
This is a repository copy of Single-plant-omics reveals the cascade of transcriptional 
changes during the vegetative-to-reproductive transition.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/229759/

Version: Published Version

Article:

Ezer, Daphne, Davis, Seth Jon orcid.org/0000-0001-5928-9046, Redmond, Ethan et al. (1 
more author) (2024) Single-plant-omics reveals the cascade of transcriptional changes 
during the vegetative-to-reproductive transition. The Plant Cell. koae226. 4594–4606. 
ISSN: 1532-298X

https://doi.org/10.1093/plcell/koae226

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1093/plcell/koae226
https://eprints.whiterose.ac.uk/id/eprint/229759/
https://eprints.whiterose.ac.uk/


Single-plant-omics reveals the cascade of transcriptional 
changes during the vegetative-to-reproductive transition
Ethan J. Redmond,1 James Ronald,1,2 Seth J. Davis,1 Daphne Ezer1,*

1Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
2School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK

*Author for correspondence: daphne.ezer@york.ac.uk (D.E.)

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for 

Authors (https://academic.oup.com/plcell/pages/General-Instructions) is: Daphne Ezer (daphne.ezer@york.ac.uk).

Abstract
Plants undergo rapid developmental transitions, which occur contemporaneously with gradual changes in physiology. Moreover, 
individual plants within a population undergo developmental transitions asynchronously. Single-plant-omics has the potential to 
distinguish between transcriptional events that are associated with these binary and continuous processes. Furthermore, we can use 
single-plant-omics to order individual plants by their intrinsic biological age, providing a high-resolution transcriptional time series. 
We performed RNA-seq on leaves from a large population of wild-type Arabidopsis (Arabidopsis thaliana) during the vegetative-to- 
reproductive transition. Though most transcripts were differentially expressed between bolted and unbolted plants, some regulators 
were more closely associated with leaf size and biomass. Using a pseudotime inference algorithm, we determined that some 
senescence-associated processes, such as the reduction in ribosome biogenesis, were evident in the transcriptome before a bolt was 
visible. Even in this near-isogenic population, some variants are associated with developmental traits. These results support the use 
of single-plant-omics to uncover rapid transcriptional dynamics by exploiting developmental asynchrony.

Received October 13, 2023. Accepted August 2, 2024 

© The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which per-

mits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Plants experience many gradual developmental changes, such as 

leaf and biomass accumulation. However, at certain critical 

points, they undergo rapid “phase changes” that act as switches. 

These switches include the juvenile-to-vegetative transition and 

the vegetative-to-reproductive transition (Rankenberg et al. 

2021). Transcriptional programs coordinate both these gradual 

and binary developmental processes. Understanding rapid tran-

scriptional changes, requires a high temporal resolution of sample 

collection (Ezer and Keir 2019), a strategy that has effectively been 

deployed to detect rapid transcriptional responses to the onset of 

light (Balcerowicz et al. 2021) and heat (Cortijo et al. 2017). 

However, this experimental approach does not easily translate to 

the study of late developmental transitions, because individual 

plants do not undergo developmental transitions in a synchron-

ized way, and the degree of asynchrony is greater than the required 

temporal resolution of sampling. This developmental asynchrony 

—also known as “developmental instability” (Klingenberg 2019)— 
is caused by the inherently stochastic nature of biochemical proc-

esses, such as transcriptional bursting (Leyes Porello et al. 2023). 

Developmental asynchrony is also affected by genetic factors 

and heterogeneity in microenvironments (Pertoldi et al. 2006; 

Klingenberg 2019).

Single-plant-omics offers an innovative way to investigate 

the transcriptional dynamics at developmental transition 

points. Single-plant-omics has previously been used to charac-

terize diurnal gene-expression noise (Cortijo et al. 2019), maize 

(Zea mays) transcriptional heterogeneity within a field-grown 

population (Cruz et al. 2020), and meristem heterogeneity in to-

matoes (Meir et al. 2021). By exploiting the developmental asyn-

chrony across individual plants, we can reconstruct the order of 

transcriptional cascades that occur during a rapid developmen-

tal transition.

We focus on the vegetative-to-reproductive transition, an irre-

versible phase change in angiosperms that includes the formation 

of a bolt and eventually leads to flowering. Climate change has al-

ready been shown to reduce the synchrony of flowering time, lead-

ing to ecological and agricultural repercussions (Zohner et al. 

2018). To support the initiation of reproductive growth, multiple 

processes are tightly coordinated within leaves during this transi-

tion. Of particular importance is the onset of leaf senescence: a 

transcriptionally regulated and tightly controlled process that 

leads to cell death in leaves (Kim et al. 2018) and nutrient realloca-

tion to reproductive structures (Havé et al. 2017). Bolting-associ-

ated leaf senescence is an important contributor to the nutrient 

quality of grains (Gregersen et al. 2008; Havé et al. 2017).
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A detailed sequence of transcriptional events that occur immediately before and after bolting is revealed by sequencing a large pop-

ulation of asynchronously developing wildtype Arabidopsis.
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In this paper, we utilize single-plant-omics of a population of 

wild-type plants to reconstruct the transcriptional cascades that 

control development during the onset of bolting in Arabidopsis 

leaves. We found that the majority of genes were differentially ex-

pressed during bolting, reflecting a binary shift in transcriptional 

states. Next, we identified a subset of genes that are more closely 

associated with the gradual transcriptional changes associated 

with growth. Finally, we order the plants on the basis of their bio-

logical age, which enables us to uncover the sequence of events 

that occur during the bolting process, which begins with a shut-

down of ribosome production and ends with the shutdown of 

photosynthesis. The gene network that we infer can serve as a 

reference for understanding the transcriptional regulation 

pathways that underlie this critical developmental transition. 

Additionally, we identified genetic variants that are associated 

with biological age. We show that single-plant-omics aids under-

standing of complex developmental transitions.

Results

Widespread transcriptional changes occur after 
bolting in Arabidopsis thaliana
Bolting functions as an indicator of the vegetative-to-reproductive 

developmental transition and occurs simultaneously with the onset 

of leaf senescence and the cessation of leaf development 

(Möller-Steinbach et al. 2010; Hinckley and Brusslan 2020). To inves-

tigate the gene-expression changes that arise during bolting, we 

measured gene expression from leaves of individuals within a 

population of wild-type Arabidopsis (A. thaliana) plants, grown 

under uniform, controlled conditions (n = 68 after filtering; see 

Materials and methods, Supplementary Fig. S1 and Data Set 1) and 

under inductive conditions (16 h light/8 h dark). These were sampled 

when 23 of the plants had bolted. To explore the connection between 

asynchronous gene expression and the major developmental 

changes occurring around the vegetative-to-reproductive transition, 

we recorded key developmental physiological traits from each plant.

