Yue et al., 2016; Xu et al., 
2021), a customized passenger demand-matching strategy for feasible solution generation is 
proposed. 

Let 𝐴 denote the set of all arcs in the WTON. To generate a feasible solution, once a train subgroup 
has been routed, all traveling arcs that depart within the safety headway intervals of these trains, 
conflicting the safety headway constraints, are removed from 𝐴. The remaining arcs are denoted as 𝐴𝑇𝑟𝑎𝑖𝑛, which contains all feasible traveling and dwelling arcs for routing remaining trains. The set 
of arcs selected by already-routed trains is denoted as 𝐴𝑃𝑠𝑔, and passenger groups search for their 
routes only within this set. This process consists of the following steps: 

Step 1. Initialization: Set 𝐴𝑇𝑟𝑎𝑖𝑛 = 𝐴 and 𝐴𝑃𝑠𝑔 = ∅ 

Step 2. Routing Train Subgroups: Order each train subgroup 𝐿𝑆𝑢𝑏 by the values of 
∑ 𝑍𝑙𝑅𝑒𝑙𝑙∈𝐿𝑆𝑢𝑏|𝐿𝑆𝑢𝑏| . 

Then following process is applied to route the trains in each 𝐿𝑆𝑢𝑏.  

Step 2-1. Routing a part of passengers: Passengers are routed on arcs in 𝐴𝑃𝑠𝑔. Since 𝐴𝑃𝑠𝑔  is significantly smaller than 𝐴 , all the passenger groups can be routed 
simultaneously. The set of passengers unable to find feasible routes is denoted as 𝑈𝑆𝑢𝑏.  

Step 2-2. Finding preferred routes for remaining passengers: Passenger groups in 𝑈𝑆𝑢𝑏 are routed on arcs in 𝐴𝑇𝑟𝑎𝑖𝑛. The passenger volumes traveling between stations (𝑠, 𝑠′) along the arc 𝑎 ∈ 𝐴𝑇𝑟𝑎𝑖𝑛 are recorded as 𝒫𝑎𝑠𝑠′. 
Step 2-3. Adjust multipliers: For each pair of stations (𝑠, 𝑠′)  along the arc 𝑎 , the 
multipliers 𝜎𝑎𝑠𝑠′   are adjusted according to the equation (s5), where 𝜉  represents the 



adjustment range of 𝜎𝑎𝑠𝑠′  
𝜎′𝑎𝑠𝑠′ = 𝜎𝑎𝑠𝑠′ − 𝜉𝒫𝑎𝑠𝑠′ + 1|𝐴| ∑ 𝜉𝒫𝑎𝑠𝑠′𝑎∈𝐴;(𝑠,𝑠′) ∈𝑆𝑆𝑎  (s5) 

Step 2-4. Solving submodels: Using the adjusted multiplier 𝜎′𝑎𝑠𝑠′  to replace 𝜎𝑎𝑠𝑠′  in 
the objective, the submodel for routing trains in 𝐿𝑆𝑢𝑏 on arcs in 𝐴𝑇𝑟𝑎𝑖𝑛 is solved. The 

values of the decision variables are recorded as 𝑥𝑎𝑙 , 𝜛𝑡𝑙 , and 𝜚𝑡𝑙 . 

Step 2-5. Updating 𝑨𝑻𝒓𝒂𝒊𝒏: For each train 𝑙 ∈ 𝐿𝑆𝑢𝑏, if 𝑥𝑎𝑠𝑠′𝑑𝑡𝜆𝑅𝑙 = 1, the traveling arcs 

𝑎 ∈ 𝐴𝑠𝑑𝑡′𝐷𝑒𝑝  for any time 𝑡′ ∈ [𝑡 − 𝜏𝑠𝐷𝑒𝑝, 𝑡 + 𝜏𝑠𝐷𝑒𝑝] and traveling arcs 𝑎 ∈ 𝐴𝑠′𝑑𝑡′′𝐴𝑟𝑟  for any 

time 𝑡′′ ∈ [𝑡 + 𝜏𝜆 − 𝜏𝑠′𝐴𝑟𝑟 , 𝑡 + 𝜏𝜆 + 𝜏𝑠′𝐴𝑟𝑟] are removed from 𝐴𝑇𝑟𝑎𝑖𝑛 if they are present. 