We performed hierarchical clustering of plants, based on 

the Pearson correlation of gene expression between samples 

(Supplementary Fig. S2). This analysis showed that the samples 

can be separated into 2 clusters. One cluster contains the majority 

of the nonbolted plants (35 out of 45) and the other contains the ma-

jority of the bolted plants (18 out of 23; Supplementary Fig. S2 and 

Data Set 2). We thus sought to characterize the transcriptomic 

changes occurring simultaneously with bolting. We found differen-

tially expressed genes (DEGs) between nonbolted and bolted plants, 

taking into account the large number of samples (see Materials and 

methods, Supplementary Data Set 3 and Fig. S3). Overall, 3,734 genes 

were upregulated, and 6,967 genes were downregulated after 

bolting, accounting for 55% of the entire transcriptome after initial 

filtering (Supplementary Fig. S1). We performed gene ontology 

(GO) term enrichment analysis on the DEGs (Raudvere et al. 2019). 

Significantly, enriched terms cover a range of senescence-associated 

processes, consistent with previous observations that transcrip-

tional changes during bolting are associated with senescence 

(Supplementary Data Set 4; Hinckley and Brusslan 2020).

First, programmed cell death (GO:0012501) was overrepre-

sented among genes that were upregulated in bolted plants 

(Fig. 1A (i)). Conversely, the regulation of cell cycle (GO:0051726) 

is overrepresented within downregulated genes (Fig. 1A (ii)). 

These results are consistent with changes in cell cycles within ma-

turing leaves. A shift occurs from cell division to cell elongation 

(marked by endoreduplication) in young to mature leaves, and pro-

grammed cell death eventually occurs in senescent tissue (Del 

Prete et al. 2019; Woo et al. 2019). Second, bolting correlates with 

a reduction of gene expression for genes associated with each 

step of transcription and translation, including RNA polymerase 

complex formation (GO:0030880), RNA processing (GO:0006396), 

and structural constituents of the ribosome (GO:0003735). In 

contrast, genes related to posttranscriptional modification, such 

as ubiquitination (GO:0016567) and protein phosphorylation 

(GO:0006468), were more highly expressed in bolted plants. 

Third, photosynthesis-related (GO:0015979) gene expression was 

Figure 1. Gene-expression values and physiology. A) Gene-expression values across all samples for genes annotated with selected GO terms. Only 
genes that were identified as differentially expressed are shown. Hierarchical clustering across each sample shows that plants with the same bolting 
status often cluster together. Additionally, hierarchical clustering within each group of genes indicates the nature of the large changes between 
nonbolted and bolted plants. (i) Programmed cell death (GO:0012501). Adjusted P-values: up = 2.68e−9, down = 1. (ii): Regulation of cell cycle 
(GO:0051726). Adjusted P values: up = 1, down = 8.82e−15. (iii) Photosynthesis (GO:0015979). Adjusted P-values: up = 1, down = 3.84e−8. (iv) Response to 
jasmonic acid (GO:0009753). Adjusted P-values: up = 1.97e−8, down = 1. Note that we scaled TPM values (to have a mean of 0 and SD of 1 across all 
samples) then clipped any value >3 or <−3. Adjusted P-values were calculated by g:Profiler and relate to test of GO term overrepresentation in either 
up- or downregulated genes (Raudvere et al. 2019). For all hierarchical clustering, we used the “complete” linkage method. B) Biomass and leaf size are 
plotted per individual plant. The black line represents the line of best fit (linear regression, R2

= 0.55, P = 1.59e−12). n = 68 total sample size.
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reduced in bolted plants (Fig. 1A (iii)), consistent with chlorophyll 

catabolism during senescence (Woo et al. 2019). Finally, we ob-

served an overrepresentation of genes associated with jasmonic 

acid (GO:0009753), abscisic acid (GO:0009737), and salicylic acid 

(GO:0009751). These hormone signaling pathways were previously 

associated with leaf senescence (Woo et al. 2019). These results in-

dicate that the onset of bolting coincides with a large-scale tran-

scriptomic shift toward senescence.

Physiological traits have distinct correlations with 
biological processes
Bolting is a rapid developmental transition that occurs over a 2- or 

3-d period, but other plant traits accumulate gradually over a plant’s 

lifetime, including leaf area and biomass. We observed that biomass 

and leaf size were correlated across the population (linear regres-

sion, R2
= 0.55, P = 1.59e−12). Additionally, bolted plants had signifi-

cantly higher biomass (Mann–Whitney U test, W = 111.5, P = 1.46e 

−7) and leaf size (Mann–Whitney U test, W = 185, P = 6.33e−6) than 

nonbolted plants (Fig. 1B, Supplementary Data Set 2).

While we previously observed widespread transcriptional 

changes associated with the bolting transition, we hypothesized 

that there would be separate transcriptional programs associated 

with leaf area and biomass. To investigate this, we used regularized 

linear regression, via elastic net models, to predict physiology from 

gene expression for all the plants in our population (Zou and 

Hastie 2005). We used leave-one-out-cross-validation (LOOCV) to 

validate the generalizability of our models (Hastie et al. 2009; 

Supplementary Data Set 5). We chose to focus on models trained 

on regulatory genes only (see Materials and methods, for a more 

complete definition), which enabled us to interpret the predictors 

from these models more easily (Fig. 2C). Despite the slightly worse 

R2 and relative mean squared error (RMSE) scores for leaf models, 

the biomass models performed better when restricted to only 

regulators (see Fig. 2, A and B, Supplementary Fig. S4, A and B, and 

Data Set 6).

We were able to identify genes that were consistently identified 

as predictors of both leaf area and biomass in multiple models 

during the LOOCV process (Fig. 2C, Supplementary Data Set 7). 

Since gene expression was standardized before input to all mod-

els, it was possible to compare the coefficients of different genes 

within a model. Overall, 180 regulatory genes had a nonzero me-

dian coefficient across all models (Supplementary Data Set 7). 