Step 2-6. Updating 𝑨𝑷𝒔𝒈 : For each train 𝑙 ∈ 𝐿𝑆𝑢𝑏 , if 𝑥𝑎𝑙 = 1 , the corresponding 

traveling or dwelling arc 𝑎 is added to 𝐴𝑃𝑠𝑔. If traveling arcs 𝑎𝑠′𝑠𝑑(𝑡−𝜏𝑎)𝜆𝑅  for any 𝑠′ is 

included in 𝐴𝑃𝑠𝑔, and the 𝑎𝑠𝑠′′𝑑𝑡𝜆𝑅  for any 𝑠′′ is also included, passengers can transfer 
between corresponding trains thus the transfer arc 𝑎𝑠𝑑𝑡𝑡′𝑇  is added to 𝐴𝑃𝑠𝑔. 

Step 3. Finalizing the upper bound solution: After all train subgroups 𝐿𝑆𝑢𝑏 have been routed, 

the values of 𝑥𝑎𝑙 , 𝜛𝑡𝑙 , and 𝜚𝑡𝑙  are fixed in the feasible (upper bound) solution. All passenger groups 

are then routed on arcs in 𝐴𝑃𝑠𝑔, and the values of variables 𝑦𝑎𝑢 and 𝑧𝑢 are recorded as 𝑦𝑎𝑢 and 𝑧𝑢. The upper bound is calculated as the objective value 𝑍, using equation (r1) with all decision 
variables fixed. 

The novelty of this customized demand-matching strategy lies in Steps 2-1 to 2-3. In Step 2-2, 
passengers who cannot be served by already-scheduled trains search for their preferred routes using 
arcs still available for unscheduled trains. In Step 2-3, the Lagrangian multipliers are adjusted so 
that unscheduled trains are more likely to select passenger-preferred routes, thus improving service 
quality. 

4.3 Updating the Lagrangian Multipliers 

This section outlines the process for updating the Lagrangian multipliers in the (𝑖 + 1)-th iteration, 

denoted as 𝜆𝑠𝑑𝑡(𝑖+1), 𝜆𝑠𝑑𝑡′(𝑖+1), and 𝜎𝑎𝑠𝑠′(𝑖+1), based on their corresponding values for the 𝑖-th iteration, 

denoted as 𝜆𝑠𝑑𝑡(𝑖) , 𝜆𝑠𝑑𝑡′(𝑖), and 𝜎𝑎𝑠𝑠′(𝑖) . 

A one-dimensional vector 𝑉  is constructed, where each element corresponds to a specific 

multiplier and represents its updating gradient. The elements for multiplier 𝜆𝑠𝑑𝑡(𝑖) , 𝜆𝑠𝑑𝑡′(𝑖), and 𝜎𝑎𝑠𝑠′(𝑖)  

are represented as 𝑉 [𝜆𝑠𝑑𝑡(𝑖) ] , 𝑉 [𝜆𝑠𝑑𝑡′(𝑖)] , and 𝑉 [𝜎𝑎𝑠𝑠′(𝑖) ] , respectively, and are computed using 



equations (s6), (s7), and (s8).  

The updated multipliers 𝜆𝑠𝑑𝑡(𝑖+1), 𝜆𝑠𝑑𝑡′(𝑖+1), and 𝜎𝑎𝑠𝑠′(𝑖+1) are calculated in equations (s9)–(s12), where 

the step size 𝜓 and 𝛾 are determined based on the order of magnitude of the multipliers.  

𝑉 [𝜆𝑠𝑑𝑡(𝑖) ] = ∑ 𝑥𝑎𝑙𝑙∈𝐿𝑑,𝑡′∈[𝑡,𝑡+𝜏𝑠𝐷𝑒𝑝],𝑎∈𝐴𝑠𝑑𝑡𝐷𝑒𝑝 − 1               ∀𝑠 ∈ 𝑆;  𝑡 ∈ 𝑇; 𝑑 ∈ 𝐷 (s6) 

𝑉 [𝜆𝑠𝑑𝑡′(𝑖)] = ∑ 𝑥𝑎𝑙𝑙∈𝐿𝑑,𝑡′∈[𝑡,𝑡+𝜏𝑠𝐴𝑟𝑟],𝑎∈𝐴𝑠𝑑𝑡𝐴𝑟𝑟 − 1               ∀𝑠 ∈ 𝑆;  𝑡 ∈ 𝑇; 𝑑 ∈ 𝐷 (s7) 