Of these, 8 were identified as positive predictors of biomass and 

leaf size and 13 were identified as negative predictors of both traits 

(Supplementary Data Set 7). The gene with the highest positive 

Figure 2. Predicting physiology from gene expression. For A and B, red represents nonbolted plants (n = 45) and blue represents bolted plants (n = 23). 
A) Performance of leaf size prediction from regulatory genes. Predicted values were produced from an elastic net model, trained on all data except for 
the relevant sample. B) A repeat of A for biomass values. C) Comparison of the median weight of predictors from biomass and leaf size models. 
D) Confusion matrix of the logistic regression models trained to predict bolting status from gene expression. Predicted values were produced from a 
logistic regression model, trained on all data except for the relevant sample. Each model was regularized using the elastic net method. The accuracy 
across all logistic regression models is 85.3%. (See Physiology trait prediction with elastic nets section for more information on cross-validation, 
hyperparameter selection, and performance metrics.) RMSE, root mean squared error.
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coefficient for both traits was HOMEOBOX PROTEIN 54 (HB54), in-

volved in a nitrogen-signaling cascade linked to plant growth 

(Ariga et al. 2022). An auxin-responsive gene, INDOLEACETIC 

ACID–INDUCED PROTEIN 10 (IAA10), was identified as a positive 

regulator of leaf size and biomass (Liscum and Reed 2002).

We identified 3 AGAMOUS-LIKE MADS-box TFs with high 

positive or negative coefficients for these traits. Orthologs of simi-

lar TFs in rapeseed were highlighted in a single-plant-omics study 

as predictors of yield phenotypes (De Meyer et al. 2023). 

SEPALLATA 4 (SEP4), also known as AGAMOUS-LIKE 3 (AGL3), had 

a high positive coefficient for biomass and for leaf models. 

AGAMOUS-LIKE 16 (AGL16) had a high positive coefficient for leaf 

size but not biomass. AGAMOUS-LIKE 19 (AGL19), which is a known 

component in the FLOWERING LOCUS C (FLC)-independent vernal-

ization pathway, had a highly negative median coefficient for bio-

mass models but not leaf models (Schönrock et al. 2006). 

Interestingly, CURLY LEAF (CLF) also had a highly negative median 

coefficient for biomass models but not leaf models. CLF represses 

expression of AGL19 in an age-related manner (Schönrock et al. 

2006). Additionally, CLF has been shown to control leaf morpho-

genesis (Kim et al. 1998).

We identified genes with highly negative coefficients for both 

traits. TARGET OF EARLY ACTIVATION TAGGED (EAT) 2 (TOE2) is a 

highly negative predictor of both traits, suggesting that there is a 

link between leaf size, biomass, and the microRNA/SPL-mediated ju-

venile to mature transition (Werner et al. 2021). Other highly 

negative predictors of both traits include transcription factors 

controlling stomatal development (TSO1-LIKE CXC DOMAIN– 

CONTAINING PROTEIN 1; SOL1) and shade avoidance response 

(PHYTOCHROME-INTERACTING FACTOR 7; PIF7; Galvāo et al. 2019; 

Simmons et al. 2019).

We also sought to understand important predictors of 1 trait 

which were not predictive of the other trait. For leaf size, strongly 

positive predictors included: an ethylene response factor (ERF) 

TF family gene (ETHYLENE RESPONSE FACTOR 18; ERF018); a positive 

regulator of photomorphogenesis and regulator of flowering 

(CONSTANS-LIKE 3, COL3); and, as mentioned above, AGL16 

(Nakano et al. 2006; Tripathi et al. 2017; Liu et al. 2021). Conversely, 

MYB-SHAQKYF 1 (MYS1), a transcription factor involved in leaf wax 

biosynthesis, was identified as a strongly negative predictor of leaf 

size but not biomass (Liu et al. 2022). For biomass, strongly positive 

predictors included: a basic region/leucine-zipper motif (bZIP) TF 

family gene, identified as affecting germination (BASIC LEUCINE- 

ZIPPER 44; bZIP44); SQUAMOSA PROMOTER–BINDING PROTEIN-LIKE 

4 (SPL4), which is repressed by microRNA 156 (miR156); and 

RGA-LIKE 1 (RGL1), which is a negative regulator of gibberellin re-

sponses (Wen and Chang 2002; Iglesias-Fernández et al. 2013; Xu 

et al. 2016). Conversely, strong negative predictors of biomass in-

cluded CLF and AGL19, as mentioned above.

In addition, we used regularized logistic regression models to pre-

dict bolting status (see Materials and methods). Similar to biomass 

models, these models had slightly higher accuracy when trained on 

only regulators, rather all genes (Fig. 2D, Supplementary Fig. S4C).

Single-plant-omics can generate a 
high-resolution time series
The above results suggest that some genes are associated with 

continuous changes, such as determinants of biomass and leaf 

area. Other processes are associated with the “binary” shift in 

gene expression from nonbolted to bolted plants (Graphical 

Abstract). However, we expected that even a rapid developmental 

transition will involve continuous changes in gene expression 

near the transition point but observing these changes would require 

sampling many time points during the rapid transition period (Ezer 

and Keir 2019). Although the individual plants in our population 

were sampled at the same chronological age, they developed asyn-

chronously. Thus, we hypothesized that individuals within a popu-

lation of plants would demonstrate asynchronous gene-expression 

dynamics (Fig. 3A). Here, we introduce a new method to order the 

plants by their biological age, based solely on gene-expression data.

This problem of ordering samples based on gene-expression 

data alone is related to pseudotime inference in the analysis of single- 

cell RNA-seq data. In that context, “pseudotime” refers to a pseu-

dotemporal ordering of single cells, which is assumed to contain 

information about biologically meaningful developmental trajec-

tories, such as cell differentiation (Saelens et al. 2019; Ding et al. 

2022). Although multiple methods exist for pseudotime inference, 

the most popular approaches require large numbers of samples 

(cells) due to their unsupervised approach (Saelens et al. 2019; 

Ding et al. 2022). Notably, our sample size of 68 plants is 

lower than the hundreds or thousands of cells required for 

unsupervised methods. To circumvent this restriction, we incorpo-

rated an assumption that the expression of most genes across the 

vegetative-to-reproductive transition was either monotonically in-

creasing or decreasing. Our first basis for making this assumption 

was our earlier observation that the majority of genes are differen-

tially expressed during bolting, suggesting that they primarily in-

crease or decrease in expression (‘Widespread transcriptional 

changes occur after bolting in Arabidopsis thaliana’). Our second 

basis was that previous longitudinal studies of leaves show that 

many genes change their expression monotonically over develop-

ment (Breeze et al. 2011; Woo et al. 2016). We were able to consis-

tently order our plants along pseudotime to maximize the 

monotonicity of gene expression, using distinct subsets of genes. 

Finally, we compiled a consensus pseudotime of samples 

(Materials and methods; Supplementary Fig. S5).