𝑉 [𝜎𝑎𝑠𝑠′(𝑖) ] = ∑ 𝑦𝑎𝑢𝑢∈(𝑈𝑠𝑠′∩𝑈𝑑𝑎) − ∑ 𝜀𝑙𝑥𝑎𝑙𝑙∈𝐿𝑑𝑎               ∀𝑎 ∈ 𝐴𝑅; ∀(𝑠, 𝑠′) ∈ 𝑆𝑆𝑎 (s8) 

𝑍𝑀𝑢𝑙 = 𝑍 − ∑ (∑ 𝑍𝑙𝑅𝑒𝑙𝑙∈𝐿𝑆𝑢𝑏 )𝐿𝑆𝑢𝑏∈ℒ − ∑ 𝑍𝑢𝑅𝑒𝑙𝑢|𝑉|  

(s9) 

𝜆𝑠𝑑𝑡(𝑖+1)  =  𝑚𝑎 𝑥 {𝜆𝑠𝑑𝑡(𝑖) + 𝜓 ∙ 𝑍𝑀𝑢𝑙 ∙ 𝑉 [𝜆𝑠𝑑𝑡(𝑖) ] ,   0}              ∀𝑠 ∈ 𝑆;  𝑡 ∈ 𝑇; 𝑑 ∈ 𝐷 (s10) 

𝜆′𝑠𝑑𝑡(𝑖+1)  =  𝑚𝑎 𝑥 {𝜆′𝑠𝑑𝑡(𝑖) + 𝜓 ∙ 𝑍𝑀𝑢𝑙 ∙ 𝑉 [𝜆′𝑠𝑑𝑡(𝑖) ] ,   0}              ∀𝑠 ∈ 𝑆;  𝑡 ∈ 𝑇; 𝑑 ∈ 𝐷 (s11) 

𝜎𝑎𝑠𝑠′(𝑖+1)  =  𝑚𝑎 𝑥 {𝜎𝑎𝑠𝑠′(𝑖) + 𝛾 ∙ 𝑍𝑀𝑢𝑙 ∙ 𝑉 [𝜎𝑎𝑠𝑠′(𝑖) ] ,   0}              ∀𝑎 ∈ 𝐴𝑅; ∀(𝑠, 𝑠′) ∈ 𝑆𝑆𝑎 (s12) 

5 COMPUTATIONAL EXPERIMENTS 

Using Chinese high-speed railway lines as the context, case studies of varying scales are constructed 
to evaluate both the optimization efficiency of the WTTSP model and the solution performance of 
the Lagrangian relaxation algorithm. The experiments are conducted on a personal computer 
equipped with an Intel i5-10500 CPU and 64GB of RAM. 

 

Figure 5 Stations along the Nanjing-Shanghai HSR line 

5.1 Solution Performance Analysis based on Small-scale Cases 



The parameters for case construction and algorithm execution are detailed in Table 3. The maximum 
solution time for CPLEX is limited to 7,200 seconds.  

The complexity of the cases increases progressively from Case ID 1 to Case ID 5, as indicated by 
the number of stations and the volume of trains included in the weekly line plan. 

Cases ID 1, ID 2, and ID 3 are based on a simplified HSR network with only five stations, which is 
also used in Nie et al. (2022) for generating small-scale weekly line plans. In contrast, Cases ID 4 
and ID 5 are based on the Nanjing-Shanghai HSR line, which spans 311 km and includes 20 stations 
(as shown in Figure 5), representing a medium-range intercity HSR line connecting two major 
metropolitan areas. 

As the complexity increases, the performance of CPLEX degrades significantly. In Case ID 2, 
CPLEX fails to reach an optimal solution with a gap of 0%. In Case ID 4, it returns an infeasible 
timetable where no passengers can board any train, making the solution practically unusable. In 
Case ID 5, CPLEX cannot even construct the WTTSP model or generate any feasible solution. 

Although the runtime per iteration of the Lagrangian relaxation algorithm increases with case 
complexity, the solution gaps remain relatively stable across all cases. This demonstrates the 
algorithm’s robustness and scalability. For Case ID 4, which reflects a practical HSR line, the best 
solution obtained from the Lagrangian relaxation algorithm is only one-quarter of the objective 
value yielded by CPLEX.  