We observed that pseudotime captures the sequence of changes 

in gene expression within bolting-related processes. We visualized 

genes associated with programmed cell death, regulation of cell 

cycle, photosynthesis, and response to jasmonic acid over pseudo-

time (Fig. 3B). Within each of these groups, there were clusters of 

genes with different expression timings, with changes in expression 

occurring earlier or later in the bolting process. We used a simple 

metric to describe whether genes were early or late changing: 

“area under the curve” (AUC; Fig. 3C; Materials and methods; 

Supplementary Data Sets 8 to 10). Note, this should be distinguished 

from the commonly used area under the receiver operating charac-

teristic curve statistic, that is used to judge performance of diagnos-

tic tests (Hanley and McNeil 1982). For further analysis, we selected 

the top genes that were monotonic and varied smoothly over pseu-

dotime (see Materials and methods and Supplementary Fig. S6). 

Clustering of genes indicates that different expression dynamics, 

corresponding to different AUC values, are represented in the fil-

tered dataset (Supplementary Figs. S7 and S8; Materials and meth-

ods). For the majority of genes, the residuals between the fit and 

the real data are consistent across pseudotime (Supplementary 

Fig. S9).

To better characterize the timing of different biological processes 

across the bolting transition, we tested for GO terms with significant 

differences between AUC values (Fig. 3D, Supplementary Figs. S10 

to S12 and Data Sets 10 to 13; Materials and methods). To under-

stand the order of processes shutting down during the onset of sen-

escence, we focused on genes that decreased their expression over 

pseudotime. First, we found that ribosome biogenesis decreased 

earlier than processes related to phosphorylation, mRNA process-

ing, and embryo development, leading to seed dormancy, 

Single-plant-omics during bolting | 4597

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
lc

e
ll/a

rtic
le

/3
6
/1

0
/4

5
9
4
/7

7
3
1
0
8
0
 b

y
 g

u
e
s
t o

n
 2

8
 J

u
ly

 2
0
2
5

http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koae226#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koae226#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koae226#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koae226#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koae226#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koae226#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koae226#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koae226#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koae226#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koae226#supplementary-data


suggesting that ribosomal production is slowed even before the on-

set of a visible bolt (Fig. 3D). Similarly, terms for different cellular 

components decreased in the following order: nucleolus, cyto-

plasm, and then chloroplast. Interestingly, the term plasmodesma 

decreases significantly earlier than chloroplast, suggesting that in-

tercellular processes shut down before photosynthesis-related 

processes (Fig. 3D, Supplementary Data Set 12). Finally, we observed 

that mRNA binding decreases sooner than protein binding. These 

results suggest that ribosome production is one of the first processes 

to shut down at the onset of senescence, while photosynthesis is 

one of the last processes.

Pseudotime assists in the inference of gene 
regulatory networks
Our next aim was to identify the regulatory cascade that led to the 

large-scale transcriptional changes during bolting. We inferred 

gene regulatory networks (GRNs) from the gene-expression data 

over pseudotime (Fig. 4A, Supplementary Data Set 14 and Fig. 

S13). To enrich for direct regulatory interactions, we filtered for po-

tential regulatory links that were validated by DAP-seq (O’Malley 

et al. 2016; see Materials and methods). We only included tran-

scription factors in our final network whose expression changed 

smoothly over pseudotime (see the Pseudotime inference section) 

and that had DAP-seq data available for validation. The transcrip-

tion factors in our network displayed varied expression patterns 

over pseudotime (Fig. 4, B and C), and they are ordered by their 

AUC in the network in Fig. 4A. We identified 4 members of the 

SQUAMOSA PROMOTER–BINDING PROTEIN-LIKE (SPL) family as 

potential regulators in our GRN. Two of these genes (SQUAMOSA 

PROMOTER–BINDING PROTEIN-LIKE 9, SPL9, and SQUAMOSA 

PROMOTER–BINDING PROTEIN-LIKE 13B, SPL13B) are known to be 

targeted by miR156 during the vegetative-to-reproductive transi-

tion (Xu et al. 2016). We found that 15 out of 44 regulators identified 

in the GRN analysis were also found to be differentially expressed 

within a mature-to-senescent time series of leaf development 

(Woo et al. 2016; Supplementary Data Sets 9 and 14). These 

Figure 3. Pseudotemporal ordering of individual plants. A) A theoretical interpretation of our sampling method. The dashed curves represent gene 
expression from individual plants across real time since germination. The red line represents the time when all samples were collected. Due to the 
desynchronization of gene expression between plants, the red line captures a variety of gene-expression values across samples. B) A repeat of the heat 
map from Fig. 1, reordered over pseudotime and with a different scaling of TPM values (see the Pseudotime inference section). Gene-expression 
dynamics are mostly monotonic and smoothly changing. C) A diagram which demonstrates the AUC values, for genes with decreasing gene expression. 
Dashed lines represent the theoretical gene-expression values (after they have been scaled). The red region measures AUC. Genes whose expression 
decreases early on in pseudotime will have a low AUC value. Conversely, genes which decrease later on in pseudotime will have a high AUC value. D) 
AUC plots of key GO terms. These have been grouped by GO category (biological process, cellular component, and molecular function). Each dot 
represents a single gene annotated with that GO term. Letters depict significantly different GO terms based on Supplementary Data Set 12
(“kwAllPairsNemenyiTest” post hoc test, with the χ2 approximation, from the PMCMRplus v1.9.7 R package; Nemenyi 1963; Pohlert 2023). AUC, area 
under the curve; GO, gene ontology; TPM, transcripts per million.
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regulators included members of the NAC (NAM, ATAF1/2, and 

CUC2) and WRKY transcription factor families: NAC DOMAIN– 

CONTAINING PROTEIN 13 (NAC13), NAC DOMAIN–CONTAINING 

PROTEIN 16 (NAC016), NAC WITH TRANSMEMBRANE MOTIF1 

(NTM), WRKY DNA–BINDING PROTEIN 15 (WRKY15), and WRKY 

DNA–BINDING PROTEIN 25 (WRKY25) (Olsen et al. 2005; Phukan 

et al. 2016).

A small number of genetic variants are associated 
with pseudotime
Developmental asynchrony can be caused by environmental and ge-

netic factors, as well as random stochasticity. Even in a nearly iso-

genic wild-type population, there will be a number of genetic 

variants. Within our population, we identified a total of 1,047 high- 

confidence variants (see Materials and methods for details on var-

iant calling, Supplementary Data Set 15). We observed that a low 

amount of genetic variation was explained by principal component 

analysis (PCA) (Supplementary Fig. S14), highlighting the complex 

population structure. The analysis of a neighbor-joining tree, trained 

on variants, showed that bootstrap trees had low agreement with the 

original tree (Supplementary Fig. S15A). An alternative method sug-

gested that 2 subgroups may be present in the population based on 

the variant data (Supplementary Fig. S15B). The seeds used in this ex-

periment are the progeny of 15 different plants and those parents 

likely constitute 2 or more lineages with fixed nucleotide changes. 