Table 3 Parameters for small-scale case studies 
Parameter Value 

Maximum speed of trains (km/h). 300  

Additional traveling time for one more stop (min). 2 

Safety departure and arrival headways 𝜏𝑠𝐷𝑒𝑝, 𝜏𝑠𝐴𝑟𝑟 (min). 3 

Range of dwelling times 𝑇𝐷  at major stations (level 1), level 2 

local stations, and level 3 local stations (min). 

[6,12] ; [4,10]; [2,8] 
Range of passenger transfer time 𝑇𝑇 (min). [20, 30] 
Critical parameters 𝜔, 𝜑, and 𝜉 in the model and algorithm. 30; 100; 75 

Steps 𝜓 and 𝛾 of updating Lagrangian multipliers. 1,000; 1,000 

Table 4 Solution performance comparison between CPLEX and Lagrangian relaxation 

ID for small-scale cases 1 2 3 4 5 

Testing HSR line Toy line with 5 stations 
Nanjing-Shanghai 

line with 20 stations 

Total number of trains in a week 10 18 36 244 394 

CPLEX 

Solution times 290s 7,200s 7,200s 7,200s 7,200s 

Objective value of the 
best solution 

18,480 31,675 351,560 
4.58×107 

-- 

Gap of the best solution 7.66% 38.60% 64.02% 106.83% -- 

Lagrangian 
relaxation 

Average time 
consumption for an 

iteration 

1s 3s 32s 26min 42min 

Objective value of the 
best solution 

24,080 36,000 187,515 
1.22×107 

7.94×106 

Gap of the best solution 28.67% 51.50% 32.51% 42.35% 33.86% 



In the small-scale cases, the use of manually defined inputs leads to a mismatch between passenger 
demand and the origin-destination configurations of the available trains. This inconsistency limits 
the performance of our strategy, which is designed to be data-driven and aligned with realistic 
operational patterns. Consequently, the solution gaps reported in Table 4 for these cases are 
relatively large. Among these, Case ID 2 exhibits the largest gap, and its iteration process is 
illustrated in Figure 6. As shown by the red line in the figure, the lower bound estimation mechanism 
in the current implementation is neither fully optimized nor tailored to the specific structure of the 
problem. This limitation reduces the accuracy of lower bound estimates and slows the convergence 
of the iterative process, directly contributing to the relatively large observed solution gaps. 

Nonetheless, from an optimization perspective, Figure 6 demonstrates a clear and steady 
improvement in the objective value of the best-found solution across iterations, validating the 
effectiveness of the proposed algorithm. 

 

Figure 6 Iteration process of Lagrangian relaxation algorithm 

5.2 Solution Performance Analysis based on Nanjing-Shanghai HSR line 

In this section, practical-scale cases are constructed based on the Nanjing-Shanghai HSR line, as 
illustrated in Figure 5. The weekly line plan developed in our previous work (Nie et al., 2022) is 
used as input to define the origins, destinations, compositions, and operational frequencies of trains 
for each period and each day.  

To reduce computational complexity, a consistent timetable is applied from Monday to Thursday, a 
separate timetable is used for Friday and Sunday, reflecting their similar demand patterns on this 
HSR line, and a unique timetable is set for Saturday. In Nie et al. (2022), solutions using common 
timetables for similar-demand days were compared with solutions employing distinct timetables for 
all seven days. The results showed that consolidating similar-demand days can help the algorithm 
achieve better solutions within limited computation time. 

The remainder of this section is structured as follows: Section 5.2.1 discusses the values of critical 
parameters in the proposed WTTSP model and the Lagrangian relaxation algorithm. In Section 5.2.2, 
solutions with different sets of alternative stopping patterns are analyzed to demonstrate the impact 
of flexible stop adjustments. Section 5.2.3 highlights the benefits of integrating stop planning by 



comparing the weekly timetables obtained using the WTTSP model with those generated by a 
sequential approach. In Section 5.2.4, the optimized weekly timetable is compared with the 
manually determined timetable used in practice, providing an analysis of the optimization 
performance of the WTTSP model. Section 5.2.5 compares the weekly timetable with a daily-
varying timetable generated using a similar algorithm, illustrating the trade-offs between regularity 
and demand adaptability. 

5.2.1 Discussing the Values of Critical Parameters 

Several key parameters significantly influence the solution performance of the WTTSP model: 

⚫ Weight 𝝎  of train travel costs in the objective function affects the trade-off between 
improving passenger travel convenience and reducing train operation costs. 
⚫ Adjustment parameter 𝝃  in the feasible solution generation process modulates the 
amplitude of the Lagrangian multipliers. This helps align passenger and train routes, though it may 
increase train costs to some degree. 
⚫ Penalty value 𝝋  for passengers unable to board any train impacts the balance between 
increasing the number of served passengers and improving the service for passengers who can easily 
board. 

When analyzing the influence of any specific parameter, the values of the other parameters are kept 
constant. Setting 𝜉 = 10  and 𝜑 1100, the travel costs for passengers and trains under different 
values of weight 𝜔  is recorded in Figure 7. The data points between 𝜔 = 1000  and 𝜔 = 50 , 
show an elbow-shaped trend, with the inflection point occurring at 𝜔 = 100 . For 𝜔 > 100 , 
reducing passenger travel costs becomes less significant as train travel costs continue to rise. For 𝜔 < 50, a reduction in algorithmic efficiency leads to a comprehensive increase in the travel costs 
for both passengers and trains. Thus, for practical-scale case studies, the weight 𝝎 is set as 100.  

Similarly, Figure 8 records the changes in travel costs for passengers and trains with varying values 
of 𝜉 . Another elbow-shaped trend emerges. When 𝜉 ∈ [0,10]  passenger travel costs decrease 
notably while train costs increase. Between 𝜉110 and 𝜉1100, the costs for trains and passengers 
stabilize, with no significant changes. For 𝜉 ∈ [100,500], the reduction in passenger travel costs 
becomes negligible, and when 𝜉 ≥ 500, the solution remains unchanged. Therefore, 𝝃 is set to 50, 
a median value within the [𝟏𝟎, 𝟏𝟎𝟎] range.  

Figure 9 illustrates how the average travel costs of boarding passengers and the proportion of 
passengers unable to board (un-boarding passengers) change with different values of 𝜑. When 𝜑 ∈[10,50], the proportion of un-boarding passengers decreases significantly. For 𝜑 > 20, the average 
travel costs for boarding passengers increase, reflecting the cost of planning additional stops to 
accommodate more passengers. Based on the trends in Figure 9, 𝝋 is set to 70, at which point the 
proportion of un-boarding passengers falls to 2% for the first time and remains nearly 
constant thereafter.  



 

Figure 7 Changes of travel costs of trains and passengers with different values of 𝜔 

 

Figure 8 Changes of travel costs of trains and passengers with different values of 𝜉 

 

Figure 9 Average travel cost of boarding passengers and the proportion of un-boarding 
passengers in the solutions with different values of 𝜑 

5.2.2 Solution Comparison with Different Sets of Stopping Patterns 

The scale of the stopping pattern set determines the flexibility of train stops, which in turn affects 



solution performance. Seven sets of alternative stopping patterns were constructed following the 
rules of practical scenarios, each with varying numbers of options. 

Set 1 is termed the “Totally all-stopping pattern.” In this set, all trains are fixed to stop at every 
station they pass. This is the smallest set, making it the easiest to solve. 

Set 2 is the “Hierarchical all-stopping pattern.” Trains are categorized into three levels, as outlined 
in Table 1. Level 1 trains stop at all level 1 stations they pass, level 2 trains stop at all level 1 and 2 
stations, and level 3 trains stop at every station. This pattern is widely used on European and 
Japanese HSR lines. 

Set 3 is the “Flexible hierarchical pattern.” It builds on Set 2, but allows level 2 trains to skip one 
or two level 2 stations, and level 3 trains to skip one or two level 3 stations. This set introduces more 
flexibility, adapting to HSR lines with more stations and complex passenger demand. 

Set 4 is the “Hybrid pattern.” It extends Set 3 by allowing both level 1 and level 2 trains to choose 
stopping patterns for both level 1 and 2 stations, while level 1 trains remain fixed to level 1 stops. 
Level 3 trains can choose between level 2 and 3 stops. In this set, train stops are more responsive to 
passenger demand rather than predefined rules. This set aligns with the practical stopping rules of 
the Nanjing-Shanghai HSR and is applied in section 5.2.1. 

For larger-scale models, solving a single iteration may become computationally infeasible, 
preventing the algorithm from updating bounds and finding better solutions. To explore the limits 
of the algorithm, Sets 5, 6, and 7 were constructed. Set 7, the "Enumerated pattern," allows level 2 
trains to stop or skip at any level 1 or 2 station, and level 3 trains to stop or skip at any level 1, 2, or 
3 station, with the condition that they stop at least once at a level 2 station. Sets 5 and 6 are derived 
from Set 7 by excluding certain stopping patterns, creating sets of varying sizes.  