By fitting linear models linking these 2 subgroups of samples with 

gene expression, we found that 13,545 genes had an association 

with the variant-based subgroups of samples (adjusted P-value 

<0.05; Supplementary Fig. S14 and Data Set 16). This is consistent 

with the facts that the subgroups largely separate out bolted and 

nonbolted plants and that 55% of the transcriptome is differentially 

expressed between the bolted and nonbolted plants. This analysis 

also suggests that there is a potential for false-positive gene 

expression–trait associations that result from multiple lineages 

with different fixed variants present within the experiment.

We next sought to understand whether variants could be 

linked to pseudotime or physiological traits. Interestingly, there 

were more variants that were highly correlated (absolute correla-

tion > 0.5) with pseudotime than with either of the complex phys-

iological markers (Fig. 5A). The variants that were most correlated 

to pseudotime were not co-localized across the genome, indicat-

ing that they were not part of the same linkage disequilibrium 

block. In addition, we trained models to predict physiology on var-

iant data, to judge whether the variants were more or less infor-

mative than the gene-expression data. The variant-based Elastic 

Net models for biomass and leaf size performed worse on both 

R2 and RMSE metrics (Fig. 2, Supplementary Figs. S4 and S16). 

The variant-based logistic regression model for bolting status per-

formed slightly worse (76.5% accuracy) than the logistic regres-

sion models that used the full transcriptome (80.8% accuracy) or 

the transcriptome of regulatory genes (85.2% accuracy; Fig. 2, 

Supplementary Figs. S4 and S16). Since nonbolted plants are 

mostly earlier in pseudotime compared with bolted plants, this re-

sult is consistent with our observation that a small number of var-

iants (73 out of 1047) correlate strongly with pseudotime (absolute 

Pearson correlation >0.5) (Fig. 5B). Furthermore, the presence of 

these variants helps to explain why unbolted plants cluster with 

bolted plants and vice versa. These results further validate the bi-

ological relevance of pseudotime, by indicating that genetic var-

iants are more closely associated with it than with complex 

measured traits, such as biomass and leaf size.

Discussion

Single-plant-omics enabled us to identify genes associated with the 

binary developmental transition and gradual developmental traits. 

Figure 4. GRN based on pseudotemporal ordering. A) A visualization of the GRN predicted by DynGENIE3, after filtering with DAP-seq data (see main 
text). Decreasing regulatory transcription factors are colored in red, increasing ones in blue. Additionally, transcription factors are ordered bottom to 
top by increasing ranked AUC value. The gray dots represent predicted targets (genes) of the TFs. Each line indicates a predicted interaction from a TF to 
a target. B) The smoothed gene-expression values over pseudotime of decreasing TFs from the GRN. C) The smoothed gene-expression values over 
pseudotime of increasing TFs from the GRN. AUC, area under the curve; GRN, gene regulatory network; TF, transcription factor.
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More than half of all Arabidopsis genes significantly change their 

expression levels at the onset of bolting. By increasing the number 

of biological replicates, our single plant-omics approach allows us 

to detect many more differentially expressed transcripts than in 

previous studies (Woo et al. 2016). In addition, we were able to iden-

tify a distinct set of transcriptional regulators that were predictive of 

leaf size and biomass accumulation. These included members of 

the AGAMOUS-LIKE MADS-box transcription factor family, whose 

orthologs in rapeseed have been highlighted as predictors of yield 

phenotypes in a recent single-plant-omics study (De Meyer et al. 

2023). These results suggest that single-plant-omics can help us dis-

tinguish between the transcriptional processes associated with fast 

and slow developmental processes.

However, even though developmental transitions are rapid, the 

transcriptional regulation that occurs during these transitions is 

governed by biochemical processes that will change smoothly over 

time. One of the main benefits of the single-plant-omics approach 

is that it enables us to piece together the sequence of changes in 

what initially appears to be a switch-like transition process. We de-

veloped a new method of ordering individual plants by their biologi-

cal age, which we refer to as their pseudotime. We could consistently 

identify an ordering of plants when utilizing independent subsets of 

genes, removing the need for marker gene selection (Meir et al. 2021). 

In addition, we show that it is biologically meaningful because genet-

ic variants in the population of wild-type plants are more closely as-

sociated with pseudotime than they are to measured traits like 

biomass and leaf area. While other methods for pseudotime infer-

ence are widely used (Saelens et al. 2019; Ding et al. 2022), these are 

designed for single-cell RNA-seq datasets with hundreds or thou-

sands of cells, while our method is effective for smaller sample sizes.

By using pseudotime, we were able to dissect the order of events 

that took place during bolting at a higher resolution than other stud-

ies that relied on RNA-seq time series (Breeze et al. 2011; Woo et al. 

2016). Although it is well known that the timing of bolting is closely 

associated with leaf senescence in different Arabidopsis accessions 

and mutants (Balazadeh et al. 2008; Upadhyay et al. 2014; Yan et al. 

2017), here we show that many senescence-related processes are 

concurrent with bolting. Indeed, some of the early processes associ-

ated with senescence, such as shutting down ribosome production, 

appear at a transcriptional level before the visible onset of bolting, 

which challenges preconceived notions about the order of events 

that occur during bolting. We identified 43 key transcriptional regu-

lators and identified the order in which they increase or decrease 

their expression during the vegetative-to-reproductive transition. 

Our resulting gene network will be a valuable resource for exploring 

the regulation underpinning this fundamental developmental 

transition.

We suggest that single-plant-omics provides numerous benefits 

for the understanding of rapid developmental transitions, such as (i) 

increased sensitivity to DEGs, (ii) the ability to distinguish between 

gene expression changes associated with fast and slow develop-

mental processes, and (iii) the capacity to reconstruct the sequence 

of transcriptional events that occur during a rapid developmental 

process. Single-plant-omics coupled with pseudotime inference 

will be widely applicable to investigate other rapid developmental 

processes, such as germination, the juvenile-to-vegetative transi-

tion, and floral development.

Our work also highlights that near-isogenic lab strains may still 

contain genetic variants that are associated with traits of interest, 

suggesting that experiments need to be designed to robustly han-

dle heterogeneity between individual plants. The complex popula-

tion structure of near-isogenic lines of laboratory strains warrants 

further consideration by the research community.