Table 5 Solutions with different sets of stopping patterns 

Set of stopping patterns 1 2 3 4 5 6 7 

Number of 
alternative 
stopping 
patterns 
between major 
stations 

NJ-CZ 1 3 10 10 15 15 15 

CZ-WX 1 3 4 4 4 4 4 

WX-SZ 1 3 4 4 4 4 4 

SZ-SH 1 3 12 12 51 63 98 

Average time consumption of each 
iteration 

43min 62min 85min 93min 245min 

Out of 
memory 
while 
solving 
the 213-
rd train 
subgroup 

Out of 
memory 
while 
solving 
the 52-th 
train 
subgroup 

Gaps 9.31% 8.00% 11.12% 9.53% 10.21% 

Objective value of the best-found 

solution (× 106) 
6.50 6.08 5.88 4.97 6.50 

Train travel cost of the best-found 

solution 
1856 347 397 507 465 

Passenger travel cost of the best-

found solution (× 106) 
6.69 6.05 5.84 4.92 6.45 

Table 5 records the solutions obtained using Sets 1 to 7. The algorithm could only solve one-quarter 
of the train subgroups during the first iteration of solving Set 7 before running out of memory. This 
suggests that applying practical stop rules to exclude certain patterns instead of considering all 
possible stops is essential. In Set 6, only five train subgroups remained unsolved, indicating that this 
set’s scale is near the algorithm’s capacity. 



Comparing the results of Sets 1 through 4, larger sets provide more suitable services and improve 
the weekly timetable quality. However, the performance of Set 5 shows that overly large stopping 
pattern sets can reduce solution efficiency. Set 4, which achieves the best objective value, strikes an 
optimal balance. It provides enough flexibility to improve service quality while minimizing the time 
consumed per iteration. This allows for more iterations and increases the likelihood of finding high-
quality solutions. 

5.2.3 Solution Comparison between Integrated and Sequential Optimization. 

The proposed model and algorithm integrate stop planning into weekly timetabling. To demonstrate 
the advantages of this integration, we compare it to a sequential approach, which uses the stops 
given in Nie et al. (2022) as input and only optimizes the train timetable.  

Table 6 compares key indicators of both the sequential and integrated solutions. The most notable 
improvement from the integrated optimization is the significant increase in the number of 
passengers departing during their preferred periods. While the sequential approach adjusts trains 
primarily by canceling or shifting their departure periods, the integrated approach goes further by 
adjusting train stops, resulting in more tailored service and reduced passenger travel costs. 
Additionally, passenger travel speed and average load factor show slight improvements, reflecting 
better overall service quality in the weekly timetable produced by the integrated approach. 

Table 6 Comparison of the practical timetable, weekly timetable obtained by sequential 
method, and weekly timetable obtained by proposed method 

 
Practical 
timetable 

Weekly timetable 

Daily-
varying 

timetable 

Generated 
using 

sequential 
approach 

Generated 
using our 
algorithm 

7 timetables 
for 7 days 

Train travel cost 524 498 507 514 499 

Average travel speed of trains 
(km/h) 142.17 210.71 209.24 210.21 209.35 

Passenger travel cost (× 106) 6.72 5.21 4.92 5.10 4.87 

Average number of intermediate 
stop of passengers 

1.97 0.89 0.92 0.93 0.90 

Average travel speed of 
passengers (km/h) 129.75 174.52 177.77 177.19 178.04 

Average load factor of trains 68.23% 71.10% 71.45% 70.42% 73.25% 

Average load factor of mandatory 
trains 

95.08% 97.13% 100% 100% 100% 

Proportion of passengers 
departing in preferred periods 

70.14% 69.26% 78.46% 78.28% 82.31% 

Proportion of passengers 
departing in preferred periods or 

the adjacent periods 

84.42% 93.13% 94.24% 94.10% 96.22% 



 

Figure 10 Weekly timetable of Nanjing-Shanghai HSR line (Mon. to Thu.) 

 
Figure 11 Weekly timetable of Nanjing-Shanghai HSR line (Fri. and Sun.) 

 
Figure 12 Weekly timetable of Nanjing-Shanghai HSR line (Sat.) 