Materials and methods

Plant growth conditions, library preparation, 
and RNA-seq
Seeds from the Arabidopsis (A. thaliana) ecotype Wassilewskija 

(Ws-2) (Anwer et al. 2020) came from a collection of ∼15 parents. 

These were surface sterilized and plated onto 1 × Murashige and 

Skoog basal salts (Duchefa Biochemie) supplemented with 1% w/v 

Figure 5. Comparison of variants to pseudotime and physiological traits. In this figure, 0|0 corresponds to homozygous for the reference allele, 0|1 
corresponds to heterozygous, and 1|1 corresponds to homozygous for the mutant allele. A) Correlation of variants to pseudotime, biomass, and leaf size. 
Correlation was calculated by assigning to 0 to 0|0, 1 to 0|1, and 2 to 1|1, then computing the absolute value of Pearson correlation between genotype and 
the measurement of interest. The blue line corresponds to a correlation of 0.5. n = 68 plants shown, n = 1,047 variants shown. B) Genotypes of variants 
with a high correlation (>0.5) to pseudotime. Columns (plants, n = 68) are ordered by increasing pseudotime. Rows (variants, n = 73) are ordered by 
hierarchical clustering.
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sucrose (Thermo Fisher), 0.5% w/v MES (Melford Bioscience), and 

1.5% w/v phytoagar (Duchefa Biochemie). After 4 d of stratification 

at 4 °C, plates were transferred to long-day photoperiods (16 h light/ 

8 h dark), next to vertical, cool white, fluorescent lights (Osram Cool 

White 16W/840) with a light intensity of 50 µmol m−2 s−1 and a con-

stant temperature of 21 °C for 10 d. On Day 10, 225 seedlings were 

individually transferred to soil (F2 + 5% sand, Levington) and grown 

for a further 10 d under a long-day photoperiod (16 h light/8 h dark), 

under cool white, fluorescent top lighting (Phillips Master TL-D 

36W/840) at an intensity of 70 μmol m−2 s−1 with a constant temper-

ature of 21 °C. Throughout growth, plants were shuffled within the 

growth chambers approximately every 3 d. The 3rd and 4th true ro-

sette leaves were tracked during growth. On Day 20, 75 plants were 

selected from the population to ensure a diversity of bolting sta-

tuses. For each of these 75 plants, they were classified as bolting if 

there was a visible bolt ∼1 cm above the rosette, and not bolting oth-

erwise. Images of the rosettes were taken at a consistent height. Five 

plants were not sequenced since one or more leaves were not visible 

in the relevant image. On Day 21 at ZT4 (4 h after lights on), the 3rd 

and 4th leaves from individual plants were harvested together, 

pooled, and snap-frozen in liquid nitrogen. The rosette biomass 

(not including the 3rd and 4th leaves) was then weighed 

(Supplementary Data Set 2). Later, the mean area of the 3rd and 

4th leaves was calculated using the Polygon selection tool in Fiji 

with a ruler used for scale (Schindelin et al. 2012; Supplementary 

Data Set 2). Throughout this work, we refer to each plant individu-

ally (e.g. “P002”)—since gene expression and physiological measure-

ments were measured separately per plant.

Total RNA was isolated from leaf tissue using the Qiagen RNeasy 

Plant Mini Kit (Cat no. 74904). Residual genomic DNA was removed 

using the Invitrogen Turbo DNA-free kit (Cat no. AM1907), according 

to the manufacturer’s protocol. Libraries for RNA sequencing were 

prepared with the NEBNext Ultra II Directional Library Prep Kit for 

Illumina (Cat no. E7765), using the NEBNext poly(A) magnetic isola-

tion module (Cat no. E7490). Quality control was performed with the 

Agilent 2100 Bioanalyzer instrument (Part no. G2939BA). Finally, a 

total of 70 bar-coded libraries were pooled and sequenced, via 

Novagene, using 1 lane on an Illumina NovaSeq system. Before anal-

ysis of the raw sequencing data, FastQC v0.11.7 (Andrews 2010) was 

used to assess read quality. Illumina adapters were trimmed using 

CutAdapt v3.4 (Martin 2011). Reads were quantified using Salmon 

v1.6.0 (Patro et al. 2017) and the TAIR10 transcriptome (Berardini 

et al. 2015).

For further analysis except differential gene expression, tran-

scripts per million (TPM) was used as the measure of relative gene 

expression across samples. Additionally, TPM levels per transcript 

isoform were combined to leave only gene-level expression data. 

One sample (P158) was sequenced again due to low read depth in 

the initial sequencing, and the initial data were discarded. Two 

samples (P128 and P196) were discarded as outliers during initial 

clustering of the data (Supplementary Fig. S1). Finally, TPM values 

were filtered to remove genes with very low expression, to avoid 

biassing clustering and other analyses. Genes were not considered 

for further analysis if they met either of these 2 criteria: (i) TPM of 

0 in 10 or more samples, or (ii) TPM below 0.5 in all samples. This 

left 19,283 genes for further analysis. After this filtering, samples 

clustered into 2 large groups (Supplementary Fig. S2).

Differential gene expression and GO term 
overrepresentation
Due to the large number of samples, we used the nonparametric 

Mann–Whitney U test to perform differential gene-expression anal-

ysis, as recommended by Li et al. (2022). However, since we expected 

>30% of the transcriptome to be differentially expressed, we did not 

perform the trimmed mean of M values normalization (Robinson 

and Oshlack 2010). Counts per million (CPM) was used as input to 

this test, and P-values were corrected according to the Benjamini 

and Hochberg method to control the False Discovery Rate 

(Benjamini and Hochberg 1995). Salmon produces “NumReads” as 

an estimate of the number of reads corresponding to a transcript, 

so these values were combined to the gene level (as above) and 

then normalized to produce CPM values (Patro et al. 2017). Genes 

were classified as differentially expressed if both of the following 

conditions were true: (i) the adjusted P-value was <0.05, and (ii) 

the log2-fold change between the means with the nonbolted and 

bolted plants was >0.1 or <−0.1 (Supplementary Fig. S3 and Data 

Set 3). GO term overrepresentation was performed using the gpro-

filer2 R package (version 0.2.1; Kolberg et al. 2020). This called the 

g:Profiler server (version e111_eg58_p18_30541362), which utilizes 

the g:SCS multiple testing correction method, and we then applied 

a significance threshold of 1e−4 (Kolberg et al. 2023; Supplementary 

Data Set 4).