5.2.4 Solution Comparison between Weekly Timetable and Practical Timetable. 

Figures 10, 11, and 12 illustrate the timetables for different days generated by the proposed 
Lagrangian relaxation algorithm. The blue, red, and black lines represent periodic, daily, and weekly 
trains, respectively. Compared to the manually determined practical timetable (indicators shown in 
Table 6), the advantages of the weekly timetable obtained using the proposed WTTSP model are 
analyzed as follows. 

The traveling speeds of both trains and passengers have been significantly improved through the 
optimization of stops and dwelling times. Figure 13 shows the distribution of traveling speeds for 
passengers and trains in the weekly timetable. In the WTTSP model, train stops are constrained by 
the three train levels, resulting in three distinct peaks in train numbers at speeds of 250 km/h, 200 
km/h, and 140 km/h, which represent different service levels. Similarly, passenger numbers peak 
around 250 km/h, 200 km/h, and 120 km/h (slightly lower due to transfer time). This distribution 
reflects a better spatial alignment between passengers and trains in the weekly timetable. 
Furthermore, the proportion of passengers departing during preferred periods is improved, 
indicating a better temporal match between passengers and services.  

 

Figure 13 Traveling costs distribution of passengers and trains 

Figure 14 compares the transport capacity (measured by measured by the total seatkilometers, 
calculated as the sum of each train’s seat number multiplied by its mileage) and passenger demand 
(measured by passengerkilometers, calculated as the sum of all passengers’ travel distances) for 
each period of each day in both the weekly and practical timetables. In the practical timetable, some 
periods, such as 16:00–18:00, exhibit excessive transport capacity. The weekly timetable addresses 
this mismatch by eliminating unnecessary trains to reduce train operating costs and scheduling trains 
according to passenger preferences to minimize passenger travel costs. 

As a result of the improved spatial and temporal alignment between passengers and trains, the load 
factors of trains in the weekly timetable have increased, particularly for mandatory trains. These 
trains achieve speeds of up to 280 km/h with a 100% load factor, offering premier services with 
enhanced crew service and seating options, thereby attracting more passengers and boosting revenue 
for HSR companies. 



 

Figure 14 The seatkilometers and passengerkilometers of each period in each day 

5.2.5 Solution Comparison between Weekly Timetable and Daily-Varying 

Timetables. 

This section compares two alternative timetable strategies with the weekly timetable proposed in 
this study. The first alternative is the “7-for-7 weekly timetable,” in which each of the seven days is 
assigned a distinct timetable, including Monday through Thursday. The second is the “daily-varying 
timetable,” where the proportions of periodic and daily trains are set to zero, resulting in completely 
different timetables for each day. The performance indicators for these strategies are presented in 
Table 6. As this comparison was also explored in Nie et al. (2022), the same origins, destinations, 
and train frequencies from that study are adopted for consistency. 

Due to their similar generation processes, the proposed weekly timetable and the 7-for-7 weekly 
timetable produce comparable outcomes in terms of passenger and train travel speeds and train load 
factors. However, the 7-for-7 timetable achieves slightly lower travel costs for both passengers and 
trains. This marginal improvement is attributed to the increased flexibility in scheduling, although 
the higher model complexity may result in suboptimal solutions when computational time is limited. 
Given sufficient computational resources, using distinct timetables for all seven days, even for days 
with similar demand, can further improve demand-matching performance and overall solution 
quality. 



In contrast, the daily-varying timetable greatly simplifies the optimization process, as each day is 
scheduled independently. As shown in Table 6, this approach leads to the lowest passenger travel 
cost, as it imposes no constraints on periodic or daily train operations. This allows for full scheduling 
flexibility, enabling trains to be optimally aligned with daily demand patterns and thus achieving a 
high level of demand matching. However, as discussed in the Introduction, such flexibility leads to 
highly irregular timetables, which may cause confusion for passengers. For those adjusting their 
travel across different days or time periods, a more regular timetable offers significant convenience 
by maintaining consistent departure patterns. Furthermore, the inclusion of periodic and daily trains 
enables passengers who miss a scheduled train to catch the next service within a predictable time 
window, or to make reliable transfers between regular services—enhancing both travel experience 
and service reliability. 