Physiology trait prediction with elastic nets
Due to the large number of possible predictors (i.e. genes) vs. out-

puts (i.e. biomass and leaf area), we needed to regularize the linear 

regression models and logistic regression models used in prediction. 

The aim of this was to remove the many low-impact predictors, 

whose individual effect on the model was very small. We chose 

the elastic net as a regularization method (Zou and Hastie 2005). 

TPM values were z-scored before input. A set of known and potential 

regulatory genes was curated by selecting genes annotated with the 

following GO terms: “DNA-binding transcription factor activity” 
(GO:0003700), “signal transducer activity” (GO:0004871), and 

“regulation of transcription—DNA templated” (GO:0006355), which 

were the same as those in a previous single-plant-omics publication 

(Cruz et al. 2020). These were used as the set of possible predictors 

for all figures in the main text.

Since the elastic net requires predetermined settings to balance 

regularization with prediction accuracy, we used a tiered 

cross-validation approach to find optimal hyperparameters. This 

was implemented using “scikit-learn” in Python v3.10.4 using the 

“ElasticNetCV” function for leaf and biomass models and 

“LogisticRegressionCV” for bolting models (Pedregosa et al. 2011). 

First, LOOCV was used to produce a 68 separate test-train splits, 

where the testing set only consisted of a single sample (Hastie et al. 

2009). Then, for each training set, 5-fold cross-validation was used 

to pick optimal “alpha” and “l1_ratio,” with possible inputs for “l1_ra-

tio” of 0.1, 0.5, 0.7, 0.9, 0.95, 0.99, and 1.0 (Supplementary Data Set 5). 

Parameters relating to “alpha” (“ElasticNetCV”) were kept at their de-

fault values. For logistic models, 10 different “C” values were tested, 

by setting “Cs” to 10 in “LogisticRegressionCV.” The output of this 

process was a set of optimal hyperparameters and a trained elastic 

net model for each test-train split (Supplementary Data Set 5). 

Finally, we needed to select a single “l1_ratio” value to apply across 

every leaf and biomass model, since this value controls the amount 

of variable selection and we wanted to compare the selected predic-

tors (Fig. 2C). We chose an “l1_ratio” of 0.5 for these since this was the 

most common value across all LOOCV folds in leaf size models with 

all genes and leaf size models with regulators only (Supplementary 

Data Set 5). For bolting models, the “l1_ratio” was set to the mode 

value selected in the hyperparameter tuning process (0.5 for models 

trained on all genes, and 0.1 for models trained on regulatory 

genes only). The predictions and coefficients from optimal models, 

with fixed “l1_ratio” values across folds, are summarized in 

Supplementary Data Sets 6 and 7, respectively.
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Pseudotime inference
Since our sample size was too small to infer an ordering of samples 

using unsupervised techniques, which is typical in single-cell 

RNA-seq data analysis (Saelens et al. 2019; Ding et al. 2022), we de-

veloped a new pseudotime inference method. We applied the fol-

lowing steps to genes identified as differentially expressed (see 

above). First, we processed the gene-expression values for each 

gene as follows: (i) z-score TPM values per gene and truncate any 

values >3 or <−3; (ii) linearly scale these values, so that the mini-

mum value was 0 and maximum value was 1 for each gene; and 

(iii) if the gene was identified as downregulated, change the gene 

expression after step (ii), x to be 1 − x. To validate this assumption, 

we partitioned genes into 100 distinct groups and repeated the pseu-

dotime inference method for each group (Supplementary Fig. S5). 

Specifically, define xi,j,k as the normalized expression of the i th 

gene in group j in the k th sample, where j = 1, . . . , 100, 

i = 1, . . . , nj, and k = 1, . . . , 68. Then, for each group j, the k sam-

ples were ordered based on 
􏽐nj

i=1 xi,j,k, i.e. the sum of normalized ex-

pression of every gene within a fixed group and sample. Finally, we 

combined the individual predicted pseudotemporal orderings, by 

assigning each sample to its most common predicted position be-

tween the separate orderings.

Following pseudotime inference, gene-expression values were 

smoothed and filtered based on the goodness of fit of the 

smoothed curves. Cubic B splines were used as basis functions 

to fit to the data and the smoothing process was penalized with 

the second derivative. The fitting process was repeated, varying 

the number of basis functions and the smoothing parameter 

(“lambda”), to choose optimal hyperparameters, i.e. those that 

minimized the sum of the generalized cross-validation (GCV) 

across all genes (Kokoszka and Reimherr 2017; Supplementary 

Fig. S6A and Data Set 8). Finally, the 4,000 genes with lowest 

GCV were chosen for further analysis (Supplementary Fig. S6B

and Data Set 9). The smoothed functions were again rescaled to 

ensure they had a minimum of 0 and maximum of 1, allowing 

for comparisons between time series. Additionally, some genes 

had a few samples where the TPM was much higher than in other 

samples, and these genes had inappropriately smoothed curves. 

Genes were, therefore, removed if the ratio between their range 

and their interquartile range was too high (Supplementary Figs. 

S6, C and D and Data Set 9). A total of 3,906 genes remained after 

these filtering steps.

Analysis of gene expression over pseudotime
We summarized the expression dynamics of each monotonically 

increasing or decreasing gene by its AUC. First, we filtered for 

genes whose smoothed expression was monotonic over pseudo-

time. Specifically, a gene was considered monotonic if the deriva-

tive of its B-spline-fitted expression over pseudotime (see the 

Pseudotime inference section) never crossed 0. (Due to the poten-

tial for numerical errors when calculating the derivative, we set all 

derivative values within ±1e−3 to 0, to avoid spuriously removing 

monotonic genes.) Then, we summarized these genes by calculat-

ing their AUC—i.e. the integral of the curve between the start and 

end of pseudotime. Crucially, since these selected genes are mon-

otonic, a gene with smaller AUC changes more rapidly earlier on in 

pseudotime (see Fig. 3C). For increasing genes, the AUC was calcu-

lated for (1 − normalized gene expression) values, so that a small-

er AUC also indicated changes earlier on in pseudotime.

We clustered the monotonic genes using a shape-based metric 

from dtwclust (version 5.5.12), using the “tsclust” function with “dis-

tance” set to “sbd” (Sardá-Espinosa 2019). This is an implementation 

of the k-shape algorithm (Paparrizos and Gravano 2016). To select an 

appropriate number of clusters of visualization, we calculated the 

within cluster sum of squares, which is a metric to evaluate the tight-

ness of clusters. This can be calculated using 
􏽐k

i=1

􏽐
g∈Ci

d(g, μi)
2, 

where k is the number of clusters, Ci is the set of genes in cluster i, 

μi is the centroid of Ci, and d(g1, g2) is the distance between g1 and 

g2 as calculated by the k-shape algorithm. We then selected k = 25 

as the optimal number of clusters, after repeating the algorithm 5 

times for values of k = 2, 3, . . . , 50 (Supplementary Fig. S7).

After we calculated AUC values, we chose to group genes by GO 

term, to find which GO terms had significantly different average 

AUC values. We used the nonparametric Kruskal–Wallis test to 

see whether there were any significant differences between GO 

terms, i.e. if the P-value was <0.01. We compared GO terms which 

had similar numbers of genes (Supplementary Data Set 11 and 

Fig. S10), to avoid comparing very detailed GO terms with fewer la-

beled genes (such as “cellular response to DNA damage stimulus”) 

with broader GO terms (such as “translation”). This was then 

followed by a nonparametric post hoc test to find significantly 

contrasting GO terms, i.e. where the corrected P-value was <0.01. 

Specifically, we used the command “kwAllPairsNemenyiTest,” 
with the χ2 approximation, from the PMCMRplus v1.9.7 R package 

(Nemenyi 1963; Pohlert 2023). Adjusted P-values (via the “single- 

step” method) are summarized for every test in Supplementary 

Data Sets 12 and 13. Additionally, we visualized the distribution of 

AUC values for all GO terms within the same size boundaries 

(Supplementary Figs. S11 and S12).

GRN analysis
After pseudotime inference and filtering for monotonic genes, we 

applied a gene regulatory inference method (DynGENIE3) designed 

for time-series gene-expression data (Huynh-Thu and Geurts 

2018). Since this method required a prespecified list of potential 

regulatory genes, we selected TFs included in a previous DAP-seq 

experiment (O’Malley et al. 2016). In addition, we filtered for TFs 

which passed pseudotime filtering (see the Pseudotime inference 

section). This resulted in a potential 44 transcription factors. After 

running DynGENIE3, we kept only edges with a predicted weight 

of at least 1e−10, and then further selected the top 5% of all edges 

by weight (Supplementary Fig. S13).

To select for high-quality predicted interactions, we filtered the 

results against the DAP-seq dataset (O’Malley et al. 2016). 

Specifically, the putative regulatory targets (with FRiP ≥5%) were 

downloaded for all sequenced TF-binding sites. This was retrieved 

on June 1, 2023 from http://neomorph.salk.edu/dap_web/pages/ 

browse_table_aj.php. Overall, this GRN included 1,668 genes and 

2,248 interactions (Supplementary Data Set 14).

For graph visualization, Gephi v0.9.7 was used (Bastian et al. 

2009). Note that for Fig. 4, not all TFs were monotonic over pseu-

dotime (see the Analysis of gene expression over pseudotime sec-

tion). Therefore, a TF was classified as “decreasing” if the initial 

value of the smooth curve over pseudotime was greater than the 

final value and classified as “increasing” otherwise.

Variant calling
To analyze genetic variation within the population, we followed 

GATK guidelines for short variant discovery from RNA-seq data. 

We used STAR (v2.7.10b; 2-pass mode) to align reads to TAIR10 

genome, revision 56 (Dobin et al. 2013). We then preprocessed 

the aligned reads using the commands “MarkDuplicates” and 

“SplitNCigarReads” from GATK (v4.3.0.0) (Poplin et al. 2018). We 

used the command “HaplotypeCaller” to produce genomic variant 
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calling format (gVCF) files per sample. Finally, we produced identi-

fied single-nucleotide variants (SNVs) and insertions/deletions (in-

dels) which were confidently called across the whole population, 

using “GenotypeGVCFs.”
For further processing of these initial SNVs and indels, we fol-

lowed the filtering guidelines suggested by Cruz et al. (2020). 

Specifically, we selected only biallelic variants with a minimum gen-

otype quality of 40, and which were called in at least 80% of all sam-

ples, using VCFtools (v0.1.16; Danecek et al. 2011). We then imputed 

missing genotypes using Beagle (v5.4, 22Jul22, 46e) on default 

settings (Browning et al. 2018). Finally, we selected variants with a 

minor allele frequency of at least 0.05. Note, due to preprocessing 

by Beagle, the VCF file includes 2 versions of the same heterozygous 

haplotype (“0|1” and “1|0”; Browning et al. 2018; Supplementary Data 

Set 15). These were combined into a single heterozygous haplotype, 

and any variants with only heterozygous haplotypes across all sam-

ples were removed.

For analysis by PCA and as inputs to elastic net and logistic re-

gression models, each haplotype was converted into an integer: 

the homozygous reference allele was assigned 0; the heterozygous 

allele was assigned 1; and the homozygous alternate allele was as-

signed 2. Elastic Net and logistic regression models were trained 

using cross-validation, as explained in the Physiology trait predic-

tion with elastic nets section, except the hyperparameter “l1_ra-

tio” was allowed to vary to maximize prediction accuracy. The 

neighbor-joining algorithm was performed using the ape package 

(version 5.7-1) in R, using the commands “nj,” “dist.gene” to count 

the number of differences in variants between samples after rep-

resentation as integers, and “boot.phylo” (with “B = 1,000”) to re-

peat the analysis using bootstrapping (Efron et al. 1996; Paradis 

and Schliep 2019). A second analysis of population structure 

was performed using the SNPRelate package (version 1.32.2) in 

R, using “snpgdsIBS” to calculate the Identity-by-state distance 

matrix, “snpgdsHCluster” to perform hierarchical clustering, 

and “snpgdsCutTree” to determine an appropriate number of sub-

groups using a permutation test (Zheng et al. 2012).

To assess the relationship between the suggested population sub-

groups and gene expression, we ran linear models to predict log- 

transformed gene expression (i.e. log2 (x + 1), where x is measured 

as TPM) from the subgroups of samples, based on variants 

(Supplementary Data Set 16). This closely follows the linear mixed ef-

fects models used to assess the effect of population structure in Cruz 

et al. (2020), except that we did not need to account for effects such as 

harvest date, sequencing batch, or spatial autocorrelation. We sepa-

rated out the 2 subgroups, based on the 2 large clusters from the 

variant-based PCA (Supplementary Fig. S14). Note, these subgroups 

were consistent with the 2 subgroups predicted by the SNPRelate 

analysis (Supplementary Fig. S15B). We adjusted the P-values for 

the associated t-tests, using the Benjamini and Hochberg method 

to control the false discovery rate (Benjamini and Hochberg 1995).
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