5.3 Solution Comparison between Nanjing-Shanghai and Beijing-Shanghai HSR 

lines 

The Beijing-Shanghai HSR line spans 1302 km and has 23 stations, representing long-distance HSR 
lines that pass through multiple metropolitan areas. Unlike the Nanjing-Shanghai line, the Beijing-
Shanghai line operates different timetables on Fridays and Sundays. The weekly timetable for this 
line is shown in Figures 15 to 18, and the key characteristics of its weekly schedule, compared to 
the Nanjing-Shanghai line, are summarized as follows: 

(1) Frequent Overtaking at Stations. Overtaking is more common due to the larger number of 
level 2 major stations along the Beijing-Shanghai HSR compared to the Nanjing-Shanghai HSR. 
This results in a higher volume and greater variety of stopping patterns for level 2 and level 3 trains. 
To minimize gaps between faster and slower trains, a fast train may overtake multiple slow trains at 
stations to maintain its speed.  

(2) Large Gaps at the Start and End of the Day. The longer distance of the Beijing-Shanghai 
line leads to longer travel times. Trains departing from one terminal station often arrive much later 
at the other terminal compared to the Nanjing-Shanghai line. This creates significant gaps in the 
timetable at the beginning and end of the day at the terminal stations. Short-distance trains, such as 
those serving commuters, can be scheduled in these gaps. For example, while one daily short-
distance train operates between Suzhou and Shanghai on the Nanjing-Shanghai line, at least five 
short trains run daily on the Beijing-Shanghai line. 
(3) Fewer Trains Connecting the Two Terminal Stations. The weekly plan for the Beijing-
Shanghai HSR includes many shorter-distance trains between key metropolitan areas like Tianjin, 
Jinan, Xuzhou, and Nanjing. These shorter trains fill gaps between faster and slower long-distance 
trains, making the timetable more saturated. In contrast, the Nanjing-Shanghai HSR features fewer 
intermediate cities with high passenger volumes between Nanjing and Shanghai, such as Suzhou, 
Wuxi, and Changzhou. The short-distance trains on this line all terminate in Shanghai, where the 
high volume of terminating trains causes oversaturation, leading to the cancellation of many short-
distance trains to ensure service for passengers between Nanjing and Shanghai.  

6 CONCLUSION 

To better align HSR services with fluctuating passenger demand across different times of the day 
and various days of the week, this study proposes the WTTSP model, which uses the origin, 
destination, and operational frequencies of trains for each period and day as inputs and determines 



train stopping patterns, as well as with departure and arrival times at each station. Trains are 
categorized into three types based on their weekly operation modes: periodic trains, which repeat 
in each period daily; daily trains, which maintain consistent stopping patterns and schedules across 
all days; and weekly trains, which are scheduled flexibly to accommodate demand variations. 
Passenger routing is also incorporated into the model, with the objective of minimizing the 
combined travel costs of trains and passengers. 

To solve the integrated optimization problem efficiently, the model is reformulated as a route-
searching problem for trains and passengers through the construction of WTON. A Lagrangian 
relaxation algorithm is applied, which relaxes the safety headway and seating capacity constraints 
and decomposing the model into subproblems for routing subgroups of trains and passengers. In 
each iteration, these subproblems are solved independently to obtain a relaxed solution and a lower 
bound of the optimal solution. A feasible solution is obtained through a customized demand-
matching strategy to determine the upper bound. Based on these relaxed and feasible solutions, the 
Lagrangian multipliers are updated for the next iteration. 

The effectiveness of the proposed model and algorithm is validated through case studies on Chinese 
HSR lines. In small-scale scenarios, the algorithm significantly outperforms the commercial solver 
CPLEX in both solution quality and computation time, demonstrating superior efficiency. In 
practical-scale experiments based on the Nanjing-Shanghai HSR line, the results reveal the 
algorithm’s computational limitations highlight the benefits of integrated optimization over 
conventional sequential methods. Notably, the optimized weekly timetable improves passenger 
travel speeds and departure-time satisfaction. An additional case study on the Beijing-Shanghai 
HSR line further demonstrates the algorithm’s versatility, showing its applicability to various types 
of HSR lines. 

 

Figure 15 Weekly timetable of Beijing-Shanghai HSR (Mon. to Thu.) 



 

Figure 16 Weekly timetable of Beijing-Shanghai HSR (Fri.) 

 

Figure 17 Weekly timetable of Beijing-Shanghai HSR (Sat.) 



 

Figure 18 Weekly timetable of Beijing-Shanghai HSR (Sun.) 
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